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Abstract. In recent years, the capacitated center problems have at-
tracted a lot of research interest. Given a set of vertices V , we want
to find a subset of vertices S, called centers, such that the maximum
cluster radius is minimized. Moreover, each center in S should satisfy
some capacity constraint, which could be an upper or lower bound on
the number of vertices it can serve. Capacitated k-center problems with
one-sided bounds (upper or lower) have been well studied in previous
work, and a constant factor approximation was obtained.
We are the first to study the capacitated center problem with both ca-
pacity lower and upper bounds (with or without outliers). We assume
each vertex has a uniform lower bound and a non-uniform upper bound.
For the case of opening exactly k centers, we note that a generaliza-
tion of a recent LP approach can achieve constant factor approximation
algorithms for our problems. Our main contribution is a simple combi-
natorial algorithm for the case where there is no cardinality constraint
on the number of open centers. Our combinatorial algorithm is simpler
and achieves better constant approximation factor compared to the LP
approach.

1 Introduction

The k-center clustering is a fundamental problem in theoretical computer science
and has numerous applications in a variety of fields. Roughly speaking, given a
metric space containing a set of vertices, the k-center problem asks for a subset
of k vertices, called centers, such that the maximum radius of the induced k
clusters is minimized. Actually k-center clustering falls in the umbrella of the
general facility location problems which have been extensively studied in the
past decades. Many operation and management problems can be modeled as
facility location problems, and usually the input vertices and selected centers
are also called “clients” and “facilities” respectively. In this paper, we consider a
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significant generalization of the k-center problem, where each vertex is associated
with a capacity interval; that is, the cardinality of the resulting cluster centered
at the vertex should satisfy the given lower and upper capacity bounds (the
formal definition is shown in Section 1.2). In addition, we also consider the case
where a given number of vertices may be excluded as outliers.

Besides being a natural combinatorial problem on its own, the k-center prob-
lem with both capacity upper and lower bounds is also strongly motivated by
several realistic issues raised in a variety of application contexts.

1. In the context of facility location, each open facility may be constrained by
the maximum number of clients it can serve. The capacity lower bounds
also come naturally, since an open facility needs to serve at least a certain
number of clients in order to generate profit.

2. Several variants of the k-center clustering have been used in the context of
preserving privacy in publication of sensitive data (see e.g., [1, 23, 26]). In
such applications, it is important to have an appropriate lower bound for
the cluster sizes, in order to protect the privacy to certain extent (roughly
speaking, it would be relatively easier for an adversary to identify the clients
inside a too small cluster).

3. Consider the scenario where the data is distributed over the nodes in a large
network. We would like to choose k nodes as central servers, and aggregate
the information of the entire network. We need to minimize the delay (i.e.,
minimize the cluster radius), and at the same time consider the balancedness,
for the obvious reason that the machines receiving too much data could be
the bottleneck of the system and the ones receiving too little data is not
sufficiently energy-efficient [11].

Our problem generalizes the classic k-center problem as well as many impor-
tant variants studied by previous authors. The optimal approximation results for
the classic k-center problem appeared in the 80’s: Gonzalez [15] and Hochbaum
and Shmoys [17] provided a 2-approximation in a metric graph; moreover, they
proved that any approximation ratio c < 2 would imply P = NP . The first study
on capacitated (with only upper bounds) k-center clustering is due to Bar-Ilan et
al. [5] who provided a 10-approximation algorithm for uniform capacities (i.e., all
the upper bounds are identical). Further, Khuller and Sussmann [20] improved
the approximation ratio to be 6 and 5 for hard and soft uniform capacities, re-
spectively. 3 The recent breakthrough for non-uniform (upper) capacities is due
to Cygan et al. [10]. They developed the first constant approximation algorith-
m based on LP rounding, though their approximation ratio is about hundreds.
Following this work, An et al. [3] provided an approximation algorithm with the
much lower approximation ratio 9. On the imapproximability side, it is impos-
sible to achieve an approximation ratio lower than 3 for non-uniform capacities
unless P = NP [10].

3 We can open more than one copies of a facility in the same node in the soft capacity
version. But in the hard capacity version, we can only open at most one copy.
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For the ordinary k-center with outliers, a 3-approximation algorithm was
obtained by Charikar et al. [8]. Kociumaka and Cygan [21] studied k-center with
non-uniform upper capacities and outliers, and provided a 25-approximation
algorithm.

k-center clustering with lower bounds on cluster sizes was first studied in
the context of privacy-preserving data management [26]. Aggarwal et al. [1]
provided a 2-approximation and a 4-approximation for the cases without and
with outliers, respectively. Further, Ene et al. [13] presented a near linear time
(4 + ε)-approximation algorithm in constant dimensional Euclidean space. Note
that both [1, 13] are only for uniform lower bounds. Recently, Ahmadian and
Swamy [2] provided a 3-approximation and a 5-approximation for the non-
uniform lower bound case without and with outliers.
Our main results. To the best of our knowledge, we are the first to study
the capacitated center with both capacity lower and upper bounds (with or
without outliers). Recently, Ding [12] also studies k-center clustering with two-
sided bounds in high dimension or any metric space when k is a constant, and
provides a nearly linear time 4-approximation. Given a set V of n vertices, we
focus on the case where the capacity of each vertex u ∈ V has a uniform lower
bound Lu = L and a non-uniform upper bound Uu. Sometimes, we consider a
generalized supplier version where we are only allowed to open centers among
a facility set F , see Definition 1 for details. We mainly provide first constant
factor approximation algorithms for the following variants, see Table 1 for other
results. Due to the lack of space, we defer many details and proofs to a full
version.

1. (L,U ,soft-∅,p)-Center (Section 2.2): In this problem, both the lower bounds
and the upper bounds are uniform, i.e., Lu = L,Uu = U for all u ∈ V . The
number of open centers can be arbitrary, i.e., there is no requirement to
choose exactly k open centers. Moreover, we allow multiple open centers at
a single vertex u ∈ V (i.e., soft capacity). We may exclude n−p outliers. We
provide the first polynomial time combinatorial algorithm which can achieve
an approximate factor of 5.

2. (L,{Uu},∅,p)-Center(Section 2.3): In this problem, the lower bounds are
uniform, i.e., Lu = L for all u ∈ V , but the upper bound can be nonuniform.
The number of open centers can be arbitrary. We may exclude n−p outliers.
We provide the first polynomial time combinatorial 11-approximation for this
problem.

3. (L,{Uu},k)-Center (Section 3.3): In this problem, we would like to open
exactly k centers, such that the maximum cluster radius is minimized. All
vertices have the same capacity lower bounds, i.e., Lu = L for all u ∈ V .
But the capacity upper bounds may be nonuniform, i.e., each vertex u has
an individual capacity upper bound Uu. Moreover, we do not exclude any
outlier. We provide the first polynomial time 9-approximation algorithm for
this problem, based on LP rounding.

4. (L,{Uu},k,p)-Center (Section 3.3): This problem is the outlier version of
the (L,{Uu},k)-Center problem. The problem setting is exactly the same
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except that we can exclude n−p vertices as outliers. We provide a polynomial
time 25-approximation algorithm for this problem.

Problem Setting
Approximation Ratio

Center Version Supplier Version

Without k Constraint

(L,U ,soft-∅,p) 5 5
(L,U ,∅,p) 10 23

(L,{Uu},soft-∅,p) 11 11
(L,{Uu},∅,p) 11 25

With k Constraint

(L,U ,k) 6 9
(L,{Uu},k) 9 13

(L,U ,soft-k,p) 13 13
(L,U ,k,p) 23 23

(L,{Uu},soft-k,p) 25 25
(L,{Uu},k,p) 25 25

Table 1. A summarization table for our results in this paper.

Our main techniques. In Section 2, we consider the first two variants which
allow to open arbitrarily many centers. We design simple and faster combinatori-
al algorithms which can achieve better constant approximation ratios compared
to the LP approach. For the simpler case (L,U ,soft-∅,p)-Center, we construct a
data structure for all possible open centers. We call it a core-center tree (CCT).
Our greedy algorithm mainly contains two procedures. The first procedure pass-
up greedily assigns vertices to open centers from the leaves of CCT to the root.
After this procedure, there may exist some unassigned vertices around the root.
We then introduce the second procedure called pass-down, which assigns these
vertices in order by finding an exchange route each time. For the more general
case (L,{Uu},∅,p)-Center, our greedy algorithm is similar but somewhat more
subtle. We still construct a CCT and run the pass-up procedure. Then we obtain
an open center set F , which may contain redundant centers. However, since we
deal with hard capacities and outliers, we need to find a non-redundant open
center set which is not ’too far’ from F (see Section 2.3 for details) and have
enough total capacities. Then by a pass-down procedure, we can assign enough
vertices to their nearby open centers.

In Section 3 and 3.3, we consider the last two variants which require to open
exactly k centers. We generalized the LP approach developed for k-center with
only capacity upper bounds [3, 21] and obtain constant approximation schemes
for two-sided capacitated bounds. The omitted proofs can be found in the full
version in this paper.

1.1 Other Related Work

The classic k-center problem is quite fundamental and has been generalized in
many ways, to incorporate various constraints motivated by different application
scenarios. Recently, Fernandes et al. [14] also provided constant approximations
for the fault-tolerant capacitated k-center clustering. Chen et al. [9] studied the
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matroid center problem where the selected centers must form an independent
set of a given matroid, and provided constant factor approximation algorithms
(with or without outliers).

There is a large body of work on approximation algorithms for the facility lo-
cation and k-median problems (see e.g., [4, 6, 7, 16, 18, 19, 22, 24, 25]). Moreover,
Dick et al. [11] studied multiple balanced clustering problems with uniform ca-
pacity intervals, that is, all the lower (upper) bounds are identical; they also
consider the problems under the stability assumption.

1.2 Preliminaries

In this paper, we usually work with the following more general problem, called
the capacitated k-supplier problem. It is easy to see it generalizes the capaci-
tated k-center problem since we can not open centers at any vertex. The formal
definition is as follows.

Definition 1. (Capacitated k-supplier with two-sided bounds and outliers) Sup-
pose that we have

1. Two integers k, p ∈ ZZ≥0;
2. A finite set C of clients, and a finite set F of facilities;
3. A symmetric distance function d : (C ∪ F) × (C ∪ F) → IR≥0 satisfying the

triangle inequality;
4. A capacity interval [Lu, Uu] for each facility u ∈ F , where Lu, Uu ∈ ZZ≥0

and Lu ≤ Uu.

Our goal is to find a client set C ⊆ C of size at least p, an open facility set F ⊆ F
of size exactly k, and a function φ : C → F satisfying that Lu ≤ |φ−1(u)| ≤ Uu

for each u ∈ F , which minimize the maximum cluster radius maxv∈C d(v, φ(v)).
If the maximum cluster radius is at most r, we call the tuple (C,F, φ) a distance-r
solution.

By the similar approach of Cygan et al. [21], we can reduce the ({Lu},{Uu},k,p)-
Supplier problem to a simpler case. We first introduce some definitions.

Definition 2. (Induced distance function) We say the distance function dG :
(C ∪ F) × (C ∪ F) → IR≥0 is induced by an undirected unweighted connected
graph G = (C ∪ F , E) if

1. ∀(u, v) ∈ E, we have u ∈ F and v ∈ C.
2. ∀a1, a2 ∈ C ∪ F , the distance dG(a1, a2) between a1 and a2 equals to the

length of the shortest path from a1 to a2.

Definition 3.(Induced ({Lu},{Uu},k,p)-Supplier instance)An({Lu},{Uu},k,p)-
Supplier instance is called an induced ({Lu},{Uu},k,p)-Supplier instance if
the following properties are satisfied:

1. The distance function dG is induced by an undirected connected graph G =
(C ∪ F , E).

2. The optimal capacitated k-supplier value is at most 1.
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Moreover, we say this instance is induced by G.

When the graph of interest G is clear from the context, we will use d in-
stead of dG for convenience. We then show a reduction from solving the gener-
alized ({Lu},{Uu},k,p)-Supplier problem to solving induced ({Lu},{Uu},k,p)-
Supplier instances by Lemma 1.

Lemma 1. Suppose we have a polynomial time algorithm A that takes as input
any induced ({Lu},{Uu},k,p)-Supplier instance, and outputs a distance-ρ so-
lution. Then, there exists a ρ-approximation algorithm for the ({Lu},{Uu},k,p)-
Supplier problem with polynomial running time.

2 Capacitated Center with Two-Sided Bounds and
Outliers

In this section, we consider the version that the number of open centers can be
arbitrary. By the LP approach in Section 3.3 and enumerating the number of
open centers, we can achieve approximation algorithms for different variants in
this case. However, the approximation factor is not small enough. In this section,
we introduce a new greedy approach in order to achieve better approximation
factors. Since our algorithm is combinatorial, it is easier to be implemented and
saves the running time compared to the LP approach.
2.1 Core-center tree (CCT)
Consider the (L,{Uu},∅,p)-Supplier problem. By Lemma 1, we only need to
consider induced (L,{Uu},∅,p)-Supplier instances induced by an undirected un-
weighted connected graph G = (C∪F , E). We first propose a new data structure
called core-center tree (CCT) as follows.

Definition 4.(Core-center tree(CCT))Given an induced (L,{Uu},∅,p)-Supplier
instance induced by an undirected unweighted connected graph G = (C ∪ F , E),
we call a tree T = (F , ET ) a core-center tree(CCT) if the following properties
hold.

1. For each edge (u, u′) ∈ ET , we have dG(u, u
′) ≤ 2;

2. Suppose the root of T is at layer 0. Denote I to be the set of vertices in the
even layers of T . We call I the core-center set of T . For any two distinct
vertices u, u′ ∈ I, we have dG(u, u

′) ≥ 3.

Lemma 2. Given an induced (L,{Uu},∅,p)-Supplier instance induced by an
undirected unweighted connected graph G = (C∪F , E), we can construct a CCT
in polynomial time.

For any u ∈ F , denote NG[u] = {v ∈ C : (u, v) ∈ E} to be the collec-
tion of all neighbors of u ∈ F . 4 W.l.o.g., we assume that Uu ≤ |NG(u)| for
every facility u ∈ F in this section. In fact, we can directly delete all u ∈ F
satisfying that |NG[u]| < L from the facility set F , since u can not be open
in any optimal feasible solution. 5 Otherwise if L ≤ |NG[u]| < Uu, we set

4 If u ∈ C is also a client, then u ∈ NG[u].
5 If this deletion causes the induced graph unconnected, similar to Lemma 6 in [21],
we divide the graph into different connected components, and consider each smaller
induced instance based on different connected components.
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Uu ← min{Uu, |NG[u]|}, which has no influence on any optimal feasible solu-
tion of the induced (L,{Uu},∅,p)-Supplier instance. The following lemma gives
a useful property of CCT.

Lemma 3. Given an induced (L,{Uu},∅,p)-Supplier instance induced by an
undirected unweighted connected graph G = (C ∪ F , E), and a core-center tree
T = (F , ET ), suppose I is the core-center set of T . Then, we can construct a
function ξ : C → F satisfying the following properties in polynomial time.

1. For all v ∈ C, we have (ξ(v), v) ∈ E;
2. For all u ∈ I, we have |ξ−1(u)| ≥ L.

2.2 A Simple Case: (L,U ,soft-∅,p)-Supplier
We first consider a simple case where the capacity bounds (upper and lower)
are uniform and soft. In this setting, we want to find an open facility set F =
{ui | ui ∈ F}i. Note that we allow multiple open centers in F . We also need to
find an assignment function φ : C → F , representing that we assign every client
v ∈ C to facility φ(v). The main theorem is as follows.

Theorem 1. (main theorem) There exists a 5-approximation polynomial time
algorithm for the (L,U ,soft-∅,p)-Supplier problem.

By Lemma 1, we only consider induced (L,U ,soft-∅,p)-Supplier instances.
Given an induced (L,U ,soft-∅,p)-Supplier instance induced by an undirected
unweighted connected graph G = (C∪F , E), recall that we can assume |NG[u]| ≥
Uu ≥ L for each u ∈ F . We first construct a CCT T = (F , ET ) rooted at node
u∗, and a function ξ : C → F satisfying Lemma 3. For a facility set P ⊆ F , we
denote ξ−1(P ) =

⋃
u∈P ξ−1(u) to be the collection of clients assigned to some

facility in P by ξ.
Our algorithm mainly includes two procedures. The first procedure is called

pass-up, which is a greedy algorithm to map clients to facilities from the leaves
of T to the root. After the ’pass-up’ procedure, we still leave some unassigned
clients nearby the root. Then we use a procedure called pass-down to allocate
those unassigned clients by iteratively finding an exchange route. In the following,
we give the details of both procedures.

Procedure Pass-Up. Assume that |C| = aL + b for some a ∈ IN and 0 ≤ b ≤
L−1. In this procedure, we will find an open facility set F of size a. We also find
an assignment function φ which assigns aL clients to some nearby facility in F
except a client set S ⊆ C. Here, S is a collection of b clients in ξ−1(u∗) nearby
the root u∗. Our main idea is to open facility centers from the leaves of CCT T
to the root iteratively. During opening centers, we assign exactly L ’close’ clients
to each center. Thus, there are b unassigned clients after the whole procedure.

We then describe an iteration of pass-up. Assume that I is the core-center set
of T . At the beginning, we find a non-leaf vertex u ∈ I satisfying that all of its
grandchildren (if exists) are leaves. 6 We denote P ⊆ F to be the collection of all

6 If multiple non-leaf nodes satisfy this property, we choose an arbitrary one.
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children and all grandchildren of u. In the next step, we consider all unscanned
clients in ξ−1(P ), 7 and assign them to the facility u by φ. Note that we may
open multiple centers at u. We want that each center at u serves exactly L
centers. However, there may exist one center at u serving less than L unscanned
clients in ξ−1(P ). We assign some clients in ξ−1(u) to this center such that it
also serves exactly L clients. After this iteration, we delete the subtree rooted
at u from T except u itself.

Finally, the root u∗ will become the only remaining node in T . We open
multiple centers at u∗, each serving exactly L clients in ξ−1(u∗), until there
are less than L unassigned clients. We denote S to be the collection of those
unassigned clients. At the end of pass-up, we output an open facility set F , an
unassigned client set S and an assigned function φ : C \ S → F . We have the
following lemma by the algorithm.

Lemma 4. Given an induced (L,U ,soft-∅,p)-Supplier instance induced by an
undirected unweighted connected graph G = (C ∪F , E), assume that |C| = aL+ b
for some a ∈ IN and 0 ≤ b ≤ L− 1. The output of pass-up satisfies the following
properties:

1. Each open facility uj ∈ F satisfies that uj ∈ I, and |F | = a;
2. The unassigned client set S ⊆ ξ−1(u∗), and |S| = b;
3. For each facility ui ∈ F , we have |φ−1(ui)| = L.
4. For each client v ∈ C \ S, φ(v) is either ξ(v), or the parent of ξ(v) in T , or

the grandparent of ξ(v) in T . Moreover, we have dG(v, φ(v)) ≤ 5.

Procedure Pass-Down. After the procedure pass-up, we still leave an unas-
signed client set S of size b. However, our goal is to serve at least p clients.
Therefore, we need to modify the assignment function φ and serve more clients.

The procedure pass-down handles the remaining b clients in S one by one.
At the beginning of pass-down, we initialize an ’unscanned’ client set B ← C\S,
i.e., B is the collection of those clients allowing to be reassigned by pass-down.
In each iteration, we arbitrarily pick a client v ∈ S and assign it to the root
node u∗. However, if each open facility at u∗ has already served Uu∗ clients by φ,
assigning v to u∗ will violate the capacity upper bound. In this case, we actually
find an open center uj ∈ F such that |φ−1(uj)| < Uj , i.e., there are less than Uj

clients assigned to uj by φ. We then construct an exchange route consisting of
open facilities in F . We first find a sequence of nodes w0 = u∗, w1, · · · , wm = uj

in T satisfying that wi is the grandparent of wi+1 in the core-center tree T for
all 0 ≤ i ≤ m − 1. Then for each node wi (1 ≤ i ≤ m − 1), we pick a client
vi ∈ ξ−1(wi) which has not been reassigned so far. We call such a sequence
of clients v, v1, . . . , vm−1 an exchange route. Our algorithm is as follows: 1) we
assign v to φ(v1); 2) we iteratively reassign vi to φ(vi+1) in order (1 ≤ i ≤ m−2);
3) finally we reassign vm−1 to uj . We then mark all clients vi (1 ≤ i ≤ m − 1)
in the exchange route by removing them from the ’unscanned’ client set B, and

7 Here, unscanned clients are those clients that have not been assigned by φ before
this iteration.
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remove the client {v} from the unassigned client set S. Note that our exchange
route only increases the number of clients assigned to uj by one. In fact, such
an exchange route always exists in each iteration. Thus in each iteration, the
procedure pass-down assigns one more client v ∈ S to some open facility in F .
At the end of pass-down, we output a client set C ← C \ S of size at least p, an
open facility set F and an assigned function φ : C → F .

Now we prove the following lemma. Note that Theorem 1 can be directly
obtained by Lemma 1 and Lemma 5.

Lemma 5. The procedure pass-down outputs a distance-5 solution (C,F, φ) of
the given induced (L,U ,soft-∅,p)-Supplier instance induced by G = (C ∪ F , E)
in polynomial time.

2.3 (L,{Uu},∅,p)-Center

In this subsection, we consider a more complicated case where the capacity upper
bounds are non-uniform, and each vertex has a hard capacity.

Theorem 2. (main theorem) There exists an 11-approximation polynomial time
algorithm for the (L,{Uu},∅,p)-Center problem.

By Lemma 1, we only need to consider induced (L,{Uu},∅,p)-Supplier in-
stances. For an induced (L,{Uu},∅,p)-Supplier instance induced by an undi-
rected unweighted connected graph G = (V = C ∪ F , E), recall that we can
assume Uu ≤ |NG(u)| for every vertex u ∈ F . 8 Since we consider the center
version, every vertex v ∈ C has an individual capacity interval [L,Uv] and can
be opened as a center as well.

Similar to (L,U ,soft-∅,p)-Center, our algorithm first computes a core-center
tree T = (F , E) rooted at u∗, a core-center set I and a function ξ described as
in Lemma 3. Assume that |C| = aL+ b for some a ∈ IN and 0 ≤ b ≤ L− 1. We
still use the procedure pass-up to compute an open set F = {u1, u2, · · · , ua}, an
unassigned set S ⊆ ξ−1(u∗) of size b < L, and a function φ : (C \ S) → F .

However, we can not apply pass-down directly since we consider non-uniform
hard capacity upper bounds. Thus, we need the following lemma to modify the
open center set F . We prove this lemma by Hall’s theorem in the full version.

Lemma 6. Given an induced (L,{Uu},∅,p)-Center instance induced by G =
(V = C ∪ F , E) where |NG(u)| ≥ Uu for each u ∈ F and an open set F =
{u1, u2, · · · , ua} computed by pass-up, there exists a polynomial time algorithm
that finds another open set F ′ = {u′

1, u
′
2, . . . , u

′
a} such that:

1. F ′ is a single set.
2. For all 1 ≤ i ≤ a, we have dG(ui, u

′
i) ≤ 6.

3.
∑a

i=1 Uu′
i
≥ p.

8 Recall that we may remove some facilities from F such that this assumption is
satisfied. Thus, the set F may be a subset of V .
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Proof of Theorem 2. By Lemma 6, we obtain another open set F ′ = {u′
1, u

′
2, . . . , u

′
a}.

We first modify Uui
to be Uu′

i
for all 1 ≤ i ≤ a. Then we apply the proce-

dure pass-down according to the modified capacities. By Lemma 5, we obtain a
distance-5 solution (C,F, φ). Since

∑a
i=1 Uu′

i
≥ p, at least p vertices are served

by φ. Finally, for each vertex v ∈ C and ui ∈ F such that φ(v) = ui, we reassign
v to u′

i ∈ F ′, i.e., let φ(v) = u′
i. By Lemma 6, we obtain a feasible solution for the

given induced (L,{Uu},∅,p)-Center instance. Since d(ui, u
′
i) ≤ 6 (1 ≤ i ≤ a),

the capacitated center value of our solution is at most 5 + 6 = 11. Combining
with Lemma 1, we finish the proof.

3 Capacitated k-Center with Two-Sided Bounds and
Outliers

Now we study the capacitated k-center problems with two-sided bounds. We
consider that all vertices have a uniform capacity lower bound Lv = L, while
the capacity upper bounds can be either uniform or non-uniform. Similar to [3,
21], we use the LP relaxation and the rounding procedure distance-r transfer.

3.1 LP Formulation

We first give a natural LP relaxation for ({Lu},{Uu},k,p)-Supplier.
Definition 5. (LPr(G)) Given an ({Lu},{Uu},k,p)-Supplier instance, the fol-
lowing feasibility LPr(G) that fractionally verifies whether there exists a solution
that assigns at least p clients to an open center of distance at most r:

0 ≤ xuv, yu ≤ 1, ∀u ∈ F , v ∈ C;
xuv = 0, if d(u, v) > r;
xuv ≤ yu, ∀u ∈ F , v ∈ C;∑

u∈F yu = k;∑
u∈F,v∈C xuv ≥ p;∑
u∈F xuv ≤ 1, ∀v ∈ C;

Luyu ≤
∑

v∈C xuv ≤ Uuyu, ∀u ∈ F .

Here we call xuv an assignment variable representing the fractional amount of
assignment from client v to center u, and yu the opening variable of u ∈ F . For
convenience, we use x, y to represent {xuv}u∈F ,v∈C and {yu}u∈F , respectively.

ByDefinition 3, LP1(G) must have a feasible solution for any induced ({Lu},{Uu},k,p)-
Supplier instance. We recall a rounding procedure called distance-r transfer.

3.2 Distance-r Transfer

We first extend the definition of distance-r transfer proposed in [3, 21] by adding
the third condition. For a vertex a ∈ C ∪ F and a set B ⊆ C ∪ F , we define
d(a,B) = minb∈B d(a, b).

Definition 6. Given an ({Lu},{Uu},k,p)-Supplier instance and y ∈ IRF
≥0, a

vector y′ ∈ IRF
≥0 is a distance-r transfer of y if

1.
∑

u∈F y′u =
∑

u∈F yu;
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2.
∑

w∈F :d(w,W )≤r Uwy
′
w ≥

∑
u∈W Uuyu for all W ⊆ F ;

3.
∑

w∈F :d(w,W )≤r Lwyw ≥
∑

u∈W Luy
′
u for all W ⊆ F .

If y′ is a characteristic vector of F ⊆ F , we say that F is an integral distance-r
transfer of y.

In this paper, we add the third condition to satisfy the capacity lower bounds.
Like in [3, 21], we still have the following lemma.

Lemma 7. Given an ({Lu},{Uu},k,p)-Supplier problem, assume (x, y) is a
feasible solution of LP1(G) and F ⊆ F is an integral distance-r transfer of y.
Then one can find a distance-(r + 1) solution (C,F, φ) in polynomial time.

3.3 Capacitated k-Center with Two-Sided Bounds and Outliers

Now we are ready to solve the (L,{Uu},k,p)-Supplier problem. By Lemma 7,
we only need to find an integral distance-r transfer satisfying Definition 6 given
a feasible fractional solution (x, y) of LP1(G). Fortunately, the rounding schemes
in [3, 21] have this property. Thus, we have the following theorem by [3].

Theorem 3. There is a polynomial time 9-approximation algorithm for the
(L,{Uu},k)-Center problem. For the uniform capacity upper bound version,
the (L,U ,k)-Center problem admits a 6-approximation.

Theorem 4. There is a polynomial time 13-approximation algorithm for the
(L,{Uu},k)-Supplier problem. For the uniform capacity upper bound version,
the (L,U ,k)-Supplier problem admits a 9-approximation.

By [21], we have the following theorem.

Theorem 5. There is a polynomial time 25-approximation algorithm for the
(L,{Uu},k,p)-Supplier problem and the (L,{Uu},soft-k,p)-Supplier problem.
For the uniform capacity upper bound version, the (L,U ,k,p)-Supplier problem
admits a 23-approximation, and the (L,U ,soft-k,p)-Supplier problem admits a
13-approximation.
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