
Protein Mover’s Distance: A Geometric
Framework for Solving Global Alignment

of PPI Networks

Manni Liu and Hu Ding(B)

Department of Computer Science and Engineering, Michigan State University,
East Lansing, USA

{liumanni,huding}@msu.edu

Abstract. A protein-protein interaction (PPI) network is an unweighted
and undirected graph representing the interactions among proteins, where
each node denotes a protein and each edge connecting two nodes indicates
their interaction. Given two PPI networks, finding their alignment is a fun-
damental problem and has many important applications in bioinformat-
ics. However, it often needs to solve some generalized version of subgraph
isomorphism problem which is challenging and NP-hard. Following our
previous geometric approach [21], we propose a unified algorithmic frame-
work for PPI networks alignment. We first define a general concept called
“Protein Mover’s Distance (PMD)” to evaluate the alignment of two PPI
networks. PMD is similar to the well known “Earth Mover’s Distance”;
however, we also incorporate some other information, e.g., the functional
annotation of proteins. Our algorithmic framework consists of two steps,
Embedding and Matching. For the embedding step, we apply three dif-
ferent graph embedding techniques to preserve the topological structures
of the original PPI networks. For the matching step, we compute a rigid
transformation for one of the embedded PPI networks so as to minimize
its PMD to the other PPI network; by using the flow values of the result-
ing PMD as the matching scores, we are able to obtain the desired align-
ment. Also, our framework can be easily extended to joint alignment of
multiple PPI networks. The experimental results on two popular bench-
mark datasets suggest that our method outperforms existing approaches
in terms of the quality of alignment.

1 Introduction

Proteins are essential parts of organisms and participate in virtually every
process within cells [36]. Protein-Protein Interaction (PPI) networks provides
effective tools for studying protein complexes and understanding their functional
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Fig. 1. An example of yeast PPI network [35].

interactions, modules, and pathways, in many cellular processes. A PPI net-
work is a graph that describes the interaction of proteins, where a node repre-
sents a protein and an edge means that the two corresponding proteins interact
with each other [35]. See Fig. 1.

The current research on PPI networks mainly focus on two directions: (1)
knowledge discovery inside each individual network and (2) comparison and
integration of different networks. The first direction includes the problems of
link prediction (i.e., adding new interactions) and modules/pathways detection,
while the second one often targets finding the similarity or distinction between
two or more networks. Actually these two directions are closely related with each
other, e.g., better knowledge discovery inside each network could lead to more
accurate comparison between networks, and the integrated analysis on different
networks could improve the knowledge discovery inside each individual network.
In this paper, we focus on a fundamental problem in the latter direction, PPI
networks alignment, which is often modeled as the problem of mapping two
undirected graphs:

Let two undirected graphs G1 = (V1, E1) and G2 = (V2, E2) denote two PPI
networks. An alignment of G1 and G2 is to compute a mapping between V1 and
V2 satisfying some given criteria, where the mapping could be one-to-one or
many-to-many.

Since it is usually a generalized NP-hard subgraph isomorphism problem,
most of the existing algorithms on PPI networks alignment are heuristic and
aimed at achieving good practical efficiency. Current research includes local and
global alignment. Local alignment algorithms are designed to find isomorphic
subgraphs of two or more PPI networks, where the popular ones include Maw-
ish [15] and AlignNemo [5]. Comparing with local alignment, global alignment
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can better capture the global picture of how conserved substructure motifs are
organized, and consequently attracts a great deal of attentions. The well known
algorithms include IsoRank [32], MI-GRAAL [17], GHOST [25], MAGNA [29],
Prob [34], NETAL [23], and HubAlign [11]. For example, IsoRank defines the
similarity of two nodes recursively based on the similarity of their neighbors;
MI-GRAAL uses both topological and biological information, and generates the
alignment by a greedy seed-and-extend approach; GHOST defines the difference
of spectral signatures among the nodes and generates the alignment greedily;
NETAL defines the topological similarity between the nodes in a similar way to
IsoRank and tries to optimize the number of conserved edges. Moreover, some
algorithms are designed to handle joint alignment of multiple PPI networks, such
as IsoRankN [20], NetCoffee [13], SMETANA [28], BEAMS [2], ConvexAlign [9],
and NetworkBlast-M [14].

Comparing with directly solving the problem of graph isomorphism, the
aforementioned heuristic approaches can alleviate the high computational com-
plexity to certain extent. However, they still suffer several unavoidable draw-
backs. For example, their time complexities could still be relatively high (e.g.,
O(n3 log n) where n is the number of vertices [10]). Moreover, the available PPI
networks are often very sparse, and thus the alignment based on the local topol-
ogy of each vertex is not quite reliable. One way to solve this issue is to first make
use of the fact that biological networks can often be embedded into Euclidean
space (due to their intrinsic nature [12,18]; recently, Cho et al. [4] propose a new
algorithm for low-dimensional geometric representation of biological networks
called Diffusion Component Analysis), and then convert the alignment problem
from graph domain to geometry domain. Besides the lower computational com-
plexity, the geometric representations of PPI networks can also remedy the issue
caused by the sparse and noisy interactions of PPI networks [18].

Inspired by this observation, our previous work [21] provides a geomet-
ric embedding based algorithm “GeoAlign”. Roughly speaking, GeoAlign first
embeds the given two PPI networks into a Euclidean space via the method of
structure preserving embedding [31], and then computes their alignment in the
space.

1.1 Our Contributions

The goal of this paper is twofold. First, we follow and generalize our previous
work [21] to a unified algorithmic framework for PPI networks alignment. Second,
we study and compare the experimental performance of our framework with
other popular methods on two benchmark datasets.

Our algorithmic framework includes two steps: (1) embedding and
(2) matching. Given two PPI networks, we first use a graph embedding tech-
nique to represent them in some Euclidean space. As a consequence, each network
is transformed to a point set and the local topological properties (such as the
connectivity and length of shortest path between nodes) are well preserved in a
geometric form. We adopt three different embedding methods, the recent popular
deep learning based approach node2vec [8], the well studied multi-dimensional
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scaling (MDS) [16], and structure preserving embedding (SPE) [31] which was
used in [21] (see Sect. 2 for details). Then, we use both the geometric information
and given sequence similarity scores of the proteins to establish the matching.
Note that the matching should also take into account of certain transformations
in Euclidean space, such as rigid transformation. To realize this idea, we propose
a novel concept “Protein Mover’s Distance (PMD)” to measure the match-
ing cost between two PPI networks. Moreover, our framework can be naturally
extended for joint alignment of multiple PPI networks.

Note: of course, the embedding method should not be limited to the aforemen-
tioned three algorithms in our general algorithmic framework, and we expect
a more extensive experimental study on different embedding methods in future
work.

2 Embedding Methods

In this section, we introduce three different methods for embedding PPI networks
in our framework.

2.1 Node2vec

Recently, Grover and Leskovec [8] present a new algorithm called node2vec for
feature learning. Given a graph, the key idea of node2vec is to define a novel
random walk procedure to generate the neighborhood of each node (vertex) and
maximize the likelihood for maintaining the interactions among the neighbors;
eventually, it obtains a representation of the nodes in Euclidean space. For the
sake of completeness, we briefly introduce the method below.

Let G = (V, E) be a given unweighted and undirected graph and f : V → R
d

be the (to be learned) mapping function from the nodes to a d-dimensional
space where d is a parameter that can be specified as the input. For each node
u ∈ V , node2vec defines its neighborhood NS(u) based on two classic sampling
strategies, Breadth First Sampling (BFS) and Depth First Sampling (DFS). In
BFS, the neighborhood NS(u) covers the nodes which are directly connected
with the source node u. Differently, DFS defines NS(u) to contain the nodes
which may have indirected interactions (by depth first search) with the source
node u.

Node2vec applies random walk to make a balance between BFS and DFS.
For a source node u and a given positive integer l, node2vec runs the fixed l
steps of random walk and the neighborhood NS(u) consists of all the passed
nodes. After generating the neighborhood NS(u) for each node u, node2vec is to
optimize the following objective function inspired by the Skip-gram Model [22]:

max
f

∑

u∈V

log Prob(NS(u)|f(u)). (1)
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With the standard assumptions of conditional independence and symmetry of
feature space, the objective function (1) can be further simplified to be:

max
f

∑

u∈V

[− log Zu +
∑

ni∈NS(u)

f(ni) × f(u)] (2)

where Zu =
∑
v∈V

exp(f(u) × f(v)) (see [8] for the omitted details). Finally, the

objective function (1) is optimized by stochastic gradient descent (SGD) on
single hidden-layer feedforward neural networks.

2.2 Multi-dimensional Scaling

Multi-dimensional Scaling (MDS) is a widely used tool for embedding graph into
Euclidean space [16]. In particular, Higham et al. [12] and Kuchaiev et al. [18]
introduce the ideas based on MDS to tackle the problems of de-noising and link
prediction for PPI networks.

The input of MDS is the matrix of the n × n pairwise distances (suppose
the number of nodes is n in the given graph). To define the pairwise distance,
[12,18] adopt the length of the shortest path between each pair of nodes in the
graph (in case that the PPI network is not connected, they handle the connected
components separately). Obviously, computing the whole distance matrix could
be very costly if using Dijkstra’s or other shortest path algorithms [6]. How-
ever, since PPI networks are unweighted and usually sparse, we can directly run
breadth first search n times to obtain the n2 pairwise distances, and the total
running time is only O(n2) (also Higham et al. [12] set an upper bound for the
distances which makes the method even more practical).

Let the obtained distance between node i and j be dij and the dimension of
the desired embedding space be d. The goal of MDS is to find n points xi ∈ R

d,
i = 1, · · · , n, such that the distance between each pair (xi, xj) is roughly equal
to dij . First, we generate a positive semi-definite matrix A where each

aij = −1
2
(d2ij − 1

n

n∑

k=1

d2ij − 1
n

n∑

k=1

d2kj +
1
n2

n∑

k=1

n∑

l=1

d2kl). (3)

Consequently, we know that
XTX ≈ A. (4)

Further, we decompose the matrix A to be UTΣU where the rows of U are
the eigenvectors of A and the diagonal entries of Σ are the eigenvalues ordered
decreasingly. Finally, MDS lets X̂ =

√
ΣdU be the embedding solution where

Σd contains only the top d eigenvalues.

2.3 Structure Preserving Embedding

Given the adjacency matrix of a graph, traditional graph embedding algorithms
often need to employ a spectral decomposition of the Laplacian and take the
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top eigenvectors as the embedding coordinates. However, a drawback of such
embedding algorithms is that they cannot efficiently preserve the topology of the
input graph. To remedy this issue, Shaw and Jebara propose a novel embedding
algorithm called structure preserving embedding (SPE) [31]. Different from the
previous spectral embedding methods, SPE learns a new positive semi-definite
kernel matrix K whose spectral decomposition can preserve the topology exactly;
moreover, the problem can be modeled as a semi-definite programming with a
set of linear constraints. For more detailed explanation on SPE, we refer the
readers to [31].

Due to the advantage on preserving topological structure, our previous
work [21] adopts SPE to embed the given PPI networks into Euclidean space for
computing their alignment.

3 Protein Mover’s Distance

Since the given PPI networks become point sets in Euclidean space after embed-
ding, the next question is how to measure their similarity. Actually, our idea
comes from the well known concept earth mover’s distance (EMD) in compu-
tational geometry which has been extensively studied in many areas [19,26,27].

Given two point sets A = {p1, p2, · · · , pn} and B = {q1, q2, · · · , qm} in R
d

with nonnegative weights αi and βj for each pi ∈ A and qj ∈ B respectively,
define the ground distance D(pi, qj) ≥ 0 for each pair of pi and qj (normally,
the ground distance is simply their (squared) Euclidean distance). The EMD
between A and B is:

EMD(A,B) =
minF

∑n
i=1

∑m
j=1 fij · D(pi, qj)

min {∑n
i=1 αi,

∑m
j=1 βj} , (5)

where F = {fij} is a feasible flow from A to B, such that ∀i, j, fij ≥ 0,∑m
j=1 fij ≤ αi,

∑n
i=1 fij ≤ βj , and

∑n
i=1

∑m
j=1 fij = min{∑n

i=1 αi,
∑m

j=1 βj}.

Intuitively, EMD can be viewed as the minimum transportation cost between
A and B, where the weights of A and B are the “supplies” and “capacities”
respectively, and the cost of an edge between any pair of points from A to B
is their ground distance (see Fig. 2(a)). Also, since EMD is associated with an

(a) (b) (c)

Fig. 2. (a) An illustration for earth mover’s distance; (b) min-cost max flow for com-
puting EMD; (c) the simplified min-cost max flow via FastEMD.
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underlying flow F , a many-to-many matching is naturally generated via simply
matching the points that have a positive flow between them. More importantly,
EMD is based on a global optimization. That is, instead of greedily matching
local points that are close to each other, EMD finds a matching that is able to
capture the global relationship between them.

For the sake of simplicity, we also use A and B to denote the point sets, i.e.,
the two embedded PPI networks, respectively; each point pi (qj) indicates one
protein. For normalization, we let each αi = m and βj = n, and thus both the
total weights

∑n
i=1 αi and

∑m
j=1 βj are equal to nm. To measure their similarity,

a significant difference to EMD is that we have to consider both local topology
and biological information. We introduce the following definition.

Definition 1 (Protein Mover’s Distance (PMD)). Given a parameter
λ ∈ [0, 1],

PMD(A,B) = λEMDt(A,B) + (1 − λ)EMDb(A,B), (6)

where EMDt(A,B) is simply the EMD between A and B with the ground dis-
tance Dt being the squared Euclidean distance, while EMDb(A,B) is the EMD
between A and B with the ground distance Db being some decreasing function
on the given sequence similarity scores of the proteins.

Due to the embedding procedure, we know that EMDt(A,B) reveals the
similarity of local topology between A and B. Meanwhile, EMDb(A,B) shows
the similarity based on biological information, where the ground distance Db

could have different forms depending on the setting in practice. In our experi-
ment, we simply use the inverse of the similarity score as the ground distance;
if the similarity score of a pair of proteins does not exist, their ground distance
is +∞.

We can see that the parameter λ allocates the importances of local topology
and biological information in PMD. Namely, the higher (lower) λ, the more
important the local topology (biological information).

4 Our Algorithms

We first introduce our algorithm for pairwise alignment of two PPI networks in
Sect. 4.1, and then show how to extend the algorithm to handle multiple PPI
networks in Sect. 4.2.

4.1 Two PPI Networks

After embedding, the main idea of our alignment algorithm is to compute the
PMD between the two PPI networks and generate the matching between the
proteins based on the flows of the PMD. For this purpose, we need to consider
the following two technical issues.
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(1) Registration. Note that the embedding only preserves the pairwise dis-
tances of the nodes, thus each network actually becomes a rigid structure in
the space. Consequently, we need to consider the registration between A and
B under rigid transformation. Before computing the PMD, we fix A and apply
the widely used Iterative Closest Point (ICP) [3] algorithm to find an appro-
priate position for B. ICP algorithm is an alternating minimization procedure
that each iteration fixes either the matching or the current transformation and
modifies the other to minimize the difference. ICP algorithm is guaranteed to
converge and performs quite well in practice.

(2) The computation of EMD. From Definition 1, we know that both EMDt

and EMDb need to compute the EMD between A and B but with different
ground distances. Actually, optimizing the objective function of EMD is a typical
instance of min-cost max flow problem which can be solved by linear program-
ming (Fig. 2(b)). However, the numbers of points (nodes) in the PPI networks
A and B are often thousands which make the computation complexity of lin-
ear programming extremely high. To resolve this issue, we use the approximate
algorithm FastEMD [26] instead. Roughly speaking, FastEMD deletes the flows
which have large ground distances, where the intuition is that the flows with
large ground distances are more likely to be small or even zero. In practice,
FastEMD makes the connecting graph of EMD much more sparse (Fig. 2(c))
and thus reduces the running time significantly.

Overall, our algorithm is shown in Algorithm1.

Algorithm 1. Pairwise alignment
Input: two PPI networks G1 = (V1, E1) and G2 = (V2, E2), three parameters d ∈
Z
+, 0 ≤ λ ≤ 1, and μ > 0.

Output: An alignment between G1 and G2.

1. Embed G1 and G2 into d-dimensional Euclidean space as A and B (by node2vec,
MDS, or SPE).

2. Fix A, and run ICP to registrate B to A (with a little abuse of notations, we
still use B to denote the transformed B).

3. Apply FastEMD to compute PMD(A, B) = λEMDt(A, B) + (1 −
λ)EMDb(A, B).

4. Match protein i in A to protein j in B, if the flow between them in the PMD is
larger than μ.

4.2 Multiple PPI Networks

Our method in Sect. 4.1 can be easily extended to the case with multiple net-
works. Given N PPI networks Gi = (Vi, Ei), i = 1, . . . , N , we aim to find the
alignment among all of them jointly. First, we use Algorithm1 (step 1–3) to
compute the PMD between each pair of networks, and build a N -partite graph
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Fig. 3. Five PPI networks: we compute the PMD between each pair of networks, and
build a 5-partite graph where each network is denoted as a column of vertices and the
weight of each edge connecting two vertices from different columns is the corresponding
value of PMD flow.

(see Fig. 3 as an example); then we apply the recent proposed convex optimiza-
tion model by Hashemifar et al. [9] on the N -partite graph to find the joint
alignment.

Let Xij be the binary variable matrix indicating the alignment between Vi

and Vj , that is, Xi,j(u, v) = 1 if u ∈ Vi and v ∈ Vj are aligned with each
other; otherwise Xi,j(u, v) = 0. By using our obtained PMD between each pair
of networks, we modify the objective function from [9] to be

F =
∑

1≤i<j≤N

∑

u∈Vi,v∈Vj

fPMD(u, v)Xij(u, v) (7)

where fPMD(u, v) indicates the PMD flow from u to v. To make the opti-
mization convex, according to [9] each binary variable matrix Xij is relaxed
to satisfy the following constraints: (i) Xii is an identity matrix; (ii) Xij is posi-
tive semi-definite. Finally, we use the alternating direction of multiplier method
(ADMM) [9] to find the solution.

5 Experiments

For pairwise alignment, we compare our algorithm with IsoRank [32], MI-
GRAAL [17], GHOST [25], and NETAL [23]; for joint alignment of multi-
ple networks, we compare our algorithm with IsoRankN [20], NetCoffee [13],
SMETANA [28], and BEAMS [2]. In our algorithms, we try the three embed-
ding methods node2vec, MDS, and SPE, where the algorithms are denoted as
Geo-node2vec, Geo-mds, and Geo-spe respectively. All of the experimental
results are obtained on a Windows workstation with 2.4 GHz Intel Xeon E5-2630
v3 CPU and 32 GB DDR4 2133 MHz Memory.
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5.1 Datasets

First, We use the popular benchmark dataset NAPAbench [30] to test the algo-
rithms for pairwise alignment. NAPAbench has three children datasets which are
generated through crystal growth (CG), duplication-mutation-complementation
(DMC), and duplication-with-random-mutation (DMR); each dataset is com-
posed of 10 pairs of PPI networks, where each pair includes a 3000-node and a
4000-node PPI network. NAPAbench also provides the sequence similarity scores
among the proteins.

To further test the algorithms for joint alignment, we use another benchmark
dataset Isobase [24] which contains multiple PPI networks. Isobase is a database
of functionally related orthologs developed from five major eukaryotic PPI net-
works; it contains five species, including H.sapiens (human), S.cerevisiae (yeast),
Drosophila melanogaster (fly), Caenorhabditis elegans (worm), and Mus mus-
culus (mouse). We use BLAST bit scores [33] as the given sequence similarity
scores for Isobase. See Table 1.

Table 1. a1: number of the proteins having interaction with other proteins; a2: number
of the proteins having BLAST bit scores with other proteins; a3: number of interactions
in the network.

a1 a2 a3

Homo sapiens (human) 10403 20313 105232

Saccharomyces cerevisiae (yeast) 5524 3764 164718

Drosophila melanogaster (fly) 7396 10336 49467

Caenorhabditis elegans (worm) 2995 10945 8639

Mus musculus (mouse) 623 21856 776

To evaluate the alignment results, we compare the obtained matchings with
the annotations gene ontology (GO) terms [1]. GO terms describe the roles of
proteins in terms of their associated biological process, molecular function, and
cellular component (CC). We exclude CC because it only annotates a small
percentage of the proteins, and moreover, the proteins with matched CC are not
usually considered to be functionally similar.

5.2 Evaluation Metrics

We use the following evaluation metrics which are widely used in the previous
articles to measure the alignment qualities.

1. Induced Conserved Structure (ICS). Let the two PPI networks be G1 =
(V1, E1) and G2 = (V2, E2), and the resulting matching be M. We denote the
subgraph induced by M in G2 as G2(M(V1)) and the corresponding edge sets as
E2(M(V1)). Also, the set of the edges conserved in the alignment is denoted as
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M(E1, E2). Then the induced conserved structure score ICS = |M(E1,E2)|
|E2(M(V1))| [25].

ICS is a topological measurement, because it only takes into account the graph
topology.

2. Specificity. We call each connected component of the matching a cluster. A
cluster is annotated if at least two of the proteins are annotated, and we call a
cluster correct if all the annotated proteins share the same annotation. Speci-
ficity [7] measures the ratio of correct clusters to annotated clusters. Obviously,
the higher Specificity an alignment has, the more functional consistent it is.

3. Mean Normalized Entropy (MNE). The mean normalized entropy [20]
is also a measure of the consistency of the alignment. The smaller MNE an
alignment has, the more functionally coherent it is. For a cluster C induced
by the matching, the normalized entropy (NE) is defined as NE(C) = − 1

log t ·
∑t

i=1 pi · log pi, where t is the number of annotations in C and pi is the fraction
of proteins with annotation i. Then the mean normalized entropy (MNE) is
simply the average normalized entropy for all annotated clusters. We can see
that a cluster that consists of proteins with higher functional consistency will
have lower normalized entropy.

4. Conserved Orthologous Interactions (COI). COI is recently introduced
by Hashemifar et al. [9] which only considers the total number of interactions
between all pairwise correct clusters. Here we modify it to be the ratio of the
total number of interactions between all pairwise correct clusters to the total
number of aligned interactions. It measures the alignment algorithm’s ability of
detecting conserved interactions between orthologous proteins.

The latter three metrics, Specificity, MNE, and COI, are all biological mea-
surements, since they take into account the functional annotation of each protein.

5.3 Results

In our experiments, we determine the values of λ and μ (see Algorithm 1) through
optimizing Specificity score over a 10-fold cross-validation on the NAPAbench
CG dataset. For simplicity, we always set the dimensionality d = 3 in all the
embedding methods.

The average results (over 10 pairs of networks in each dataset) on pairwise
alignment are shown in Table 2, where the best results are labeled in black (for
ICS, Specificity, and COI, the higher the better; for MNE, the lower
the better). Because ICS and COI are only for pairwise alignment, we use
Specificity and MNE for joint alignment and the results are shown in Table 3.

We can see that Geo-spe always achieves the best for ICS, where we believe
that it is due to the advantage of SPE on preserving topological structure (note
that ICS is a topological measurement); for the other three evaluation metrics,
Geo-node2vec often achieves the best and significantly outperforms the second
best. For joint alignment, Geo-node2vec achieves the second best for Specificity
which is slightly lower than the best one by NetCoffee.
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Table 2. Pairwise alignment for three NAPAbench datasets CG, DMC, and DMR.

CG IsoRank GHOST MI-GRAAL NETAL Geo-spe Geo-node2vec Geo-mds

ICS 0.58 0.81 0.76 0.52 0.90 0.72 0.66

Specificity 0.78 0.83 0.80 0.21 0.82 0.85 0.80

MNE 0.21 0.17 0.20 0.79 0.17 0.15 0.19

COI 0.42 0.51 0.53 0.49 0.72 0.95 0.94

DMC IsoRank GHOST MI-GRAAL NETAL Geo-spe Geo-node2vec Geo-mds

ICS 0.47 0.69 0.55 0.51 0.87 0.56 0.50

Specificity 0.76 0.81 0.78 0.33 0.79 0.86 0.80

MNE 0.23 0.19 0.22 0.67 0.17 0.14 0.19

COI 0.45 0.58 0.60 0.48 0.68 0.92 0.90

DMR IsoRank GHOST MI-GRAAL NETAL Geo-spe Geo-node2vec Geo-mds

ICS 0.56 0.79 0.62 0.55 0.85 0.62 0.57

Specificity 0.79 0.82 0.81 0.38 0.81 0.86 0.81

MNE 0.20 0.18 0.19 0.62 0.16 0.14 0.19

COI 0.44 0.55 0.59 0.46 0.71 0.94 0.93

Table 3. Joint alignment of the five PPI networks from Isobase

IsoRankN SMETANA NetCoffee BEAMS Geo-
spe

Geo-
node2vec

Geo-
mds

Specificity 0.74 0.54 0.77 0.73 0.73 0.75 0.71

MNE 0.83 0.99 0.95 0.81 0.81 0.79 0.82

6 Conclusion

In this paper, we generalize our previous work [21] and propose a unified algorith-
mic framework for PPI networks alignment. Different from previous methods,
our framework is a geometric approach which consists of embedding and match-
ing steps. The embedding step transforms the input PPI networks from graph
domain to Euclidean space, and the matching step yields the final solution for the
alignment. To efficiently solve the matching step, we define the general objective
function “protein mover’s distance”. Moreover, our framework can be naturally
extended to joint alignment of multiple PPI networks. The experimental results
suggest that our method outperforms previous methods in terms of accuracy to
certain extent.

To enrich the experimental study of our framework, it is deserved to explore
more embedding methods instead of the three that are studied in this paper.
Also, we hope that our framework can be applied to a broader range of network
problems (e.g., social network) in future.
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