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Abstract—In computer vision, tracking humans across camera views
remains challenging, especially for complex scenarios with frequent
occlusions, significant lighting changes and other difficulties. Under
such conditions, most existing appearance and geometric cues are
not reliable enough to distinguish humans across camera views. To
address these challenges, this paper presents a stochastic attribute
grammar model for leveraging complementary and discriminative hu-
man attributes for enhancing cross-view tracking. The key idea of our
method is to introduce a hierarchical representation, parse graph, to
describe a subject and its movement trajectory in both space and time
domains. This results in a hierarchical compositional representation,
comprising trajectory entities of varying level, including human boxes,
3D human boxes, tracklets and trajectories. We use a set of grammar
rules to decompose a graph node (e.g. tracklet) into a set of children
nodes (e.g. 3D human boxes), and augment each node with a set
of attributes, including geometry (e.g., moving speed, direction), ac-
cessories (e.g., bags), and/or activities (e.g., walking, running). These
attributes serve as valuable cues, in addition to appearance features
(e.g., colors), in determining the associations of human detection boxes
across cameras. In particular, the attributes of a parent node are in-
herited by its children nodes, resulting in consistency constraints over
the feasible parse graph. Thus, we cast cross-view human tracking as
finding the most discriminative parse graph for each subject in videos.
We develop a learning method to train this attribute grammar model from
weakly supervised training data. To infer the optimal parse graph and its
attributes, we develop an alternative parsing method that employs both
top-down and bottom-up computations to search the optimal solution.
We also explicitly reason the occlusion status of each entity in order
to deal with significant changes of camera viewpoints. We evaluate the
proposed method over public video benchmarks and demonstrate with
extensive experiments that our method clearly outperforms state-of-the-
art tracking methods.

1 INTRODUCTION
1.1

Tracking humans across multiple cameras while observing them
moving in the scene has been playing a critical role in most
high-level video understanding tasks, e.g., activity recognition,
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Fig. 1. Human tracking across camera views. (a)-(d): four camera views.
The subject in orange has significantly different appearance while being
observed in different camera views, and is occluded by other subjects
in the view (d). This subject can be readily tracked if we can identify its
attributes, e.g., activities, accessories, moving direction etc.

and thus has attracted many attentions in the past decade [51].
Most existing methods employ appearance cues [21] to train dis-
criminative [54] or generative models [45] with shallow [8], [20]
or deep [45] representations. The recent technical breakthroughs
in deep learning techniques [18], [39] achieved remarkable im-
provements in multiple recognition problems, e.g., face, audio,
etc. These techniques, however, have two limitations which restrict
their applications in surveillance systems. (I) Deep learning based
methods are mostly driven by the availability of large-scale labeled
data and the effective end-to-end training on powerful computing
devices, which are difficult to collect for human tracking tasks. (IT)
Appearances of the same person might be significantly different
while observing he/she moving in the scene because of the varying
imaging conditions (illuminations, occlusions, etc.). To address
these limitations, in this work, we will develop a unified multi-
view human tracking framework to leverage the advantages of
deep representations with minimal efforts of data preparation.
The proposed tracking solution is motivated with the fact that
a human observer can robustly identify persons who appear in
multiple surveillance areas of complex scenarios. Such a cor-



respondence problem is the core of cross-view human tracking
task. While the intrinsic working schema of human brain remains
unclear, it is well accepted that we human being can immediately
perceive object’s attributes and use them to guide the matching
process [16]. A few typical examples are shown in Figure 1 which
includes four camera views of the same scene at a certain time. The
three persons in subfigure (a) are performing different activities,
i.e. playing baseball, walking, and standing, respectively. The re-
identification of these three persons in other three camera views
becomes relatively straightforward if we can recognize the activity
labels of the detected human boxes. The other possible cues for
boosting cross-view identification task include (I) accessories, e.g.,
wearing hats or t-shirt, holding baseball bat; and (II) geometry
information, i.e., facing into or walking toward a landmark (e.g.
the building). These attributes directly confine the search space of
cross-view human re-identification as well as cross-view human
tracking. Moreover, in the past decade most such recognitions have
reached a level of accuracy, even under the various challenges(e.g.,
illumination changes, occlusions) [13].

There is thus a demand of leveraging various human attributes,
either semantic or geometric, static or dynamic, for robust multi-
view human tracking in videos. Though promising, a critical prob-
lem of this methodology is how to deal with the potential errors
made in the recognitions of human attributes. In this work, we will
introduce a stochastic grammar model to exploit human attributes
as extra cues, and develop an unified energy minimization formula
to avoid pre-mature decisions during inference. In comparisons
to previous efforts, our method will contribute in hierarchical
representation of human trajectories, bottom-up and top-down
inference, and effective learning (see the next subsection). Figure |
shows a person in subfigure (a) and the tracked boxes of the same
subject in other three camera views.

1.2 Overview

The objective of this work is aimed at developing a robust solution
to cross-view human tracking in complex scenarios, which might
include various challenges, e.g., low resolution, frequent occlu-
sions, significant illumination changes, etc. Under such conditions,
appearance information are not reliable enough to identify the
same subject across camera views and thus lead to errors (e.g. ID
switches) in human tracking.

We propose an attribute grammar model for robust human
tracking. Our model embraces two principles. (I) Composition.
We describe the tracking of a human as a composition process,
which decomposes a human trajectory into tracklets, 3D human
boxes, and detection boxes, resulting in a hierarchical graphical
structure, called parse graph. Our grammar model comprises of
a few grammar rules, each of which is used to generate graph
nodes of parse graphs. These grammar rules explicitly define the
composition process, €.g., associating multiple boxes in different
camera views to be a 3D human box, grouping multiple sequent
3D boxes as a tracklet, etc. (II) Attribution. In parse graph,
we augment each graph node with a set of attributes, including
appearance (e.g., color, texture, gradients), motion (e.g., speed,
direction), accessories (e.g., glasses, bags, purses), and activities
(e.g., walking, running, turning). Attributes of a node will be
inherited by its children nodes, resulting in consistency constraints
between sibling nodes. Thus, given a video sequence, our goal is
to retrieve the most probable parse graph subjecting to various
attribute constraints.
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We formulate the construction of parse graph from videos as
an energy minimization problem [35]. The energy function of a
candidate parse graph is a linear combination of energy terms
over individual graph nodes, of which describe the dissimilarities
between sibling nodes regarding their various attributes. The
weights of these terms are discriminatively learned from weakly
supervised training samples. Thus, the energy function is used
to measure how plausible a parse graph is as a valid trajectory
representation.

We develop a bottom-up and top-down inference algorithm to
retrieve the most probable parse graph for each subject in videos.
With an initial parse graph, our algorithm follows the Metropolis-
Hasting principle [35] to reconfigure the current parse graph using
a set of dynamics so as to simulate a Marko Chain in the joint
solution space. Those dynamics will select a subtree of graph
nodes in either top-down or bottom-up fashions and assign new
subject ID to the nodes of the selected subtree. We introduce a
binary indicator variable for terminal nodes, i.e. human boxes in
individual camera views, and explicitly infer its status. We will
also propagate attributes through the tree-structure from parent
nodes to children nodes, i.e. in a top-down fashion. In comparisons
to previous sampling methods [20], the designs of our method will
be able to make distant proposals, i.e. proposals those are far from
the current solution but still have high probabilities to be accepted.

1.3 Relationships to previous works

This work is closely related to the following research streams in
computer vision.

Multi-view object tracking is often formulated as a data
association task. A key research question is: how to find cross-
view correspondence at either pixel level [33] or region-level [14],
[2] or object-level [44]. Typical data association methods are
developed based on integer programming [12], network flow [43],
[5], marked point process [36], multi-commodity network [31],
and multi-view SVM [54]. Among these approaches, sampling
techniques bear the advantages of solving intractable optimization
and have been extensively studied in the past literature. For
example, Khan et al. [14] integrated Markov Chain Monte Carlo
method with particle filer tracking framework. Yu et al. [52]
utilized single site sampler for associating foreground blobs to
trajectories. Liu et al. [20] introduced a spatial-temporal graph to
jointly solve region labeling and object tracking by Swendsen-
Wang Cut method [4]. While promising, all these algorithms use
shallow representations which are sensitive to various challenges
(e.g., illuminations changes). In this work, we propose to integrate
sampling techniques with deep representation of human trajecto-
ries and design a set of reversible dynamics that can efficiently
search the joint solution space.

Tracking under wild conditions Tracking subjects of inter-
ests across multiple camera views with wide-baselines is essen-
tially an identification problem and the most popular features are
extracted based on appearance information (e.g., color, gradient).
However, in these scenes with significant illumination changes or
frequent occlusions, appearance information are not reliable, as
shown in Figure 1. In a particular camera view, a subject might
be occluded by other objects or is not visible. To address these
fundamental challenges, a natural solution is to integrate high-
level recognition outcomes with human tracking [6]. Moreover,
Yang et al. [48] explicitly addressed occlusions in a probabilistic
framework for multi-target tracking. Zhang et al. [53], Henriques



et al. [10] and Pirsiavash et al. [27] introduced global optimization
frameworks to track objects over long-range, which are helpful to
recovering trajectories from occlusions. Milan et al.[23] addressed
multiple object tracking by defining bi-level exclusions. Wang
et al. [38] proposed to infer tracklets, i.e. short trajectories, and
further solved data association problem. Possegger et al. [29]
relied on geometric information to efficiently overcome detection
failures when objects are significantly occluded. These algorithms
achieved promising results but are restricted to shallow data
representations and lacks of formal modeling of human attributes.
In this work, we develop an attribute grammar to fill in this gap and
demonstrate its superiorities over alternative tracking methods.

Joint video parsing with multiple objectives has been
approved to be an effective way for boosting the performance
of individual objectives. For example, Wei et al. [40] introduced a
probabilistic framework for joint event, recognition, and object
localization. Shu et al. [32] proposed to jointly infer groups,
events, and human roles in aerial videos. Nie et al. [25] employed
human poses to improve action recognition. Park and Zhu intro-
duced an stochastic grammar to jointly estimate human attributes,
parts and poses [26]. Weng and Fu [41] utilized trajectories and
key pose recognitions to improve human action recognition. Yao
et al. [50] investigated how to use pose estimation to enhance
human action recognition. Kuo and Nevatia [17] studied how
person identity recognition can help multi-person tracking. Xu
et al. [46] developed a spatial-temporal reasoning framework for
jointly exploiting appearance, gestures, and actions of humans for
robust tracking. In this work, we follow the same methodology
and present a stochastic attribute grammar, as a formal language,
for joint video parsing. Our parsing framework can leverage
various semantic human attributes, including orientations, poses,
and actions, to narrow the search space in cross-view tracking task,
and significantly improve tracking robustness and accuracies.

1.4 Contributions and Organizations

The three contributions of this work include (i) a stochastic
attribute grammar model capable of integrating a diverse set of
human attributes for robust cross-view human tracking in complex
scenarios; (ii) an effective computational framework that can learn
grammar model from weakly supervised training data and infer
the most probable parse graph for each subject in videos; and
(iii) state-of-the-art performance on both public video datasets and
newly collected videos.

The rest of this paper is organized as follows. In section 2, we
introduce the proposed stochastic grammar for human tracking
problem. In section 3, we present how to efficiently learn the
grammar model from training data and perform effective inference
in videos. In section 4, we report evaluation results of the proposed
models and alternative methods on public video datasets. In
section 5, we conclude this work and remark the future research
directions.

2 STOCHASTIC ATTRIBUTE GRAMMAR

CROSS-VIEW HUMAN TRACKING

FOR

This section presents a stochastic attribute grammar model for
cross-view human tracking.

Subject R extrinsic camera parameters

K intrinsic camera parameters
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Fig. 2. Parse graph for a human trajectory. A video might include more
than one trajectories and thus multiple parse graphs.

2.1 Compositional Human Representation

We develop a compositional representation to describe the moving
trajectory of a human in videos. Figure 2 illustrates the proposed
graph representations, which embodies two principles.

(I) Composition. As illustrated, a human trajectory (top row)
can decompose into multiple tracklets, a tracklet comprises of
multiple 3D human boxes, and a 3D box corresponds to multiple
2D human boxes in individual cameras. This hierarchical decom-
position results in a tree-like structure, i.e. Parse Graph, which
includes both terminal nodes (i.e. human boxes) and intermediate
nodes (tracklets). For each node, there are often more than one
ways of compositions, and thus the compositional process must
determine the most probable structure in the compositional space.

(IT) Attribution. Every graph node in the hierarchy represents
a trajectory, a tracklet, a 3D human box, or a 2D human box,
and is associated with a set of geometric and semantic properties.
For example, geometric attributes include moving directions, lo-
cations, poses, occlusion statuses, and moving speed. Semantic at-
tributes include accessories (e.g. bags, clothes) and activities (e.g.,
walking, running). We cluster these attributes into three groups,
and summarize them in Table 1. These attributes are used as
complementary discriminative information for identifying humans
across camera views that have significant viewpoint changes or il-
lumination variances. In such scenes, the conventional appearance-
or motion- based measures are not reliable and usually result in
failures of tracking. In contrast, object attributes (e.g., gender,
activities), once recognized, are intrinsically invariant against
illuminations or viewpoint changes and are thus fairly reliable in
complex scenarios.

The proposed attributed parse graph serves as a redundant and
informative deep representation for human trajectories in videos.
In comparisons to the previous shallow representation [51], [20],
attributed parse graph has the following two advantages. First, our
method allows different trajectory entities of the same subject to be
grouped based on different cues. For example, our method might
group tracklets A and B together since they have similar moving
speed, and group tracklets B and C together since they both wear
a red hat. Second, our representation model can adaptively exploit



both low-level attributes (e.g., speed) and high-level attributes
(e.g., activities), which is critical to the success of human tracking
in complex scenario. Third, as a redundant representation, for a
given video sequence the optimal parse graph for a subject is not
unique which means that even local minimal solution can still
convey plausible parse graph for tracking purpose.

2.2 Stochastic Grammar

We introduce a stochastic grammar model to guide the construc-
tion of attributed parse graphs.

Definition 1 The movement trajectory of a subject in videos
is described using a stochastic grammar, specified by a five-tuple
G=(T.N,P,SR).

In the representation model GG, T' denotes terminal nodes, N
denotes non-terminal nodes, i.e. tracklets, P the probabilistic mod-
els, S the root node standing for a subject, and R = {ry,r9,...}
a set of grammar rules. Note that a parse graph G is used to
describe a single subject, and a video sequence might include
multiple subjects.

Our grammar model comprises of a set of grammar rules 7 :
A—(Aq, As, ...,) , each of which defines a type of generation
relationships between a parent node A € A and its children nodes
A; € NUT. A children node can further decompose into a set of
children nodes. These production rules will be applied recursively
to generate a parse graph, representing a subject’s trajectory in
videos. In this work, we define four grammar rules.

o 11 : S—(A1,As,...,), where the parent node S repre-
sents a trajectory and the children nodes are tracklets.

o 19 : A—(A1, As,...,) where the parent node A denotes
a tracklet and the children nodes are either tracklets or 3D
human boxes. This grammar rule is used to recursively
decompose a tracklet into finer-level tracklets.

o 13:A—(A1, Ay, ...,) where A and A; denote 3D human
boxes and 2D human boxes, respectively.

e 14 : A—ra which instantiates a non-terminal node A to be
a terminal node a. Herein, A represents a 2D human box,
and a represents the visual observation of A in images.

Among the above grammar rules, the rule 7 can be recursively
applied, and the rest rules will appear multiple times at certain
levels of a parse graph. In contrast to the recursive grammar
model, e.g., Liu et al. [22], our grammar model is non-recursive
and generates much less plausible parse graphs.

Definition 2 A parsing graph G is a tree structure expanded
from a root node by a sequence of grammar rules while respecting
the various attribute constraints.

We can expand a nonterminal node to a collection of non-
terminal or terminal nodes by applying grammar rules sequen-
tially. Each expansion generates a subtree. A terminal node repre-
sents a human box detected in videos. A nonterminal node A € A/
represents a sequence of human boxes over a certain period of time
(i.e. tracklets), or a cluster of 2D human boxes across multiple
camera views at the same time-point.

2.3 Attributes and Constraints

We augment every graph node with a set of attributes to describe
subject’s states in space-time domain. The attributes of a non-
terminal node A € A are defined as follows:

X(A) = (v,1,1) (1)

TABLE 1

List of Nine Human Attributes.
Category Property | Exemplar Values
Geometry Direction | vector

Speed scalar

Glasses ‘Yes’, ‘No’
Accessories Bags ‘Yes’_, No’ .

Clothes ‘T-shirt’, ‘Coat’, ‘Suit’

Hats ‘Yes’, ‘No’

Activities | ‘walking’, ‘running’, ‘riding bike ’
Semantics Gesture “standing’, ‘sitting’, “bending’

Gender ‘male’, ‘female’

where v are a set of attribute values,/ the center location of node
A in the scene, and t the time-stamp. Location coordinates are
defined on a reference camera view which can be projected into
other camera views or a world reference coordinate [19]. Similarly,
the attributes of a terminal node a € 7 are defined as follows

X(a) = (o,1,1) 2)

where the binary variable o € 1,0 indicates the visibility of the
terminal node a. We have o = 1 if a subject is visible in the
current camera view; otherwise, o = 0.

In a parse graph, the attributes X (A) of a parent node A
will be inherited by its offspring nodes, which imposes a set
of constraint equations. For a graph node A — (Aj, As), the
associated equations are defined over the attributes of A and
Al, AQZ

G X(A)) = fix

where g¢;(), fi() are projection functions of the attribute vec-
tors. For instance, let X(A) = (X;,X2) and X(B) =
(X1,Xs5,X3), B € A.Child. Table 1 summarizes three groups
of attributes used in this work. Then an equation could be simply
an equivalence constraint (or assignment) for passing the informa-
tion between nodes A and A; in either directions,

(A1), X(A2)],i=1,2,3, ... 3)

AX;=B.X; “)

The above equation is also used to define two parsing procedures.
(1) bottom-up message parsing, which passes the attributes of a
child node (i.e. B.Xy) to its parent node A.X;. (Il) top-down
message parsing, which passes the attributes of a parent node
(i.e. A.X7) to its children nodes (i.e. B.X7). We will develop
an inference algorithm that alternates these two procedures for
effective computing.

Proposition 1 Human detections of the identical person are
terminal nodes of the same parse graph.

The above proposition holds by the definition of parse graph.
Thus, the cross-view human tracking problem can be cast as
finding the most probable parse graph from videos. Specifically,
given human boxes detected in videos, we will apply the grammar
rules to group these 2D detections across camera views to form
3D human boxes, associate 3D human boxes to get tracklets
and cluster tracklets to obtain human trajectories. Among the
composition process, the attributes of levels of nodes should be
consistently assigned so as to ensure all attribute constraints are
satisfied. It is noteworthy that we will create multiple parse graphs
from the input videos, each corresponding to one of the subjects
in the scene.



2.4 Energy Function

We formulate the construction of parse graphs as an energy
minimization problem (or maximizing a posterior probability).
We define the energy of a parse graph G to be the sum of the
energies of non-terminal graph nodes in G plus the energy of
placing terminal nodes in video frames.

E(G) _ Z Eattr(A> +Eterer(7—)
AeN

For each non-terminal node A, its energy is defined over the
attributes,

Eattr (A) —

&)

ST ST 1(f(A) # ge(B)) 6)

BeA.Child k

where £ is the index of all valid attribute constraints between non-
terminal nodes A and B.

We define the energy term E'"™(T) to be the sum of
appearance in-consistency energies between visible terminal nodes
plus the constant penalties of placing nodes as invisible.

Eterm(T) — Z 0; - 0j - Eterm(aivaj) + Z 5 . 1(01_ _ 0)

ajF#aj a; €T

where 0; € {1,0} indicates the visibility of a node a;, and
[ is a constant penalty. We define the appearance models for
terminal nodes by associating a filter H. Then E**"™(ay,as) =
H - (¢(a1) — ¢(az)) is the dot product between the filter co-
efficients and the feature vectors extracted from the two human
detections. We will introduce the extraction of feature vectors ¢()
in Section 4.

The energy function of Eq. (5) directly encodes attribute
constraints over non-terminal nodes, appearance consistencies
between terminal nodes, and visibilities of individual graph nodes.
The model parameters will be automatically learned from weakly
supervised data as introduced in the next section.

3 INFERENCE AND LEARNING

In this section we introduce the developed inference and learning
algorithms for cross-view human tracking.

3.1

The goals of our inference algorithm are two-fold: (i)model
selection, to determine the number of subjects in videos; (ii) state
estimation, to construct the optimal parse graph for every subject,
i.e., model estimation.

We solve the above two goals jointly in a Bayesian framework
by maximizing a posterior probability P(G|I) where G pool all
the parse graphs desired in the input videos I. According to Bayes
rules, we have:

P(GT) « [[ P|G.) P(G)

Inference for cross-view human tracking

®)

We define the likelihood model using the energy functions (5),
ie. PI|G,,) = exp{—F(G,)/K} where K is a constant. We
define the prior model to encourage small number of parse graph
P(G) = exp{—|G|} where |G| is the number of subjects.

We develop an efficient cluster sampling algorithm following
the data-driven Markov Chain Monte Carlo (MCMC) schema [35].
Traditional sampling techniques, e.g. Gibbs sampler [15], often
suffer from efficiency issues. In contrast, clustering sampling
methods [28], [3] will group variables into clusters and re-label
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a cluster of nodes together. In our method, with an initial parse
graph G, we use a set of dynamics to reconfigure G and accept
the the new state G’ with a probability. The acceptance probability
is defined following the Metropolis-Hasting strategy [35]:

P(G'HQG — G)
" P(GINQ(G' — G)

n |l €))

where Q(G’ — G)) is the proposal probability.

Algorithm | summarizes the proposed inference algorithm. We
use five dynamics that specify either jump or diffusion moves
between solution states. Jump dynamics are paired with each other
to preserve detail-balancing in random walk. In the rest of this
subsection, we first introduce the initializations of G and then
introduce the designs of five dynamics.

Initializations Our inference algorithm comprises of the fol-
lowing three types of pre-processing.

e Cross-view camera calibration. To obtain the projection
matrix between two camera views, we follow the conven-
tional structure-from-motion pipeline [34]. It comprises
of detection of interests point, finding corresponding us-
ing RANSAC method, and performing bundle adjustment
method to obtain the camera motions.

e Human detections. We employ the popular Faster Region-
based Convolution Neural Network method [30] to detect
humans in videos. We fine-tune the pre-trained network
models over our training videos.

e Recognitions of human attributes. Given a terminal node
or non-terminal nodes (e.g. tracklets), we can directly
estimate its speed and moving direction from visual inputs.
The recognitions of other attributes, e.g., accessories, ac-
tivities, gestures and genders, will need off-line training of
machine learning models. We will introduce the training
of human recognition modules in Section 4.
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Dynamic I and II: addition/deletion of parse graphs. This
pair of dynamics are used to add a new parse graph (or a subject)
or remove one of the parse graphs in G at each iteration. As To
add a new parse graph, we first collect all detected human boxes
not assigned to any IDs, extract their appearance features (see
Section 4), and run K-means method to get clusters of nodes.
Each cluster is considered to be candidate parse graph. For each
candidate, we use their average pair-wise similarities to define
proposal probability Q(). We greedily apply the Dynamic III over
the selected cluster of nodes to create a parse graph. For the
dynamic II, we will randomly select one of the parse graphs in
G and assign its terminal nodes to be background. The proposal
probability is set to be a constant.

Dynamic IIT and IV: addition/deletion of non-terminal nodes
in a parse graph. This pair of dynamics are used to reconfigure a
parse graph through adding new graph nodes or deleting existing
graph nodes. To add a new graph node (Dynamic III), we will
randomly select one of the existing parse graphs in G, and create
a list of candidate nodes, which have not been assigned to any ID.
The proposal probability of selecting a candidate node is defined to
be proportional to its average similarities with the terminal nodes
in the selected parse graph. To delete a nonterminal node, we
create a list of candidates involving all nonterminal nodes, and
specify a proposal probability for each candidate according to its
energy (i.e. (5)). Once selected a node, we will delete it and its
offspring nodes together.



Algorithm 1 Inference.
1: Input: multiple-view video sequences
2: Initializations of cross-view calibrations, human detections
and attribute recognitions.
3: Construct initial graphs G;
4: Iterate until convergence,

- Randomly select one of five dynamics
- Make proposals accordingly to change solution state
- Accept the change with a probability

Dynamic V: switching nodes between parse graphs. This
dynamic is used to split a trajectory entity (e.g., tracklet, 3D
human boxes) from one parse graph and add it to another parse
graph. To do so, we use the same strategy used for Dynamic IV to
generate candidate nodes in a randomly selected parse graph. The
selected node along its offspring are added to the corresponding
layers (i.e., tracklets, 3D human boxes, or 2D human boxes of
another parse graph selected.

Dynamic VI: changing attributes of graph nodes. The at-
tributes of a graph nodes are mostly provided with confidences,
and there is thus a demand to exploit the alternative recognition
results. To do so, we will randomly select a node in the hierarchy
and change one of its attributes to be alternative values with a
probability. The proposal probability of a designed value is defined
to be proportional to its recognition confidence. Once changed, we
will propagate this new attribute to its offspring nodes.

Among the above dynamics, the Dynamics I through V result
in jump moves in the solution space through bottom-up compu-
tations, and the dynamic VI results in diffusion changes through
top-down propagation. It is noteworthy that the proposed model
is computational efficient due to the structured solution spaces,
defined by the hierarchical parse graph. In particular, our method
can adaptively determine the best scale to optimize, from low-
level graph elements, e.g., tracklets, to high-level graph elements,
e.g, long trajectories. In this way, the sampling method is able to
switch the labels (trajectory IDs) of a big chuck of elements, and
thus accelerate the mixing process.

3.2 Learning of Grammar Model

We utilize an empirical study over training samples to estimate the
optimal parameters of the energy function E(G), including filter
parameters H, kernel widths used for the exponential functions
and other hyper-parameters. We use weakly supervised training
data, each of which is only provided with human trajectories,
without parse graphs. Our goal is to select the optimal value for
each parameter, i.e., the optimal parameter configuration. To do so,
for each of these parameters we empirically quantize its possible
values, e.g. 0.1,0.3,...,1 for a constant. With each possible
parameter configuration, we need to simulate a parse graph for
every image from the trajectory annotations.

In parameter learning, we revise Algorithm 1 as follows: 1) skip
the step of initializations, e.g., detection, tracklets generations,
since we have access to the annotated human trajectories; ii)
only use the dynamics III and IV (birth/death of non-terminal
nodes) during MCMC sampling. This revised inference usually
converges within a hundred of iterations (with dozens of graph
nodes). After convergence, we calculate the energy FE(G). Thus,
we select the parameter configuration that achieves the minimal
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energy. Similar simulation based learning method has been used
in previous works [35] [22].

4 EXPERIMENTS

We apply the proposed grammar model over multi-view videos to
track humans in the scene and compare to other popular tracking
methods on the same video dataset.

Datasets To evaluate the proposed method, we compare with
other state-of-the-arts using four datasets:

(1) DARPA dataset. This is a video dataset collected for the
DARPA MSEE program and was used by Liu et al. for multi-
view human tracking [19]. The videos were captured in three
scenes: parking lot, garden, and office areas. There are 8, 6, and
10 cameras mounted on top of building or wall, respectively. For
each scene, there are two groups of cameras and each group has
overlapping camera views. For each camera view, there is one
video sequence of 8-10 minutes long.

(2) PPL-DA dataset. We collect a new dataset aiming to cover
people’s daily activities. This dataset consists of 3 public facilities:
foot court, office reception, and plaza. The scenes are recorded
with 4 GoPro cameras, mounted on around 1.5 meters high tripods.
The produced videos are also around 4 minutes long and in 1080P
high quality. We further annotate the trajectories of every person
inside the scene with cross-view consistent ID. This dataset was
used in our previous work [46].

(3) EPFL dataset . This dataset is collected by Berclaz et
al. [5], including five scenes. For each scene, there are 3-5 cameras
and each video is about 3-5 minutes long.

For each of the above three datasets, we incorporate 10% of
the videos as augmented training set and the rest as testing set.
The training data are used to learn model parameters and train
classifiers for recognizing human attributes (as introduced later).
The learning process is only done once and applied to all datasets.
All parameters are fixed in the experiment.

We also annotate object attributes for all the videos of the
DARPA dataset, and used the ground-truth annotations for ablation
experiments. We only annotated the high-level attributes, i.e.,
accessories and activities. We use the labeling tool VATIC [37]
to reduce the labeling efforts. In particular, we manually provide
attribute labels for each object at a video frame and use VATIC to
propagate these object attributes to the following video frames.

Implementation of the proposed method We implement the
Algorithm 1 as follows. To obtain feature vectors of terminal
nodes, i.e. ¢(), we will employ the powerful deep convolution
neural network [I1]. In particular, we fine-tune the CaffeNet
using people image samples with identity labels. The network
consists of 5 convolutional layers, 2 max-pooling layers, 3 fully-
connected layers and a 1000-dimensional layer connected by the
classification loss. Similar to bag-of-words (BoW), such a network
plays the role of a codebook, which describes a person image with
common people appearance templates. For each image, we run
the forward pass through the trained network to get the 1000-
dimensional output layer as its feature vector.

In order to quantize the contributions of various human at-
tributes (summarized in Table 1, we implemented five variants of
the proposed method. (a) Ours-I, that does not utilize any human
attributes; (b) Ours-II, that only utilizes the geometry attributes,
i.w. direction and speed, as shown in Table 1; (c) Ours-III: that
only uses the attributes of Accessories; (d) Ours-IV: that only uses
the attributes of Semantics (i.e., activities, gesture and gender); (d)



Fig. 3. Sampled qualitative results of our proposed method on DARPA
(Row 1) and PPL-DA datasets (Rows 2 and 3), and EPFL (Row 4). Each
row shows two camera views at the same time, and the tracked subjects
are identified with colors.

Ours-V, that uses all the human attributes. We apply these variants
over the same testing videos for ablation analysis.

We extract human attributes (as listed in Table 1) as follows.
First, we compute average speed of each tracklet, and project its
movement direction in images to the reference camera view. Two
moving directions are considered to be same if their relative angle
is less than 15 degrees. Second, we train a neural network to
recognize accessories, including glasses, bags, clothes, and hats
and genders. For each attribute, e.g., hats, we annotate attribute
label (Yes or No) for each subject in training videos. Each of these
attributes labels are related to two output units and share the same
CNN network. These deep models were trained once, and are fixed
through the experiments over various datasets. Third, to recognize
gestures or activities of an individual, we train a deep neural
network to categorize the classical human pose/action variations.
We use the PASCAL VOC 2012 action dataset, augmented by
our own collected images. We use four activities: ‘walking’,
‘running’, ‘riding bike’, ‘skate boarding’, and three gestures:
‘sitting’, ‘standing’ ,‘bending’, which cover people’s common
types of gestures/activities. With about 5000 training images, we
fine-tune a 7 layer CaffeNet, with 5 convolutional layers, 2 max-
pooling layers, 3 fully-connected layers. We consider each gesture
or activity as a binary class and thus the final output of the CaffNet
has 14 output units.

We employ the Faster Region-based Convolution Neural Net-
work method [30] to detect human boxes in videos. We use the
pre-trained model and fine-tune it over the training videos. In
testing, the pruning threshold is set to be 0.3. We apply Sequential
Shortest Path (SSP) [27] to initialize tracklets. The sampling is set

TABLE 2

Results of attribute recognitions on the testing subset of the DARPA
dataset.

Category Attribute Classes Precision | Recall Rate F1

Glasses Positiye 73.5 77.3 753

Negative 83.2 85.6 84.3

Bags Positiye 91.2 93.5 93.3

Negative 89.4 82.3 85.7

Accessories T-shirt 88.1 79.3 83.4

Clothes Coat 85.0 88.4 86.6

Suit 81.2 79.3 80.2

Hats Positiye 90.2 89.5 89.8

Negative 91.3 93.7 92.4

Gender Male 95.1 96.3 95.6

female 96.3 94.7 95.5

standing 87.3 85.5 86.4

Gestures sitting 75.3 74.6 74.9

Semantics bending 85.2 83.1 84.1

walking 78.5 81.3 79.8

Activities running 88.3 79.1 83.4

biking 93.9 90.2 92.0

skating 84.1 8.1 86.5

Average 86.5 85.7 86.1

to finish after 1000 iterations, which achieves decent results. In
initializations, we assign two boxes in different camera views to
the same subject if their projection boxes overlap with each other.

To handle streaming videos, we run Algorithm 1 over a
window of 200 frames and slide it forward at the step of 20
frames. For each window, we utilize the results from the previous
window as initial solution. Algorithm 1 usually converges within
1000 iterations. On an DELL workstation (with 64GB memory,
17 CPU @2.80GHz, and NVIDIA Tesla K40 GPU), our algorithm
can process on average 10 frames per second.

Metrics We evaluate the various tracking methods using the
following metrics [47], including:

o TA, Multiple Object Tracking Accuracy, number of cor-
rectly matched detections over total number of ground-
truth detections;

o TP, Multi Object Tracking Precision, the average ratio of
the spatial intersection divided by the union of an esti-
mated object bounding box and the ground-truth bounding
box.

o FRGY, number of trajectory fragments;

o MT, mostly tracked, percentage of ground truth trajecto-
ries which are covered by tracker output for more than
80% in length;

e ML, mostly lost, percentage of ground-truth trajectories
which are covered by tracker output for less than 20% in
length;

o IDSWY, ID Swiich, the number of times that an object
trajectory changes its matched id.

Herein, + indicates that a metric is better if smaller.

Qualitative Results

Fig. 3 shows exemplar results of the proposed method on
three datasets, including DARPA (the first row), PPL-DA (the
second and third rows), and EPFL (the fourth row). For each
scene, we show two camera views which are overlaid with the
tracked subjects. Every subject is identified with a unique color.
These videos pose great challenges to cross-view tracking in many
aspects, including severe occlusions (rows 3 and 4), significant
lighting changes (Rows 1 and 2), and large pose changes (rows 3
and 4), etc. Under such complex conditions, the proposed method
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Fig. 4. Tracking Performance v.s. accuracies of human attribute recog-
nitions. horizontal-axis: average F1 scores; vertical-axis: TP (top), TA
(middle) and IDS (bottom). The triangle in red indicates the accuracy of
the attribute recognition method used in this work.

TABLE 3
Quantitative tracking results on the DARPA dataset. There are five
implementations of the proposed methods: Ours-I, that does not
explore human attributes; Ours-Il, that explores only geometry
attributes; Ours-ll, that explores only the attributes of accessories;
Ours-1V, that explores only the semantic attributes; Ours-V, that
explores all human attributes.

[ Metrics TA(%) | TP(%) | MT(%) | ML(%)] | FRG| | IDS]
[ MDNet [24] 86.7 88.9 92.3 8.6 65 14
Ours-V 85.2 87.1 84.5 9.5 68 19
Ours-1V 81.3 86.1 84.5 10.1 75 25
Ours-IIT 78.3 83.2 83.3 11.7 81 27
Ours-II 75.9 80.8 82.6 12.0 89 31
Ours-I 74.5 78.9 80.7 12.5 97 43
SSP [27] 72.3 74.5 75.0 14.6 102 59
mvSVM [54] 68.5 71.8 72.7 15.9 124 82
KSP [5] 71.6 73.4 74.3 14.1 244 59
DCT [1] 524 54.3 69.4 18.8 243 85
AVT [49] 63.5 64.1 78.8 17.2 198 71
LSHT [9] 62.1 60.7 70.6 15.3 173 79
Geodesic[29] 64.2 66.1 74.2 14.5 340 73

can still achieve robust tracking with the informative attribute
grammar.

Ablation Experiments on the DARPA dataset

We apply the proposed method over the DARPA dataset
and perform ablation experiments to analyze the contributions
of human attributes. Table 2 reports the precision rate and recall
rate of the human attribute recognition method used in this work.
The average recall rate is %86.5and the average precision is
%85.7 While these results are moderately acceptable, there are
still considerate amount of errors or false alarms made by the
recognition algorithms. Therefore, it is critical to evaluate how the
proposed method performs while human attributes are incorrectly
recognized.

To do so, we progressively add errors to the ground-truth
attribute annotations as follows: randomly select a human instance
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and set one of its attributes (e.g., ‘gender’) to be a wrong label
(e.g., ‘female’). We repeat the above process to add more errors.
With these flawed human attributes, we apply Ours-V to get
cross-view object trajectories, and calculate the various tracking
metrics. Figure 4 reports the accuracies of Ours-V while using
various qualities of human attribute recognitions. In particular, the
x-direction represents the accuracies of attribute recognition in
terms of Average F1 Score (i.e., 2 % %ﬁ:ﬁ%), and the
y-direction represents the tracking performance in terms of IDS,
TA, or TP, respectively. These comparisons are used to analyze the
impacts of erroneous attribute recognitions, which is inevitable
even in state-of-the-art recognition methods, over the proposed
tracking system. From the figures, we can observe that our method
is relatively robust and consistent even while the attributes are
not properly recognized. Note that the last column of each sub-
figure represents the method using ground-truth attributes (F1:
1.0) and the red triangle represents the outcome of by the attribute
recognition method used in this work.

TABLE 4
Quantitative tracking results on the EPFL [5]. There are five
implementations of the proposed methods: Ours-I, that does not
explore human attributes; Ours-II, that explores only geometry
attributes; Ours-lIl, that explores only the attributes of accessories;
Ours-1V, that explores only the semantic attributes; Ours-V, that
explores all human attributes.

Metrics | TA(%) | TP(%) [ MT(%) | ML(%)J | FRGJ. [ IDS]
MDNet | 889 | 912 | 919 | 7.1 2 | 18
OursV_| 85.7 | 889 | 896 | 7.6 | 14 | 16
Ours-1V_ | 839 | 873 | 863 | Ol 21 | 28
[ OursIll_| 815 | 859 | 837 | 109 | 34 | 47 |
[ Ours-Il | 802 [ 852 | 806 | 110 | 47 | 54 |
[ OursI | 80.1 | 845 | 795 | 113 | 53 | 63 |
SSP7] [ 781 | 767 | 743 | 189 [ 89 [ 67
mvSVM 591|795 | 753 | 763 | 129 | 112 | 34
KSP[5] | 786 | 76.1 | 753 | 143 | 189 | 25
DCT[1] | 624 | 696 | 68.1 | 162 | 214 | 6l
AVT O] | 733 | 728 | 704 | 141 | 145 | 53
LSHT 0] | 694 | 672 | 683 | 154 | 214 | 48
Geodesic[20]| 73.2 | 721 | 692 | 152 | 114 | 41

Results on the DARPA and EPFL datasets

We further apply the proposed method over the DARPA and
EPFL dataset, and compare it to the other popular trackers. We
use two recent multi-view trackers: (i) the K-shortest Path (KSP)
method by Fleuret et al. [5]; (ii) the multi-view SVM method
(mvSVM) by Zhang et al. [54]. We also implemented several
single-view based human trackers for comparisons, including:
(iii) The local sensitive histogram based tracker (LSH) [9]; (iv)
The discrete-continuous tracking (DCT) method proposed by
Andriyenko et al. [1]; (v) The occlusion geodesic (Geodesic)
based tracker [29]. We use the default parameter configuration
in their source codes. We also include the tracking results of
SSP method [27], which are used to initialize the proposed
methods. In addition to the above methods, we employed a
recent neural network based method, MDNet [24], that employs a
Multi-Domain Convolutional Neural Network for visual tracking,
where each object of interest(or domain) is represented as a
separate CNN network. MDNet achieved state-of-the-art tracking
performance in multiple visual tracking benchmarks [24]. As
most other deep learning trackers, MDnet employs extra training
images and ground-truth trajectories to train the networks as a



TABLE 5
Quantitative results and comparisons on PPL-DA dataset. There are five implementations of the proposed methods: Ours-I, that does not explore
human attributes; Ours-II, that explores only geometry attributes; Ours-lll, that explores only the attributes of accessories; Ours-1V, that explores

only the semantic attributes; Ours-V, that explores all human attributes.

Seq-Court TA(%) TP(%) MT(%) ML(%) 1 DSW | FRG |
MDNet [27] 531 821 322 213 53 )
Our-V 345 724 18.5 25.9 79 55
Our-1vV 30.1 71.9 17.2 28.6 92 69
Our-IIT 283 71.6 15.2 317 108 75
Our-Tl 26.9 70.3 12.1 329 113 82
Our-I 26.8 70.2 111 333 114 90
HTC [45] 29.5 71.9 14.8 25.9 91 77
KSP [5] 24.7 64.4 0.00 44.4 318 291
POM [7] 223 65.4 0.00 51.9 296 269
Seq-Office TA(%) TP(%) MT(%) ML(%) | DSW | FRG J
MDNet [27] 60.3 871 541 0.00 33 28
out-v 474 737 42.9 0.00 45 31
out-Iv 445 69.5 335 0.00 57 44
Out-IIT 435 57.1 29.1 0.00 68 59
Out-I 412 56.3 28.1 0.00 69 62
Out-T 39.8 9.0 28.6 0.00 72 64
HTC [45] 412 70.7 28.6 0.00 66 59
KSP [5] 39.6 58.0 28.6 0.00 83 76
POM [7] 36.9 58.8 28.6 0.00 89 82
Seq-Plaza TA(%) TP(%) MT(%) ML(%) IDSW | FRG |
MDNet [27] 274 68.0 185 2.7 2 98
Our-V 25.2 67.1 16.3 11.6 165 133
Our-1v 24.2 66.3 15.0 122 177 154
Our-TIT 224 65.1 14.2 142 195 172
Our-II 214 65.1 14.2 18.6 210 180
Our-I 20.6 65.1 11.6 18.6 244 199
HTC [45] 23.1 66.2 11.6 18.6 202 178
KSP [5] 17.3 575 7.0 27.9 356 311
POM [7] 16.7 57.9 4.6 32.6 339 295

deep representation of the objects of interest. We pre-trained the
MDnet on the OTB dataset [42], as discussed in the original paper,
and fine-tuned it using the training videos of the DARPA and
EPFL datasets. We use the recommended parameters (e.g. layers,
activation functions) in the original work [24]. It is noteworthy
that MDNet is developed for single-view tracking and we apply
MDNet over individual video sequences.

Tables 3 and 4 report quantitative results of various methods
on the DARPA dataset and the EPFL dataset, respectively. Among
these baselines, the mvSVM [54], KSP [5] and the proposed
methods are multi-view trackers,whereas the other methods work
on individual video sequences. Note that mvSVM and KSP are
two widely used methods for multi-view tracking, and the MDNet
is the most recent state-of-the-art tracker. From the results, we
have the following observations. (I) The proposed method Ours-
V outperforms the baseline methods mvSVM and KSP, as well
as the single-view tracking methods, DCT, AVT, LSHT, and
Geodesic. In particular, our method generated much less false
alarms than other methods. For example, on the DARPA dataset,
our method achieves IDS of 19, while the best score among the
baselines is 59 (KSP). These methods, however, are inferior to
the learning based method MDNet which was trained using extra
training samples with annotations. It is also noteworthy that the
comparisons between our methods and MDNet are not fair since
the later can only track objects in individual camera views. (II)
The method Ours-V clearly outperforms its variants Ours-I that
does not explore any human attributes and Ours-II that uses only
low-level attributes of geometry. The comparisons between Ours-
I, Ours-II, Ours-IIT and Ours-IV show that system accuracies can
be further improved through additionally using the attributes of
accessories (Ours-1II) and Semantic attributes (Ours-IV). These

ablation analysis clearly demonstrate the advantages of leveraging
human attributes for visual tracking task.

Quantitative Results on PPL-DA dataset

We further apply the proposed methods on the PPL-DA
dataset [46] and compare to two state-of-the-arts methods: Prob-
abilistic Occupancy Map (POM) [7], K-Shortest Path (KSP) [5].
We use the publicly available softwares of POM and KSP. We also
use the MDNet [24] as a baseline. We pre-trained the MDnet on
the OTB dataset [42], and fine-tuned it using the training videos
of PPL-DA dataset. In addition, we include our recent work,
Hierarchical Trajectory Composition (HTC) [45] for comparisons.

Table 5 reports the quantitative results of various methods, in-
cluding the five variants of the proposed methods, on the PPL-DA
dataset. From the table, we can obtain similar observations as those
on the DARPA and EPFL datasets. In particular, the proposed
method Our-V clearly outperforms the three popular baselines on
all three scenarios while using all Six metrics.Notably, our method
can significantly reduce the number of ID switches (IDSW) on all
scenarios, which is a critical indicator of the superiority of our
method. Our-V also outperforms the other four variants on all
testing settings, which directly justifies the key idea of this work,
i.e. that integrating human attributes is capable of boosting system
robustness while identifying subjects across camera views in
complex scenarios. MDNet achieved the best performances on all
video sequences mostly because it is directly trained for individual
camera views. Like other single-view trackers, MDnet, however,
is not be able to discover the cross-view correspondences, which
is the main focus of this work.
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CONCLUSIONS

This work presents a stochastic grammar model for leveraging
various human attributes in cross-view human tracking. Our model
can robustly track multiple persons while observing them moving
in the scene through camera views, even in complex scenarios.
To do so, we proposed a deep compositional representation, i.e.
parse graph, and introduced an attribute grammar to guide the
construction of parse graph from videos. We formulated such a
challenging task in the Bayesian framework, and developed an
alternative sampling algorithm to solve model selection and state
estimation simultaneously. Exhaustive experiments over multiple
video datasets clearly demonstrated the advantages of the pro-
posed grammar model, as an effective way to leveraging various
human attributes.
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