Faster Algorithm for Truth Discovery via Range
Cover”*

Ziyun Huang! Hu Ding? Jinhui Xut!

! Department of Computer Science and Engineering
State University of New York at Buffalo
{ziyunhua, jinhui}@buffalo.edu
2 Department of Computer Science and Engineering
Michigan State University
huding@msu.edu

Abstract. Truth discovery is a key problem in data analytics which
has received a great deal of attention in recent years. In this problem,
we seek to obtain trustworthy information from data aggregated from
multiple (possibly) unreliable sources. Most of the existing approaches
for this problem are of heuristic nature and do not provide any quality
guarantee. Very recently, the first quality-guaranteed algorithm has been
discovered. However, the running time of the algorithm depends on the
spread ratio of the input points and is fully polynomial only when the
spread ratio is relatively small. This could severely restrict the applica-
bility of the algorithm. To resolve this issue, we propose in this paper
a new algorithm which yields a (1 + €)-approximation in near quadratic
time for any dataset with constant probability. Our algorithm relies on
a data structure called range cover, which is interesting in its own right.
The data structure provides a general approach for solving some high
dimensional optimization problems by breaking them down into a small
number of parametrized cases.

1 Introduction

Truth discovery is an important problem arising in data analytics, and has re-
ceived a great deal of attentions in recent years in the fields of data mining,
database, and big data [3,6-8,4,9-11]. Truth discovery seeks to find trustwor-
thy information from a dataset acquired from a number of sources which may
contain false or inaccurate information. There are numerous applications for this
problem. For example, the latest search engines are able to answer user queries
directly, instead of simply listing webpages that might be relevant to the query.
This process involves retrieving answers from potentially a large number of re-
lated webpages. It is quite common that these webpages may provide inaccurate
or inconsistent information. Thus a direct answer to the query needs the search

* The research of the first and third authors was supported in part by NSF through
grants CCF-1422324, 11S-1422591, and CNS-1547167. The research of the second
author was supported by a start-up fund from Michigan State University.

© Springer International Publishing AG 2017 461
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 461-472, 2017.
DOI: 10.1007/978-3-319-62127-2_39

462 Z. Huang et al.

engine to be able to extract the most trustworthy information from all these
webpages, which is exactly the problem of truth discovery.

Truth discovery is an unsupervised learning problem. Besides the input data,
no prior knowledge about the reliability of each data source is provided. In such
settings, an intuitive approach is to view all data sources equally reliable and
obtain the solution by averaging or majority rule. A major issue of this approach
is that the yielded answer may be quite far away from the truth. This is because
a small number of unreliable data sources could significantly deviate the final
solution. To deal with this issue, truth discovery treats data sources differently
by estimating the reliability for each of them. This greatly increases the level
of challenge for the problem. Moreover, since the truth discovery problem often
occurs in big data scenarios, the number of data sources could be quite large
and the dimensionality of the data could be rather high, which brings another
dimension of challenge to the problem.

A widely accepted geometric modeling of the truth discovery problem is the
follows. Data from each source is formulated as a set of real number attributes,
and thus can be viewed as a vector in R?, where d is the number of attributes.
Each data source is associated with a positive variable (or weight) representing
its reliability. Formally, the truth discovery problem can be defined as follows.

Definition 1. (Truth Discovery [4,8]). Let P = {p1,p2,...pn} be a set of points
in RY space, where each p; represents the data acquired from the i-th source
among a set of n sources. The truth discovery problem is to find the truth vector
p* and w; (i.e., reliability) for each i-th source such that the following objective
function is minimized.

min X7 w;||p; — p*||?, s.t. Do = 1. (1)

The meaning of the above truth discovery formulation was discussed in [1]
from an information theory’s point of view. It is shown that the constraint on w;
in Definition 1 ensures that the entropy is minimized when p* approaches the
truth vector. For this reason, the problem is also called Entropy based Geometric
Variance problem [1].

Despite extensive studies on this problem, most of the existing techniques are
of heuristic nature, and do not provide any guarantee on the quality of solution.
It is not until very recently that the truth discovery problem has a theoretically
guaranteed solution [1]. This result ensures that a (1 + ¢)-approximation of the
problem can be achieved in O(dn? + (nA)?nd) time, where n is the number of
input points (i.e., data sources), d is the dimensionality of the space, A is the
spread ratio of the input points (i.e. the ratio of the largest distance between
any two input points to the smallest distance), and o is any fixed small positive
number. The result is based on an elegant sampling technique called Simplex
Lemma [2] which is capable of handling high dimensional data. A main issue of
this method is that its running time depends on the spread ratio of the input
points, and is polynomial only when the spread ratio is relatively small (i.e.,
A = O(y/n)). This could severely restrict its applicability.

Faster Algorithm for Truth Discovery via Range Cover 463

To overcome this main issue, we present in this paper a faster algorithm for
the truth discovery problem. With constant probability, our algorithm achieves
a (1 + e)-approximation in O(dn?(logn + logd)) time, and is completely inde-
pendent of the spread ratio. Our algorithm is also space efficient, using only
near linear space, while the space complexity of [1] also depends on the spread
ratio. Our algorithm relies on a new data structure called range cover, which is
interesting in its own right. Roughly speaking, range cover is a data structure
designed for a class of optimization problems (in high dimensional space) which
are decomposable into a number of “easier” cases, where each case can be char-
acterized by a parameterized assumption. For example, truth discovery can be
formulated as a problem of finding a truth vector p* € R? from a given set P of
points in R? so that a certain objective function (the exact formulation will be
discussed later) is minimized. We are able to show that although directly opti-
mizing the objective function is challenging, the problem is much easier to solve
if some additional information (e.g., the distance r between p* and P) is known.
Thus, by viewing the additional information as a parameterized assumption, we
can solve the truth discovery problem by searching for the best assumption. The
range cover data structure shows that even though the number of parameterized
assumptions could be very large (or even infinite), it is sufficient to sample only a
small number of assumptions to ensure an approximate solution. This leads to a
small-size data structure (i.e., O(nlogn) space) and a faster algorithm for truth
discovery. Since the idea of decomposing problem into cases is not restricted only
to the truth discovery problem, we expect that this data structure will provide
new approaches to other problems.

2 Range Cover Data Structure

In this section, we present the aforementioned range cover data structure.

Range cover is motivated by several high dimensional optimization problems
(such as truth discovery). In these problems, an input point set P is given in R?
space, and the objective is to find a point ¢ in R? so that a certain objective func-
tion is optimized. A commonly used approach for such problems is to examine a
number of candidate points selected by some algorithms. But directly applying
such an approach could require too many (e.g., exponential in d) points to be
examined in high dimensional space. A possible way to overcome this difficulty
is to characterize all possibilities of ¢ into a small number of cases so that in each
case ¢ is associated with a certain parametrized assumption which could help
solve the problem more efficiently. For instance, in some optimization problem,
q could be much easier to obtain if we know in advance the nearest neighbor
(say p) of ¢ in P and its distance r to g (i.e., ||p— ¢|| = r) for some parameter r.
We expect that these parameterized assumptions form a space with much lower
dimensionality than d, and thus the overall time complexity can be significantly
reduced.

From the above discussion we know that for the range cover data struc-
ture to be efficient, the problem needs to be decomposable into a small number

464 Z. Huang et al.

of “easier” cases. For this purpose, we will take advantage of the distribution
of the points in P, such as their locality and point aggregation properties. To
understand how point aggregation can be useful, consider the following param-
eterized assumption on ¢: Assume that p is the nearest neighbor of ¢ in P and
r is their distance. Denote this assumption by NN, (p,r). If a subset of points,
v = {p1,p2,--.,Pm}, are close to each other compared to r, i.e. their diameter
D(v) is no larger than Ar for some predefined small constant A > 0, then points in
v can be viewed as a single ‘heavy’ point (simply denoted by v for convenience),
and assumptions NNy (p1,7), NNg(p2,r),... ,.NN¢(pm,r) can be covered (or
replaced) by a single assumption NN, (v,r) without losing much quality. We
formally define NN, (v, r) for aggregated subset v as follows.

Assumption 1 NN, (v,r): For a subset v of P, NN y(v,r) is an assumption
made about q which says: D(v) < \r for some small constant X > 0, where D(v)
is the diameter of v, and r < ||p’ — q|| < (L + A)r holds for p’ which denotes the
nearest neighbor of q in v.

Another property of P which can be made use of is the domination relation.
If g is very close to an aggregated subset of points v C P compared to points
in P\ v, it is often a degenerated case for the problem and relatively easy to
solve. To cover such cases, we define the following assumption DOM,(v) for
predefined constants £ > 0 and A > 0.

Assumption 2 DOM(v): For a subset v of P, DOM,(v) is an assumption
made about q, which says: there exists a point p, € v such that D(v) < A||g—p. ||
and ||py — q|| < &|lp—v —4q|| for any point p_,, € P\ v, where D(v) is the diameter
of v.

With the above definitions of assumption, we know that the goal of the range
cover data structure is to generate a small number of assumptions DOM(v1),
DOM,(v2), ..., DOMy(vp) and NN (v, 71), NNy (vy,72), ... ,NNg(vg,7g), 50
that for any ¢ € R%, at least one of these assumptions holds. We call such a
collection of assumptions an assumption coverage.

The main idea of range cover is to build a series of views of P formed by
aggregated subsets from different scales of , which is a controlling factor and can
be interpreted as the distance of observation. Range cover identifies, for each r, a
collection of disjoint aggregated subsets v of P with diameter no larger than Ar
for some predefined small constant A > 0. The collection could be used as a sketch
of P observed from distance r, which takes much less space than P. These views
(from different distances r) jointly provide an easy way to access the “skeleton”
information of P, which allow us to produce a smaller size assumption coverage.
Particularly, for a given r, instead of generating assumptions NN, ({p},r) for
each point p € P, we produce coarse-grained assumptions NN (v, r) for every
v in this view. Furthermore, by utilizing domination relation, we do not need to
consider small values of r, and thus can further reduce the size of the assumption
coverage. This is because the aggregation-based views of P from small enough r’s
correspond to situations where ¢ is very close to some point and the domination

Faster Algorithm for Truth Discovery via Range Cover 465

relation holds. Note that when determining point aggregation, we need not to
consider too large r as well, since for large enough r the whole point set P is an
aggregated set.

To generate the assumption coverage, an obvious challenge is how to reduce
the number of possible values for r for which we need to build a view of P. Even
though there is no need to consider too large and too small values for r, the gap
between the maximum and minimum values often depends on the spread ratio
of P, which could lead to pseudo-polynomial running time for some algorithms
using the range cover data structure. Below we will show how to overcome this
challenge and obtain a small size range cover.

2.1 Range Cover and Assumption Coverage

The range cover data structure uses the aggregation tree as an ingredient. The
aggregation tree is a version of Hierarchical Well-Separated Tree (HST)[5] which
is defined conveniently for point aggregation in a well-behaved manner. The
definition is as follows.

1. Every node v (called aggregation node) represents a subset P(v) of P, and
the root represents P.

2. Every aggregation node v is associated with a representative point I(v) €
P(v) and a size s(v) which is an upper bound on the diameter of P(v).

3. Every leaf node corresponds to one point in P with size s(v) = 0, and each
point appears in exactly one leaf node.

4. The two children v, and vy of any internal node v form a partition of v with
max{s(v1), s(ve)} < s(v).

5. For every aggregation node v with parent v, % is bounded by a polyno-
mial function P(n,d) > 1 (called distortion polynomial), where 7,y is the
minimum distance between any point in P(v) and any point in P\ P(v).

The following theorem shows that an HST with polynomial distortion (there-
fore, the aggregation tree also) can be built within near linear time.

Theorem 1. [5] An HST with distortion polynomial O(v/dn®) can be built in
O(dnlogn) time with success probability 1 — 1/n.

Below we will show how to build a range cover data structure from a given
aggregation tree 7}, which ensures to form an assumption coverage.

Consider an aggregation node v from distance r. If the diameter of v is not
larger than Ar for a predefined constant A > 0, all points in v can be viewed as
an aggregated subset and thus is part of the view from r. If r is so large that
even the parent v’ of v in T}, is an aggregated subset, v can be replaced by v’ in
the view. This means that an aggregation node v should not appear in the view
from a far enough distance r. Also if r is small, either v has a too large diameter
and thus cannot be an aggregated subset or v dominates ¢ (i.e. the solution
point). In the former case, v should be replaced by one of its descendant in the
view. In the latter case, we do not include v in the view from distance r, with

466 Z. Huang et al.

the belief (which will be proved later) that the absence of v can be compensated
by including the DOM,(v) assumption in the assumption coverage.

The above observation implies that for any aggregation node v, there exists
a range (rr,rgm) of the value of r, such that v is only “visible” when r lies in
the range. This immediately suggests the following scheme. Divide the set of all
positive real numbers into intervals ((1+)%, (1+)] ¢t =..., -2, -1,0,1,.. .,
and associate each of them with a bucket. If an interval (a,b] lies within the
interval (rr,7H) of a aggregation node v, then insert v into the bucket of (a, b].
The collection of these buckets is then the desired range cover data structure.

Algorithm 1 RangeCover(T), A, §)

Input: A aggregation tree T}, built over a set P of points in R?; an approximation
factor 0 < A < i, a controlling factor 0 < £ < 1.
Output: A number of sets of aggregation nodes, each of which is associated with an
interval ((1 + \)%, (1 + A)*™!] for some integer t¢.
1: For every interval ((14 \)?, (14 X)*T], create an empty bucket B;. (Note that B,
will not be actually created until some aggregation node v is inserted into it.)
2: For every non-root node v of T}, let v, be its parent in Ty, rg be s(vp)/A, and 7,
be max{s(v)/\, &s(vp)/(16P(n,d))}. Do
— For every integer ¢ satisfying the condition of rr, < (1+\)* < rg, insert v into
bucket By.

Given input P, for any constant factors 0 < A < 1/4 and £ > 0 in Assump-
tion 1 and Assumption 2, we build the aggregation tree 7, and the corre-
sponding range cover data structure R by calling RangeCover(T), A, §), and let
the assumption coverage Ay ¢ (or simply A for convenience) contain the following
assumptions:

1. DOMy(v), for every aggregation node v of T},

2. NNy(v,r), for every aggregation node v of T, and r such that interval
(r, (14 A)r] is one of the nonempty bucket in R and v is a aggregation node
in this bucket.

Clearly obtaining A from R is quite straightforward, and |.A| has a size no
larger than that of R.
The following theorem shows that A is indeed an assumption coverage.

Theorem 2. For any q in R?, at least one of the assumptions in A holds.

Proof. Let p’ be the nearest neighbor of ¢ in P. If ||¢ — p'|| = 0, DOM,({p'})
holds. In the following we assume that ||¢ — p’|| > 0. Let ¢’ be the integer such
that (1+\)" < [lg—p'|| < (1+X)"*L. Let v/ be a aggregation node of T}, which
is the highest ancestor of {p’} in T}, such that s(v') < A(1 4+ \)*. Since {p'} is a
leaf of T, and s({p'}) = 0 < A(1 4+ A\)*', such a v always exists.

Based on the relationship between v, ¢ and the range cover data struc-
ture, we have 4 cases to consider. (a) v’ is the root of T}, (b) (1 + A\)¥ <

Faster Algorithm for Truth Discovery via Range Cover 467

max{s(v')/\,&s(vy,)/(16P(n,d))}, where v, is the parent of v' in T}, (c) (1 +
A > s(uh) /A, and (d) max{s(v')/\, €s(v})/(16P(n, d))} < (L+ A < s(v])/A.
Below we analyze each of them.

Case (a): Since s(v') < A1+ A\ < M|g — p/|| and v’ represents the whole
point set P (as it is the root of T},), we have P \ v’ is empty. This means that
the assumption DOM,(v") holds for g.

Case (b): Note that by the definition of #’, we know that (14)t > s(v) /.
Therefore if case (b) occurs, we have (14\)" < &s(vy,)/(16P(n,d)). By (14N <
lg— || < 14N+ and X < 1, it follows that |jg — p/|| < &s(v,)/(8P(n,d)).
Let p, be any point in P\ v'. Then ||p, — p'[| > s(v;,)/P(n, d) by the property of
aggregation tree. Therefore, €[lpo — ¢/l = 8llg— p'|l. Thus, |lpo — |l > llpo — /|| -
la = p'll = (8/& = Dllg — p'|- By the fact £ <1, we have |lg — p/[| < &[lpo — qll.
Also since (1 + A)F > s(v')/X and (1 4+ \)F < |lg —p'|| < (1 + NP1 we have
llg — 2’|l > s(v')/A. This indicates that DOM,(v") holds for case (b).

Case (c): This case actually never occurs. This is because, by the definition
of v/, s(vy,) > A(1 + M), since otherwise v’ cannot be the highest ancestor of
{p'} satisfying the inequality s(v') < A(1+ A

Case (d): Note that this case means that v’ is placed in bucket ((1—}—)\)'5/7 (1+
MY Thus NN, (v, (14 A)Y) is in A. We show that NN, (v/, (1 4+ A)!) holds
for g. Indeed, this follows immediately from previous discussion on v’: s(v') <
AL+ X" and (14 A1+ N7 > [[p —ql| > (1+ M)

Since in all cases at least one assumption in A holds for ¢, the theorem
follows. O

The following theorem indicates that the size of the assumption coverage is
small.

Theorem 3. Given a aggregation tree T, and factors 0 < A < 1/4 and 0 <
& < 1, the range cover data structure can be built in O(1/Xlog(1/&)n(logn +
log d)) time and takes O(1/Alog(1/&)n(logn+logd)) space. Consequently, |A| =
O(1/Xlog(1/&)n(logn + logd)).

Proof. From Algorithm 1, we know that every aggregation node v is inserted
into O(log; , 7r/71) buckets (see Step 2 of the algorithm). Note that log, , \ 7r /71
is no larger than log, \ ((s(vp)/A)/ (€s(vp)/16P(n,d))) = O(1/Alog(1/£)(log n+
log d)). Since the total number of aggregation node is O(n), the theorem follows.
O

3 Solving Truth Discovery with Assumption Coverage

In this section, we show how to use the assumption coverage to solve the truth
discovery problem. Given any point set P in R? and a small constant 0 < € < 1,
we first build an assumption coverage A with factors A and £ whose values
depend on € only and will be determined later. We then show how to obtain a
(1 + €)-approximation of the problem in polynomial time. Let p* be the truth
vector (i.e., optimal solution) of the problem.

468 Z. Huang et al.

We first borrow a useful lemma from [6]. It shows that once p* is determined,
the weights w; can also be determined. Thus we only need to find an approximate
truth vector p*.

Lemma 1. [6] If the truth vector p* is fized, the following value for each weight
w; minimizes the the objective function (1) (in Definition 1),

S llpt — pil?
lp* — pill?

w; = log(). (2)
There are two types of assumptions about p* in A which covers all possibilities
of p*: NN p«(v,r) and DOM,,,(v). Below we discuss each of them.
The following lemma shows that DOM,,.(v) is easy to solve.

Lemma 2. By setting A < 1/4 and & < €/4, if DOMy.(v) holds for the truth
vector p*, there exists a point p' € v C P such that p’ is a (14 €)-approzimation
of the truth discovery problem (using the objective function (1) in Definition

1).

From the above lemma, we know that if DOM,,.(v) holds for some v, then
one of the input point in P will be a (1 4 €)-approximation. This means that we
can handle all such cases by trying every input point as p* by computing the
objective function (1) in equation (2), and choosing the one with the minimum
objective value as the solution. This takes O(dn?) time.

The following lemma shows that NN p.(v,r) can also be handled efficiently.
We leave the proof to the next subsection.

Lemma 3. If NN,.(v,r) holds for any factor 0 < X\ < 1/4, then a (1 + €)-
approximation can be computed in time O(dn) with constant probability, where
€ is a small constant in (0,1).

The above lemmas suggest that we can compute an approximate p* by the
following algorithm.

. Compute an aggregation tree from P.

. Set £ =¢/4, A = 1/5, compute a range cover from the aggregation tree.

. Compute A from the range cover.

. Try every p € P as a candidate for the truth vector. Choose the one, say p1,
that minimizes the objective function.

5. For every NN . (v, r) in A, compute a candidate for p*. Choose the one, say

P2, that minimizes the objective function.
6. Choose from p; and po the one that minimizes the objective function

= W N =

In the above algorithm, Step 1 takes O(dn logn) time. Step 2 needs O(n(log n+
log d)) time (where € is hidden in the O(-) notion). Step 3 costs O(n(logn+logd))
time. Step 4 can be done in O(dn?) time. Step 5 takes O(dn?(logn+logd)) time,
since we test at most O(n(logn + logd)) assumptions in A. Step 6 requires only
O(1) time. For the space usage, it can be computed O(dnlogn) 4+ O(n(logn +
log d))+O(n(logn+logd))+O(dn)+O(dn)+O(1) = O(dn(logn+logd)). Thus
we have the following main theorem.

Faster Algorithm for Truth Discovery via Range Cover 469

Theorem 4. Given any set P of n points in R, with constant probability, it is
possible to compute a (1+¢€)-approzimate solution for the truth discovery problem
in O(dn®(logn + logd)) time. The space usage can be made to O(dn(logn +
logd)).

3.1 Solving NN . (v,7)

In this section we prove Lemma 3. We assume that NN, (v,r) holds for p*,
where v C P and r > 0.

Lemma 1 reveals how the weight w; of every p; € P is related to p*. It
is clear from the objective function (1) and Lemma 1 that p* is the weighted
mean of P. Since we do not know p* in advance, w; is also unknown for every
p; € P. The truth discovery problem can be viewed as a problem of finding the
weighted mean of a point set with unknown weights. Our strategy for solving
this problem consists of two main steps: (1) we partition P into a number of
subsets (or sub-clusters), with each having some nice property. The weights of
the points in some clusters are approximately known, while the weights of the
points in other clusters are unknown, but have an upper and lower bound; (2)
we apply a technique in [1] to find the approximate weighted mean point of each
subset, and combine them to estimate p*.

Partitioning P for Estimating Weights We first show how to estimate the
weights of some points by NN, (v, r) without knowing p*. This is crucial for
our algorithm to be efficient for any point set P.

Let p; € v denotes the representative point [(v) of v. We label the rest of
points in P as pa,ps, . . ., pp. For each point p; € P, define r, = max(||p1 —pil|,)
and r; = ||[p* — p;||. For NN p.(v,7), let p;, € v be the nearest neighbor of p* in
P. Below we derive the relationship between r; and r;.

First, we consider the case that max(||p1 — p;||,) = r. In this case, we have
ri > ||pi, — p*|| = r = r} by assumption NN p.(v,7) and the fact that p;_ is the
nearest neighbor of p*. Also we have r; < ||p1 — p*|| + |lp1 — pill < |lp1 — p*|| + 7,
and

o1 =p*l < llpr = pill + IP" = pi. [l < D(v) + (1 + A)r < (14 2A)r

Thus, r; < (2 + 2\)r = (2 + 2)\)r}. Putting all together, we have r, < r; <
(24 217

Then, we consider the case that max(||p1 — p;||,7) = ||p1 — p:||. In this case,
r = o — pill > . Again, we have oy — p*| < lp1 — pi || + 0" — pill <
D(v) + (1 + A)r < (14 2\)r. Therefore, (14 2X\)r} > ||p1 — p*||. Thus,

ri = |pi = 2"l < llpy = pill + llpr — 2"l < llpr = pill + (1 + 20)r) = (2 + 2\)r;.

Next, we consider 2 subcases, r; > 2r and r} < 2r. If r} < 2r, since r; > r, we have
ri > ri/2.Ifr) > 2r, since ||p1 —p*|| < (142X\)r, we have ||p1 —p*|| < (14+2X)r}/2.
This means that

ri = llpi = p"ll 2 llpy = pill = llpr = p"[| = 75 = (14 20)rj/2 = (1 = 2\)r;/2.

470 Z. Huang et al.

To conclude, we have (1 — 2A\)r}/2 <r; < (24 2\)7r].
From the above analysis and the fact that A < 1/4, we can obtain the fol-
lowing.

ri/4 <ri <dr;. (3)
For each p; € P, let w; = IOg((ijep r?)/(rf)), i.e., w; is the optimal weight

determined by Lemma 1. Let w; = log((}_, cp r?)/(r?)). From inequality (3),
we obtain the following:

w; — log 256 < w; < w; + log 256. (4)

This means that w; can be used as an approximation of w; if w; is large
enough.
For any p; € P, if w, > 8/ > log256/ for any 0 < 8 < 1, we have the
following (by (4))
(1 - B)w; <wl < (14 Bw;.

This means that w; can be well approximated by w} in this case. Let Pz denote
the set {p;, € Plw} > 8/5}.

Next, we further show that there is at most one point p; in P with weight
w; < log 36/25 which, if exists, can be identified by a simple procedure. By the
definition of w;, we know that w; < log 36/25 can happen only when ||p* — p;|| >
5|lp* — p;|| for any 7 # j. This means that for any j,! # 1,

Ipj —pull < lp* = pill + [P — pull < 2max([|p” — p;|l, [[p* — pill). Thus, we have

lp; —pill = llp* = pill = 0™ — pjl
> dmax(|lp* — p;l, [I[p* — pill) — max([|p* — p;ll, [lp* — pull)
= dmax(|[p* — p;ll, lp* — i) > 2[lp; — p1-

Hence, for any j,1 # 1, the inequality ||p; — pil| < |lpi — p;l//2 holds. In other
words, p; is isolated from the rest of the points in P. It is easy to see that such
a p; is unique, if exists. The following procedure searches for such a p;.

. Choose an arbitrary point p from P.

. Find a point p’ in P farthest away from p.

. Find a farthest point p” from p’ in P.

. Compare the pairwise distances among the three points in {p,p’, p”}. Throw
away the pair of points with the smallest pairwise distance. Output the
remaining point as p.

=W N

From the above discussion, it is easy to see that if there is a point p; with
weight w; < log36/25, it must be p. Clearly, this procedure takes only O(dn)
time.

For a constant 0 < 8 < 1/2 (whose value will be determined later), let
P, =P\ (PsuU{p}) and P- = {p} \ Ps. Then, P,, P, P3 form a partition of
P. P3 contains all points p; in P whose weights w; have already been roughly
determined (i.e., approximated by w}); P has at most one point, which will be

Faster Algorithm for Truth Discovery via Range Cover 471

Algorithm 2 (1 + O(1)e)-approximate Truth Discovery from N/\/p*(v T)

Input: A set P of n points in R? space. Assumption NN (v,7). 8 = €2. Constants
v,k solved from 29vk < € and k = [log, ., m] + 1. ¢1 = %1 13'; .
o = f{—’;. o= 63,8/4814:.

Output: An approximate truth vector.

1: Identify P<, Pg, P, by computing w; for each p; € P.
2: Compute the weighted mean o of Ps using weights w;.
3: Randomly sample ¢ points from P. Enumerate all subsets of c¢2 points from the

sample. Compute means of these subsets, and put all the means into a set M.

4: TFor every k-subset {01, ...0x} of M, apply SIMPLEX(¢?, k, 01, . . .,0%) to produce
a grid. Put all grid points in into a point set G.

5: For every o5 in G, if P contains a point o}, then build a grid by applying
SIMPLEX (e, 3, 01,02,03) otherwise, build a grid using SIMPLEX(e, 2, 05, 05).

6: Try all the grid points produced above. Output the one that minimized the ob-
jective function (1).

the one with weight smaller than log 36/25, if exists; P, contains all the remain-
ing points whose weights are not known yet. P,, P<, P3 together with w) can be
obtained in O(dn) time since it takes a total of O(n) distance computations.

Following a similar idea in [1], we further decompose P, by using the log-
partition technique, where 4 > 0 is a constant to be determined later. (Note
that the log-partition cannot be explicitly obtained since we do not know the
weights w;. We assume that such a partition exists and will be used in our later
analysis.)

Definition 2. The log-partition of P, divides points in P, into k groups G1,...Gk
as follows, where k = [log; ., log]g(/}/25—| +1:Gi = {pj € PuJ(1+7)"log36/25 <
w; < (1+7)%log36/25}.

Note that the above partition indeed involves all points in P, . This is because
by the definition of P~ and Pg, and the fact that (1 — 8)w; < w} < (1+ B)w; for
all point p; € Pg, we know that log 36/25 < w; < 164 for each point p; € P,.
This implies that Gi,...Gy, P<, P3 form a partition of P. Also, we apply log-
partition to P, instead of P as in [1]. In this way the value of k is bounded,
making our algorithm efficient for any data.

Applying the Simplex Lemma Roughly speaking, Simplex Lemma in [1]
provides a procedure SIMPLEX(e, k,01,...,0;) to approximate the weighted
mean of a partitioned point set @ = |JQ;, where € is an approximate factor,
k is an integer and every o; is a point in R?. The procedure outputs a grid of
size ((8k/€)*) within O((8k/¢€)*) time which ensures that at least one of the grid
points is close to the weighted mean of @, if o; is a good approximation of the
weighted mean of @);.

Algorithm 2 shows how to use SIMPLEX to produce an approximate truth
vector, given P partitioned into P., Pg, P, as above. The running time and

472 Z. Huang et al.

space usage match those appear in Lemma 3. To obtain a (1 + ¢)-approximation,
we only need to do a scaling on the constants without affecting the asymptotic
running time.

Below we briefly explain the main steps of Algorithm 2. In Step 1 we partition
P into P, Pg, P, as mentioned before. In Step 2 an approximate weighted mean
of Pg is computed. In Steps 3 and 4, we try to guess k weighted means {o01,...05}
for the clusters Gy, ... Gy resulted from the log-partition of P, by using random
sampling. We apply SIMPLEX to these approximate means {o1,...0r} to pro-
duce a small grid. The set G of grid points contains at least one point which is
a good approximate weighted mean of P,. In Steps 5 and 6, we already have
approximate weighted means o} and of of P. and Pg, respectively, and a set G
which contains an approximate weighted mean of of P,. We then try all possible
oh from G and use SIMPLEX on 0, 0}, 05 to produce grids and one of such grids
contains the desired approximation of the truth vector.

References

1. Ding, H., Gao, J., and Xu, J.: Finding Global Optimum for Truth Discovery: En-
tropy Based Geometric Variance. Leibniz International Proceedings in Informatics
(LIPIcs), 32nd International Symposium on Computational Geometry (SoCG 2016),
Vol. 51, 34:1-34:16(2016).

2. Ding, H. and Xu, J.: A Unified Framework for Clustering Constrained Data without
Locality Property. Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pp. 1471-1490, January 4-6, 2015, San Diego, California, USA.

3. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: The role
of source dependence. PVLDB, 2(1): 550-561(2009).

4. Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A Survey on
Truth Discovery, CoRR abs/1505.02463(2015).

5. Har-Peled, S.: Geometric approximation algorithms. Vol. 173. Boston: American
mathematical society(2011).

6. Li, H., Zhao, B., Fuxman, A.: The Wisdom of Minority: Discovering And Targeting
The Right Group of Workers for Crowdsourcing. Proc. of the International Confer-
ence on World Wide Web (WWW’14), pp. 165-176(2014).

7. Li, Q., Li, Y., Gao, J., Su, L., Zhao, B., Demirbas, M., Fan, W., Han, J.: A
Confidence- Aware Approach for Truth Discovery on Long-Tail Data. PVLDB 8(4):
425-436(2014).

8. Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., Han, J.: Resolving Conflicts in Heteroge-
neous Data by Truth Discovery and Source Reliability Estimation. Proc. the 2014
ACM SIGMOD International Conference on Management of Data (SIGMOD’14),
pp. 1187-1198(2014).

9. Pasternack, J., Roth, D.: Knowing what to believe (when you already know some-
thing). Proc. of the International Conference on Computational Linguistics (COL-
ING’10), pp. 877-885(2010).

10. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose Vote Should
Count More: Optimal Integration of Labelers of Unknown Expertise. Advances in
Neural Information Processing Systems (NIPS’09), pp. 2035-2043(2009).

11. Yin, X., Han, J., and Yu, P.S.: Truth discovery with multiple conflicting informa-
tion providers on the web: Proc. of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’07), pp. 1048-1052(2007).

	39 Faster Algorithm for Truth Discovery via Range Cover
	1 Introduction
	2 Range Cover Data Structure
	2.1 Range Cover and Assumption Coverage

	3 Solving Truth Discovery with Assumption Coverage
	3.1 Solving NNp∗(v, r)

	References

