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Abstract: We show that, when considering the scaling factor as an affine variable,
the coefficients of the asymptotic expansion of the spectral action on a (Euclidean)
Robertson–Walker spacetime are periods of mixed Tate motives, involving relative mo-
tives of complements of unions of hyperplanes and quadric hypersurfaces and divisors
given by unions of coordinate hyperplanes.
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1. Introduction

Over the past decade, Grothendieck’s theory of motives has come to play an increasingly
important role in theoretical physics. While the existence of a relation between motives
and periods of algebraic varieties and computations in high-energy physics might have
seemed surprising and unexpected, the existence of underlying motivic structures in
quantum field theory has now been widely established, from early results like [6] and
especially through the explicit approach to motives and periods of parametric Feynman
integrals that was first developed in [1] and further investigated in subsequent results like
[2]. We refer the reader to [14] for a general survey. Typically, periods and motives occur
in quantum field theory in the perturbative approach, through the asymptotic expansion
in Feynman diagrams, where in the terms of the asymptotic expansion the renormalized
Feynman integrals are identified with periods of certain hypersurface complements.
The nature of the motive of the hypersurface constrains the class of numbers that can
occur as periods. In a different setting, more recent work on amplitudes in N = 4
Supersymmetric Yang–Mills has uncovered a connection to the mixed Tate motives for
multiple polylogarithms, see for instance [10,11].

In this paper, we present another surprising instance of the occurrences of periods and
motives in theoretical physics, this time in a model of (modified) gravity based on the
spectral action functional of [4]. The situation is somewhat similar to the one seen in the
quantumfield theory setting,with some important differences. As in theQFT framework,
we deal with an asymptotic expansion, which in our case is given by the large energy
expansion of the spectral action functional. We show in this paper that, in the case of
(Euclidean) Robertson–Walker spacetimes, the terms of the asymptotic expansion of the
spectral action functional can be expressed as periods of mixed Tate motives, given by
complements of quadric hypersurfaces. An important difference, with respect to the case
of a scalar massless quantum field theory of [1], is that here we need to consider only
one quadric hypersurface for each term of the expansion, whereas in the quantum field
theory case one has to deal with the muchmore complicatedmotive of a union of quadric
hypersurfaces, associated to the edges of the Feynman graph. On the other hand, the
algebraic differential form that is integrated on a semi-algebraic set in the hypersurface
complement is much more complicated in the spectral action case considered here than
in the quantum field theory case: the terms in the algebraic differential form arise from
the computation, via pseudo-differential calculus, of a parametrix for the square of the
Dirac operator on the Robertson–Walker spacetime, after a suitable change of variables
in the integral.While the explicit expression of the differential form, even for the simplest
cases of the coefficients a2 and a4 can take up several pages, the structure of the terms
can be understood, as we explain in the following sections, and the domain of definition
is, in the case of the a2n term, the complement of a union of two hyperplanes and a
quadric hypersurface defined by a family of quadrics Qα,2n in an affine space A

2n+3.
In Sect. 2 we compute, using the Hopf coordinates on the sphere S

3, the pseudodiffer-
ential symbol of the square D2 of the Dirac operator on a (Euclidean) Robertson–Walker
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metric. In Sect. 2.3, we describe briefly how the Seeley–DeWitt coefficients of the heat
kernel expansion can be computed in terms of Wodzicki residues, by taking products
with auxiliary tori with flat metrics. We present in Sect. 2.4 the recursive formula for
the terms σ−2−n(�−1

r+2) of the heat kernel expansion of D2. In Sect. 2.5 we introduce
the integrals γ2n(α, α1, . . . , α2n) and their densities ϒ2n(α, α1, . . . , α2n) associated to
the coefficients a2n of the heat kernel expansion, treating the scaling factor a(t) and
its derivatives a(k)(t) as affine coordinates α, αk . The integrals γ2n(α, α1, . . . , α2n) are
what we aim to express in terms of algebro-geometric period integrals. Section 3 con-
tains the main results. We introduce in Sect. 3.1 a set of algebraic coordinates, and
we show in Sect. 3.2 that the volume form is algebraic over Q in these coordinates.
In Sect. 3.3 we show that the density ϒ2(α, α1, α2) associated to the a2 term, in the
algebraic coordinates is a rational function on the complement in A

5 of the union of a
quadric hypersurface and two hyperplanes. In Sect. 3.4 we prove inductively a formula
for the densities ϒ2n(α, α1, . . . , α2n) in algebraic coordinates. The algebraic differen-
tial forms depend on 2n auxiliary affine parameters α1, . . . , α2n , which correspond to
the time derivatives of the scaling factor of the Robertson–Walker metric. In Sect. 3.5,
passing to a homologous domain of integration in the cosphere bundle and using the
symmetries of the Robertson–Walker metric, we prove that all terms in the expres-
sion of ϒ2n(α, α1, . . . , α2n) with half-integer exponent have to cancel out, leaving an
algebraic differential form, which is written more explicitly in Sect. 3.6. In Sect. 3.7
we show that, in the same choice of algebraic coordinates, the domain of integration
in the integrals computing the terms γ2n(α, α1, . . . , α2n) is a Q-semialgebraic set. To-
gether with the results of Sect. 3.6 about the algebraic differential form, this identifies
the γ2n(α, α1, . . . , α2n) with algebro-geometric period integrals. We identify explicitly
the associated motives. The Q-semialgebraic set in this hypersurface complement has
boundary contained in a divisor given by a union of coordinate hyperplanes. Although
the boundary divisor and the hypersurface intersect nontrivially, all the integrals are
convergent and we do not have a renormalization problem, unlike what happens in the
quantum field theory setting. In Sect. 4, we analyze more explicitly the motive, showing
that, over a quadratic field extension Q(

√−1)where the quadrics become isotropic, it is
a mixed Tate motive, while overQ it is a form of a Tate motive in the sense of [16,18,19].
We compute explicitly, by a simple inductive argument, the class in the Grothendieck
ring of the relevant hypersurface complement. In Sect. 4.1, 4.2, and 4.3 we recall some
general facts about pencils of quadrics, motives of quadrics, and Grothendieck classes
of affine and projective cones. In Sect. 4.4 we compute the Grothendieck class and
the motive for the case of the a2 coefficient. In Sect. 4.5 we compute inductively the
Grothendieck class of the complement A

2n+3
� (H0 ∪ H1 ∪ ̂C Zα,2n) and in Sect. 4.6

we prove that the motive m(A2n+3
� (H0 ∪ H1 ∪ ̂C Zα,2n),�) underlying the periods

γ2n(α, α1, . . . , α2n) is mixed Tate.

1.1. The spectral model of gravity. The spectral action functional, introduced in [4] is
a regularized trace of the Dirac operator D given by

S(�) = Tr( f (D/�)) =
∑

λ∈Spec(D)

Mult(λ) f (λ/�),

where the test function f is a smooth even rapidly decaying function, which should be
thought of as a smooth approximation to a cutoff function. The parameter � > 0 is
an energy scale. One of the main advantages of this action functional is that it is not
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only defined for smooth compact Riemannian spin manifolds, but also for a more gen-
eral class of geometric objects that include the noncommutative analogs of Riemannian
manifolds, finitely summable spectral triples, see [5]. In particular, the spectral action
functional applied to almost commutative geometries (products of manifolds and finite
noncommutative spaces) is used as a method to generate particle physics models with
varying possible matter sectors depending on the finite geometry and with matter cou-
pled to gravity, see [17] for a recent overview. It was shown in [4] that, in the case of
commutative and almost commutative geometries, the spectral action functional has an
asymptotic expansion for large energy �,

Tr( f (D/�)) ∼
∑

β∈�+
ST

fβ �β

∫

−|D|−β + f (0) ζD(0) + · · · ,

where the coefficients depend on momenta fβ = ∫ ∞
0 f (v) vβ−1 dv and Taylor coeffi-

cients of the test function f and on residues
∫

−|D|−β = 1

2
Ress=β ζD(s)

at poles of the zeta function ζD(s) of the Dirac operator. The leading terms of the
asymptotic expansion recover the usual local terms of an action functional for gravity,
the Einstein–Hilbert action with cosmological term, with additional modified gravity
terms given by Weyl conformal gravity and Gauss–Bonnet gravity. In the case of an
almost commutative geometry the leading terms of the asymptotic expansion also de-
termine the Lagrangian of the resulting particle physics model. The spectral action on
ordinary manifold, as an action functional of modified gravity, was applied to cosmo-
logical models, see [15] for an overview. In the manifold case, the Mellin transform
relation between zeta function and trace of the heat kernel expresses the coefficients of
the spectral action expansion in terms of the Seeley–DeWitt coefficients a2n of the heat
kernel expansion,

Tr(e−τ D2
) ∼τ→0+ τ−m/2

∞
∑

n=0

a2n(D2) τ n .

Pseudodifferential calculus techniques and the parametrix method can then be applied
to the computation of the symbol and the Seeley–DeWitt coefficients. The resulting
computations can easily become intractable, but a computationallymore efficientmethod
introduced in [7], based on Wodzicki residues and products by auxiliary flat tori can be
applied to make the problem more easily tractable.

In the case of the (Euclidean) Robertson–Walker spacetimes, it was conjectured in [3]
and proved in [9] that all the terms in the expansion of the spectral action are polynomials
with rational coefficients in the scaling factor and its derivatives. This rationality result
suggests the existence of an underlying arithmetic structure. In the case of the Bianchi
IX metrics, a similar rationality result was proved in [7] and the underlying arithmetic
structure was analyzed in [8] for the Bianchi IX gravitational instantons, in terms of
modular forms. Here we consider the case of the Robertson–Walker spacetimes and we
look for arithmetic structures in the expansion of the spectral action in terms of periods
and motives. A similar motivic analysis of the Bianchi IX case will be carried out in
forthcoming work.
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2. Robertson–Walker Metric, Dirac Operator, and Heat Kernel Expansion

In this section we discuss some basic properties of the Dirac operator on a Euclidean
Robertson–Walker spacetime, and of the coefficients of the corresponding heat kernel
expansion, which we need for our main result.

2.1. Robertson–Walker metric. We consider the Robertson–Walker metric with the ex-
pansion factor a(t),

ds2 = dt2 + a(t)2dσ 2,

where dσ 2 is the round metric on the 3-dimensional sphere S
3. Using the Hopf coordi-

nates for S
3, we consider the following local chart

x = (t, η, φ1, φ2) �→ (t, sin η cosφ1, sin η sin φ2, cos η cosφ1, cos η sin φ2),

0 < η <
π

2
, 0 < φ1 < 2π, 0 < φ2 < 2π.

In this coordinate system, the Robertson–Walker metric is written as

ds2 = dt2 + a(t)2
(

dη2 + sin2(η) dφ2
1 + cos2(η) dφ2

2

)

, (2.1)

or alternatively we write:

(gμν) =

⎛

⎜

⎜

⎝

1 0 0 0
0 a(t)2 0 0
0 0 a(t)2 sin2(η) 0
0 0 0 a(t)2 cos2(η)

⎞

⎟

⎟

⎠

,

with

(gμν) = (gμν)
−1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1

a(t)2
0 0

0 0 csc2(η)

a(t)2
0

0 0 0 sec2(η)

a(t)2

⎞

⎟

⎟

⎟

⎟

⎠

.

2.2. Pseudodifferential symbol. Onecanwrite the local expression for theDirac operator
D of the Robertson–Walker metric (2.1), as in Sect. 2 of [9], and one finds that the
pseudodifferential symbol σD of D is given by

σD(x, ξ) = q1(x, ξ) + q0(x, ξ),

where the matrices q1 and q0 are as follows. Using the notation ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R
4

for an element of the cotangent fibre T ∗
x M 
 R

4 at the point x = (t, η, φ1, φ2), we have



646 F. Fathizadeh, M. Marcolli

q1(x, ξ) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 i sec(η)ξ4
a(t) − ξ1

iξ2
a(t) +

csc(η)ξ3
a(t)

0 0 iξ2
a(t) − csc(η)ξ3

a(t) −ξ1 − i sec(η)ξ4
a(t)

−ξ1 − i sec(η)ξ4
a(t) − iξ2

a(t) − csc(η)ξ3
a(t) 0 0

csc(η)ξ3
a(t) − iξ2

a(t)
i sec(η)ξ4

a(t) − ξ1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

q0(x, ξ) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 3ia′(t)
2a(t)

cot(η)−tan(η)
2a(t)

0 0 cot(η)−tan(η)
2a(t)

3ia′(t)
2a(t)

3ia′(t)
2a(t)

tan(η)−cot(η)
2a(t) 0 0

tan(η)−cot(η)
2a(t)

3ia′(t)
2a(t) 0 0

⎞

⎟

⎟

⎟

⎟

⎠

. (2.2)

That is, the local formula of the action of the Dirac operator D on a spinor s is given by

Ds(x) = (2π)−2
∫

eix ·ξ σ (D)(x, ξ) ŝ(ξ) dξ

= (2π)−4
∫ ∫

ei(x−y)·ξ σ (D)(x, ξ) s(y) dy dξ,

where ŝ is the component-wise Fourier transform of s.
The above matrices can be used to find the pseudodifferential symbol of the square

of the Dirac operator:

σD2(x, ξ) = p2(x, ξ) + p1(x, ξ) + p0(x, ξ),

where, denoting the 4 × 4 identity matrix by I4×4, we have:

p2(x, ξ) = q1(x, ξ) q1(x, ξ) =
(
∑

gμνξμξν

)

I4×4

=
(

ξ21 +
ξ22

a(t)2
+
csc2(η)ξ23

a(t)2
+
sec2(η)ξ24

a(t)2

)

I4×4, (2.3)

p1(x, ξ) = q0(x, ξ) q1(x, ξ) + q1(x, ξ) q0(x, ξ) +
4

∑

j=1

−i
∂q1
∂ξ j

(x, ξ)
∂q1
∂x j

(x, ξ), (2.4)

p0(x, ξ) = q0(x, ξ) q0(x, ξ) +
4

∑

j=1

−i
∂q1
∂ξ j

(x, ξ)
∂q0
∂x j

(x, ξ). (2.5)

2.3. Heat expansion and the Wodzicki residue. It is in general computationally diffi-
cult to obtain explicit expressions for the Seeley–DeWitt coefficients of the heat kernel
expansions, even for nicely homogeneous and isotropic metrics like the Friedmann–
Robertson–Walker case. A computationally more efficient method was introduced in
[7], based on products with auxiliary flat tori and Wodzicki residues [21,22]. We apply
it here to calculate the coefficients a2n that appear in the small time heat kernel expansion

Tr(e−τ D2
) ∼τ→0+ τ−2

∞
∑

n=0

a2n τ n . (2.6)
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In fact, it is proved in [7] that, for any non-negative even integer r , we have

a2+r = 1

25 π4+r/2
Res(�−1), (2.7)

where

� = D2 ⊗ 1 + 1 ⊗ �Tr ,

in which �Tr is the flat Laplacian on the r -dimensional torus T
r = (R/Z)r . Here, the

linear functional Res defined on the algebra of classical pseudodifferential operators is
the Wodzicki residue, which is defined as follows. Assume that the dimension of the
manifold is m, and that the symbol of a classical pseudodifferential operator is given in
a local chart U by

σ(x, ξ) ∼
∞
∑

j=0

σd− j (x, ξ) (ξ → ∞),

where each σd− j : U × (Rm \ {0}) → Mn(C) is positively homogeneous of order d − j
in ξ . Then one needs to consider the 1-density defined by

wresx Pσ =
(∫

|ξ |=1
tr (σ−m(x, ξ)) |σξ, m−1|

)

|dx0 ∧ dx1 ∧ · · · ∧ dxm−1|, (2.8)

in which σξ, m−1 is the volume form of the unit sphere |ξ | = 1 in the cotangent fibre
R

m 
 T ∗
x M given by

σξ, m−1 =
m

∑

j=1

(−1) j−1ξ j dξ1 ∧ · · · ∧ ̂dξ j ∧ · · · ∧ dξm . (2.9)

The Wodzicki residue of the pseudodifferential operator Pσ associated with the symbol
σ is by definition the integral of the above 1-density associated to σ :

Res (Pσ ) =
∫

M
wresx Pσ . (2.10)

One can find a detailed discussion of the Wodzicki residue in [21,22] and in Chapter 7
of [12].

2.4. Recursive formula for densities. A recursive formula for the densities in (2.8) is
the crucial property underlying our main result. It is obtained by performing symbolic
calculations as explained in [7], to which we refer the reader for the details of the
argument.

Lemma 2.1. For a positive integer r , let �r+2 denote the operator

�r+2 = D2 ⊗ 1 + 1 ⊗ �Tr ,

where �Tr is the flat Laplacian on the r-dimensional torus T
r = (R/Z)r . Then one has

σ−2(�
−1
r+2) =

(

p2(x, ξ1, ξ2, ξ3, ξ4) + (ξ25 + · · · + ξ24+r )I4×4

)−1
, (2.11)
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and, for n > 0, the terms σ−2−n(�−1
r+2) are computed by the recursive formula

σ−2−n(�−1
r+2) = −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

0≤ j<n, 0≤k≤2
α∈Z4≥0−2− j−|α|+k=−n

(−i)|α|

α!
(

∂α
ξ σ−2− j (�

−1
r+2)

)

(

∂α
x pk

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

σ−2(�
−1
r+2).

(2.12)

In particular, when we express the term a2n as the noncommutative residue (2.7),

a2n = 1

25 π3+n
Res(�−1

2n ), (2.13)

one needs to compute the term σ−2n−2 which is homogeneous of order −2n − 2 in the
expansion of the pseudodifferential symbol of �−1

2n . This is obtained from the following
recursion, which is a specialization of the previous lemma.

Corollary 2.2. The densities tr(σ−2n−2(�
−1
2n )) can be computed through the recursion

σ−2n−2(�
−1
2n ) = −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

0≤ j<2n, 0≤k≤2
α=(�1,�2)∈Z2≥0−2− j−|α|+k=−2n

(−i)�1+�2

�1! �2!
(

∂
�1
ξ1

∂
�2
ξ2

σ−2− j (�
−1
2n )

) (

∂
�1
t ∂�2

η pk

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×σ−2(�
−1
2n ). (2.14)

Proof. The expression (2.14) follows immediately from Lemma 2.1, upon observing
that, by (2.2) and (2.3), (2.4), (2.5), the terms pk only depend on the coordinates (t, η)

and not on the angles (φ1, φ2) in the Hopf coordinates of S
3. ��

2.5. Integrated densities and differential forms. For the rest of this paper we focus on
the form of the coefficients a2n , written as residues as in (2.7), and we investigate the
nature of the residue integral as a period in the sense of algebraic geometry.

To this purpose, we treat the scaling factor a(t) and its derivatives a(k)(t) as indepen-
dent affine variables α, . . . , αk, . . ., so that the choice of a specific scaling factor a(t)
corresponds to restricting the variables (α, α1, . . . , α2n) to a real curve (a(t), a′(t), . . . ,
a(2n)(t)) inside the affine space A

2n+1.

Lemma 2.3. The coefficient a2n is computed as an integral

a2n =
∫

R

γ2n(a(t), a′(t), . . . , a(2n)(t)) dt,

with

γ2n(α, α1 . . . , α2n) = 1

8πn+1

∫

0<η< π
2

∫

|ξ |=1
ϒ2n(α, α1 . . . , α2n, η, ξ) σ̃2n+1(η, ξ),

(2.15)
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where the volume form is given by

σ̃2n+1(η, ξ) = dη ∧ σξ, 2n+1 (2.16)

with σξ, 2n+1 as in (2.9), and

ϒ2n(α, α1 . . . , α2n, η, ξ)|α=a(t),αk=a(k)(t) = b−2n−2(t, η, ξ), (2.17)

where the density b−2n−2(t, η, ξ) satisfies

∫

0<η< π
2

∫

|ξ |=1
b−2n−2(t, η, ξ) σ̃2n+1(η, ξ)

=
∫

0<η< π
2

∫

|ξ |=1
tr(σ−2n−2)(t, η, ξ) σ̃2n+1(η, ξ) (2.18)

and is obtained from tr(σ−2n−2)(t, η, ξ) by dropping all terms that have odd powers of
some of the coordinates ξ j in the numerator.

Proof. As observed in Corollary 2.2, by (2.2) and (2.3), (2.4), (2.5), the homogeneous
components p0, p1, and p2 of the pseudodifferential symbol of D2 depend only on the
variable η and are independent of the angles φ1, φ2 of the Hopf coordinates (η, φ1, φ2)

on S
3. Thus, when writing the coefficient a2n as a residue, using (2.7), (2.8), and (2.10),

one finds

a2n = 1

8πn+1

∫

R

∫

0<η< π
2

∫

|ξ |=1
tr(σ−2n−2)(t, η, ξ) σ̃2n+1(η, ξ) dt, (2.19)

with σ̃2n+1(η, ξ) as in (3.4). Using the recursions of Lemma 2.1 and Corollary 2.2, to-
gether with (2.11) and the explicit formula for the term tr(σ−4((D2)−1)) given in the
Appendix, it follows that the terms tr(σ−2n−2(�

−1
2n )(t, η, ξ)) are a sum of fractions with

monomials in the ξ j coordinates, the scaling factor a(t) and its derivatives, and trigono-
metric functions of η in the numerator and a power of a quadratic form in the ξ j coor-
dinates and trigonometric functions of η in the denominator. The more precise form of
these termswill be discussed below. It suffices here to notice that all the terms that contain
odd powers of coordinates ξ j in the numerator necessarily vanish when the integration
in (2.19) is performed. Thus, we can replace the expression tr(σ−2n−2(�

−1
2n )(t, η, ξ)) by

another density b−2n−2(t, η, ξ) obtained from tr(σ−2n−2(�
−1
2n )(t, η, ξ)) by removing all

summands with odd powers of ξ j in the numerator. It is then clear that (2.18) is satisfied
and that it is possible to define a density ϒ2n(α, α1 . . . , α2n, η, ξ) satisfying (2.17) so
that (2.15) holds. ��

3. Algebraic Differential Forms, Semi-algebraic Sets, and Periods

In this section we study the functions γ2n(α, α1, . . . , α2n) as periods of a family of
algebraic differential forms�α

(α1,...,α2n) defined overQ, integrated on aQ-semi-algebraic
set A2n in an algebraic variety given by a family Xα of hypersurfaces in the affine space
A
2n+3.
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3.1. Algebraic coordinates. In order to interpret the terms γ2n(α, α1, . . . , α2n) as peri-
ods, we introduce a simple change of coordinates that makes it possible to rewrite the
integrand ϒ2n(α, α1 . . . , α2n, η, ξ) σ̃2n+1(η, ξ) as an algebraic differential form.

Definition 3.1. The algebraic coordinates (u0, . . . , u2n+2) are defined by the change of
variables

u0 = sin2(η), u3 = csc(η) ξ3, u4 = sec(η) ξ4,

u j = ξ j , j = 1, 2, 5, 6, . . . , 2n + 2.
(3.1)

Lemma 3.2. In the algebraic coordinates (3.1) the pseudodifferential symbol

σ(D2) = p2 + p1 + p0

is given by

p2 = q2
1 =

(

u2
1 +

1

a(t)2
(u2

2 + u2
3 + u2

4)

)

I4×4,

p1 = q0 q1 + q1 q0 +

(

−i
∂q1
∂ξ1

∂q1
∂t

− i
∂q1
∂ξ2

∂q1
∂η

)

,

p0 = q2
0 +

(

−i
∂q1
∂ξ1

∂q0
∂t

− i
∂q1
∂ξ2

∂q0
∂η

)

,

where q0 and q1 are given by

q1 =

⎛

⎜

⎜

⎜

⎝

0 0 iu4
a(t) − u1

iu2
a(t) +

u3
a(t)

0 0 iu2
a(t) − u3

a(t) −u1 − iu4
a(t)

−u1 − iu4
a(t) − iu2

a(t) − u3
a(t) 0 0

u3
a(t) − iu2

a(t)
iu4
a(t) − u1 0 0

⎞

⎟

⎟

⎟

⎠

, (3.2)

q0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 3ia′(t)
2a(t)

1−2u0
2a(t)

√
(1−u0)u0

0 0 1−2u0
2a(t)

√
(1−u0)u0

3ia′(t)
2a(t)

3ia′(t)
2a(t) − 1−2u0

2a(t)
√

(1−u0)u0
0 0

− 1−2u0
2a(t)

√
(1−u0)u0

3ia′(t)
2a(t) 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.3)

Proof. In the coordinates (3.1) the pseudodifferential symbol of the Dirac operator D
of the Robertson–Walker metric is given by

σ(D) = q1 + q0,

where q1 and q0 are now expressed as in (3.2) and (3.3). Since q1 and q0 depend
only on t and u0, or equivalently only on t and η, for the symbol of D2, we have
σ(D2) = p2 + p1 + p0, where p2, p1 and p0 are as in the statement. ��
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3.2. Algebraic volume form. The volume form σ̃2n+1, when written in the algebraic
coordinates (3.1), is an algebraic differential form on A

5, defined over Q.

Lemma 3.3. The volume form σ̃2n+1(η, ξ) in the algebraic coordinates is given by

σ̃2n+1(u0, . . . , u2n+2) = 1

2

2n+2
∑

j=1

(−1) j−1u j du0 du1 ∧ · · · ∧ d̂u j ∧ · · · ∧ du2n+2.

(3.4)

Proof. Under the change of variables (3.1) we have

dη = 1

2 sin(η) cos(η)
du0 = 1

2
csc(η) sec(η) du0,

dξ3 = cos(η)u3 dη + sin(η) du3,

dξ4 = − sin(η)u4 dη + cos(η) du4,

dξ j = du j for j = 1, 2, 5, 6, . . . , 2n + 2.

Thus we obtain

σ̃3 := dη ∧ σξ, 3

=
4

∑

j=1

(−1) j−1ξ j dη ∧ dξ1 ∧ · · · ∧ ̂dξ j ∧ · · · ∧ dξ4

= sin(η) cos(η)
(

u1 dη du2 du3 du4 − u2 dη du1 du3 du4

+u3 dη du1 du2 du4 − u4 dη du1 du2 du3

)

= 1

2

(

u1 du0 du2 du3 du4 − u2 du0 du1 du3 du4 + u3 du0 du1 du2 du4

−u4 du0 du1 du2 du3

)

,

and similarly, for all n > 0

σ̃2n+1 := dη ∧ σξ, 2n+1

=
2n+2
∑

j=1

(−1) j−1ξ j dη ∧ dξ1 ∧ · · · ∧ ̂dξ j ∧ · · · ∧ dξ2n+2

= 1

2

2n+2
∑

j=1

(−1) j−1u j du0 du1 ∧ · · · ∧ d̂u j ∧ · · · ∧ du2n+2.

��
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3.3. The a2 term and quadric surfaces in P
3. Weconsider here thefirst termγ2(α, α1, α2),

defined as in (2.15) in Lemma 2.3. We show that the differential form ϒ2(α, α1, α2)̃σ3,
written in the algebraic coordinates of (3.1), is an algebraic differential form over Q,
defined on the complement of a quadric surface. We first introduce some preliminary
notation.

Let Z be a projective hypersurface in P
N−1. In the following we denote by Ẑ the

affine cone over Z in A
N , and by C Z the projective cone over Z in P

N . We also denote
by ̂C Z the affine cone in A

N+1 of C Z .
Consider the set of rational functions of the form

P(u0, u1, u2, u3, u4, α, α1, α2)

α2r uk
0(1 − u0)m(u2

1 + α−2(u2
2 + u2

3 + u2
4))

�
, (3.5)

where

P(u0, u1, u2, u3, u4, α, α1, α2) = P(α1,α2)(u0, u1, u2, u3, u4, α)

are polynomials in Q[u0, u1, u2, u3, u4, α, α1, α2] and where r , k, m and � are non-
negative integers.

We thenobtain the following characterizationof thedifferential formϒ2(α, α1, α2)̃σ3.

Theorem 3.4. Consider affine coordinates (u0, u1, u2, u3, u4) ∈ A
5, α ∈ Gm, and

(α1, α2) ∈ A
2. Consider the complement

A
5

� (H0 ∪ H1 ∪ Ĉ Zα). (3.6)

in the affine space A
5 of the union of two affine hyperplanes

H0 = {u0 = 0} and H1 = {u0 = 1} (3.7)

and the hypersurface Ĉ Zα defined by the vanishing of the quadratic form

Qα,2 = u2
1 + α−2(u2

2 + u2
3 + u2

4). (3.8)

There is a 2-parameter (α1, α2) family of algebraic differential forms

�α
(α1,α2)

(u0, u1, u2, u3, u4) = f(α1,α2)(u0, u1, u2, u3, u4, α) σ̃3(u0, u1, u2, u3, u4),

(3.9)
defined on the complement (3.6), with f(α1,α2) Q-linear combinations of rational func-
tions of the form (3.5), such that the differential form ϒ2(α, α1, α2)̃σ3, written in the
coordinates (3.1) satisfies

ϒ2(α, α1, α2, u0, u1, u2, u3, u4) σ̃3(u0, u1, u2, u3, u4) = �α
(α1,α2)

(u0, u1, u2, u3, u4).

Proof. We have seen in Lemma 3.3 that the form σ̃3(u0, u1, u2, u3, u4) is an algebraic
differential form on A

5, defined over Q. The explicit form of the density tr(σ−4(t, η, ξ))

is reported in (5.1) in the Appendix. The corresponding density b−4(t, η, ξ) is obtained
from tr(σ−4(t, η, ξ)) of (5.1) by eliminating all the terms with odd exponents of ξ j in the
numerator. In particular, we see by direct inspection of (5.1) and of the associated density
b−4(t, η, ξ), using elementary trigonometric identities for cot(2η), csc2(η), tan2(η) and
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cot2(2η), that the densityϒ2(a(t), a′(t), a′′(t), η, ξ) is a sum of fractions involving even
powers of the ξ j variables, and integer powers of the expressions

ξ21 +
ξ22

a(t)2
+

ξ23 csc
2(η)

a(t)2
+

ξ24 sec
2(η)

a(t)2
= u2

1 +
1

a(t)2
(u2

2 + u2
3 + u2

4),

cot2(η) = 1 − u0

u0
, csc2(η) = 1

u0
, sec2(η) = 1

1 − u0
,

with the quadratic polynomial in the denominator. Thus, when expressed in the algebraic
coordinates, each summand in

ϒ2(α, α1, α2, u0, u1, u2, u3, u4)

is a rational function of the form (3.5), hence the result follows. ��
The quadratic form (3.8) determines a quadric surface Zα in P

3, in fact a pencil of
quadric surfaces depending on the parameter α ∈ Gm . The affine hypersurface ̂C Zα in
A
5 is the affine cone over the projective cone C Zα in P

4.

3.4. Density ϒ2n in algebraic coordinates. We now consider the following terms γ2n(α,

α1, . . . , α2n) for all n > 1, and we obtain inductively a general expression for the
densities

ϒ2n(α, α1, . . . , α2n, u0, . . . , u2n+2).

Theorem 3.5. The term ϒ2n(α, α1, . . . , α2n), written in the algebraic coordinates of
(3.1), satisfies

ϒ2n(α, α1, . . . , α2n, u0, . . . , u2n+2)

=
Mn
∑

j=1

c j,2n u
β0,1, j /2
0 (1 − u0)

β0,2, j /2
u

β1, j
1 u

β2, j
2 · · · u

β2n+2, j
2n+2

Q
ρ j,2n
α,2n

×αk0, j α
k1, j
1 · · · α

k2n, j
2n , (3.10)

where

Qα,2n = u2
1 +

1

α2 (u2
2 + u2

3 + u2
4) + u2

5 + · · · + u2
2n+2,

and with coefficients and exponents

c j,2n ∈ Q, β0,1, j , β0,2, j , k0, j ∈ Z,

β1, j , . . . , β2n+2, j , ρ j,2n, k1, j , . . . , k2n, j ∈ Z≥0.

Proof. We need to compute the homogeneous term σ−2n−2(�
−1
2n ). Using (2.14) and

considering the independence of the symbols from the variables φ1 and φ2, we obtain
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σ−2(�
−1
2n ) =

(

p2 + (u2
5 + · · · + u2

2n+2)I4×4

)−1 = 1

Qα,2n
I4×4, (3.11)

with the quadratic form

Qα,2n = u2
1 +

1

α2 (u2
2 + u2

3 + u2
4) + u2

5 + · · · + u2
2n+2. (3.12)

Then the desired σ−2n−2(�
−1
2n ) can be calculated recursively using Corollary 2.2. In

expressing the result of (2.14) in the algebraic coordinates (3.1), note that in general,
for a smooth function f of the variables (t, η, ξ), using the notation

f (t, η, ξ1, ξ2, . . . , ξ2n+2) = f̃ (t, u0, u1, u2, . . . , u2n+2),

we have the identities

∂t f = ∂t f̃ , ∂ξ j f = ∂u j f̃ , j = 1, 2,

∂η f = 2
√

u0(1 − u0) ∂u0 f̃ − u3

√

1 − u0

u0
∂u3 f̃ + u4

√

u0

1 − u0
∂u4 f̃ . (3.13)

Combining (2.14), the result for the term σ−4 discussed in Theorem 3.4 and in the
Appendix, and the change of variables of (3.13), one can see by induction that (3.10)
holds as stated. ��

Theorem 3.5 above shows that ϒ2n(α, α1, . . . , α2n), in the form (3.10) is a ratio-
nal expression in

√
u0,

√
1 − u0, u1, . . . , u2n+2, α, α1, . . . , α2n . In order to prove that

γ2n(α, α1, . . . , α2n) is an integral of a rational differential form, we need to show that
in fact only terms with even powers of

√
u0 and

√
1 − u0 contribute nontrivially in

the calculation of γ2n(α, α1, . . . , α2n). This will then be used to show that the integral
expression (2.15) for γ2n(α, α1, . . . , α2n) is equal to the integral of a rational differen-
tial form in u0, u1, . . . , u2n+2, α, α1, . . . , α2n over a Q-semialgebraic set. We need a
preliminary observation, which we state in the next subsection.

3.5. Integration on the unit cosphere bundle. Theclaim that only termswithβ0,1, j , β0,2, j
∈ 2Z in the summation of (3.10) contribute nontrivially to the computation of the term
ϒ2n(α, α1, . . . , α2n) can be proved as follows.

Consider the unit cosphere of the metric in the cotangent fibre. This is given by the
locus {ξ : |ξ |2g = 1}, with

|ξ |2g = ξ21 +
ξ22

a(t)2
+
csc2(η)ξ23

a(t)2
+
sec2(η)ξ24

a(t)2
+ ξ25 + · · · + ξ22n+2

= u2
1 +

1

α2 (u2
2 + u2

3 + u2
4) + u2

5 + · · · + u2
2n+2. (3.14)

Proposition 3.6. The integral of the density tr(σ−2n−2) · σξ, 2n+1 on the unit sphere is
equal to the integral on the unit cosphere of the metric in the cotangent fibre,

∫

∑2n+2
j=1 ξ2j =1

tr(σ−2n−2) · σξ, 2n+1 =
∫

|ξ |2g=1
tr(σ−2n−2) · σξ, 2n+1.
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Proof. Fixing a point (x, x ′) = (t, η, φ1, φ2, x ′) ∈ M × T
2n−2, the differential form

tr(σ−2n−2) σξ, 2n+1 on the Euclidean space R
2n+2 
 T ∗

(x,x ′)(M × T
2n−2) is a closed

differential form of degree 2n +1, since tr(σ−2n−2) is homogeneous of order −2n −2 in
ξ ∈ R

2n+2, see Proposition 7.3, page 265 of [12]. Therefore, using the Stokes theorem,
the integral of this differential form over the unit sphere |ξ | = 1 is the same as its integral
over the cosphere of the metric in the cotangent fibre given by |ξ |2g = 1, since as closed
cycles these two loci are homologous. ��

This proposition in particular shows that the formula (2.7), which was devised in [7]
to prove a rationality result elegantly, provides a significantly straightforwardmethod for
calculating the functions γ2n and consequently the heat coefficients a2n . This is mainly
due to the fact that over the unit cosphere of the metric we have Qα,2n = 1, and the
expression (3.10) restricts to a polynomial in the variables of the cotangent fibre, whose
coefficients depend on the affine variables α, α1, . . . , α2n and trigonometric functions
in the coordinate η of the manifold. The following parametrization of the unit cosphere
of the metric and the expression (3.17) written in the proof of Proposition 3.8 illuminate
the simplicity of this method as well as its potential for finding a general formula for
the full heat expansion. It should be noted that the heat coefficients a0, a2, . . . , a12 were
previously calculated by different methods: the terms up to a10 were calculated in [3]
by using the Feynman–Kac formula and the Euler–Maclaurin formula, and the terms
up to a12 were calculated in [9] using the parametric pseudodifferential calculus which
involves highly complicated expressions and integrations.

We parametrize the cosphere |ξ |g = 1 by writing

ξ1 = sin(ψ2n+1) sin(ψ2n) · · · sin(ψ2) cos(ψ1),

ξ2 = α sin(ψ2n+1) sin(ψ2n) · · · sin(ψ2) sin(ψ1),

ξ3 = α

csc(η)
sin(ψ2n+1) sin(ψ2n) · · · sin(ψ3) cos(ψ2),

ξ4 = α

sec(η)
sin(ψ2n+1) sin(ψ2n) · · · sin(ψ4) cos(ψ3), (3.15)

ξ5 = sin(ψ2n+1) sin(ψ2n) · · · sin(ψ5) cos(ψ4),

ξ6 = sin(ψ2n+1) sin(ψ2n) · · · sin(ψ6) cos(ψ5),

· · ·
ξ2n+1 = sin(ψ2n+1) cos(ψ2n),

ξ2n+2 = cos(ψ2n+1),

with the variables ψ1, . . . , ψ2n+1 having the following ranges:

0 < ψ1 < 2π, 0 < ψ2 < π, 0 < ψ3 < π, . . . , 0 < ψ2n+1 < π.

Lemma 3.7. In the parameterization (3.15) of the unit cosphere |ξ |g = 1, the density
tr(σ−2n−2) σξ, 2n+1 is given by the expression

sin(η) cos(η)

Mn
∑

j=1

{

c j,2n αβ2, j+β3, j+β4, j+k0, j α
k1, j
1 · · · α

k2n, j
2n sinβ0,1, j (η) cosβ0,2, j (η)

cosβ1, j (ψ1) sin
β2, j (ψ1)

2n+1
∏

�=2

(sinψ�)
�−1+

∑�
i=1 βi, j (cosψ�)

β�+1, j
}

dψ1 dψ2 · · · dψ2n+1.

(3.16)
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Proof. Using the parameterization (3.15), over the cosphere |ξ |g = 1 we have

σξ, 2n+1 =
2n+2
∑

j=1

(−1) j−1ξ j dξ1 ∧ · · · ∧ ̂dξ j ∧ · · · ∧ dξ2n+2

= α3 sin(η) cos(η) sin(ψ2) sin
2(ψ3) · · · sin2n(ψ2n+1) dψ1 dψ2 · · · dψ2n+1.

Combining this form with the expression given by (3.10), we obtain (3.16). ��
Proposition 3.8. Only terms with even powers of

√
u0 and

√
1 − u0 contribute nontriv-

ially in the expression of ϒ2n(α, α1, . . . , α2n) in (3.10).

Proof. By exploiting symmetries of the Robertson–Walker metric and its consequent
isometry group, it is shown in Lemma 1 of [9] that the local density that integrates to the
term a2n has a spatial independence. This fact, together with Lemma 3.7, implies that
the following expression is independent of the variable η:

1

sin(η) cos(η)

∫

|ξ |g=1
tr(σ−2n−2) σξ, 2n+1

=
Mn
∑

j=1

c j,2n d j,2n αβ2, j+β3, j+β4, j+k0, j α
k1, j
1 · · · α

k2n, j
2n sinβ0,1, j (η) cosβ0,2, j (η), (3.17)

where

d j,2n =
∫ 2π

0
cosβ1, j (ψ1) sin

β2, j (ψ1) dψ1 ×

×
∫ π

0
dψ2 · · ·

∫ π

0
dψ2n+1

2n+1
∏

�=2

(sinψ�)
�−1+

∑�
i=1 βi, j (cosψ�)

β�+1, j .

We now exploit the independence from η of the sum in (3.17) to show that only the
terms in (3.10) for which β0,1, j and β0,2, j are both even integers contribute in the compu-
tation of γ2n(α, α1, . . . , α2n). We prove this by showing that, if for some coefficients c j
and some integers γ j and ν j , a finite summation of the form

∑

j c j sinγ j (η) cosν j (η) is
identically equal to a non-zero constant, or without loss in generality equal to 1, then all
the exponents γ j and ν j are even integers, and possible terms with odd exponents have
to inevitably cancel each other out. Since η varies between 0 and π/2, this is equivalent
to saying that if

∑

j

c j sγ j (1 − s2)ν j /2 = 1, s ∈ (0, 1),

then all γ j and ν j are even integers and all other terms cancel.
First observe that replacing s in the above equation by s1 = (1 − s2)1/2 shows that

our claim is symmetric with respect to exchanging the γ j and ν j , hence it suffices to
show that all γ j are even integers. We decompose the summation on the left-hand-side
of the above identity and write

∑

jo

c jo sγ jo (1 − s2)ν jo /2 +
∑

je

c je sγ je (1 − s2)ν je /2 = 1, s ∈ (0, 1),
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where for each term in the first summation either γ jo or ν jo is odd, and in the second
summation the γ je and ν je are even integers. Therefore we have

∑

jo

c jo sγ jo (1 − s2)ν jo /2 = 1 −
∑

je

c je sγ je (1 − s2)ν je /2, s ∈ (0, 1),

and we proceed by considering the binomial series of the two sides of this equation.
Since the series of the right-hand-side has only even powers of the variable s ∈ (0, 1),
it follows that the terms on left-hand-side whose γ jo are odd cancel each other out,
therefore with no loss in generality we can assume all the γ jo are even, which implies
that all the ν jo have to be odd integers. Now by making the replacement s1 = (1− s2)1/2

we are led to
∑

jo

c jo (1 − s21 )
γ jo /2 s

ν jo
1 = 1 −

∑

je

c je (1 − s21 )
γ je /2 s

ν je
1 , s1 ∈ (0, 1).

Finally we compare the binomial series in s1 of the two sides of this equation: since the
series of the right-hand-side has only even exponents and all the ν jo on the left side are
odd integers, we conclude that

∑

jo

c jo (1 − s21 )
γ jo /2 s

ν jo
1 = 0, s1 ∈ (0, 1).

��
Remark 3.9. By a simple argument based on integration by parts, one can find a recursive
formula for the trigonometric integrals that describe the coefficients d j,2n appearing in
the expression (3.17). Thus, these coefficients can be computed easily by algebraic
calculations. Moreover, the fact that the expression (3.17) is independent of the variable
η is a strong indication that there is a relation between the exponents and the coefficients
appearing in this expression, further studies of which can potentially reveal important
information.

3.6. Algebraic differential forms. Weobtain the followinggeneralizationofTheorem3.4
for the densities ϒ2n(α, α1, . . . , α2n, u0, . . . , u2n+2).

Definition 3.10. LetR2n be the set of rational functions given byQ linear combinations
of terms of the form

u
β0,1, j
0 (1 − u0)

β0,2, j
u

β1, j
1 u

β2, j
2 · · · u

β2n+2, j
2n+2

Q
ρ j,2n
α,2n

αk0, j α
k1, j
1 · · · α

k2n, j
2n ,

where

Qα,2n = u2
1 +

1

α2 (u2
2 + u2

3 + u2
4) + u2

5 + · · · + u2
2n+2,

with β0,1, j , β0,2, j , k0, j ∈ Z and β1, j , . . . , β2n+2, j , ρ j,2n, k1, j , . . . , k2n, j ∈ Z≥0.



658 F. Fathizadeh, M. Marcolli

Theorem 3.11. Consider affine coordinates (u0, . . . , u2n+2) ∈ A
2n+3, α ∈ Gm, and

(α1, . . . , α2n) ∈ A
2n. Consider the algebraic variety, defined over Q, given by the

complement
A
2n+3

� (H0 ∪ H1 ∪ Ĉ Zα,2n), (3.18)

where H0 and H1 are hyperplanes defined as in (3.7) and Ĉ Zα,2n is the hypersurface in
A
2n+3 defined by the vanishing of the quadratic form Qα,2n, with α ∈ Gm(Q) regarded

as a fixed parameter. There is a 2n-parameter family of algebraic differential forms
�α

(α1,...,α2n), defined over Q, with parameters (α1, . . . , α2n) ∈ A
2n(Q), such that

�α
(α1,...,α2n)(u0, . . . , u2n+2) = f(α1,...,α2n)(u0, . . . , u2n+2, α) σ̃2n+1(u0, . . . , u2n+2),

(3.19)
where the rational functions f(α1,...,α2n) belong to the set R2n of Definition 3.10, and
with the property that

ϒ2n(α, α1, . . . , α2n, u0, . . . , u2n+2) = f(α1,...,α2n)(u0, . . . , u2n+2, α). (3.20)

Proof. The statement follows directly from Theorem 3.5 and Proposition 3.8. ��

3.7. Semi-algebraic sets and periods. Let K be a number field. A K-semialgebraic set
is a subset S of some R

n that is of the form

S = {(x1, . . . , xn) ∈ R
n : P(x1, . . . , xn) ≥ 0}, (3.21)

for some polynomial P ∈ K[x1, . . . , xn], or obtained from such sets by taking a finite
number of complements, intersections, and unions. A semialgebraic set S in an algebraic
variety X is a finite number of complements, intersections, and unions of subsets that,
in a set of algebraic local coordinates have the form (3.21).

Aperiod is an integral
∫

S �of aK-algebraic differential form�over aK-semialgebraic
set S in an algebraic variety X defined over the number field K, see [13].

The theoryof periods andmotives of algebraic varieties constrains the typeof numbers
that can occur as periods on an algebraic variety X in terms of the motive m(X), see
[13]. In the rest of the paper we identify explicitly the periods and motives associated to
the terms a2n of the heat kernel expansion.

We first show that the density γ2(α, α1, α2) associated to the coefficient a2 of the
heat kernel expansion is a period and we identify the corresponding motive.

Theorem 3.12. The term γ2(α, α1, α2) is a period integral given by

γ2(α, α1, α2) = C ·
∫

A4

�α
(α1,α2)

, (3.22)

with the algebraic differential form of Theorem 3.4, with domain of integration the
Q-semialgebraic set

A4 =
{

(u0, u1, u2, u3, u4) ∈ A
5(R) : u2

1 + u2
2 + u0u2

3 + (1 − u0)u2
4 = 1,

0 < ui < 1, for i = 0, 1, 2

}

, (3.23)

and with a coefficient C in Q[(2π i)−1]. This integral is a period of the mixed motive

m(A5
� (̂C Zα ∪ H0 ∪ H1),�), (3.24)

where Ĉ Zα is the hypersurface in A
5 defined by the vanishing of the quadric Qα,2 of

(3.8), H0, H1 are the hyperplanes (3.7), and � = ∪i,a Hi,a is the divisor given by the
union of the hyperplanes Hi,a = {ui = a}, with i ∈ {0, 1, 2} and a ∈ {0, 1}.
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Proof. We have

γ2(a(t), a′(t), a′′(t)) = 1

23π2

∫ π/2

0
dη

∫

ξ21 +ξ22 +ξ23 +ξ24=1
d3ξ · b−4(t, η, ξ) · σξ, 3

= 1

23π2

∫

(0, π
2 )×S3

ϒ2(a(t), a′(t), a′′(t), η, ξ) σ̃3(η, ξ). (3.25)

By Lemma 3.3 and Theorem 3.4, after changing coordinates as in (3.1), for the case
n = 1, we rewrite the form ϒ2(α, α1, α2)̃σ3 as the algebraic differential form �α

(α1,α2)
.

Correspondingly, the domain of integration (η, ξ) ∈ (0, π
2 ) × S

3 is transformed in
the algebraic coordinates into the Q-semialgebraic set (3.23). Thus, with a coefficient
C = (8π2)−1 in Q[(2π i)−1], we rewrite (3.25) as (3.22).

To identify the associated motive, notice that the forms �α
(α1,α2)

are defined on the

complement in A
5 of the union of the hyperplanes H0 and H1 and the hypersurface

̂C Zα given by the vanishing of the quadric Qα of (3.8). Thus, the �α
(α1,α2)

are a two-
parameter family (depending on the parameters (α1, α2) of algebraic differential forms
on the algebraic variety A

5
� (̂C Zα ∪ H0 ∪ H1). The domain of integration A4 is not a

closed cycle: it has a boundary ∂ A4 which is contained in the union of the hyperplanes
Hi,a = {ui = a}, with i ∈ {0, 1, 2} and a ∈ {0, 1}. Thus, the period corresponds to the
relative motivem(A5

� (̂C Zα ∪ H0 ∪ H1),�), where the divisor � is the union of these
hyperplanes, � = ∪i,a Hi,a . ��
Remark 3.13. The singular locus ̂C Zα ∪ H0 ∪ H1 of the algebraic differential form and
the divisor � containing the boundary of the domain of integration A4 have nonempty
intersection along H0 ∪ H1. However, unlike the case of quantum field theory where the
intersection of the boundary of the domain of integration with the graph hypersurface
is the source of infrared divergences, here we know a priori that the integral (3.22) is
convergent, and so are all the other analogous integrals for the higher order a2n terms,
as one can see by computing them in the original spherical coordinates. Thus, we do not
have a renormalization problem for these integrals.

We have a similar result for the terms γ2n(α, α1, . . . , α2n).

Theorem 3.14. The term γ2n(α, α1, . . . , α2n) is a period integral given by

γ2n(α, α1, . . . , α2n) = C ·
∫

A2n

�α
α1,...,α2n

of the algebraic differential form �α
α1,...,α2n

(u0, u1, . . . , u2n+2) of Theorem 3.11, defined

on the algebraic variety A
2n+3

� (̂C Zα,2n ∪ H0 ∪ H1), with domain of integration the
Q-semialgebraic set

A2n+2 =
{

(u0, . . . , u2n+2) ∈ A
2n+3(R) : u2

1 + u2
2 + u0u2

3 + (1 − u0)u2
4 +

∑2n+2
i=5 u2

i = 1
0 < ui < 1, i = 0, 1, 2, 5, 6, . . . , 2n + 2

}

,

(3.26)

and with a coefficient C ∈ Q[(2π i)−1]. The associated motive is the relative mixed
motive

m(A2n+3
� (H0 ∪ H1 ∪ Ĉ Zα,2n),�)
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where � is a divisor in A
2n+3 consisting of a union of hyperplanes � = ∪i,a Hi,a with

i = 0, 1, 2, 5, 6, . . . , 2n+2 and a = 0, 1, with Hi,a = {ui = a}. This divisor � contains
the boundary ∂ A2n of the domain of integration.

Proof. We have

γ2n(a(t), a′(t), . . . , a(2n)(t)) = 1

8π1+n

∫

(η, ξ)∈(0, π
2 )×S2n+1

tr(σ−2n−2) σ̃2n+1

= 1

8π1+n

∫

(η, ξ)∈(0, π
2 )×S2n+1

ϒ2n(a(t), a′(t), . . . , a(2n)(t), η, ξ) σ̃2n+1(η, ξ).

Passing to the algebraic coordinates of (3.1), the domain of integration

{(η, ξ) ∈ (0,
π

2
) × S

2n+1}

is transformed into the Q-semialgebraic set (3.26), while by Theorem 3.5 the density
ϒ2n(α, α1, . . . , α2n, η, ξ) σ̃2n+1(η, ξ) is transformed into the algebraic differential form
�α

(α1,...,α2n)(u0, . . . , u2n+2). ��
Again, as mentioned in Remark 3.13, the integrals are all convergent, hence there is

no renormalization problem caused by the intersection of the boundary of the domain
of integration with the singular set of the algebraic differential form.

4. The Motives

In this section we analyze the motives associated to the periods obtained from the coef-
ficients a2n of the spectral action. We are considering a family of quadrics

Qα,2n = u2
1 +

1

α2 (u2
2 + u2

3 + u2
4) + u2

5 + · · · + u2
2n+2, (4.1)

where α is a (rational) parameter. These define quadric hypersurfaces Zα,2n in P
2n+1.

We will also be considering the projective cone C Zα,2n in P
2n+2 and the affine cone

̂C Zα,2n in the affine space A
2n+3.

4.1. Pencils of quadrics. A quadratic form Q on a vector space V determines a quadric
Z Q ⊂ P(V ). Given two quadratic forms Q1 and Q2 on V , a pencil ZQ of quadrics in
P(V ) is obtained by considering, for each z = (λ : μ) ∈ P

1, the quadric Z Qz defined by
the quadratic formλQ1+μQ2. LetZQ = {(z, u) ∈ P

1×P(V ) : u ∈ Z Qz } ⊂ P
1×P(V ).

In particular, we can view the quadrics Zα,2n defined by the quadratic forms Qα,2n
of (4.1) as defining a pencil of quadrics in P

1 × P
2n+1, with λ/μ = α2. Namely, we

regard the quadric Zα,2n as part of the pencil of quadrics Z2n = {Zz,2n}z∈P1 , defined by

Qz,2n = λ(u2
1 + u2

5 + · · · + u2
2n+2) + μ(u2

2 + u2
3 + u2

4), (4.2)

for z = (λ : μ) ∈ P
1. The quadric Zz,2n becomes degenerate over the set X = {0, 1} ⊂

P
1, where it reduces, in the case λ = 0 to a projective cone Z Q1,2n = C2n−1B1 over
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the conic B1 = {u2
2 + u2

3 + u2
4 = 0} in P

2, and in the case μ = 0 to a projective cone
Z Q2,2n = C3B2 over the quadric B2 = {u2

1 + u2
5 + · · · + u2

2n+2 = 0} in P
2n−2. There is a

correspondence, as in Sect. 10 of [1],

(P1 × P
2n+1) � Zn ��

��

P
2n+1

� (Z Q1,2n ∩ Z Q2,2n)

P
1

where the horizontal map is an A
1-fibration and the vertical map is the projection to

z = (λ : μ) ∈ P
1. By homotopy invariance, we can identify H2n+2

c ((P1×P
2n+1)�Z2n)

with the Tate twisted H2n+1
c (P2n+1

� (Z Q1,2n ∩ Z Q2,2n))(−1).

4.2. Motives of quadrics. The theory ofmotives of quadrics is a very rich and interesting
topic, see [16,18,19]. We recall here only a few essential facts that we need in our
specific case. Suppose given a quadratic form Q on an n-dimensional vector space V
over a field K of characteristic not equal to 2. For our purposes, we will focus on the
case where K = Q. We write 〈a1, . . . , an〉 for the matrix of Q in diagonal form. The
quadratic form H := 〈1,−1〉 is the elementary hyperbolic form. A quadratic form Q
is isotropic if H is a direct summand, hence Q = H ⊥ Q′. It is anisotropic otherwise.
Any quadratic form can be written in the form Q = d · H ⊥ Q′, where Q′ is a uniquely
determined anisotropic quadratic form. The integer d is the Witt isotropy index of Q.
Given an anisotropic quadratic form Q over the fieldK, there is a tower of field extensions
K1 = K(Q), K2 = K1(Q1), . . ., Ks = Ks−1(Qs−1), such that over K1 the quadric
Q|K1 = d1 · H ⊥ Q1, with Q1 anisotropic; over K2 the quadric Q1|K2d2 · H ⊥ Q2,
with Q2 anisotropic, and so on, until Qs = 0. The tower of extensions K1, . . . , Ks is
the Knebusch universal splitting tower, and d1, . . . , ds are the Witt numbers of Q.

Let Z Q be the quadric defined by the quadratic form Q over K. For a hyperbolic
quadratic form Q = d · H of dimension 2d, the motive of Z Q is given by (see [19])

m(ZdH) = Z(d −1)[2d −2]⊕Z(d −1)[2d −2]⊕
⊕

i=0,...,d−2,d,...,2d−2

Z(i)[2i], (4.3)

where Z = m(Spec(K)). In the case where Q = d · H ⊥ 〈1〉 in dimension 2d + 1, the
motive of Z Q is given by (see [19])

m(ZdH⊥〈1〉) =
⊕

i=0,...,2d−1

Z(i)[2i]. (4.4)

Given a quadric Z Q , we denote by Z Qi the variety of i-dimensional planes on the
quadric Z Q . As in [19], we write XQi for the associated simplicial scheme (Definition
2.3.1 of [19]) and m(XQi ) for the corresponding object in the category DMeff(K) of
motives.

We also recall the following result (see Proposition 4.2 of [19]) that will be useful
in our case. Let Z Q ⊂ P

m+1 be a quadratic form of dimension m = 2n over K, such
that there exists a quadratic extension K(

√
a) of K over which Q is hyperbolic. Then

the motive m(Z Q) decomposes as a direct sum

m(Z Q) =
{

m1 ⊕ m1(1)[2] m = 2 mod 4
m1 ⊕ RQ,K ⊕ m1(1)[2] m = 0 mod 4 (4.5)
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where themotivem1 is an extensionof themotivesm(XQi )(i)[2i] andm(XQ� )(dim(Q)−
�)[2 dim(Q) − 2�], for i (respectively, �) ranging over all even (respectively, odd) num-
bers less than or equal to 2[dim(Q)/4]. The motive we denote by RQ,K is a form of a
Tate motive, which is denoted by RQ,K = K(

√
det(Q))(

dim(Q)
2 )[dim(Q)] in [19].

If Q is d-times isotropic, Q = d · H ⊥ Q′, then m(XQ j ) = Z for all 0 ≤ j < i .
Thus, the motivesm(XQ j ) become Tate motives in a field extension in which the quadric
becomes isotropic, and one recovers the motivic decomposition into a sum of Tate
motives mentioned above. The motives m(XQ j ) are therefore forms of the Tate motive,
which means that over the algebraic closure m(XQ j |

K̄
) = Z.

4.3. Grothendieck classes. It is often convenient, instead of working with objects in
the category of mixed motives, to consider a simpler invariant given by the class in
the Grothendieck ring of varieties, which can be regarded as a universal Euler char-
acteristics. The Grothendieck ring K0(VK) of varieties over a field K is generated by
the isomorphism classes [X ] of smooth quasi-projective varieties X ∈ VK with the
inclusion-exclusion relations [X ] = [Y ] + [X � Y ] for closed embeddings Y ⊂ X and
the product [X × Y ] = [X ] · [Y ]. The following simple identities will be useful in the
computations ofGrothendieck classes of themotives involved in the period computations
described in the previous sections.

Lemma 4.1. Let Z be a projective subvariety Z ⊂ P
N−1, with Ẑ ⊂ A

N the affine cone.
Let C Z denote the projective cone in P

N and Ĉ Z the corresponding affine cone in A
N+1.

Let H and H ′ be two affine hyperplanes in A
N+1 with H ∩ H ′ = ∅ and such that the

intersections Ĉ Z ∩ H and Ĉ Z ∩ H ′ are sections of the cone, given by copies of Ẑ . The
Grothendieck classes of the projective and affine complements satisfy

(1) [AN
� Ẑ ] = (L − 1)[PN−1

� Z ]
(2) [AN+1

� Ĉ Z ] = (L − 1)[PN
� C Z ]

(3) [C Z ] = L [Z ] + 1
(4) [AN+1

� Ĉ Z ] = L
N+1 − L(L − 1)[Z ] − L

(5) [AN+1
� (̂C Z ∪ H ∪ H ′)] = L

N+1 − 2L
N − (L − 2)(L − 1)[Z ] − (L − 2),

where L = [A1] is the Lefschetz motive, the class of the affine line.

Proof. The first and second identities follow from the fact that the class of the affine
cone is given by [Ẑ ] = (L − 1)[Z ] + 1, so that

[AN
� Ẑ ] = L

N − (L − 1)[Z ] − 1 = (L − 1)(
(LN − 1)

(L − 1)
− [Z ])

= (L − 1)[PN−1 − Z ].
The identity [C Z ] = L [Z ] + 1 follows by viewing the projective cone over Z as the
union of a copy of Z and a copy of the affine cone Ẑ over Z , and using the same identity
[Ẑ ] = (L − 1)[Z ] + 1 for the affine cone. The fourth identity follows from the second
and the third,

(L − 1)[PN
� C Z ] = L

N+1 − 1 − (L − 1)[C Z ] = L
N+1 − 1 − (L − 1)(L[Z ] + 1)

= L
N+1 − (L2 − L)[Z ] − L.



Periods and Motives in the Spectral Action of Robertson–Walker Spacetimes 663

For the last identity, we write

[AN+1
� (̂C Z ∪ H ∪ H ′)] = L

N+1 − [̂C Z ∪ H ∪ H ′].
The class of the union is given by

[̂C Z ∪ H ∪ H ′] = [̂C Z ] + [H ∪ H ′] − [̂C Z ∩ (H ∪ H ′)].
Since H ∩ H ′ = ∅, we have [H ∪ H ′] = 2L

N and [̂C Z ∩ (H ∪ H ′)] = [̂C Z ∩ H ] +
[̂C Z ∩ H ′] = 2[Ẑ ] = 2(L − 1)[Z ] + 2. Thus, we have

[AN+1
� (̂C Z ∪ H ∪ H ′)] = L

N+1 − 2L
N − [̂C Z ] + 2(L − 1)[Z ] + 2

= L
N+1 − 2L

N − L(L − 1)[Z ] − L + 2(L − 1)[Z ] + 2

= L
N+1 − 2L

N − (L − 2)(L − 1)[Z ] − (L − 2).

��

4.4. Pencils of quadrics in P
3. We look first at the case of the quadric Zα = Zα,2 in P

3

that arises in the computation of the a2 term of the heat kernel expansion.
Over C, any quadric surface Z Q in P

3 can be put in the standard form XY = Z W by
a simple change of coordinates. Thus, over C any quadric surface in P

3 is isomorphic
to the Segre embedding P

1 × P
1 ↪→ P

3. When we consider quadrics over Q, this is no
longer necessarily the case.

Theorem 4.2. For α ∈ Q, over the quadratic extension K = Q(
√−1), the quadric

Zα = Zα,2 in P
3 is isomorphic to the Segre embedding P

1 × P
1 ↪→ P

3. The class of
the complement in the Grothendieck ring is [P3

� Zα] = L
3 − L, while the class of

the affine complement of Ĉ Zα is [A5
� Ĉ Zα] = L

5 − L
4 − L

3 + L
2. The class of the

complement A
5

� (̂C Zα ∪ H0 ∪ H1) with the affine hyperplanes H0 = {u0 = 0} and
H1 = {u0 = 1} is given by

[A5
� (̂C Zα ∪ H0 ∪ H1)] = L

5 − 3L
4 + L

3 + 3L
2 − 2L.

Proof. Over the quadratic extension K = Q(i) we can consider the change of variables

X = u1 +
i

α
u2, Y = u1 − i

α
u2, Z = i

α
(u3 + iu4), W = i

α
(u3 − iu4),

where we assume that α ∈ Q. This change of coordinates determines the identification
of Zα with the Segre quadric {XY − Z W = 0} 
 P

1 × P
1.

The classes in theGrothendieck ring are then given by [Zα] = [P1×P
1] = (L+1)2 =

L
2 + 2L + 1, so that [P3

� Zα] = L
3 + L

2 + L + 1 − (L2 + 2L + 1) = L
3 − L. We then

use Lemma 4.1 to compute the class [A5
� ̂C Zα]. We have

[A5
� ̂C Zα] = L

5 − L(L − 1)[Zα] − L

= L
5 − L − L(L − 1)(L + 1)2 = L

5 − L
4 − L

3 + L
2.

We then use the last identity of Lemma 4.1 to compute

[A5
� (̂C Zα ∪ H0 ∪ H1)] = L

5 − 2L
4 − (L − 2)(L − 1)[Zα] − (L − 2)

= L
5 − 2L

4 − (L − 2)(L − 1)(L + 1)2 − (L − 2)

= L
5 − 3L

4 + L
3 + 3L

2 − 2L.

��
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Theorem 4.3. Over the quadratic extension K = Q(
√−1), the motive

m(A5
� (̂C Zα ∪ H0 ∪ H1),�)

is mixed Tate.

Proof. Over K = Q(
√−1), the quadric Qα , for α ∈ Q, satisfies

Qα|
Q(

√−1) = 2 · H

hence the motive is given by (4.3) as

m(Zα) = Z ⊕ Z(1)[2] ⊕ Z(1)[2] ⊕ Z(2)[4] = m(P1 × P
1)

where m(P1) = Z ⊕ Z(1)[2]. This corresponds to the Grothendieck class [Zα] =
1 + 2L + L

2.
The Gysin distinguished triangle of the closed embedding Zα ↪→ P

3 of codimension
one gives

m(P3
� Zα) → m(P3) → m(Zα)(1)[2] → m(P3

� Zα)[1],
hence if two of the three terms are in the triangulated subcategory of mixed Tate motives,
the third term also is. This implies that m(P3

� Zα) is mixed Tate.
When passing to the projective cone C Zα in P

4, since P
4

� C Zα → P
3

� Zα is an
A
1-fibration, by homotopy invariance we havem j

c (P
4

� C Zα) = m
j−2
c (P3

� Zα)(−1),
where we consider here the motive m

j
c with compact support that corresponds to the

cohomology H j
c . Thus, if the motive m(P3

� Zα) is mixed Tate, then so is the motive
m(P4

� C Zα).
In passing from the motive m(P4

� C Zα) to the motive m(A5
� ̂C Zα), consider the

P
1-bundle P compactification of the Gm-bundle T = A

5
� ̂C Zα → X = P

4
� C Zα

and the Gysin distinguished triangle

m(T ) → m(P) → mc(P � T )∗(1)[2] → m(T )[1],
see [20], p. 197. The motive of a projective bundle satisfies m(P) hence m(P) is mixed
Tate, since m(X) is. The motive mc(P � T ) is also mixed Tate since P � T consists of
two copies of X , hence the remaining term m(T ) is also mixed Tate.

We then consider the union of ̂C Zα and the affine hyperplanes H0 = {u0 = 0} and
H1 = {u0 = 1} in the affine space A

5. In order to check that the motive of the union
̂C Zα ∪ H0 ∪ H1 is mixed Tate suffices to know that the motives m(A5

� (H0 ∪ H1))

and m(A5
� ̂C Zα) as well as the motive of the intersection m(̂C Zα ∩ (H0 ∪ H1)) are

mixed Tate. This follows by applying the Mayer-Vietoris distinguished triangle

m(U ∩ V ) → m(U ) ⊕ m(V ) → m(U ∪ V ) → m(U ∩ V )[1]
with U = A

5
� ̂C Zα and V = A

5
� (H0 ∪ H1). This shows that it suffices to know

two of the three terms are mixed Tate to know the remaining one also is. The motive
m(A5

� ̂C Zα) is mixed Tate by our previous argument. The motivem(A5
� (H0 ∪ H1))

is also mixed Tate by a similar argument, since m(H0 ∪ H1) clearly is. Thus, it suffices
to show that the motive m(A5

� (̂C Zα ∩ (H0 ∪ H1)) is mixed Tate, which can be
shown by showing that the motivem(̂C Zα ∩ (H0 ∪ H1)) is mixed Tate. The intersection
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̂C Zα ∩ (H0 ∪ H1) consists of two sections of the cone, hence one has two copies of the
motive m(Ẑα) that is also a Tate motive.

The divisor � in A
5 is a union of coordinate hyperplanes and their translates, and is

also mixed Tate. Thus, the motivem(A5
� (̂C Zα ∩ (H0 ∪ H1),�) sits in a distinguished

triangle in the Voevodsky triangulated category of mixed motives over Q, where two
of the three terms, m(A5

� (̂C Zα ∩ (H0 ∪ H1)) and m(�), are both mixed Tate. This
implies that the remaining term m(A5

� (̂C Zα ∩ (H0 ∪ H1),�) is also mixed Tate. ��

4.5. The Grothendieck class of P
2n−1

� Zα,2n over K = Q(
√−1). We proceed with

an inductive argument to compute the Grothendieck class [P2n−1
� Zα,2n] for all the

quadrics Zα,n determined by the quadratic forms

Qα,2n = u2
1 +

1

α2 (u2
2 + u2

3 + u2
4) + u2

5 + u2
6 + · · · + u2

2n+1 + u2
2n+2, (4.6)

for all n ≥ 3.

Theorem 4.4. Over the quadratic field extension K = Q(
√−1) the quadric Zα,2n has

Grothendieck class [P2n+1
� Zα,2n] = L

2n+1 − L
n. The affine complement of Ĉ Zα,2n

has class

[A2n+3
� Ĉ Zα,2n] = L

2n+3 − L
2n+2 − L

n+2 + L
n+1

and the affine complement of the union Ĉ Zα,2n ∪ H0 ∪ H1 has class

[A2n+3
� (̂C Zα,2n ∪ H0 ∪ H1)] = L

2n+3 − 3L
2n+2 + 2L

2n+1 − L
n+2 + 3L

n+1 − 2L
n .

Proof. Over the field K = Q(
√−1) the change of coordinates

X = u2n+1 + iu2n+2, Y = u2n+1 − iu2n+2

puts Qα,2n in the form

Qα,2n = Qα,2n−2(u1, . . . , u2n) + XY.

Thus, the Grothendieck class [Ẑα,2n] is a sum of a contribution corresponding to Y �= 0,
which is of the form (L − 1)L2n and a contribution from Y = 0, which is of the form
L [Ẑα,n−1]. This gives

[A2n+2
� Ẑα,2n] = L

2n+2 − 2L
2n+1 + L

2n + L[A2n
� Ẑα,2n−2],

hence using the relation between the classes of the affine and projective complements,

[P2n+1
� Zα,2n] = L

2n(L − 1) + L[P2n−1
� Zα,2n−2].

Assuming inductively that [P2n−1
� Zα,2n−2] = L

2n−1 − L
n−1 we indeed obtain that

the class of the complement is [P2n+1
� Zα,2n] = L

2n(L − 1) + L(L2n−1 − L
n−1) =

L
2n+1 − L

n . We then have

[Zα,2n] = [P2n+1] − [P2n+1
� Zα,2n]

= L
2n + L

2n−1 + · · · + L
n+1 + 2L

n + L
n−1 + · · · + L

2 + L + 1.
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Using Lemma 4.1, we obtain

[A2n+3
� ̂C Zα,2n] = L

2n−3 − L(L − 1)[Zα,2n] − L

= L
2n+3 −

n
∑

j=2

L
j − L

n+1 − 2L
n+2 −

2n+1
∑

j=n+3

L
j − L

2n+2

+
n

∑

j=2

L
j + 2L

n+1 + L
n+2 +

2n+1
∑

j=n+3

L
j

= L
2n+3 + L

n+1 − L
n+2 − L

2n+2.

We proceed in the same way for the computation of the class of the affine complement
of the union ̂C Zα,2n ∪ H0 ∪ H1, using Lemma 4.1. We have

[A2n+3
� (̂C Zα,2n ∪ H0 ∪ H1)] = L

2n+3 − 2L
2n+2−(L − 2)(L − 1)[Zα,2n]−(L − 2)

and using again the expression

[Zα,2n] = L
2n + L

2n−1 + · · · + L
n+1 + 2L

n + L
n−1 + · · · + L

2 + L + 1

we obtain

(L − 2)(L − 1)[Zα,2n] = 2 − L + 2L
n − 3L

n+1 + L
n+2 − 2L

n+1 + L
2n+2

due to cancellations of terms similar to the previous case. We then have

L
2n+3 − 2L

2n+2 − (L − 2)(L − 1)[Zα,2n] − (L − 2)

= L
2n+3 − 3L

2n+2 + 2L
2n+1 − L

n+2 + 3L
n+1 − 2L

n,

which agrees with the case n = 1 computed in Theorem 4.2. ��
We then obtain an analog of Theorem 4.3, proved by a similar argument.

Proposition 4.5. Over the field extension K = Q(
√−1), the mixed motive

m(A2n+3
� (̂C Zα,2n ∪ H0 ∪ H1),�)

is mixed Tate.

Proof. The argument is completely analogous to Theorem 4.3, using the fact that, over
K = Q(

√−1) the quadratic form is

Qα,2n|
Q(

√−1) = (n + 1) · H,

with (4.3) giving the motive m(Qα,2n|
Q(

√−1)). The motives of complements, and pro-

jective and affine cones and the relative motivesm(A2n+3
� ̂C Zα,2n, �) andm(A2n+3

�

(̂C Zα,2n ∪ H0 ∪ H1),�) are then obtained as in Theorem 4.3. ��
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4.6. The motive of Zα,2n over Q. Over the rationals, the quadratic form Qα,2n is anisotro-
pic, although, as we have seen, it becomes isotropic over the field extension K =
Q(

√−1), with Qα,2n|
Q(

√−1) = (n + 1) · H. The motive of Zα,2n over Q(
√−1) is

a sum of Tate motives

m(Zα,2n|K) = Z(n)[2n] ⊕ Z(n)[2n] ⊕
⊕

i=0,...,n−1,n+1,...2n

Z(i)[2i],

which corresponds to the Grothendieck class [Zα,2n] = [P2n+1] − [P2n+1
� Zα,2n] =

1 + · · · + L
2n+1 − (L2n+1 − L

n) = 1 + L + · · · + L
n−1 + 2L

n + L
n+1 + · · · + L

2n . Over
the field Q, the motive of Zα,2n is given by (4.5), with

m(Zα,2n|Q) = m1 ⊕ m1(1)[2]

when n is odd and

m(Zα,2n|Q) = m1 ⊕ RQ,Q,n ⊕ m1(1)[2]

when n is even, where RQ,Q,n is a form of a Tate motive denoted by RQ,Q,n =
Q(

√

det(Qα,2n))(n)[2n] in [19]. When passing to the quadratic field extensionQ(
√−1)

these motivic decompositions become the decomposition into Tate motives given above.

Remark 4.6. The periods γ2n(α, α1, . . . , α2n) associated to these mixed Tate motives
depend on the affine parameters α, α1, . . . , α2n . The heat kernel coefficients are obtained
as a further integration

a2n =
∫

R

γ2n(a(t), a′(t), . . . , a(2n)(t)) dt,

which corresponds to restricting the affine parameters (α, α1, . . . , α2n) to a real curve
(a(t), a′(t), . . . , a(2n)(t)). Clearly, for an arbitrary choice of the real curve a(t), the time
integration cannot be expected to retain the property of being a period in the algebro-
geometric sense. However, for particular choices of the scaling factor a(t) this property
may be satisfied. The question of identifying a set of suitable time dependences (suitable
relations between the affine parametersα andαi along a real curve) can be approached by
considering natural (differential) equations that the periods γ2n(α, α1, . . . , α2n) should
satisfy. Indeed, one expects that periods of families of algebraic varieties satisfy natural
differential equations, like the Picard–Fuchs equations for periods of families of curves.
In this setting, we expect an overall consistency between the appropriate differential
equations for the γ2n , coming from the fact that the a2n are all coefficients of the heat
kernel. This question will be investigated in forthcoming work.
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1707882, and PHY-919 1205440. Part of this work was done at the Perimeter Institute for Theoretical Physics,
supported by the Government of Canada through Industry Canada and by the Province of Ontario through the
Ministry of Economic Development and Innovation.
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5. Appendix: Explicit Density for the a2 Coefficient

We use the formula (2.7) in the special case of r = 0 to calculate the term a2 appearing
in the heat kernel expansion (2.6). In this case we have

a2 = 1

25 π4
Res

(

(D2)−1
)

,

where (D2)−1 denotes the parametrix of D2. In order to use the formula (2.8), since
the dimension of the manifold is 4, we need to calculate the term σ−4(x, ξ) that is
homogeneous of order −4 in the expansion of the symbol of (D2)−1. By performing
symbolic calculations we find the following explicit expression.

tr(σ−4(t, η, ξ))

= 32 cot2(η)ξ43 csc
4(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
32ξ22 ξ23 csc

4(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
32ξ43 a′(t)2 csc4(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 8ξ23 csc
4(η)

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 192ξ21 ξ43 a′(t)2 csc4(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 384 cot(η)ξ1ξ2ξ
4
3 a′(t) csc4(η)

a(t)7
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 192 cot2(η)ξ22 ξ43 csc
4(η)

a(t)8
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 384 sec(η)ξ1ξ2ξ
2
3 ξ24 a′(t) csc3(η)

a(t)7
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

+
64 cot2(η)ξ22 ξ23 csc

2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
16 cot(η) cot(2η)ξ23 csc

2(η)

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

+
384 sec2(η)ξ22 ξ23 ξ24 csc

2(η)

a(t)8
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

+
64ξ22 ξ23 a′(t)2 csc2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
4ξ23 a′(t)2 csc2(η)

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

+
64 sec2(η)ξ23 ξ24 a′(t)2 csc2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
48 cot(η)ξ1ξ2ξ

2
3 a′(t) csc2(η)

a(t)5
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
8ξ23 a′′(t) csc2(η)

a(t)3
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− csc2(η)

a(t)2
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

2

− 12 cot2(η)ξ23 csc
2(η)

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 32ξ21 ξ23 a′′(t) csc2(η)

a(t)3
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 48ξ21 ξ23 a′(t)2 csc2(η)

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 96 cot(2η)ξ1ξ2ξ
2
3 a′(t) csc2(η)

a(t)5
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 96 cot(η) cot(2η)ξ22 ξ23 csc
2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4
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− 64 sec2(η)ξ23 ξ24 csc
2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 384ξ21 ξ22 ξ23 a′(t)2 csc2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 384 sec2(η)ξ21 ξ23 ξ24 a′(t)2 csc2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 384 cot(η)ξ1ξ
3
2 ξ23 a′(t) csc2(η)

a(t)7
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

+
384 sec3(η)ξ1ξ2ξ

2
3 ξ24 a′(t) csc(η)

a(t)7
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

+
32 csc2(2η)ξ22

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

+
32 sec4(η)ξ22 ξ24

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
32 sec4(η)ξ44 tan

2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
64 sec2(η)ξ22 ξ24 tan

2(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
32ξ42 a′(t)2

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
32 sec4(η)ξ44 a′(t)2

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
4ξ22 a′(t)2

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

+
4 sec2(η)ξ24 a′(t)2

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

+
64 sec2(η)ξ22 ξ24 a′(t)2

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

+
3a′(t)2

a(t)2
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

2

+
96 cot(2η) sec2(η)ξ22 ξ24 tan(η)

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

n

+
384 sec4(η)ξ1ξ2ξ

4
4 tan(η)a′(t)

a(t)7
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

+
384 sec2(η)ξ1ξ

3
2 ξ24 tan(η)a′(t)

a(t)7
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

+
8ξ22 a′′(t)

a(t)3
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

+
8 sec2(η)ξ24 a′′(t)

a(t)3
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

+
6a′′(t)

a(t)

(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

2

− sec2(η)

a(t)2
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

2

− 4

a(t)2
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

2

− 24ξ21 a′′(t)

a(t)

(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 12ξ21 a′(t)2

a(t)2
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 16 cot(2η)ξ1ξ2a′(t)

a(t)3
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 16 cot2(2η)ξ22

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 8 sec4(η)ξ24

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3



670 F. Fathizadeh, M. Marcolli

− 12 sec2(η)ξ24 tan
2(η)

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 16 cot(2η) sec2(η)ξ24 tan(η)

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

3

− 32ξ21 ξ22 a′′(t)

a(t)3
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 32 sec2(η)ξ21 ξ24 a′′(t)

a(t)3
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 48ξ21 ξ22 a′(t)2

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 48 sec2(η)ξ21 ξ24 a′(t)2

a(t)4
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 96 cot(2η)ξ1ξ
3
2 a′(t)

a(t)5
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 96 cot(2η) sec2(η)ξ1ξ2ξ
2
4 a′(t)

a(t)5
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 48 sec2(η)ξ1ξ2ξ
2
4 tan(η)a′(t)

a(t)5
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

4

− 192ξ21 ξ42 a′(t)2

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 192 sec4(η)ξ21 ξ44 a′(t)2

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 384 sec2(η)ξ21 ξ22 ξ24 a′(t)2

a(t)6
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

− 192 sec4(η)ξ22 ξ44 tan
2(η)

a(t)8
(

ξ21 +
ξ22

a(t)2
+

csc2(η)ξ23
a(t)2

+
sec2(η)ξ24

a(t)2

)

5

. (5.1)

The density b−4(t, η, ξ) is obtained from tr(σ−4(t, η, ξ)) above by eliminating all terms
with an odd exponent of ξ j in the numerator.
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