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Abstract

Discovering a correlation from one variable to another variable is of fundamental
scientific and practical interest. While existing correlation measures are suitable
for discovering average correlation, they fail to discover hidden or potential corre-
lations. To bridge this gap, (i) we postulate a set of natural axioms that we expect a
measure of potential correlation to satisfy; (ii) we show that the rate of information
bottleneck, i.e., the hypercontractivity coefficient, satisfies all the proposed axioms;
(iii) we provide a novel estimator to estimate the hypercontractivity coefficient
from samples; and (iv) we provide numerical experiments demonstrating that this
proposed estimator discovers potential correlations among various indicators of
WHO datasets, is robust in discovering gene interactions from gene expression
time series data, and is statistically more powerful than the estimators for other
correlation measures in binary hypothesis testing of canonical examples of potential
correlations.

1 Introduction

Measuring the strength of an association between two random variables is a fundamental topic
of broad scientific interest. Pearson’s correlation coefficient [1] dates from over a century ago
and has been generalized seven decades ago as maximal correlation (mCor) to handle nonlinear
dependencies [2–4]. Novel correlation measures to identify different kinds of associations continue
to be proposed in the literature; these include maximal information coefficient (MIC) [5] and distance
correlation (dCor) [6]. Despite the differences, a common theme of measurement of the empirical
average dependence unites the different dependence measures. Alternatively, these are factual
measures of dependence and their relevance is restricted when we seek a potential dependence of
one random variable on another. For instance, consider a hypothetical city with very few smokers.
A standard measure of correlation on the historical data in this town on smoking and lung cancer
will fail to discover the fact that smoking causes cancer, since the average correlation is very small.
On the other hand, clearly, there is a potential correlation between smoking and lung cancer; indeed
applications of this nature abound in several scenarios in modern data science, including a recent one
on genetic pathway discovery [7].

Discovery of a potential correlation naturally leads one to ask for a measure of potential correlation
that is statistically well-founded and addresses practical needs. Such is the focus of this work, where
our proposed measure of potential correlation is based on a novel interpretation of the Information
Bottleneck (IB) principle [8]. The IB principle has been used to address one of the fundamental tasks
in supervised learning: given samples {Xi, Yi}ni=1, how do we find a compact summary of a variable
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X that is most informative in explaining another variable Y . The output of the IB principle is a
compact summary of X that is most relevant to Y and has a wide range of applications [9, 10].

We use this IB principle to create a measure of correlation based on the following intuition: if X is
(potentially) correlated with Y , then a relatively compact summary of X can still be very informative
about Y . In other words, the maximal ratio of how informative a summary can be in explaining Y
to how compact a summary is with respect to X is, conceptually speaking, an indicator of potential
correlation from X to Y . Quantifying the compactness by I(U ;X) and the information by I(U ;Y )
we consider the rate of information bottleneck as a measure of potential correlation:

s(X;Y ) ⌘ sup
U–X–Y

I(U ;Y )

I(U ;X)
, (1)

where U −X − Y forms a Markov chain and the supremum is over all summaries U of X . This
intuition is made precise in Section 2, where we formally define a natural notion of potential
correlation (Axiom 6), and show that the rate of information bottleneck s(X;Y ) captures this
potential correlation (Theorem 1) while other standard measures of correlation fail (Theorem 2).

This ratio has only recently been identified as the hypercontractivity coefficient [11]. Hypercontrac-
tivity has a distinguished and central role in a large number of technical arenas including quantum
physics [12, 13], theoretical computer science [14, 15], mathematics [16–18] and probability theory
[19, 20]. In this paper, we provide a novel interpretation to the hypercontractivity coefficient as
a measure of potential correlation by demonstrating that it satisfies a natural set of axioms such a
measure is expected to obey.

For practical use in discovering correlations, the standard correlation coefficients are equipped
with corresponding natural sample-based estimators. However, for hypercontractivity coefficient,
estimating it from samples is widely acknowledged to be challenging, especially for continuous
random variables [21–23]. There is no existing algorithm to estimate the hypercontractivity coefficient
in general [21], and there is no existing algorithm for solving IB from samples either [22, 23]. We
provide a novel estimator of the hypercontractivity coefficient – the first of its kind – by bringing
together the recent theoretical discoveries in [11, 24] of an alternate definition of hypercontractivity
coefficient as ratio of Kullback-Leibler divergences defined in (5), and recent advances in joint
optimization (the max step in Equation 1) and estimating information measures from samples using
importance sampling [25].

Our main contributions are the following:

• We postulate a set of natural axioms that a measure of potential correlation from X to Y
should satisfy (Section 2).

• We show that
p
s(X;Y ), our proposed measure of potential correlation, satisfies all the

axioms we postulate. In comparison, we prove that existing standard measures of correlation
not only fail to satisfy the proposed axioms, but also fail to capture canonical potential
correlations captured by

p
s(X;Y ) (Section 2). Another natural candidate is mutual

information, but it is not clear how to interpret the value of mutual information as it is
unnormalized, unlike all other measures of correlation which are between zero and one.

• Computation of the hypercontractivity coefficient from samples is known to be a challenging
open problem. We introduce a novel estimator to compute hypercontractivity coefficient
from i.i.d. samples in a statistically consistent manner for continuous random variables,
using ideas from importance sampling and kernel density estimation (Section 3).

• In a series of synthetic experiments, we show empirically that our estimator for the hyper-
contractivity coefficient is statistically more powerful in discovering a potential correlation
than existing correlation estimators; a larger power means a larger successful detection rate
for a fixed false alarm rate (Section 4.1).

• We show applications of our estimator of hypercontractivity coefficient in two important
datasets: In Section 4.2, we demonstrate that it discovers hidden potential correlations among
various national indicators in WHO datasets, including how aid is potentially correlated
with the income growth. In Section 4.3, we consider the following gene pathway recovery
problem: we are given samples of four gene expressions time series. Assuming we know
that gene A causes B, that B causes C, and that C causes D, the problem is to discover that
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these causations occur in the sequential order: A to B, and then B to C, and then C to D.
We show empirically that the estimator of the hypercontractivity coefficient recovers this
order accurately from a vastly smaller number of samples compared to other state-of-the art
causal influence estimators.

2 Axiomatic approach to measure potential correlations

We propose a set of axioms that a measure of potential correlation should satisfy and propose a new
measure of correlation that satisfies all the proposed axioms.

Axioms for potential correlation. We postulate that a measure of potential correlation ρ⇤ : X⇥Y !
[0, 1] between two random variables X 2 X and Y 2 Y should satisfy:

1. ρ⇤(X,Y ) is defined for any pair of non-constant random variables X and Y .

2. 0  ρ⇤(X,Y )  1.

3. ρ⇤(X,Y ) = 0 iff X and Y are statistically independent.

4. For bijective Borel-measurable functions f, g : R ! R, ρ⇤(X,Y ) = ρ⇤(f(X), g(Y )).

5. If (X,Y ) ⇠ N (µ,Σ), then ρ⇤(X,Y ) = |ρ|, where ρ is the Pearson correlation coefficient.

6. ρ⇤(X,Y ) = 1 if there exists a subset Xr ✓ X such that for a pair of continuous random
variables (X,Y ) 2 Xr⇥Y , Y = f(X) for a Borel-measurable and non-constant continuous
function f .
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Figure 1: A measure of potential correlation should capture the rare correlation in X 2 [0, 1] in these
examples which satisfy Axiom 6 for a linear and a quadratic function, respectively.

Axioms 1-5 are identical to a subset of the celebrated axioms of Rényi in [4], which ensure that
the measure is properly normalized and invariant under bijective transformations, and recovers the
Pearson correlation for jointly Gaussian random variables. Rényi’s original axioms for a measure of
correlation in [4] included Axioms 1-5 and also that the measure ρ⇤ of correlation should satisfy

6’. ρ⇤(X,Y ) = 1 if for Borel-measurable functions f or g, Y = f(X) or X = g(Y ).

7’. ρ⇤(X;Y ) = ρ⇤(Y ;X).

The Pearson correlation violates a subset (3, 4, and 6’) of Rényi’s axioms. Together with recent
empirical successes in multimodal deep learning (e.g. [26–28]), Rényi’s axiomatic approach has been
a major justification of Hirschfeld-Gebelein-Rényi (HGR) maximum correlation coefficient defined as
mCor(X,Y ) := supf,g E[f(X)g(Y )], which satisfies all Rényi’s axioms [2]. Here, the supremum
is over all measurable functions with E[f(X)] = E[g(Y )] = 0 and E[f2(X)] = E[g2(Y )] = 1.
However, maximum correlation is not the only measure satisfying all of Rényi’s axioms, as we show
in the following.

Proposition 1. For any function F : [0, 1]⇥ [0, 1] ! [0, 1] satisfying F (x, y) = F (y, x), F (x, x) =

x, and F (x, y) = 0 only if xy = 0, the symmetrized F (
p
s(X;Y ),

p
s(Y ;X)) satisfies all Rényi’s

axioms.

This follows from the fact that the hypercontractivity coefficient
p

s(X;Y ) satisfies all but the
symmetry in Axiom 7 (Theorem 1), and it follows that a symmetrized version satisfies all axioms,

3



e.g. (1/2)(
p
s(X;Y ) +

p
s(Y ;X)) and (s(X;Y )s(Y ;X))1/4. A formal proof is provided in

Appendix A.1.

From the original Rényi’s axioms, for potential correlation measure, we remove Axiom 7’ that ensures
symmetry, as directionality is fundamental in measuring the potential correlation from X to Y . We
further replace Axiom 6’ by Axiom 6, as a variable X has a full potential to be correlated with Y
if there exists a domain Xr such that X and Y are deterministically dependent and non-degenerate
(i.e. not a constant function), as illustrated in Figure 1 for a linear function and a quadratic function.

The hypercontractivity coefficient satisfies all axioms. We propose the hypercontractivity coeffi-
cient s(X;Y ), first introduced in [19], as the measure of potential correlation satisfying all Axioms
1-6. Intuitively, s(X;Y ) measures how much potential correlation X has with Y . For example,
if X and Y are independent, then s(X;Y ) = 0 as X has no correlation with Y (Axiom 3). By
data processing inequality, it follows that it is a measure between zero and one (Axiom 2) and also
invariant under bijective transformations (Axiom 4). For jointly Gaussian variables X and Y with
the Pearson correlation ρ, we can show that s(X;Y ) = s(Y ;X) = ρ2. Hence, the squared-root of
s(X;Y ) satisfies Axiom 5. In fact,

p
s(X;Y ) satisfies all desired axioms for potential correlation,

and we make this precise in the following theorem whose proof is provided in Appendix A.2.

Theorem 1. Hypercontractivity coefficient
p
s(X;Y ) satisfies Axioms 1-6.

In particular, the hypercontractivity coefficient satisfies Axiom 6 for potential correlation, unlike
other measures of correlation (see Theorem 2 for examples). If there is a potential for X in a possibly
rare regime in X to be fully correlated with Y such that Y = f(X), then the hypercontractivity
coefficient is maximum: s(X;Y ) = 1.

However, just as HGR correlation is not the only one satisfying Rényi’s original axioms, the hyper-
contractivity coefficient is not the only one satisfying our axioms. There is a family of measures
known as hypercontractivity ribbon that includes the hypercontractivity coefficient as a special case,
all of which satisfy the axioms. However, a few properties of the hypercontractivity coefficient makes
it more attractive for practical use; it can be efficiently estimated from samples (see Section 3) and
is a natural extension of the popular HGR maximal correlation coefficient. Axiom 5 is restricted to
univariate X and Y , and it can be naturally extended to multivariate variables where

p
s(X;Y ) is a

multivariate measure that satisfies all the axioms. For the discussion of hypercontractivity ribbon,
connection between hypercontractivity coefficient and HGR maximal correlation, and extension of
axioms to multivariate variables, see the journal version [29].

Beside standard correlation measures, another measure widely used to quantify the strength of
dependence is mutual information. We can show that mutual information satisfies Axiom 6 if
we replace 1 by 1. However there are two key problems: (a) Practically, mutual information is
unnormalized, i.e., I(X;Y ) 2 [0,1). Hence, it provides no absolute indication of the strength of the
dependence. (b) Mathematically, we are looking for a quantity that tensorizes, i.e., doesn’t change
when there are many i.i.d. copies of the same pair of random variables. Hypercontractivity coefficient
tensorizes, i.e,

s(X1, ..., Xn;Y1, .., Yn) = s(X1, Y1), for i.i.d. (Xi, Yi), i = 1, · · · , n.
On the other hand, mutual information is additive, i.e.,

I(X1, · · · , Xn;Y1, · · · , Yn) = nI(X1;Y1), for i.i.d. (Xi, Yi), i = 1, · · · , n.
Tensorizing quantities capture the strongest relationship among independent copies while additive
quantities capture the sum. For instance, mutual information could be large because a small amount
of information accumulates over many of the independent components of X and Y (when X and
Y are high dimensional) while tensorizing quantities would rule out this scenario, where there is
no strong dependence. When the components are not independent, hypercontractivity indeed pools
information from different components to find the strongest direction of dependence, which is a
desirable property.

One natural way to normalize mutual information is by the log of the cardinality of the input/output
alphabets [30]. One can interpret a popular correlation measure MIC as a similar effort for normalizing
mutual information and is one of our baselines.

Standard correlation coefficients violate the Axioms. We next analyze existing measures of
correlations under the scenario with potential correlation (Axiom 6), where we find that none of the
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existing correlation measures satisfy Axiom 6. Suppose X and Y are independent (i.e. no correlation)
in a subset Xd of the domain X , and allow X and Y to be arbitrarily correlated in the rest Xr of
the domain, such that X = Xd [ Xr. We further assume that the independent part is dominant and
the correlated part is rare; let α := P(X 2 Xr) and we consider the scenario when α is small. A
good measure of potential correlation is expected to capture the correlation in Xr even if it is rare
(i.e., α is small). To make this task more challenging, we assume that the conditional distribution of
Y |{X 2 Xr} is the same as Y |{X /2 Xr}. Figure 1 (of this section) illustrates sampled points for
two examples from such a scenario and more examples are in Figure 5 in Appendix B. Our main result
is the analysis of HGR maximal correlation (mCor) [2], distance correlation (dCor) [6], maximal
information coefficients (MIC) [5], which shows that these measures are vanishing with α even if the
dependence in the rare regime is very high. Suppose Y |(X 2 Xr) = f(X), then all three correlation
coefficients are vanishing as α gets small. This in particular violates Axiom 6. The reason is that
standard correlation coefficients measure the average correlation whereas the hypercontractivity
coefficient measures the potential correlation. The experimental comparisons on the power of these
measures confirm our analytical predictions in Figure 2. The formal statement is below and the proof
is provided in Appendix A.3.

Theorem 2. Consider a pair of continuous random variables (X,Y ) 2 X ⇥ Y . Suppose X is
partitioned as Xr [ Xd = X such that PY |X(S|X 2 Xr) = PY |X(S|X 2 Xd) for all S ✓ Y , and Y
is independent of X for X 2 Xd. Let α = P{X 2 Xr}. The HGR maximal correlation coefficient is

mCor(X,Y ) =
p
α mCor(Xr, Y ) , (2)

the distance correlation coefficient is

dCor(X,Y ) = α dCor(Xr, Y ) , (3)

the maximal information coefficient is upper bounded by

MIC(X,Y )  α MIC(Xr, Y ) , (4)

where Xr is the random variable X conditioned on the rare domain X 2 Xr.

3 Estimator of the hypercontractivity coefficient from samples

In this section, we present an algorithm1 to compute the hypercontractivity coefficient s(X;Y ) from
i.i.d. samples {Xi, Yi}ni=1. The computation of the hypercontractivity coefficient from samples is
known to be challenging for continuous random variables [22, 23], and to the best of our knowledge,
there is no known efficient algorithm to compute the hypercontractivity coefficient from samples.
Our estimator is the first efficient algorithm to compute the hypercontractivity coefficient, based on
the following equivalent definition of the hypercontractivity coefficient, shown recently in [11]:

s(X;Y ) ⌘ sup
rx 6=px

D(ry||py)
D(rx||px)

. (5)

There are two main challenges for computing s(X;Y ). The first challenge is – given a marginal
distribution rx and samples from pxy, how do we estimate the KL divergences D(ry||py) and
D(rx||px). The second challenge is the optimization over the infinite dimensional simplex. We
need to combine estimation and optimization together in order to compute s(X;Y ). Our approach
is to combine ideas from traditional kernel density estimates and from importance sampling. Let
wi = rx(Xi)/px(Xi) be the likelihood ratio evaluated at sample i. We propose the estimation and
optimization be solved jointly as follows:

Estimation: To estimate KL divergence D(rx||px), notice that

D(rx | |px) = EX⇠px


rx(X)

px(X)
log

rx(X)

px(X)

]
.

Using empirical average to replace the expectation over px, we propose

bD(rx | |px) =
1

n

nX

i=1

rx(Xi)

px(Xi)
log

rx(Xi)

px(Xi)
=

1

n

nX

i=1

wi logwi .

1Code is available at https://github.com/wgao9/hypercontractivity
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For D(ry||py), we follow the similar idea, but the challenge is in computing vj = ry(Yj)/py(Yj).
To do this, notice that rxy = rxpy|x, so

ry(Yj) = EX⇠rx

⇥
py|x(Yj |X)

⇤
= EX⇠px


py|x(Yj |X)

rx(X)

px(X)

]
.

Replacing the expectation by empirical average again, we get the following estimator of vj :

bvj =
1

n

nX

i=1

py|x(Yj |Xi)

py(Yj)

rx(Xi)

px(Xi)
=

1

n

nX

i=1

pxy(Xi, Yj)

px(Xi)py(Yj)| {z }
Aji

wi .

We can write this expression in matrix form as bv = A
T
w. We use a kernel density estimator

from [31] to estimate the matrix A, but our approach is compatible with any density estimator of
choice.

Optimization: Given the estimators of the KL divergences, we are able to convert the problem
of computing s(X;Y ) into an optimization problem over the vector w. Here a constraint of
(1/n)

Pn
i=1 wi = 1 is needed to satisfy Epx

[rx/px] = 1. To improve numerical stability, we
use log s(X;Y ) as the objective function.

Then the optimization problem has the following form:

maxw log
(
(wT

A log(AT
w)

)
− log

(
w

T logw
)

subject to
1

n

nX

i=1

wi = 1

wi ≥ 0, 8 i
where wT logw =

Pn
i=1 wi logwi for short. Although this problem is not convex, we apply gradient

descent to maximize the objective. In practice, we initialize wi = 1 + N (0, σ2) for σ2 = 0.01.
Hence, the initial rx is perturbed mildly from px. Although we are not guaranteed to achieve the
global maximum, we consistently observe in extensive numerical experiments that we have 50%-60%
probability of achieving the same maximum value, which we believed to be the global maximum. A
theoretical analysis of the landscape of local and global optima and their regions of attraction with
respect to gradient descent is an interesting and challenging open question, outside the scope of this
paper. A theoretical understanding of the performance of gradient descent on the optimization step
(where the number of samples is fixed) above is technically very challenging and is left to future
work.

4 Experimental results

We present experimental results on synthetic and real datasets showing that the hypercontractivity
coefficient (a) is more powerful in detecting potential correlation compared to existing measures; (b)
discovers hidden potential correlations among various national indicators in WHO datasets; and (c)
is more robust in discovering pathways of gene interactions from gene expression time series data.

4.1 Synthetic data: power test on potential correlation

As our estimator (and the measure itself) involves a maximization, it is possible that we are sensitive
to outliers and may capture spurious noise. A formal statistical approach to test the robustness as
well as accuracy is to run power tests: testing for the power of the estimator in binary hypothesis
tests. Via a series of experiments we show that the hypercontractivity coefficient and our estimator
are capturing the true potential correlation.

We compare the power of the hypercontractivity coefficient and other correlation coefficients in the
binary hypothesis testing scenario of Theorem 2. As shown in Figure 5 in Appendix B, we generate
pairs of datasets – one where X and Y are independent and one where there is a potential correlation
as per our scenario. We experiment with eight types of functional associations, following the examples
from [5, 32, 33]. For the correlated datasets, out of n samples {(xi, yi)}ni=1, αn rare but correlated
samples are in X = [0, 1] and (1 − α)n dominant but independent samples are in X 2 [1, 1.1].
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The rare but correlated samples are generated as xi ⇠ Unif[0, 1], yi ⇠ f(xi) + N (0, σ2) for
i 2 [1 : αn]. The dominant samples are generated as xi ⇠ Unif[1, 1.1], yi ⇠ f(Unif[0, 1])+N (0, σ2)
for i 2 [αn + 1, n]. A formal comparison is done via testing their powers: comparing the false
negative rate at a fixed false positive rate of, say, 5%. We show empirically that for linear, quadratic,
sine with period 1/2, and the step function, the hypercontractivity coefficient is more powerful as
compared to other measures. For a given setting, a larger power means a larger successful detection
rate for a fixed false alarm rate. Figure 2 shows the power of correlation estimators as a function of
the additive noise level, σ2, for α = 0.05 and n = 320. The hypercontractivity coefficient is more
powerful than other correlation estimators for most functions. The power of all the estimators are
very small for sine (period 1/8) and circle functions. This is not surprising given that it is very hard to
discern the correlated and independent cases even visually, as shown in Figure 5. We give extensive
experimental results in the journal version [29].
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Figure 2: Power vs. noise level for α = 0.05, n = 320

4.2 Real data: correlation between indicators of WHO datasets

We compute the hypercontractivity coefficient, MIC, and Pearson correlation of 1600 pairs of
indicators for 202 countries in the World Health Organization (WHO) dataset [5]. Figure 3 illustrates
that the hypercontractivity coefficient discovers hidden potential correlation (e.g. in (E) and (F)),
whereas other measures fail. Scatter plots of Pearson correlation vs. the hypercontractivity coefficient
and MIC vs. the hypercontractivity coefficient for all pairs are presented in Figure 3 (A) and (D). The
samples for pairs of indicators corresponding to B,C,E,F in Figure 3 (A) and (D) are shown in Figure
3 (B),(C),(E),(F), respectively. In (B), it is reasonable to assume that the number of bad teeth per
child is uncorrelated with the democracy score. The hypercontractivity coefficient, MIC, and Pearson
correlation are all small, as expected. In (C), the correlation between CO2 emissions and energy use
is clearly visible, and all three correlation estimates are close to one.

However, only the hypercontractivity coefficient discovers the hidden potential correlation in (E) and
(F). In (E), the data is a mixture of two types of countries – one with small amount of aid received (less
than $5⇥ 108), and the other with large amount of aid received (larger than $5⇥ 108). Dominantly
many countries (104 out of 146) belong to the first type (small aid), and for those countries, the
amount of aid received and the income growth are independent. For the remaining countries with
larger aid received, although those are rare, there is a clear correlation between the amount of aid
received and the income growth. Similarly in (F), there are two types of countries – one with small
arms exports (less than $2 ⇥ 108) and the other with large arms exports (larger than $2 ⇥ 108).
Dominantly many countries (71 out of 82) belong to the first type, for which the amount of arms
exports and the health expenditure are independent. For the remaining countries that belong to the
second type, on the other hand, there is a visible correlation between the arms exports and the health
expenditure. This is expected as for those countries that export arms the GDP is positively correlated
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Figure 3: (A) and (D): Scatter plot of correlation measures. (B): Correlations are small. (C):
Correlations are large. (E) and (F): Only the hypercontractivity coefficient discovers potential
correlation.

with both arms exports and health expenditure, whereas for those do not have arms industry, these
two will be independent. We give extensive numerical analyses of the WHO dataset in the journal
version [29].

4.3 Gene pathway recovery from single cell data

We replicate the genetic pathway detection experiment from [7], and show that hypercontractivity
correctly discovers the genetic pathways from smaller number of samples. A genetic pathway is
a series of genes interacting with each other as a chain. Consider the following setup where four
genes whose expression values in a single cell are modeled by random processes Xt, Yt, Zt and Wt

respectively. These 4 genes interact with each other following a pathway Xt ! Yt ! Zt ! Wt; it is
biologically known that Xt causes Yt with a negligible delay, and later at time t0, Yt0 causes Zt0 , and
so on. Our goal is to recover this known gene pathway from sampled data points. For a sequence of
time points {ti}mi=0, we observe ni i.i.d. samples {X(j)

ti , Y
(j)
ti , Z

(j)
ti ,W

(j)
ti }ni

j=1 generated from the
random process P (Xti , Yti , Zti ,Wti). We use the real data obtained by the single-cell mass flow
cytometry technique [7].

Given these samples from time series, the goal of [7] is to recover the direction of the inter-
action along the known pathway using correlation measures as follows, where they proposed
a new measure called DREMI. The DREMI correlation measure is evaluated on each pairs on
the pathway, τ(Xti , Yti), τ(Yti , Zti) and τ(Zti ,Wti), at each time points ti. It is declared that
a genetic pathway is correctly recovered if the peak of correlation follows the expected trend:
argmaxti τ(Xti , Yti)  argmaxti τ(Yti , Zti)  argmaxti τ(Zti ,Wti). In [25], the same experi-
ment has been done with τ evaluated by UMI and CMI estimators. In this paper, we evaluate τ using
our proposed estimator of hypercontractivity.

We subsample the raw data from [7] to evaluate the ability to find the trend from smaller sam-
ples. Precisely, given a resampling rate γ 2 (0, 1], we randomly select a subset of indices
Si ✓ [ni] with card(Si) = dγnie, compute τ(Xti , Yti), τ(Yti , Zti) and τ(Zti ,Wti) from sub-
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samples {X(j)
ti , Y

(j)
ti , Z

(j)
ti ,W

(j)
ti }j2Si

, and determine whether we can recover the trend successfully,
i.e., whether argmaxti τ(Xti , Yti)  argmaxti τ(Yti , Zti)  argmaxti τ(Zti ,Wti). We repeat
the experiment several times with independent subsamples and compute the probability of success-
fully recovering the trend. Figure 4 illustrates that when the entire dataset is available, all methods
are able to recover the trend correctly. When only fewer samples are available, hypercontractivity
improves upon other competing measures in recovering the hidden chronological order of interactions
of the pathway. For completeness, we run datasets for both regular T-cells (shown in left figure) and
T-cells exposed with an antigen (shown right figure), for which we expect distinct biological trends.
Hypercontractivity method can capture the trend for both datasets correctly and sample-efficiently.
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Figure 4: Accuracy vs. subsampling rate. Hypercontractivity method has higher probability to
recover the trend when data size is smaller compared to other methods. Left: regular T-cells. Right:
T-cells exposed with an antigen [7].
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