
International Journal of Mechanical Sciences 140 (2018) 446–454 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

A comparative study of two constitutive models within an inverse 

approach to determine the spatial stiffness distribution in soft materials 

Y. Mei a , B. Stover a , N. Afsar Kazerooni a , A. Srinivasa a , M. Hajhashemkhani b , M.R. Hematiyan b , 
S. Goenezen 

a , ∗ 

a Department of Mechanical Engineering, Texas A & M University, College Station, 77843 Texas, USA 
b Department of Mechanical Engineering, Shiraz University, Shiraz 71936, Iran 

a r t i c l e i n f o 

Keywords: 
Inverse problem in nonlinear elasticity 
Geometric nonlinearity 
Nonhomogeneous material characterization 
Silicone composite materials 
Digital image correlation 

a b s t r a c t 

A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) dis- 
tribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite 
elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deforma- 
tions and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better 
results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model 
and more robust numerically, we posed the following question: How accurately could we map the shear modulus 
distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? 
To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of 
different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation 
system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and 
as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We ob- 
served that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion 
and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar 
trend was observed for simulated experiments, where synthetically computed displacement data were produced 
and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In 
addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D 
model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a 
linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background in- 
creases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides 
valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems 
for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this 
work could be of importance to characterize mechanical property variations of polymer based materials such as 
rubbers or in elasticity imaging of tissues for pathology. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Mapping the nonhomogeneous material property (here the shear 
modulus associated with the local material stiffness) distribution has 
potential applications in biomechanical engineering and clinical diag- 
nosis, e.g. cancerous tumor detection [1–3] , assessment of atherosclero- 
sis [4,5] , and the understanding of neurodegeneration. One approach to 
qualitatively infer the material property distribution non-destructively 
in the interior of a sample (away from the surface) uses axial strain maps 
and is often referred to as “elastography ” [6,7] . This method assumes 
that the Young’s modulus can be interpreted to be inversely proportional 
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to the axial strain assuming that the stress is constant everywhere. The 
strain fields are computed using full-field displacement measurements 
acquired non-destructively by a variety of imaging modalities such as 
ultrasound [2,8–10] , magnetic resonance imaging (MRI) [1] , or com- 
puterized tomography (CT) scan [11] . Alternatively, the material prop- 
erty distribution can be recovered by modeling the mechanical behavior 
of the specimen or tissue and solving an inverse problem from known 
displacement fields and boundary conditions [12–16] . In this paper, 
we assumed quasi static deformations and posed the inverse problem 

as a constrained minimization problem subject to the constraint of the 
equilibrium equations and boundary conditions. In past works for quasi 
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static problems, this inverse mapping approach was used to determine 
linear elastic property distributions and nonlinear elastic property dis- 
tributions for hyperelastic materials [13,16–19] . 

Generally, an empirical constitutive model that can describe the me- 
chanical behavior of the solid is assumed to be known a-priori . Conse- 
quently, the choice of the constitutive model will affect the quality and 
accuracy of material property maps to characterize the mechanical be- 
havior of the specimen. However, most inverse solvers are developed 
for linear elastic material modeling assuming small strain theory. This 
may raise the question on how well the inverse solution from the linear 
model represents the nonlinear mechanical behavior. This may depend 
on the overall deformations applied, i.e. at small strains the material 
will likely behave like a linear elastic solid and large deformation mod- 
eling may not be of interest for certain materials and applications. It 
will also depend on the degree of nonlinearity of the material, meaning 
that some materials may experience a nonlinear mechanical response 
starting at about 50% strain (many rubber like materials), while other 
materials may experience a nonlinear mechanical response starting at 
about 10% strain (for example breast tissues or blood vessels). 

While modeling material nonlinearity is an important aspect when 
solving inverse problems, nonlinearity arising due to large deformations 
may introduce another source of uncertainty when using linear elastic- 
ity assuming small strain theory. Large deformations induce geometric 
nonlinearity and require the use of large strain measures such as the 
Green Lagrange strain measure and specification of a proper stress mea- 
sure, for example, the first or second Piola Kirchhoff stress tensor. The 
equations of equilibrium are often written in the material coordinate 
system and the integral in the weak form is expressed over the unde- 
formed configuration. This results in a nonlinear set of equations that 
can be discretized with Galerkin’s method, linearized, and solved using 
the Newton–Raphson method. The geometric nonlinearity introduced 
via large deformations clearly adds significantly more complexity and 
computational cost to the solution of the inverse problem in elasticity. 

In this paper, we investigate the validity of using a linear elastic 
model based on small strain theory to map the shear modulus distri- 
bution of a composite based silicone sample undergoing large defor- 
mations. The displacement field was measured using a digital image 
correlation system. The results from the linear elastic model were com- 
pared to the shear modulus maps obtained by solving the inverse prob- 
lem with a neo-Hookean hyperelastic material model. In Section 2 , the 
experimental set-up to measure full-field displacement data and the the- 
oretical background of the linear and nonlinear elastic inverse methods 
will be discussed. In Section 3 , the shear modulus reconstructions in 2- 
D for experimental and synthetic data are presented followed by a 1-D 
theoretical analysis. We discuss our results in Section 4 and conclude 
this work in Section 5 . 

2. Methods 

2.1. Composite sample and digital imaging data acquisition 

A composite membrane based on silicone materials, having a thick- 
ness of 0.6 cm and consisting of two cylindrical inclusions with 2.8 cm 

and 2.1 cm diameters were manufactured with dimensions shown in 
Fig. 1 (a). The background material was made of ECOFLEX 00-10 and 
the inclusion material was made of ECOFLEX 00-50, varying the shear 
modulus between inclusion and background material. The same mate- 
rials were also used to construct homogeneous samples to determine 
their material properties from their stress-stretch behavior from uniaxial 
tensile tests for later validation of our inverse solutions. The homoge- 
neous specimens were prepared with dimensions of 10 ×2 ×0.6 cm for 
height ×width × thickness. In order to prevent the sample from slipping 
between grips, small wooden pieces were glued to the sample ends. The 
uniaxial tensile tests were performed at room temperature with an IN- 
STRON 5567 machine with wedge action grips. The gauge length was 
defined at 8 cm with 1 cm offset from the grips to avoid boundary effects 

and bulging near the grips. The loading was displacement controlled at 
a deformation rate of 10 mm/min, sufficiently slow to avoid viscoelastic 
effects. The stress-strain response for inclusion and background materi- 
als are shown in Fig. 1 (b). We note that the stress here represents the 
Cauchy stress for which the measured force is divided by the current area 
at the midsection of the specimen of the deformed or current configura- 
tion. From the slope of these curves, we determined the shear modulus 
of the inclusions to be approximately 2.5 times larger than their back- 
ground material. We also observe that the stress-stretch curves of both 
materials are nearly linear, thus material nonlinearity is insignificant 
even for large strains of up to 30% for these materials. 

In the following, we briefly describe the procedure to manufacture 
the composite samples. A custom wooden mold was used for making 
the composite sample and is shown in Fig. 2 (a). ECOFLEX 00-10 was 
used for the background material and ECOFLEX 00-50 was used for the 
inclusions. Both materials are supplied as two parts and were mixed ac- 
cording to manufacture specification (equal parts). Afterwards, white 
Silc-Pig color was added to each mixture to color the sample white and 
provide a good contrast for the digital image correlation pattern applied 
to the surface (discussed below). The mixture was thoroughly mixed 
for about 3 minutes and then placed into a vacuum chamber to elimi- 
nate any entrapped air form the mixture. Then the liquid mixture with 
ECOFLEX 00-10 was poured into the mold shown in Fig. 2 (b). The mix- 
ture was poured around two PVC cylindrical tubes to preserve space 
for the inclusions. After about three hours of curing at room tempera- 
ture, the two cylindrical tubes shown in Fig. 2 (b) were removed from 

the mold. The mixture for the inclusions, prepared after the tubes were 
removed, was then poured into the cylindrical voids. Curing at room 

temperature was allowed for about three hours followed by post curing 
of the sample in a heated chamber at 80 °C for two hours and 100 °C for 
one hour. The sample was then removed from the hot chamber to cool 
to room temperature and is shown in Fig. 2 (c) post curing. 

A digital image correlation (DIC) system (DANTEC DYNAMICS, Ger- 
many) consisting of two cameras, a light source, a calibration plate, and 
a laptop with the “Istra 4D ” software was used in this work to mea- 
sure full field displacement data of the composite silicone material in 
two-dimensional space. This system relies on random speckle patterns 
applied onto the sample’s surface prior to data collection. Camera im- 
ages were then recorded of the pre- and post-deformed sample and the 
displacement field calculated with the “Istra 4D ” software by tracing and 
cross-correlating pre- and post-deformed speckle patterns. DIC technol- 
ogy is based on tracking unique features on the surface of the sample 
during deformation. Black spray paint was used to create the random 

dot pattern on the composite sample’s face as shown in Fig. 3 (a). The 
black speckle pattern on the sample’s white color provides an optimum 

contrast for pattern feature tracking. 
To deform the composite silicone sample, we utilized the same 

INSTRON machine introduced earlier for the homogeneous samples, 
shown in Fig. 3 (b) with the composite sample during tensile testing. 
The bottom edge of the sample is fixed and a simple tensile force was 
applied to the top edge. In order to prevent the sample from slipping be- 
tween grips, small wooden pieces were glued to the sample’s ends (see 
Fig. 3 (b) and (c)). The region of interest was about 1 cm offset from the 
top and bottom boundaries to avoid potential bulging in the data. The 
camera system was placed in near proximity to the INSTRON machine, 
shown in Fig. 3 (c). The aperture and focus on each camera was adjusted 
and the light source was aimed on the sample’s surface to ultimately ob- 
tain images with maximum contrast. Afterwards, the DIC camera system 

was calibrated to identify internal system parameters and the relative 
position of the two cameras to each other. The calibration plates pro- 
vided with the DIC system come in different sizes, and a suitable calibra- 
tion plate size is one that covers the entire field of view of the cameras. 
Fig. 3 (d) represents an image taken during the calibration process. Af- 
ter successfully completing the calibration process, a set of images were 
recorded followed by sequence of images recorded while the sample was 
deformed with the INSTRON machine. The deformation was displace- 

447 



Y. Mei et al. International Journal of Mechanical Sciences 140 (2018) 446–454 

Fig. 1. (a) The dimensions of the composite material; (b) plots of Cauchy stress versus the stretch of background material and inclusion material. 

Fig. 2. Manufacturing of the composite sample. (a) The mold for composite 
sample. (b) The background solution poured into the mold. (c) The final post- 
cured composite sample. 

ment controlled at a rate of 10 mm/min and experiments were done 
under room temperature, thus viscoelastic effects could be assumed neg- 
ligible. The Istra 4D software was then used to analyze the images and 
calculate displacements on grid points with predefined spacing. The Is- 
tra 4D software divides the images into sub-images called facets that 
contain a collection of dots to calculate displacements based on sub- 
image similarities between pre- and post-deformed images. Fig. 3 (e) de- 
picts the displacement plot of the sample after post-processing with the 
Istra 4D software. 

2.2. Modulus reconstruction 

After acquiring the full field displacement field in the entire region 
of interest of the sample, the shear modulus distribution can be recov- 
ered utilizing an in-house written regularized inverse method discussed 
in [12] and tested for an exponential strain energy density function with 
simulated data therein. Briefly, the inverse problem is posed as a con- 
strained optimization problem where the following objective function is 
minimized: 

� = 
1 

2 
||( � ( �( �) , � ) − � ���� ( � )) ||2 0 + 

1 

2 
�Reg ( �( � ) ) (1) 

subject to the constraint that the measured displacement vector u meas 
and the computed displacement vector u are minimized in the L2 norm. 
The second term is the regularization term which is a function of the 
shear modulus �( x ), and the regularization factor � controls the weight 
of the regularization term. The spatial coordinate is denoted by x . In 
this paper, the total variation diminishing (TVD) regularization has been 
adopted, and its specific expression can be found in [12,15,20] . Eq. (1) is 
discretized with finite element based bilinear shape functions and the 
shear modulus distribution is assumed to be continuous in the problem 

domain with unknown shear modulus values defined on the mesh nodes. 
Thus the total number of optimization parameters is equal to the total 
number of mesh nodes. The constrained optimization problem is solved 
by the limited-BFGS method [21,22] for which we evaluate the gradient 
of the function with respect to the nodal shear modulus unknowns. To 
efficiently evaluate this gradient vector, we employ the adjoint method 
[12,17] . As the mathematical foundation and numerical procedures of 
the inverse algorithms have been thoroughly discussed in [12] , it will 
not be elaborated herein. 

We adopted a simple isotropic and linear elastic material model as- 
suming small strain theory and a hyperelastic model to study the me- 
chanical behavior of the silicon sample undergoing large deformations. 
As the stress-strain relations of both the background and the inclusion 
materials are nearly linear even for larger deformations of about 30% 

strain as shown in Fig. 1 (b), we utilized the simplest hyperelastic model, 
the neo-Hookean model, to study the nonlinear elastic behavior of the 
phantom. The strain energy density function for an incompressible neo- 
Hookean solid is given by: 

� = 
�

2 

(
� −2∕3 � 1 − 3 

)
(2) 
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Fig. 3. (a) Random dot pattern on face of composite sample. (b) Composite sample during deformation with INSTRON machine. (c) DIC system used to record images 
during sample deformation. (d) Calibration of the system using calibration plates in process. (e) Displacement plot of the sample analyzed with Istra 4D software. 

where, J and I 1 are the determinant of the deformation gradient and 
the first invariant of the right Cauchy-Green deformation tensor, respec- 
tively. It is straightforward to derive the associated Cauchy stress and 
2nd Piola–Kirchhoff stress tensors. 

To compare the difference in mechanical behavior between a lin- 
ear elastic and neo-Hookean material model, we plot the stress versus 
stretch curve in Fig. 4 for uniaxial tension assuming a shear modulus 
value of �= 1. We observe that these two curves nearly coincide for 

strains up to about 20% and the curve from the neo-Hookean model 
slightly deviates from the linear curve between the strain range of 20–
50%. We note that for finite deformations, the integral in the weak form 

distinguishes between a deformed and undeformed problem domain, 
while for small strain theory this distinction is not being made. That 
introduces additional geometric nonlinearities and may affect the solu- 
tion to the inverse problem in elasticity. In this work, we investigated 

449 



Y. Mei et al. International Journal of Mechanical Sciences 140 (2018) 446–454 

Fig. 4. Plots of uniaxial stress versus stretch curves for a neo-Hookean and a 
linear elastic solid. The shear modulus is set to 1. 

the uncertainties introduced when assuming small strain theory for a 
problem that actually undergoes large deformations. 

3. Results 

In the following simulations, we assumed that the material was in- 
compressible in three-dimensional space, which is a good assumption for 
silicone based materials. Further, we modeled the membrane in two- 
dimensional space assuming plane stress theory. This is a reasonable 
assumption, since the membrane is relatively thin and no tractions are 
acting on its front and back faces. For all computations presented in 
this section, the constrained minimization problem was considered to be 
converged when the objective function (see Eq. (1) ) value did not drop 
significantly beyond machine precision. Also, the measurement points 
on the sample, i.e., grid points at which displacement values were cor- 
related, coincided with the finite element nodes of the simulations for 
the experimental and synthetic data. 

3.1. Modulus reconstruction of a silicone based composite sample with DIC 
displacement data 

We first solved the inverse problem for the silicone based composite 
sample and compared the differences in the shear modulus reconstruc- 
tions using the linear elastic and neo-Hookean model. For the inverse 
problem, the problem domain of interest (see Fig. 3 (a)) was discretized 
with 1221 bilinear elements, and only the vertical displacement compo- 
nent was used as measured data to show feasibility of this method with 
limited data only. For the boundary conditions, displacements in both 
directions on all four edges of the problem domain were prescribed. As 
only displacement data were utilized to solve the inverse problem and 
no traction information was prescribed, the shear modulus distribution 
was mapped only up to a multiplicative factor. Fig. 5 shows the shear 
modulus reconstructions utilizing the linear elastic and the neo-Hookean 
model for displacement data collected at about 2% overall strain. In 
this case, the regularization factor for both cases were selected to be 
6.0 ×10 − 4 . The objective function value dropped relative to its initial 
value by 81.02% and 65.21% after a total number of 205 and 185 iter- 
ations for the linear elastic and neo-Hookean model, respectively. It is 
apparent that both the linear elastic and the neo-Hookean models are 
capable of detecting the location and preserving the shape of these two 
inclusions well. However, employing the linear elastic model lead to 
higher shear modulus values in the inclusions as compared to the inclu- 

sion shear modulus values obtained using the neo-Hookean model. Both 
methods have in common that the recovered shear modulus value in the 
smaller inclusions was significantly underestimated. 

Fig. 6 represents shear modulus reconstructions utilizing the linear 
elastic and neo-Hookean models for the case when the composite sili- 
cone sample undergoes large deformations of about 18%. The regular- 
ization factor utilized for both cases were chosen to be 7.0 ×10 − 3 . The 
objective function value dropped relative to its initial value by 88.21% 

and 77.31% after a total number of 244 and 200 iterations for the lin- 
ear elastic and neo-Hookean model, respectively. We observed a similar 
trend to Fig. 5 in that the shear modulus values in the inclusions using 
the linear elastic model were higher than the shear moduli predicted by 
the neo-Hookean model. 

3.2. Modulus reconstruction obtained with simulated experiments 

We also created simulated data to solve the inverse problem to eval- 
uate this procedure with exactly known ground truth. The simulated 
data was obtained by solving the forward problem using finite element 
methods and assuming a neo-Hookean material model. To this end, a 
unit square problem domain (see Fig. 7 (a)) with two inclusions hav- 
ing different sizes and resembling the problem geometry of the silicone 
composite sample used in the previous section has been defined and 
discretized with 3600 bilinear elements. The shear moduli for the inclu- 
sions were prescribed to be 2 times stiffer than the background mate- 
rial. The boundary conditions for the forward problem were prescribed 
with uniform extension on the top edge and the bottom edge was re- 
stricted and fixed in its vertical motion. To avoid rigid body motion, the 
center node of the bottom edge was fixed in both displacement com- 
ponents. In solving the inverse problem, we utilized the same displace- 
ment boundary conditions prescribed in the forward problem. Addition- 
ally, we added 3% random noise to the displacement data to simulate 
noisy measurements, and assumed that the vertical full field displace- 
ment component is only known. 

Fig. 7 depicts the reconstructed shear modulus distributions for a 
simulated overall strain of about 2%, using the linear elastic and neo- 
Hookean model with a regularization factor of 10 − 8 . The objective func- 
tion value dropped relative to its initial value by 62.96% and 56.69% 

after a total number of 2362 and 2825 iterations for the linear elastic and 
neo-Hookean model, respectively. It was observed that the shape and lo- 
cation of both, small and large inclusions were well recovered. We also 
observed that the values of the shear moduli in the inclusions are higher 
for the linear elastic model compared to those predicted using the neo- 
Hookean model. In addition, the recovered shear modulus in the smaller 
inclusion is smaller than that in the large inclusion. These trends were 
also observed for the results obtained with the experimental data in the 
previous section. For a large deformation of about 15% overall strain, 
the reconstructed shear modulus distributions are shown in Fig. 8 for a 
regularization factor of 5.0 ×10 − 7 for both models. The objective func- 
tion value dropped relative to its initial value by 64.96% and 58.89% 

after a total number of 2382 and 2618 iterations for the linear elastic 
and neo-Hookean model, respectively. It was observed that the shear 
moduli in the inclusions for the linear elastic model are also higher than 
those using the neo-Hookean model. Overall, the reconstructions utiliz- 
ing simulated data exhibit a very similar trend to what we observed with 
the experimental data. 

3.3. Modulus reconstruction via a 1-D coupled model 

To represent a large number of cases with varying target shear mod- 
uli, we utilized a 1-D coupled model for analysis shown in Fig. 9 . To in- 
vestigate the issue of smaller stiffness contrast in the smaller inclusion, 
we assumed that the two bars follow the linear elastic model instead 
of the neo-Hookean model, since the linear elastic problem is easier to 
solve and this issue occurred for both constitutive equations. As this 1-D 
coupled model represented the 2-D model well in past studies and has 
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Fig. 5. Shear modulus reconstructions of the silicone based composite sample utilizing an overall strain of 2% and a regularization factor of 6.0 ×10 − 4 with (a) a 
linear elastic model, (b) a neo-Hookean model. 

Fig. 6. Shear modulus reconstructions of the silicone based composite sample 
utilizing an overall strain of 18% and a regularization factor of 7.0 ×10 − 3 with 
(a) a linear elastic model, (b) a neo-Hookean model. 

been thoroughly discussed in [15] , we will skip the discussion here and 
directly employ the relation between the left and right bars presented 
in Fig. 9 , derived in [15] : 
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and i = 1, 2. n is the noise factor which was set to 1 herein assuming 
that no noise is introduced in the measured displacements. �̄� 

�� is the 
exact shear modulus of the inclusion, and �̄1 

�� = �̄2 
�� is consistent with 

the 2-D numerical examples presented earlier. The background of the 
bar has a shear modulus value of 1. �� 

�� is the recovered shear modu- 
lus for each inclusion. The length a i ( i = 1, 2) is analogue to the stiff
inclusion diameter, and we assume a 1 > a 2 to be consistent with the 
2-D model. In addition, the prescribed displacements �̄ 1 = �̄ 2 > 0 . Next, 
we assumed that the recovered shear modulus of the larger inclusion 
is 20% off, that is, �1 

�� = 0 . 8 ̄�1 
�� . Thereby, the mapped shear modulus 

of the smaller inclusion could be evaluated by Eq. (4) . One may ex- 
pect the shear modulus of the right inclusion to be consistently off by 
20% as well. Thus, deviations from this expected value were defined 
as the relative error given by [ ( �2 

�� − 0 . 8 ̄�2 
�� )∕( 0 . 8 ̄�

2 
�� ) ]100%, i.e., a neg- 

ative relative error revealed that the shear modulus of the small inclu- 
sion was underestimated more than the shear modulus of the large in- 
clusion. Fig. 10 plots this relative error over the target shear modulus 
values in the inclusions for two scenarios. The red line represents the 
case where the two inclusions are located in the center of the two bars, 
respectively. The prescribed parameters used in this case are: a 1 = 0.4, 
a 2 = 0.2, b 1 = 0.3, b 2 = 0.4. The green line corresponds to the case where 
small and large inclusions are placed downwards and upwards, respec- 

Fig. 7. (a) Target shear modulus distribution. Shear modulus reconstructions based on simulated experiments utilizing an overall strain of 2% and a regularization 
factor of 10 − 8 with (b) a linear elastic model; (c) a neo-Hookean model. 
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Fig. 8. (a) Target shear modulus distribution. Shear modulus reconstructions based on simulated experiments utilizing an overall strain of 15% and a regularization 
factor of 5.0 ×10 − 7 with (b) a linear elastic model; (c) a neo-Hookean model. 

Fig. 9. A coupled 1-D model: two linearly elastic and nonhomogeneous bars 
connected by two rigid plate. 

tively, that is, a 1 = 0.4, a 2 = 0.2, b 1 = 0.5, b 2 = 0.3. We observed that the 
relative error was always negative, which means that the smaller inclu- 
sion was underestimated more than the large inclusion. Furthermore, 
this underestimation became more significant when the two inclusions 
were placed diagonally. 

3.4. Effects of linear elastic assumption for geometric nonlinear constitutive 
model analysis via a 1-D model 

To analyze the effect of using a linear elastic model to solve the 
inverse problem for a solid undergoing geometric nonlinearity, we con- 
sidered a 1-D problem that would allow us to represent a large number 
of cases with varying target shear moduli. To this end, we defined a bar 
shown in Fig. 11 , where the stiffness of the black and white regions are 
denoted by ��� and �� , respectively. The black and white regions mimic 
the inclusion and background in two-dimensional cases, respectively. 
We fix the bar at its bottom end and apply a displacement of u ∘ at the 
top end. The total length of the bar is denoted by L , the length of the 
black region is represented by a , and the distance between the bottom 

end of the black region and the fixed end of the bar is denoted by b . 
Given that the stretches are piecewise constants in the black and white 

Fig. 10. The relative error over different target shear modulus values in inclu- 
sions. Red line represents the case where the two inclusions are located in the 
center of the two bars. Green line corresponds to the case where small and large 
inclusions are placed downwards and upwards, respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

regions, one can yield the displacement field u exact along the bar: 

� ����� = 

⎧ 
⎪ ⎨ ⎪ ⎩ 

� ⋅ �
� 
+ � ⋅ ��� + ( � − � − � ) �� − y when � + � < � ≤ � 

� ⋅ �� + ( � − � ) �� − y when � < � ≤ � + � 

� ⋅ �� − y when 0 < � ≤ � 

(5) 

where �a and �b are stretches in the inclusion and background, respec- 
tively. Since the 2nd Piola–Kirchhoff stress of the inclusion equals that 
of the background due to the constant axial force in the bar, one can 
derive the following relationship between �a and �b : 

��� 

( 

1 − 
1 

�3 
� 

) 

= �� 

( 

1 − 
1 

�3 
� 

) 

(6) 

Moreover, the displacement on the top end of the bar is u ∘, thus 
leading to another relation between �a and �b , that is: 

� 
◦
= �� � + �� ( � − � ) − � (7) 

Thereby, with the assistance of Eqs. (6) and (7) , we are capable of ac- 
quiring �a and �b , and further determining the displacement field u exact 
by virtue of Eq. (5) . The displacement field u exact is used as the measured 
displacement in the inverse problem. The objective function in the 1-D 
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Fig. 11. 1-D nonhomogeneous elastic bar subject to uniaxial extension. 

case can be written as 

� = 
1 

2 ∫
1 

0 

(
� 
��� − � 

����� 

)2 
d � + �||��� − �� 

|| (8) 

where �b and �in are the estimated stiffness of the background and in- 
clusion, respectively. In addition, � 

��� represents the computed displace- 
ment. The formula of the 1-D objective function has been thoroughly dis- 
cussed in [15] . Clearly, ��� = ��� and �� = �� when � = 0 and the same 
constitutive model is used to predict the mechanical response of the bar 
in the inverse problem. However, adopting the linearized strain measure 
to solve the inverse problem yields the following computed displace- 
ment field � 

��� : 

� 
��� = 

⎧ ⎪ ⎨ ⎪ ⎩ 

� ⋅ � � + � ⋅ � �� + ( � − � − � ) � � 
� 

when � + � < � ≤ 1 

� ⋅ � � + ( � − � ) � �� when � < � ≤ � + � 

� ⋅ � � when 0 < � ≤ � 

(9) 

where � b and � in are the computed strains of the background and inclu- 
sion, respectively. As the stress in this bar is constant, we have the re- 
lationship �in � in = �b � b . Combining this relationship with the kinematic 
constraint yields the explicit expression of � b and � in : 

� � = � 
◦
∕ 
(
( � − � ) + � �� ∕ ��� 

)
and 

� �� = � 
◦
∕ 
(
( � − � ) ��� ∕ �� + � 

)
(10) 

We also fix �b = 1 as the stiffness distribution is relatively mapped. 
Thereby, the objective function is merely a function of the inclusion stiff- 
ness �

�� . Minimizing the objective function yields the following equa- 
tion: 

�� 

��
�� 

= 0 (11) 

which can be utilized to determine the inclusion stiffness �in . Fig. 12 
exhibits the recovered inclusion stiffness over various external displace- 
ments from 0.02 L (2% deformation) to 0.2 L (20% deformation) for dif- 
ferent exact inclusion stiffness �̄

�� ( = 2, 3, 4, 5) when the regularization 
factor � is set to zero. In this case, other parameters utilized in Fig. 12 are 
as follows: L = 1, a = 0.2, and b = 0.4. 

Fig. 12. Plot of the reconstructed shear modulus in the inclusion over the ex- 
ternal displacements at the top end of the bar for different exact stiffness values 
in the inclusion �̄ �� ( = 2, 3, 4, 5). 

4. Discussion 

In this work, we utilized an iterative approach to solve inverse prob- 
lems in elasticity using a linear and a hyperelastic (neo-Hookean) model 
with experimental and simulated data. The measured data sets were ac- 
quired using a digital image correlation system and the simulated data 
sets were acquired by solving the forward problem for a neo-Hookean 
material model using finite element methods. We compared the recon- 
structed shear modulus distributions using a linear elastic and a neo- 
Hookean model on a composite problem domain undergoing small and 
large deformations. This work provides insight into the effects of us- 
ing a linear elastic material model to solve the inverse problem for 
the shear modulus for materials undergoing large deformations. Assum- 
ing that the material behaves like a neo-Hookean solid, it appears that 
the inverse solution based on a linear elastic model provides reason- 
able results for large deformations of about 18% and 15% overall strain 
utilized in our experimental and simulated examples in Sections 3.1 
and 3.2 , respectively. We note that solving the inverse problem with 
the linear elastic model is computationally faster by about one order 
and the finite element solution is more robust as well. 

In Section 3.1 , we solved the inverse problem by utilizing experi- 
mental data on a composite silicone sample with two stiff inclusions 
embedded in a softer background. The shear modulus contrasts between 
inclusions and background was about 2.5. The displacement field of the 
sample was measured using a digital imaging correlation (DIC) system. 
The accuracy of the DIC system to measure surface displacements was 
analyzed in [23] . In solving the inverse problem, we specified the entire 
displacement boundary of the problem domain and assumed that the 
vertical displacement component was only known as measured data in 
the objective function. We observed that the inclusions were well recov- 
ered in both, shape and shear modulus values, despite the fact that the 
shear modulus contrasts between the inclusions and the background was 
quite low. We also observed that the shear modulus value in the smaller 
inclusion was significantly underestimated. Furthermore, comparing the 
reconstructions from both models, we observed that the shear modulus 
contrast for the linear elastic model was slightly larger than for the neo- 
Hookean model for the small and large deformation cases. 

In Section 3.2 , we presented a study performed on a simulated ex- 
periment that mimics the mechanical response of the composite silicone 
sample. In this case, measured displacement fields were obtained by 
solving a forward problem for a neo-Hookean solid subjected to small 
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and large deformations. We then added 3% noise to simulated displace- 
ments and solved the inverse problem for the shear modulus distribution 
using both linear and neo-Hookean models and utilizing only the verti- 
cal displacement component. We observed a similar trend to the results 
obtained with the experimental data in that (1) the shear modulus in the 
smaller inclusion was significantly more underestimated than the shear 
modulus in the larger inclusion, and (2) the linear elastic model had 
a slightly higher shear modulus values in the inclusions compared to 
the neo-Hookean model. To further investigate these observations and 
generate a broader spectrum of results for various target shear mod- 
uli, we developed a 1-D model in Section 3.3 to analyze case (1) and 
Section 3.4 to analyze case (2). Concerning (1), the 1-D model predicted 
a similar outcome as the 2-D model in that the smaller inclusion was sig- 
nificantly underestimated. Furthermore, Fig. 10 revealed that this un- 
derestimation grew with an increase in the shear modulus in the inclu- 
sion. We also observed that the location of the inclusions (horizontally 
aligned versus not aligned) makes a significant difference in how much 
the shear modulus of the smaller inclusion is underestimated relative to 
the larger inclusion. 

Concerning (2), we utilized another 1-D model and observed that the 
reconstructed shear modulus obtained with the linear elastic model was 
slightly higher than the ground truth at 2% overall strain (see Fig. 12 ). 
This difference grows slowly and linearly with increasing deformations 
shown for up to 20% overall strain in the plot. Further, in Fig. 12 we 
also presented the cases with shear modulus values in the inclusion of 2, 
3, 4, and 5 and observed that an increased shear modulus contrast leads 
to a higher increase of the reconstructed shear modulus using the linear 
elastic model (see slopes of the linear curves). Overall, our 1-D model 
represented trends observed in the 2-D simulations, in particular that the 
shear modulus reconstruction with the linear elastic model was slightly 
higher than the reconstruction from the neo-Hookean model. However, 
while the 1-D model suggests that this difference becomes increasingly 
larger, our 2-D simulations only revealed a slight difference. This could 
be a result of noise in measured data that was not taken into account in 
the 1-D model. 

5. Conclusions 

In this paper, we presented a comparative study to solve the inverse 
problem in elasticity using a linear elastic model and a neo-Hookean 
model for the shear modulus distribution using both, experimental and 
simulated measurements. We assumed that the material undergoes small 
(about 2% overall strain) and large (about 15% and 18% overall strain) 
deformations. The experimental data of a soft and nonhomogeneous 
phantom was obtained with high accuracy utilizing a digital image cor- 
relation system. The simulated measurements were created by solving a 
finite element problem. The shear modulus reconstructions for the sim- 
ulated and experimental examples were well recovered with respect to 
size and location of the stiff inclusions for both, the linear elastic model 
and the non-linear elastic model. However, the linear elastic model over- 
estimated the shear modulus values in the inclusions slightly relative to 
the reconstructions using the nonlinear model. To better analyze this, 
we performed a 1-D theoretical analysis to generalize the observation of 
the 2-D reconstruction to a broad number of shear modulus values. In 
this 1-D theoretical analysis, we also observed that the shear modulus 
contrast was overestimated when the linear elastic model was adopted. 
Overall, this work concludes that the linear elastic model may be uti- 
lized in the framework of this inverse problem solution procedure to 
solve the shear modulus distribution of a neo Hookean solid undergoing 
small and large deformations of up to 18%. 
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