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Abstract: We show that, when considering the scaling factor as an affine variable,
the coefficients of the asymptotic expansion of the spectral action on a (Euclidean)
Robertson—Walker spacetime are periods of mixed Tate motives, involving relative mo-
tives of complements of unions of hyperplanes and quadric hypersurfaces and divisors
given by unions of coordinate hyperplanes.
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1. Introduction

Over the past decade, Grothendieck’s theory of motives has come to play an increasingly
important role in theoretical physics. While the existence of a relation between motives
and periods of algebraic varieties and computations in high-energy physics might have
seemed surprising and unexpected, the existence of underlying motivic structures in
quantum field theory has now been widely established, from early results like [6] and
especially through the explicit approach to motives and periods of parametric Feynman
integrals that was first developed in [1] and further investigated in subsequent results like
[2]. We refer the reader to [14] for a general survey. Typically, periods and motives occur
in quantum field theory in the perturbative approach, through the asymptotic expansion
in Feynman diagrams, where in the terms of the asymptotic expansion the renormalized
Feynman integrals are identified with periods of certain hypersurface complements.
The nature of the motive of the hypersurface constrains the class of numbers that can
occur as periods. In a different setting, more recent work on amplitudes in N = 4
Supersymmetric Yang—Mills has uncovered a connection to the mixed Tate motives for
multiple polylogarithms, see for instance [10, 11].

In this paper, we present another surprising instance of the occurrences of periods and
motives in theoretical physics, this time in a model of (modified) gravity based on the
spectral action functional of [4]. The situation is somewhat similar to the one seen in the
quantum field theory setting, with some important differences. As in the QFT framework,
we deal with an asymptotic expansion, which in our case is given by the large energy
expansion of the spectral action functional. We show in this paper that, in the case of
(Euclidean) Robertson—Walker spacetimes, the terms of the asymptotic expansion of the
spectral action functional can be expressed as periods of mixed Tate motives, given by
complements of quadric hypersurfaces. An important difference, with respect to the case
of a scalar massless quantum field theory of [1], is that here we need to consider only
one quadric hypersurface for each term of the expansion, whereas in the quantum field
theory case one has to deal with the much more complicated motive of a union of quadric
hypersurfaces, associated to the edges of the Feynman graph. On the other hand, the
algebraic differential form that is integrated on a semi-algebraic set in the hypersurface
complement is much more complicated in the spectral action case considered here than
in the quantum field theory case: the terms in the algebraic differential form arise from
the computation, via pseudo-differential calculus, of a parametrix for the square of the
Dirac operator on the Robertson—Walker spacetime, after a suitable change of variables
in the integral. While the explicit expression of the differential form, even for the simplest
cases of the coefficients a; and a4 can take up several pages, the structure of the terms
can be understood, as we explain in the following sections, and the domain of definition
is, in the case of the ay, term, the complement of a union of two hyperplanes and a
quadric hypersurface defined by a family of quadrics Qg 2, in an affine space A3,

In Sect. 2 we compute, using the Hopf coordinates on the sphere S, the pseudodiffer-
ential symbol of the square D? of the Dirac operator on a (Euclidean) Robertson—Walker
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metric. In Sect. 2.3, we describe briefly how the Seeley—DeWitt coefficients of the heat
kernel expansion can be computed in terms of Wodzicki residues, by taking products
with auxiliary tori with flat metrics. We present in Sect. 2.4 the recursive formula for
the terms o2, (A +2) of the heat kernel expansion of D2. In Sect. 2.5 we introduce
the integrals y», (o, a1, ..., ®2,;) and their densities Yy, (¢, o1, ..., ®2,) associated to
the coefficients ay, of the heat kernel expansion, treating the scaling factor a(¢) and
its derivatives a® (t) as affine coordinates o, . The integrals y», (o, o1, . . ., arp,) are
what we aim to express in terms of algebro-geometric period integrals. Section 3 con-
tains the main results. We introduce in Sect. 3.1 a set of algebraic coordinates, and
we show in Sect. 3.2 that the volume form is algebraic over Q in these coordinates.
In Sect. 3.3 we show that the density Y5 (w, o1, a2) associated to the ap term, in the
algebraic coordinates is a rational function on the complement in A3 of the union of a
quadric hypersurface and two hyperplanes. In Sect. 3.4 we prove inductively a formula
for the densities Yo, (o, o1, ..., otz,) in algebraic coordinates. The algebraic differen-
tial forms depend on 2n auxiliary affine parameters oy, ..., a2,, which correspond to
the time derivatives of the scaling factor of the Robertson—Walker metric. In Sect. 3.5,
passing to a homologous domain of integration in the cosphere bundle and using the
symmetries of the Robertson—Walker metric, we prove that all terms in the expres-
sion of Yo, (¢, a1, ..., ®,) with half-integer exponent have to cancel out, leaving an
algebraic differential form, which is written more explicitly in Sect. 3.6. In Sect. 3.7
we show that, in the same choice of algebraic coordinates, the domain of integration
in the integrals computing the terms y», (o, o, ..., a2,) is a Q-semialgebraic set. To-
gether with the results of Sect. 3.6 about the algebraic differential form, this identifies
the y2, (o, a1, . . ., a2,) With algebro-geometric period integrals. We identify explicitly
the associated motives. The Q-semialgebraic set in this hypersurface complement has
boundary contained in a divisor given by a union of coordinate hyperplanes. Although
the boundary divisor and the hypersurface intersect nontrivially, all the integrals are
convergent and we do not have a renormalization problem, unlike what happens in the
quantum field theory setting. In Sect. 4, we analyze more explicitly the motive, showing
that, over a quadratic field extension Q(/—1) where the quadrics become isotropic, it is
a mixed Tate motive, while over Q it is a form of a Tate motive in the sense of [16,18,19].
We compute explicitly, by a simple inductive argument, the class in the Grothendieck
ring of the relevant hypersurface complement. In Sect. 4.1, 4.2, and 4.3 we recall some
general facts about pencils of quadrics, motives of quadrics, and Grothendieck classes
of affine and projective cones. In Sect. 4.4 we compute the Grothendieck class and
the motive for the case of the a; coefficient. In Sect. 4.5 we compute inductively the
Grothendieck class of the complement A2 (HyUH U CZ Zy.2) and in Sect. 4.6
we prove that the motive m(Aan N (HhUH UC Za 2n), %) underlying the periods
yon (o, o1, . .., a2) is mixed Tate.

1.1. The spectral model of gravity. The spectral action functional, introduced in [4] is
a regularized trace of the Dirac operator D given by

S(A) =Te(f(D/A) =Y Mult)f(r/A),

reSpec(D)

where the test function f is a smooth even rapidly decaying function, which should be
thought of as a smooth approximation to a cutoff function. The parameter A > 0 is
an energy scale. One of the main advantages of this action functional is that it is not
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only defined for smooth compact Riemannian spin manifolds, but also for a more gen-
eral class of geometric objects that include the noncommutative analogs of Riemannian
manifolds, finitely summable spectral triples, see [5]. In particular, the spectral action
functional applied to almost commutative geometries (products of manifolds and finite
noncommutative spaces) is used as a method to generate particle physics models with
varying possible matter sectors depending on the finite geometry and with matter cou-
pled to gravity, see [17] for a recent overview. It was shown in [4] that, in the case of
commutative and almost commutative geometries, the spectral action functional has an
asymptotic expansion for large energy A,

Te(f(D/A) ~ > fp AP ][|Drﬁ + f0)Zp(0) +- -,

BETIr

where the coefficients depend on momenta fg = fooo f @) v~ dv and Taylor coeffi-
cients of the test function f and on residues

1
][|D|*'3 = JResi—p £p(s)

at poles of the zeta function {p(s) of the Dirac operator. The leading terms of the
asymptotic expansion recover the usual local terms of an action functional for gravity,
the Einstein—Hilbert action with cosmological term, with additional modified gravity
terms given by Weyl conformal gravity and Gauss—Bonnet gravity. In the case of an
almost commutative geometry the leading terms of the asymptotic expansion also de-
termine the Lagrangian of the resulting particle physics model. The spectral action on
ordinary manifold, as an action functional of modified gravity, was applied to cosmo-
logical models, see [15] for an overview. In the manifold case, the Mellin transform
relation between zeta function and trace of the heat kernel expresses the coefficients of
the spectral action expansion in terms of the Seeley—DeWitt coefficients ay, of the heat
kernel expansion,

o0
Te(e™™) ~emsor T2 Y any (D) 7"
n=0

Pseudodifferential calculus techniques and the parametrix method can then be applied
to the computation of the symbol and the Seeley—DeWitt coefficients. The resulting
computations can easily become intractable, but a computationally more efficient method
introduced in [7], based on Wodzicki residues and products by auxiliary flat tori can be
applied to make the problem more easily tractable.

In the case of the (Euclidean) Robertson—Walker spacetimes, it was conjectured in [3]
and proved in [9] that all the terms in the expansion of the spectral action are polynomials
with rational coefficients in the scaling factor and its derivatives. This rationality result
suggests the existence of an underlying arithmetic structure. In the case of the Bianchi
IX metrics, a similar rationality result was proved in [7] and the underlying arithmetic
structure was analyzed in [8] for the Bianchi IX gravitational instantons, in terms of
modular forms. Here we consider the case of the Robertson—Walker spacetimes and we
look for arithmetic structures in the expansion of the spectral action in terms of periods
and motives. A similar motivic analysis of the Bianchi IX case will be carried out in
forthcoming work.
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2. Robertson—-Walker Metric, Dirac Operator, and Heat Kernel Expansion
In this section we discuss some basic properties of the Dirac operator on a Euclidean

Robertson—Walker spacetime, and of the coefficients of the corresponding heat kernel
expansion, which we need for our main result.

2.1. Robertson—Walker metric. We consider the Robertson—Walker metric with the ex-
pansion factor a(t),

ds®> = di* + a(t)zdaz,

where do? is the round metric on the 3-dimensional sphere S®. Using the Hopf coordi-
nates for S3, we consider the following local chart

x = (t,n, ¢1,¢2) — (t,sinncos ¢y, sinn sin ¢y, cos 1 cos ¢, cos 1 sin ¢»),

b1
O<17<E, 0< ¢ <2m, 0 < ¢y <2m.
In this coordinate system, the Robertson—Walker metric is written as
ds® = di® +a@t)? (dn2 +sin?(n) dg? + cos (1)) d¢§) , 2.1)

or alternatively we write:

1 0 0 0
| 0am)? 0 0
@) =10 0 a@)?sin®) 0 :
0 0 0 a(t)? cos?(n)

with
10 0 0
ou(i)z 0 0
@ =@ "'=|y o «<o
0 0

a(t)?
0 st
a(t)?

2.2. Pseudodifferential symbol. One can write the local expression for the Dirac operator
D of the Robertson—Walker metric (2.1), as in Sect. 2 of [9], and one finds that the
pseudodifferential symbol op of D is given by

op(x,&) =q1(x,&) +qo(x, &),

where the matrices g and gq are as follows. Using the notation § = (&1, &, &3, &4) € R*
for an element of the cotangent fibre 7, M =~ R* at the point x = (¢, 17, ¢1, ¢2), we have
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isec(n)és i& | esc()és
0 0 —an - 81 am t aw
0 0 ﬁ _ csc(n)é3 _%- _ i sec(1)é4
q1(x,§) = Psecopbs i ey O o 4O an-
csc(n)&s i& isec(n)és
a0 "an a8 0 0
3ia (1) cot(n)—tan(n)
0 0 2a(t) 2a(t)
0 0 cot(n)—tan(n) 3ia’(t)
qo(x, &) = 3d)  tan(n)—cot(n) 2“(;” 2“(;0 . (2.2)
2a(t) 2a(1)
tan(n)—cot(n) 3ia’(t) 0 0

2a(t) 2a(t)
That is, the local formula of the action of the Dirac operator D on a spinor s is given by
Ds(x) = (271)*2/(?’“é o(D)(x.£)3(8)dg
o [ [detemim oy s,

where § is the component-wise Fourier transform of s.
The above matrices can be used to find the pseudodifferential symbol of the square
of the Dirac operator:

op2(x, &) = p2(x, &) + p1(x, &) + po(x, §),

where, denoting the 4 x 4 identity matrix by I4x4, we have:

P2(x.§) = qiCr )1, 6) = (Y "6ty ) Laa

(2 & osPpE; | secr(E;
_<sl+a(t)2+ a(t)? " a(t)? laxa, 23)
0
PiI(x,€) = qo(x, &) q1(x, &) +q1 (x, ) qo(x, s>+Z—z¥< s)ﬂ(x £), (24)
j=1 /
990
po(x, §) = qo(x, §) go(x, 5“2"35( B g ) 2.5)
j=1 /

2.3. Heat expansion and the Wodzicki residue. 1t is in general computationally diffi-
cult to obtain explicit expressions for the Seeley—DeWitt coefficients of the heat kernel
expansions, even for nicely homogeneous and isotropic metrics like the Friedmann—
Robertson—-Walker case. A computationally more efficient method was introduced in
[7], based on products with auxiliary flat tori and Wodzicki residues [21,22]. We apply
it here to calculate the coefficients ay,, that appear in the small time heat kernel expansion

o0
Tr(e™™P%) ~, Lov 772 > a " (2.6)
=
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In fact, it is proved in [7] that, for any non-negative even integer r, we have

aer = Res(A™1), 2.7)

At
where
A=D>*®1+1® A,

in which Ar is the flat Laplacian on the r-dimensional torus T" = (R/Z)". Here, the
linear functional Res defined on the algebra of classical pseudodifferential operators is
the Wodzicki residue, which is defined as follows. Assume that the dimension of the
manifold is m, and that the symbol of a classical pseudodifferential operator is given in
a local chart U by

o(x.&) ~ Y oa_j(x.&) (£ —> 00),
j=0

where each oy : U x (R™ \ {0}) — M, (C) is positively homogeneous of order d — j
in £. Then one needs to consider the 1-density defined by

wresy Py = (/ tr (o_m(x, £)) |a§,m1|> ldx® Adx' A A dX™TY, (2.8)
j€|=1

in which o¢ ;1 is the volume form of the unit sphere |£| = 1 in the cotangent fibre
R™ >~ T}M given by

Oemo1 =y (=D TNE dE A AdE A A dEy (2.9)
j=1

The Wodzicki residue of the pseudodifferential operator P, associated with the symbol
o is by definition the integral of the above 1-density associated to o':

Res (Py) =/ wresy Py . (2.10)
M

One can find a detailed discussion of the Wodzicki residue in [21,22] and in Chapter 7
of [12].

2.4. Recursive formula for densities. A recursive formula for the densities in (2.8) is
the crucial property underlying our main result. It is obtained by performing symbolic
calculations as explained in [7], to which we refer the reader for the details of the
argument.

Lemma 2.1. For a positive integer r, let A, denote the operator
A =D*>®1+1Q® Arr,

where At is the flat Laplacian on the r-dimensional torus T" = (R/Z)". Then one has

02(8) = (P20 61,62, 63,600+ (6 4+ ) ans) @.11)
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and, for n > 0, the terms U,Q,H(A;_lz) are computed by the recursive formula

_ (—i)"! _ _
U—Z—n(AH.lz) =- Z T (agG—Z—j(Ar+12)> (agpk) 0—2(Ar+12)'
0<j<n, 0<k<2 ’
aniO
—2—j—\oz|_+k=—n
(2.12)
In particular, when we express the term ap; as the noncommutative residue (2.7),
1 _

oy = WRCS(AMI), (2.13)

one needs to compute the term o_»,_» which is homogeneous of order —2n — 2 in the
expansion of the pseudodifferential symbol of A;n] . This is obtained from the following
recursion, which is a specialization of the previous lemma.

Corollary 2.2. The densities tr(a_zn_z(Az_nl)) can be computed through the recursion

~1 (=) oy —1 € at
o—om—2(A,,) = — Z WRTAE (351' 3§22<7—2—j(A2,, )) <8t'8n2pk>
0<j<om 0<k<2 1°T
a=({1,0)€Z2,
—2—j—|a|+k=—2n
xo_2(A D). (2.14)

Proof. The expression (2.14) follows immediately from Lemma 2.1, upon observing
that, by (2.2) and (2.3), (2.4), (2.5), the terms p; only depend on the coordinates (¢, )
and not on the angles (¢, ¢») in the Hopf coordinates of S’ o

2.5. Integrated densities and differential forms. For the rest of this paper we focus on
the form of the coefficients ay,, written as residues as in (2.7), and we investigate the
nature of the residue integral as a period in the sense of algebraic geometry.

To this purpose, we treat the scaling factor a(r) and its derivatives a® (¢) as indepen-
dent affine variables «, ..., ok, ..., so that the choice of a specific scaling factor a(z)
corresponds to restricting the variables (o, oy, .. ., az,) to areal curve (a(t), a'(¢), .. .,
a® (1)) inside the affine space A2+l

Lemma 2.3. The coefficient ay, is computed as an integral
axy = / yn(a(t).a' (), ....a%" ) dt,
R
with

1 ~
V2n(a, al -'-»a2n) = m/ f T2n(a: al ~'-»a2n, 77,5) 02n+1(77’§)7
T 0<n<% J|g|=1
(2.15)
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where the volume form is given by

G410, &) = dn A 0% 2p41 (2.16)

with o 2,41 as in (2.9), and

T2n (a’ op...,0m, 1, S)la:a([),ak:a(k)([) = b—2n—2(t, n, g)’ (217)

where the density b_,_»(t, n, £) satisfies

/ / besn_a(t, 1, €) Faner (1, €)
0<n<3 Jigl=1

- / f (C(0—2n—2) (1, 1. ) Famer (7., &) 2.18)
0<n<% Jig=1

and is obtained from tr(o_3,-2)(t, n, &) by dropping all terms that have odd powers of
some of the coordinates & in the numerator.

Proof. As observed in Corollary 2.2, by (2.2) and (2.3), (2.4), (2.5), the homogeneous
components po, p1, and p, of the pseudodifferential symbol of D* depend only on the
variable 1 and are independent of the angles ¢, ¢ of the Hopf coordinates (1, ¢1, ¢2)
on S®. Thus, when writing the coefficient ay, as a residue, using (2.7), (2.8), and (2.10),
one finds

1 ~
= [ [ weaaen @m0 d @19
8 R JO<n<% J|g|=1

with 05,41 (n, £) as in (3.4). Using the recursions of Lemma 2.1 and Corollary 2.2, to-
gether with (2.11) and the explicit formula for the term tr(o_a((D*)~1Y) given in the
Appendix, it follows that the terms tr(a_zn_z(Az_nl)(t, n, £)) are a sum of fractions with
monomials in the &; coordinates, the scaling factor a(¢) and its derivatives, and trigono-
metric functions of 7 in the numerator and a power of a quadratic form in the &; coor-
dinates and trigonometric functions of »n in the denominator. The more precise form of
these terms will be discussed below. It suffices here to notice that all the terms that contain
odd powers of coordinates &; in the numerator necessarily vanish when the integration
in (2.19) is performed. Thus, we can replace the expression tr(a_zy,_z(A;n] )(,n, &) by
another density b_»,_> (¢, 1, &) obtained from tr(o_2,—> (Az_nl )(t, n, &)) by removing all
summands with odd powers of &; in the numerator. It is then clear that (2.18) is satisfied

and that it is possible to define a density Y2, (¢, &1 . .., a2p, 1, &) satisfying (2.17) so
that (2.15) holds. 0O

3. Algebraic Differential Forms, Semi-algebraic Sets, and Periods

In this section we study the functions y», (¢, a1, ..., ®2,) as periods of a family of
algebraic differential forms Q‘E‘al ...y defined over @Q, integrated on a QQ-semi-algebraic

set Ay, in an algebraic variety given by a family X, of hypersurfaces in the affine space
A2n+3.
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3.1. Algebraic coordinates. In order to interpret the terms y», (¢, o, . . ., ®2,) as peri-
ods, we introduce a simple change of coordinates that makes it possible to rewrite the
integrand Yo, (o, . .., @2, 1, &) Ton+1(n, &) as an algebraic differential form.

Definition 3.1. The algebraic coordinates (u, .. ., uz,+2) are defined by the change of
variables

uo = sin®(n), uz = csc(n) &3, 1y = sec(n) &, 3.1

uj=%&;, j=12,56,...,2n+2. )
Lemma 3.2. In the algebraic coordinates (3.1) the pseudodifferential symbol
o (D% = p2+ p1 + po
is given by
—(u2+ ;( 2wl +ud)) 1
v sargn s 09 291 _ 91 da

P1 4041 * 41490 & o1 & on ,

2 (091 990 _ ;991 990
o0& ot 0& dn )

where qo and q are given by

iu iu u
0 0 MG tan
iu U3 u
| o 0 a® —at 1~ aw (3:2)
Q= iwa _iwy _ usz 0 0 ' '
U1 =450 “aw) — an
U3 1273 1223
a® " am  a@m M 0 0
0 0 3ia’ (1) _ 1-2ug
2a(1) 2a(t)/(T—up)ug
0 0 1—2u 3ia' (1)
B 2a(t)/(I—ug)io 2a(r)
q0 = 3id (1) o 1-Dup 0 0
2a(t) 2a(t)/(I—up)ug
o 1-2ug 3id' (1) 0 0
2a(t)x/(I—up)uo 2a(1)

(3.3)

Proof. In the coordinates (3.1) the pseudodifferential symbol of the Dirac operator D
of the Robertson—Walker metric is given by

o (D) = q1 +qo,

where g1 and go are now expressed as in (3.2) and (3.3). Since ¢g; and g¢ depend
only on 7 and ug, or equivalently only on 7 and 7, for the symbol of D?, we have
o(D?) = py + p1 + po, where py, p1 and py are as in the statement. O
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3.2. Algebraic volume form. The volume form &,.1, when written in the algebraic
coordinates (3.1), is an algebraic differential form on A3, defined over Q.

Lemma 3.3. The volume form 65,41 (n, §) in the algebraic coordinates is given by

2n+2

~ i1 a0
02n41 (U0, - .., U2ps2) = 3 Z(—l) ujdugduy A --- ANduj A -+ Adugps.
Jj=1

(3.4)

Proof. Under the change of variables (3.1) we have

1 1
dn= ———dug = - duy,
=S ) costn) uo = > csc(n) sec(n) dug
d&3 = cos(n)uz dn +sin(n) dus,

d&y = —sin(n)ug dn + cos(n) duy,
dé; = du; for j=1,2,5,6,...,2n+2.

Thus we obtain

53 = dn /\05,3

4
= > (=Dgdnnder A AdEG A N dEs
j=1

= sin(n) cos(n) (ul dnduydus dug — uzdnduy dus duy
+usdnduy duydug — ugdnduy duy du3)
1
= E(ul dugdur dus dug — ur dugduy dus dug +uzdugduy dur duy

—ug dugduy duy du3),
and similarly, for alln > 0

Ol i= d1 A O¢ 2p+1
2n+2
= > (=D gdn nds A AdEF A A dEdn
j=1

1 2n+2
=3 Z(—l)]_lujduodul Ao ANdujp AN Aduop.
j=1
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3.3. The as term and quadric surfaces in P3. We consider here the first term v (o, a1, @2),
defined as in (2.15) in Lemma 2.3. We show that the differential form Y («, o1, @2)53,
written in the algebraic coordinates of (3.1), is an algebraic differential form over Q,
defined on the complement of a quadric surface. We first introduce some preliminary
notation. .

Let Z be a projective hypersurface in PV ~!. In the following we denote by Z the
affine cone over Z in AN, and by CZ the projective cone over Z in PV . We also denote
by CZ the affine cone in AN*! of CZ.

Consider the set of rational functions of the form

P(uo, uy, uz, u3, us, o, ay, o)

, 35
azrué(l —uo)™ (Ut +a~2(u3 +u3 +ui))t )

where
P(ug, uy, up, uz, ug, a, oy, @) = Py o) (Uo, U1, Uz, u3, ug, )

are polynomials in Q[uq, uy, uz, u3, u4, @, oy, @] and where r, k, m and £ are non-
negative integers.
We then obtain the following characterization of the differential form Y5 («, a1, 002) 3.

Theorem 3.4. Consider affine coordinates (ug, uy, uz, u3, us) € A, a € G, and
(ag, ) € A2, Consider the complement

AS < (HyU H, UCZy). (3.6)
in the affine space A> of the union of two affine hyperplanes
Hy={ug=0} and H; = {ug=1} 3.7

and the hypersurfacefzy defined by the vanishing of the quadratic form

Qw2 = ut +a 2(us +u3 +u3). (3.8)

There is a 2-parameter (a1, o) family of algebraic differential forms

Q) (U0s UL, U2, U3, UL) = flay ) (Mo, UL, U2, U3, Us, &) O3(Uo, UL, U2, U3, Us),
(3.9
defined on the complement (3.6), with f(a, .« Q-linear combinations of rational func-
tions of the form (3.5), such that the differential form V1 (a, oy, ap)03, written in the
coordinates (3.1) satisfies

To(o, a1, o2, ug, 1, Uz, u3, us) 03 (U, Uy, U2, U3, Ug) = 27, (uo, w1, uz, uz, ug).
(a1,a2)

Proof. We have seen in Lemma 3.3 that the form o3 (uo, u1, uz, u3, us) is an algebraic
differential form on A’ defined over Q. The explicit form of the density tr(o_4(, 7, £))
is reported in (5.1) in the Appendix. The corresponding density b_4(¢, 1, &) is obtained
from tr(o—4(t, n, §)) of (5.1) by eliminating all the terms with odd exponents of §; in the
numerator. In particular, we see by direct inspection of (5.1) and of the associated density
b_4(t, 1, £), using elementary trigonometric identities for cot(27), csc()), tan(n) and
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cot?(2n), that the density Y2 (a (1), a’(t), a” (1), n, &) is a sum of fractions involving even
powers of the &; variables, and integer powers of the expressions

2, & Eeslp gisec’(n o, 1
S ar T T T e T aan

1 _
cot?(n) = —2

(u% + u% + uﬁ),

2 1 2
, csc’(n) =—, sec’(n) = ,
) 1 —up

with the quadratic polynomial in the denominator. Thus, when expressed in the algebraic
coordinates, each summand in

Ya(o, oy, 02, uo, U1, U2, U3, Ug)
is a rational function of the form (3.5), hence the result follows. O
The quadratic form (3.8) determines a quadric surface Z, in P3, in fact a pencil of

quadric surfaces depending on the parameter & € G,,. The affine hypersurface CZ, in
A’ is the affine cone over the projective cone CZ, in P*.

3.4. Density Yoy in algebraic coordinates. We now consider the following terms y»;, (¢,

af,...,a,) for all n > 1, and we obtain inductively a general expression for the
densities

T2n((¥7 oy ooy 052;1, 140, ceey u2n+2)-
Theorem 3.5. The term Yy, («, a1, ..., ®2,), written in the algebraic coordinates of

(3.1), satisfies

Ton(e, p, ..., 004, Ug, ..., U2ps2)
M, P uﬂl./ uﬁz./‘ uﬁzmz,j
0,1,/ /2“1 2 T o2
= ciamug (1 = ugyha! 7
j=1 Qa,Zn
kO,' kl,j k2n,j
X oY al ...azn s (310)

where
LT e S 2 2
Qa,2n =up + a_2(u2 +M3 +M4) +l/l5 + .. +M2n+2,
and with coefficients and exponents

ciom €Q,  Ponj.Boo,j ko,j € Z,
Bl,js s Bons2,js Pj2ns k1, js . kon,j € Zxo.

Proof. We need to compute the homogeneous term 0_2,,_2(A2_n1). Using (2.14) and
considering the independence of the symbols from the variables ¢; and ¢», we obtain
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-1
o285 = (24 @+ -+ las) = s, G
o,zn
with the quadratic form
1
Quin = u%+@(u%+u§+ui)+u§+---+u5n+2. (3.12)

Then the desired 0_2,-2(A,, 1) can be calculated recursively using Corollary 2.2. In
expressing the result of (2. 14) in the algebraic coordinates (3.1), note that in general,
for a smooth function f of the variables (¢, 1, £), using the notation

f(t’ 7%&11%‘27 -~-1§2n+2) = f(t’u07ulvu2v ~'-»M2n+2)»

we have the identities

atf—atf aéjf—aujf j=12

Oy f =2y uo(1 — uop) auof —u3

0 B f + g amf (3.13)

Combining (2.14), the result for the term o_4 discussed in Theorem 3.4 and in the
Appendix, and the change of variables of (3.13), one can see by induction that (3.10)
holds as stated. O

Theorem 3.5 above shows that Yy, («, a, ..., &2,), in the form (3.10) is a ratio-
nal expression in /ug, /1 — ug, U1, ..., Uan42, @, &1, ..., a2, In order to prove that
v (o, a1, ..., ay) 1s an integral of a rational differential form, we need to show that
in fact only terms with even powers of ,/ug and +/1 — ug contribute nontrivially in
the calculation of y», (@, 1, ..., a2,). This will then be used to show that the integral
expression (2.15) for y», (o, a1, ..., ®2,) is equal to the integral of a rational differen-
tial form in ug, uy, ..., uzp42, @, o1, ..., a2, over a Q-semialgebraic set. We need a
preliminary observation, which we state in the next subsection.

3.5. Integration on the unit cosphere bundle. The claim that only terms with 8 1, ;. Bo,2, j
€ 27 in the summation of (3.10) contribute nontrivially to the computation of the term
Yo, (a, ay, ..., atp,) can be proved as follows.

Consider the unit cosphere of the metric in the cotangent fibre. This is given by the
locus {£ : |£]3 =1}, with

g cscP(mE sec?(n)é]

2 2 2 2
&l = &7 + + + +&5+-- -+
S g El a(t)2 a(l‘)2 a(t)z 55 §2n+2
1
=ul+ @i +ui+ud) +ud+ 3. (3.14)
o

Proposition 3.6. The integral of the density tr(0_2,—2) - O¢ 2041 ON the unit sphere is
equal to the integral on the unit cosphere of the metric in the cotangent fibre,

/2 , tr(c_2,-2) - 0%, 2n+1 =/ tr(c_2,-2) - O, 2n+1-
Yt E=1 lg12=1
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Proof. Fixing a point (x, x') = (¢, 0, 1, ¢, x') € M x T?"72 the differential form
tr(0_2,—2) 0¢, 2241 on the Euclidean space R2m+2 ~ T(’;yx,)(M X 'IFZ"_Z) is a closed
differential form of degree 2n + 1, since tr(o_3,—2) is homogeneous of order —2n —2 in
& e R2*2 gee Proposition 7.3, page 265 of [12]. Therefore, using the Stokes theorem,
the integral of this differential form over the unit sphere |£| = 1 is the same as its integral
over the cosphere of the metric in the cotangent fibre given by |& |§, = 1, since as closed
cycles these two loci are homologous. O

This proposition in particular shows that the formula (2.7), which was devised in [7]
to prove arationality result elegantly, provides a significantly straightforward method for
calculating the functions y», and consequently the heat coefficients ay,. This is mainly
due to the fact that over the unit cosphere of the metric we have Qy2, = 1, and the
expression (3.10) restricts to a polynomial in the variables of the cotangent fibre, whose
coefficients depend on the affine variables «, o1, . .., a2, and trigonometric functions
in the coordinate 1 of the manifold. The following parametrization of the unit cosphere
of the metric and the expression (3.17) written in the proof of Proposition 3.8 illuminate
the simplicity of this method as well as its potential for finding a general formula for
the full heat expansion. It should be noted that the heat coefficients ag, as, . .., aj» were
previously calculated by different methods: the terms up to ajop were calculated in [3]
by using the Feynman—Kac formula and the Euler—Maclaurin formula, and the terms
up to aj» were calculated in [9] using the parametric pseudodifferential calculus which
involves highly complicated expressions and integrations.

We parametrize the cosphere |§], = 1 by writing

§1 = sin(Y2p41) sin(Y2,) - - - sin(P2) cos(Y1),
& = asin(You41) sin(Ya,) - - - sin(2) sin(yr),

& = ‘ sin(Y2n41) Sin(Yr2y) - - - sin(y3) cos(2),
cse(n)

& = ‘ sin(Yrau+1) sin(yrz,) - - - sin(rg) cos(¥r3), (3.15)
sec(n)

&5 = sin(Y2u41) sin(Yrzy) - - - sin(Ys) cos(4),
&6 = sin(Y2u41) sin(Yra,) - - - sin(yYg) cos(¥s),

&opr1 = sin(Y2u41) cos(Yray),

Eony2 = cos(Y¥2n41)s

with the variables ¥/, ..., ¥2,+1 having the following ranges:
O<vy1<2m, O<yp<m, O<iyz<m ..., 0<iouy <m.

Lemma 3.7. In the parameterization (3.15) of the unit cosphere |§|, = 1, the density
tr(0_2,—2) O¢, 2n+1 IS given by the expression

M,
. . . . ok konj . ) .
sin(n) cos(1) Z [cj,zn abrivbsitbathos o Mg sinfoni (i) cosPo2d (i)
j=1
2n+1 .
cos1 (1) sin (yy) [ (sin o)~ Eim1 s cos yoy oty Ly s - diranan.
=2

(3.16)
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Proof. Using the parameterization (3.15), over the cosphere |§|, = 1 we have

2n+2
Ot 2n4l = Z(—l)'/_lri:j WS /\6751' A ANdEpan
j=1
= o sin(n) cos(n) sin(Y2) sin®(Y3) - - - sin® (Yaue1) dy dra - - - dirapa.

Combining this form with the expression given by (3.10), we obtain (3.16). O

Proposition 3.8. Only terms with even powers of \/ug and /1 — uq contribute nontriv-
ially in the expression of Yo, (, a1, ..., a2y) in (3.10).

Proof. By exploiting symmetries of the Robertson—Walker metric and its consequent
isometry group, it is shown in Lemma 1 of [9] that the local density that integrates to the
term ap, has a spatial independence. This fact, together with Lemma 3.7, implies that
the following expression is independent of the variable 7:

1
— tr(0-2n—2) O, 2n+1
sin(n) cos(n) Jyg o1 D ORI
- k k
= ch,Zn djon aPritBsitBaitho o M2 sinfoL (i) cosP02 (i), (3.17)
j=1

where

2
djon = / cosPi () sini (Y1) gy x
0

2n+1

e T
x / dyry - / st [ (sin )™ 5= B (cos )Pt
0 0

=2

We now exploit the independence from 7 of the sum in (3.17) to show that only the
terms in (3.10) for which By,1, j and Bo,2, j are both even integers contribute in the compu-
tation of y2, (o, aq, ..., a2,). We prove this by showing that, if for some coefficients c;
and some integers y; and v}, a finite summation of the form > i€ sin”/ (n) cos¥/ (n) is
identically equal to a non-zero constant, or without loss in generality equal to 1, then all
the exponents y; and v; are even integers, and possible terms with odd exponents have
to inevitably cancel each other out. Since 1 varies between 0 and /2, this is equivalent
to saying that if

e =) =1, se(0.1),
J

then all y; and v; are even integers and all other terms cancel.

First observe that replacing s in the above equation by s; = (1 — s2)!/? shows that
our claim is symmetric with respect to exchanging the y; and v;, hence it suffices to
show that all y; are even integers. We decompose the summation on the left-hand-side
of the above identity and write

D g, 5T (1= s7)%el2 4 e Ve (1= 572 =1, 5 €(0,1),
Jo Je
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where for each term in the first summation either y;, or v;, is odd, and in the second
summation the y;, and v;, are even integers. Therefore we have

chu sVio (1 — s2)Vio/2 = 1 — ch sVie (1 — s2)Viel2 5 (0, 1),
Jo Je

and we proceed by considering the binomial series of the two sides of this equation.
Since the series of the right-hand-side has only even powers of the variable s € (0, 1),
it follows that the terms on left-hand-side whose y;, are odd cancel each other out,
therefore with no loss in generality we can assume all the y;, are even, which implies
that all the v}, have to be odd integers. Now by making the replacement 51 = (1 — s2)/2
we are led to

D e, A —shYiol2sie = 1= "¢ (1= sp)Vel?s) 51 €(0,1).
o Je

Finally we compare the binomial series in s; of the two sides of this equation: since the
series of the right-hand-side has only even exponents and all the v;, on the left side are
odd integers, we conclude that

cho (1 —s3)7io/? s;}j" =0, s1€(O1D.
Jo

O

Remark 3.9. By a simple argument based on integration by parts, one can find a recursive
formula for the trigonometric integrals that describe the coefficients d; >, appearing in
the expression (3.17). Thus, these coefficients can be computed easily by algebraic
calculations. Moreover, the fact that the expression (3.17) is independent of the variable
n is a strong indication that there is a relation between the exponents and the coefficients
appearing in this expression, further studies of which can potentially reveal important
information.

3.6. Algebraic differential forms. We obtain the following generalization of Theorem 3.4
for the densities Yo, (¢, a1, ..., a2y, UQ, . . ., UDpt2).

Definition 3.10. Let R5,, be the set of rational functions given by @ linear combinations
of terms of the form

P uﬁl,j uﬁz,j o u,B2n+2,j
MOO,I,/ (1- Mo)ﬁo'z’j 1 2 2n+2

Pj2n
Qa,Zn

o k1 kon, j
O[ko,,w1 J "'O[2nn/’

where

1
2 2,2, 2 2 2
Qauon =up+ — WUy +uz+uy) +us+---+uy,,,

with Bo.1,j, Bo,2,j- ko,j € Zand By j, ..., Pons2,j» Pj2ns k1,js - - s kon,j € Z>.
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Theorem 3.11. Consider affine coordinates (ug, .. ., ums) € A3, o € G, and
(a1, ..., a2,) € A" Consider the algebraic variety, defined over Q, given by the
complement

A2 (HoU H{ UCZy2n), (3.18)

where Hy and Hy are hyperplanes defined as in (3.7) andfzx,z,, is the hypersurface in
A>3 defined by the vanishing of the quadratic form Qg 2, with o € G,,(Q) regarded
as a fixed parameter. There is a 2n-parameter family of algebraic differential forms

Q‘E‘al ’’’’’ o)’ defined over Q, with parameters (a1, . . ., az,) € A*(Q), such that
Qo) U0, -+ U2142) = flar, ) (U0, - - oy Uons2, @) Topa1 (U, - -, u2n+23),19
where the rational functions f(q,,.  a,) belong to the set Ra, of Definition 3.1((), am;
with the property that
Youn(o, 01, ooy Q2p, UQ, - ooy U2p42) = flay, . ann) (HOs -+ 5 UDp42, ). (3.20)

Proof. The statement follows directly from Theorem 3.5 and Proposition 3.8. O

3.7. Semi-algebraic sets and periods. Let K be a number field. A K-semialgebraic set
is a subset S of some R” that is of the form

S={(x1,....,xp) €R" : P(x1,...,x,) >0}, (3.21)

for some polynomial P € K[xy, ..., x,], or obtained from such sets by taking a finite
number of complements, intersections, and unions. A semialgebraic set S in an algebraic
variety X is a finite number of complements, intersections, and unions of subsets that,
in a set of algebraic local coordinates have the form (3.21).

Aperiodis anintegral |, ¢ S2of aK-algebraic differential form 2 over a K-semialgebraic
set S in an algebraic variety X defined over the number field K, see [13].

The theory of periods and motives of algebraic varieties constrains the type of numbers
that can occur as periods on an algebraic variety X in terms of the motive m(X), see
[13]. In the rest of the paper we identify explicitly the periods and motives associated to
the terms ay,, of the heat kernel expansion.

We first show that the density y»(«, 1, a2) associated to the coefficient ay of the
heat kernel expansion is a period and we identify the corresponding motive.

Theorem 3.12. The term y> (o, a1, «0p) is a period integral given by
v, ar,00) = C '/A Q.0 (3.22)
4
with the algebraic differential form of Theorem 3.4, with domain of integration the

Q-semialgebraic set

2 2 2 2
_ 5 . uy +usy+uouz + (1 —uguy =1,
Ay = {(uo,ul,uz,u3,u4) e A’R) : O<ui<l, fori=0,1.2 , (3.23)
and with a coefficient C in Q[(2mi)~']. This integral is a period of the mixed motive
m(AS < (CZ, U Hy U Hy), X), (3.24)

wherefzx is the hypersurface in A> defined by the vanishing of the quadric Qa2 of
(3.8), Ho, Hy are the hyperplanes (3.7), and ¥ = U; ,H, 4 is the divisor given by the
union of the hyperplanes H; , = {u; = a}, withi € {0, 1,2} and a € {0, 1}.
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Proof. We have

1 /2
v(at),d (1), a" (1)) = Wf dn/ d3E -b_a(t, 1, &) - 0%, 3
T=Jo E7+ES+ET+E

1
=3 2/ Ta(a(t), a'(t),a"(t),n,§)63(n, §).  (3.25)
7= Jo.5)xs?

By Lemma 3.3 and Theorem 3.4, after changing coordinates as in (3.1), for the case

n = 1, we rewrite the form Y5 («, a1, @2)03 as the algebraic differential form Q¢ ()"

Correspondingly, the domain of integration (,&) € (0, %) x S* is transformed in
the algebraic coordinates into the Q-semialgebraic set (3.23). Thus, with a coefficient
= (872)~ ! in Q[(27i)~'], we rewrite (3.25) as (3.22).

To identify the associated motive, notice that the forms Q¢ are defined on the

(a1,02)
complement in A’ of the union of the hyperplanes Hy and H; and the hypersurface
CZ, given by the vanishing of the quadric Q4 of (3.8). Thus, the Q (@).cp) ATE @ tWO-
parameter family (depending on the parameters («j, a2) of algebraic dlfferennal forms
on the algebraic variety A3 (C Zy U Hy U Hy). The domain of 1ntegrat10n Agisnota
closed cycle: it has a boundary d A4 which is contained in the union of the hyperplanes
H; . ={u; = a}, withi € {0, 1,2} and a € {0, 1}. Thus, the period corresponds to the
relative motive m(A> \ (E'-ZX U HyU Hy), ), where the divisor X is the union of these
hyperplanes, ¥ =U; ,H;,. O

Remark 3.13. The singular locus CZq U Hy U H, of the algebraic differential form and
the divisor ¥ containing the boundary of the domain of integration A4 have nonempty
intersection along Hy U H;. However, unlike the case of quantum field theory where the
intersection of the boundary of the domain of integration with the graph hypersurface
is the source of infrared divergences, here we know a priori that the integral (3.22) is
convergent, and so are all the other analogous integrals for the higher order ay, terms,
as one can see by computing them in the original spherical coordinates. Thus, we do not
have a renormalization problem for these integrals.

We have a similar result for the terms y», (o, a1, . .., 002,).

Theorem 3.14. The term y, (o, &1, . .., &2y,) is a period integral given by

,,,,,

yon(o, ap, ..., 00) :C'/ le ay
Aoy

of the algebraic differential form le o (uo, u1, ..., ums2) of Theorem 3.11, defined
on the algebraic variety A3 @,Zn U Hy U Hy), with domain of integration the
Q-semialgebraic set

2n+2
u%+u%+u0u3+(l—u0)u4+2" 2 =1

A = AZH(R) -
2n+2 (o, ..., ups2) € (R) O<u <1, i=0.1.2.56, 2n+2

(3.26)

and with a coefficient C € QIL@mi)~ Y. The associated motive is the relative mixed
motive

m(A¥"* < (Ho U H UCZg0). )
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where ¥ is a divisor in A*"*3 consisting of a union of hyperplanes ¥ = Ui.aHi g with
i=0,1,2,5,6,...,2n+2anda =0, 1, with H; , = {u; = a}. This divisor X contains
the boundary 0 Aay, of the domain of integration.

Proof. We have

1

8 L+n \/(,7‘ S)E(O,%)sz’”]
1

87T1+n [ﬂ» E)E(O,%)XSZ"“
Yon(a(t),d'(t),...,a®" (1), n, &) Gans1 (0, &).

Passing to the algebraic coordinates of (3.1), the domain of integration

yanla(t),d ), ...,a®" 1) = tr(0_2n—2) Fons1

(1. &) € (0, %) x S+l

is transformed into the QQ-semialgebraic set (3.26), while by Theorem 3.5 the density
Yo (e, ay, ..., 00, 1, &) 0241 (n, &) is transformed into the algebraic differential form

Q(al ..... azﬂ)(”Oa co Upy). O

Again, as mentioned in Remark 3.13, the integrals are all convergent, hence there is
no renormalization problem caused by the intersection of the boundary of the domain
of integration with the singular set of the algebraic differential form.

4. The Motives

In this section we analyze the motives associated to the periods obtained from the coef-
ficients ay, of the spectral action. We are considering a family of quadrics

1
2 2, 2., .2 2 2
Quon =uj+ — Uy +uz+ug) +us+---+uy,,, 4.1)

where « is a (rational) parameter. These define quadric hypersurfaces Z, 2, in 2
We will also be considering the projective cone CZy 2, in [P2"*+2 and the affine cone
CZgy2n in the affine space AZn+3,

4.1. Pencils of quadrics. A quadratic form Q on a vector space V determines a quadric
Zgo C P(V). Given two quadratic forms Q1 and Q> on V, a pencil Zg of quadrics in
P(V) is obtained by considering, foreachz = (A : u) € P!, the quadric Z g, defined by
the quadratic formA Q1+ Qs. Let 29 = {(z, u) € PIxP(V) : u e Zgp,} C Pl xP(V).
In particular, we can view the quadrics Z, 2, defined by the quadratic forms Qg 2,

of (4.1) as defining a pencil of quadrics in P! x P?*! with A/u = «?. Namely, we
regard the quadric Z, 7, as part of the pencil of quadrics 25, = {Z; 2,},¢p1, defined by
Ocon = Aud +ud+- - +ud, o) + 3 +ul +ud), (4.2)

forz = (A : ) € P'. The quadric Z; 2, becomes degenerate over the set X = {0, 1} C
P!, where it reduces, in the case A = 0 to a projective cone Zg, 2, = Cc?=1B; over
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the conic B| = {u% + u% + ui = 0} in P2, and in the case 1 = 0 to a projective cone

Z0,om = C3 B, over the quadric B = {u% + u% +o ”%n+2 =0}in P2"=2 There is a
correspondence, as in Sect. 10 of [1],

(Pl > HD2”+1) N Ap— P2+l (ZQ1‘211 N ZQZ‘Zn)

|

]Pl

where the horizontal map is an A!-fibration and the vertical map is the projection to
z = (A : ) € PL. By homotopy invariance, we can identify H>"*2((P! x P?"*1)\ 25,)
with the Tate twisted H"*1 (P> \ (Z g, 20 0 Zg,.20))(—1).

4.2. Motives of quadrics. The theory of motives of quadrics is a very rich and interesting
topic, see [16,18,19]. We recall here only a few essential facts that we need in our
specific case. Suppose given a quadratic form Q on an n-dimensional vector space V
over a field K of characteristic not equal to 2. For our purposes, we will focus on the
case where K = Q. We write (ay, ..., a,) for the matrix of Q in diagonal form. The
quadratic form H := (1, —1) is the elementary hyperbolic form. A quadratic form Q
is isotropic if H is a direct summand, hence Q = H L Q’. It is anisotropic otherwise.
Any quadratic form can be written in the form Q = d -H L Q’, where Q' is a uniquely
determined anisotropic quadratic form. The integer d is the Witt isotropy index of Q.
Given an anisotropic quadratic form Q over the field K, there is a tower of field extensions
K; = K(Q), Ky = Ki(Q1), ..., Ky = Ks—1(Qs-1), such that over K; the quadric
Olk, = di -H L Q1, with Q1 anisotropic; over Ky the quadric Q1|k,d> - H L Q»,
with O anisotropic, and so on, until Q; = 0. The tower of extensions Ky, ..., K is
the Knebusch universal splitting tower, and dy, . . ., dy are the Witt numbers of Q.

Let Zp be the quadric defined by the quadratic form Q over K. For a hyperbolic
quadratic form Q = d - H of dimension 2d, the motive of Z is given by (see [19])

m(Zgw) = Z(d — 1)[2d —2]1®Z(d — 1)[2d — 2] & b Z(H[2i],  (4.3)
i=0,....d—2.d,...,2d -2

where Z = m(Spec(K)). In the case where Q = d - H L (1) in dimension 2d + 1, the
motive of Z is given by (see [19])

m(Zmi) = @ ZoI2il (4.4)

Given a quadric Zg, we denote by Z ) the variety of i-dimensional planes on the
quadric Zp. As in [19], we write X for the associated simplicial scheme (Definition

2.3.1 of [19]) and m(X:) for the corresponding object in the category DM (K) of
motives.

We also recall the following result (see Proposition 4.2 of [19]) that will be useful
in our case. Let Zg C P+l pe a quadratic form of dimension m = 2n over K, such
that there exists a quadratic extension K(4/a) of K over which Q is hyperbolic. Then
the motive m(Z ) decomposes as a direct sum

m; @ my(1)[2] m =2 mod 4

m(Zo) = {ml ®Rox ®m(D[2] m=0 mod 4 4-3)
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where the motive m; is an extension of the motives m(X: ) ()[2i] and m(X ¢ ) (dim(Q) —
£)[2dim(Q) — 2/£], for i (respectively, £) ranging over all even (respectively, odd) num-
bers less than or equal to 2[dim(Q)/4]. The motive we denote by R k is a form of a
Tate motive, which is denoted by R,k = K(v/det(0))(2%€)[dim(Q)] in [19].

If Q is d-times isotropic, Q = d -H L Q’, then m(Xgpj) = Zforall0 < j <.
Thus, the motives m(X;) become Tate motives in a field extension in which the quadric
becomes isotropic, and one recovers the motivic decomposition into a sum of Tate
motives mentioned above. The motives m(X,;) are therefore forms of the Tate motive,
which means that over the algebraic closure m(Xy|g) = Z.

4.3. Grothendieck classes. 1t is often convenient, instead of working with objects in
the category of mixed motives, to consider a simpler invariant given by the class in
the Grothendieck ring of varieties, which can be regarded as a universal Euler char-
acteristics. The Grothendieck ring Ko(Vi) of varieties over a field K is generated by
the isomorphism classes [X] of smooth quasi-projective varieties X € Vi with the
inclusion-exclusion relations [X] = [Y] + [X \ Y] for closed embeddings ¥ C X and
the product [X x Y] = [X] - [Y]. The following simple identities will be useful in the
computations of Grothendieck classes of the motives involved in the period computations
described in the previous sections.

Lemma 4.1. Let Z be a projective subvariety Z C PN=1, with Z C AN the affine cone.

Let CZ denote the projective cone in PN and CZ the corresponding affine cone in AN,
Let H and H' be two affine hyperplanes in AN*' with H N\ H' = @ and such that the

intersections CZ N H and CZ N H' are sections of the cone, given by copies of Z. The
Grothendieck classes of the projective and affine complements satisfy

(H[AN < Z]= L - D[PV 7]

(2) [AN* CZ] = (L — D[PY « CZ]

(3)[CZ]=L[Z]+1

@) [AN CZ] = LM (L — D[Z] - L

(5) [AN*1 < (CZUH U H")] = LN*! —2ILN — (L — 2)(L — 1)[Z] — (L — 2),

where I = [A] is the Lefschetz motive, the class of the affine line.

Proof. The first and second identities follow from the fact that the class of the affine
cone is given by [Z] = (L — 1)[Z] + 1, so that
N_ % N LN —1)
A"\ Z]=L" - L-D[Z]-1=L - D(——— —[Z]
L-1
=L - D[PV -27].

The identity [CZ] = L [Z] + 1 follows by viewing the projective cone over Z as the
union of a copy of Z and a copy of the affine cone Z over Z, and using the same identity

[2 1 = (L — 1)[Z] + 1 for the affine cone. The fourth identity follows from the second
and the third,

L-DPY~czZl=L" —1—@L-D[czZ)=L""—1-L-DIL[Z]+1)
=LN! — (@12 -L)Z]-L.
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For the last identity, we write
AN (CZUHUH)=L""' —[CZUHUH.
The class of the union is given by
[CZUHUH'|=[CZ|+[HUH']—[CZN (HUH].
Since H N H' = 4, we have [H U H'] = 2N and [CZ N (H U H")] = [CZ N H] +
[CZNH'l1=2[Z] =2(L — 1)[Z] + 2. Thus, we have
ANV (CZUHUH)] = LN —2LN —[CZ]+2(L — D[Z] +2
=LV 2LV —L(L — D[Z] - L+2@L - D[Z]+2
=LV 2N — (L —2)(L — DH[Z] — (L —2).

4.4. Pencils of quadrics in P3. 'We look first at the case of the quadric Z, = Zy2in P3
that arises in the computation of the a, term of the heat kernel expansion.

Over C, any quadric surface Z in IP3 can be put in the standard form XY = ZW by
a simple change of coordinates. Thus, over C any quadric surface in 3 is isomorphic
to the Segre embedding P! x P! < P3. When we consider quadrics over Q, this is no
longer necessarily the case.

Theorem 4.2. For « € Q, over the quadratic extension K = Q(«/—1), the quadric
Zoy = Zyp in IP3 is isomorphic to the Segre embedding P' x P! < P3. The class of
the complement in the Grothendieck ring is [P3 \ Zy] = > — L, while the class of

the affine complement offzx is [AD \a] =1L — L* — L3 + L2 The class of the
complement A3~ (CZq U Hy U Hy) with the affine hyperplanes Hy = {ug = 0} and
Hy = {ug = 1} is given by

[AS . (CZy, UHyUH;)] =L5 — 314 + L3 + 3% — 2L.

Proof. Over the quadratic extension K = (i) we can consider the change of variables
i i i . i )
X=ui+—up, Y=u1——uy, Z=—(usz+iug), W=—(u3z—iuy),
o o o o

where we assume that o € Q. This change of coordinates determines the identification
of Z, with the Segre quadric {XY — ZW = 0} ~ P! x P!

The classes in the Grothendieck ring are then given by [Z, ] = [P! xP'] = (L+1)? =
L?+2L+1,sothat [PP \ Zg] =L3+L?+L+1— (L?+2L + 1) = L’ — L. We then
use Lemma 4.1 to compute the class [AS ~. CZ,]. We have

[A°\ CZy] = L5 —L(L — 1)[Zs] - L
=L -L-LL-D)L+1D)?>=L>-L*-1L3+1L2
We then use the last identity of Lemma 4.1 to compute

[A° < (CZ, UHyUH;)] =1L —2L* — (L —2)(L — 1)[Zy] — (L —2)
=L 2L —L-2)L-D@L+1)*=@L-2)
=15 —3L*+ L3 +3L% - 2L.
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Theorem 4.3. Over the quadratic extension K = Q(v/—1), the motive
m(AS < (CZ, U Hy U Hy), %)
is mixed Tate.

Proof. Over K = Q(+/—1), the quadric Qy, for a € Q, satisfies

Qulg/=n =2-H

hence the motive is given by (4.3) as
m(Zy) = Z ® Z()[2]1 ® Z(D[2] ® Z(2)[4] = m(P! x P)

where m(P!) = Z & Z(1)[2]. This corresponds to the Grothendieck class [Z,] =
1+2L+12

The Gysin distinguished triangle of the closed embedding Z, < P of codimension
one gives

m(P? < Z,) — m(P) - m(Zy)(D[2] = mP> ~ Z,)[1],

hence if two of the three terms are in the triangulated subcategory of mixed Tate motives,
the third term also is. This implies that m(P3 \ Z,) is mixed Tate.

When passing to the projective cone CZ, in P*, since P* . CZ, — P3 \ Z, is an
Al-fibration, by homotopy invariance we have m{ P*CZy) = mg 72(]}”3 N Zg)(—1),
where we consider here the motive mg with compact support that corresponds to the

cohomology H/. Thus, if the motive m(P3 . Z) is mixed Tate, then so is the motive
m(P* . CZy).

In passing from the motive m(P* < CZ,) to the motive m(A5 < CZ «), consider the
P!-bundle P compactification of the G,,-bundle 7 = A3 ~ CZy > X =P CZ,
and the Gysin distinguished triangle

m(7) - m(P) - m. (P~ 7)*(D[2] - m(D)[1],

see [20], p. 197. The motive of a projective bundle satisfies m(P) hence m(P) is mixed
Tate, since m(X) is. The motive m.(P ~\. 7) is also mixed Tate since 7 ~. 7 consists of
two copies of X, hence the remaining term m(7) is also mixed Tate.

We then consider the union of CZ Z and the affine hyperplanes Hy = {uo = 0} and
Hy = {up = 1} in the affine space AS In order to check that the motive of the union
CZ Zy U Ho U Hj is mixed Tate suffices to know that the motives m(A5 ~ (Ho U Hy))
and m(A5 ~ CZD,) as well as the motive of the intersection m(CZ N (Hop U Hy)) are
mixed Tate. This follows by applying the Mayer-Vietoris distinguished triangle

mUNV)>mU)dm(V) > mUUV) - mUNV)[1]

with U = AS ~ 6‘2 and V = A5 ~ (Hyp U H;). This shows that it suffices to know
two of the three terms are mixed Tate to know the remaining one also is. The motive
m(Ad CZa) is mixed Tate by our previous argument. The motive m(A> ~. (Ho U H1))
is also mixed Tate by a similar argument, since m(Hy U Hy) clearly is. Thus, it suffices
to show that the motive m(A> ~ (CZy N (Ho U Hy)) is mixed Tate, which can be
shown by showing that the motive m(CZ N (HpU Hy)) is mixed Tate. The intersection
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ﬁa N (Hp U Hy) consists of two sections of the cone, hence one has two copies of the

motive m(fa) that is also a Tate motive.

The divisor ¥ in A is a union of coordinate hyperplanes and their translates, and is
also mixed Tate. Thus, the motive m(A> < (C ZyN(HpU Hyp), X) sits in a distinguished
triangle in the Voevodsky triangulated category of mixed motives over QQ, where two
of the three terms, m(A> ~ (CZy N (Hy U U Hj)) and m(X), are both mixed Tate. This
implies that the remaining term m(A5 ~ (C Zy N (HyU Hy), X) is also mixed Tate. O

4.5. The Grothendieck class of P?"~1 < Zyon over K = Q(4/—1). We proceed with
an inductive argument to compute the Grothendieck class [P2n—1 Zy.2,] for all the
quadrics Z, , determined by the quadratic forms

1
QO[,ZVL == Ml+_2(u2+u3+u4)+u5+ué+"'+u2’l 1+u2” 25 (4.6)

for all n > 3.

Theorem 4.4. Over the quadratic field extension K = Q(«/—1) the quadric Zy 2, has

Grothendieck class [P*"*! \ Zy 0] = 12! — 1. The affine complement offzx,zn
has class

[A2n+3 \E-Zx,Zn] — [L2n+3 _2n+2 2 ol
and the affine complement of the unionfzy,zn U Hy U Hj has class
[A2n+3 N @,Zn U Ho U Hy)] = [2n+3 _ g 2n+2 Lo 2n+l _nt2 L g ntl _ oy
Proof. Over the field K = Q/—1) the change of coordinates
X = ugpt1 +iugns2, Y = uopse1 — iuons2
puts Qg2 in the form
Quon = Qa2n—2(U1, ..., u) + XY.

Thus, the Grothendieck class [20[,2,1] is a sum of a contribution corresponding to Y # 0,
which is of the form (L — 1)L?" and a contribution from ¥ = 0, which is of the form
L[Zy.n—1]. This gives

[A2n+2 N Zol,Zn] — L2n+2 _ 2]L2n+1 + ]LZH + IL[A2" ~ 20{,21’!—2]7
hence using the relation between the classes of the affine and projective complements,
[P\ Zg 2] = L (L — 1) + LIP*" ' \ Zg 20-2]-
Assuming inductively that [p2—1 Zyon—2] = L27=1 — 1"~1 we indeed obtain that
the class of the complement is [P2n+] Zyon] = L2n -1+ IL(ILz”_1 — L =
L2l — ", We then have

[Za,20] = [P*"*1] = [P\ Zy 0]
=L+ L2 L 42 L 4 4 L2 L+ 1
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Using Lemma 4.1, we obtain

[AY™ N CZa2] = L' —L(L = D[Za2a] ~ L

n 2n+1
— L2”+3 o ]Lj o Ln+] _ 2Ln+2 o Lj _ L2n+2
2n+1
+Z]LJ +2L™ L Y LI
j=2 Jj=n+3

— L2n+3 + Ln+1 _ Ln+2 _ L2n+2

We proceed in the same way for the computation of the class of the affine complement
of the union CZ, >, U Hy U Hy, using Lemma 4.1. We have

[A*" N (CZa20 U Ho U H)] = L2 = 212" — (L = 2)(L — D[Za,20]— (L — 2)
and using again the expression
[(Zaon] =L + L2 g L 42 L e L2+ L+ 1
we obtain
(L —2)(L — D[Zg 2] =2 — L+2L" — 3L + L2 — oL+ 4 L2142
due to cancellations of terms similar to the previous case. We then have

L2 2122 — (L = 2)(L ~ D[ Za2nl = (L~ 2)
— ]L2n+3 _ 3L2n+2 + 2L2n+1 _ Ln+2 + 3]Ln+1 _ 2]Ln7

which agrees with the case n = 1 computed in Theorem 4.2. O
We then obtain an analog of Theorem 4.3, proved by a similar argument.
Proposition 4.5. Over the field extension K = Q(+/—1), the mixed motive
m(AY* \ (CZy2, U Ho U H)), T)
is mixed Tate.

Proof. The argument is completely analogous to Theorem 4.3, using the fact that, over
K = Q(+/—1) the quadratic form is

Qa,2n|@(\/f]) =(n+1) -H,

with (4.3) giving the motive m(Qy. 2, |Q( f)) The motives of complements, and pro-

jective and affine cones and the relative motives m(AZ3 CZ Zy2n, ) and m(AZ3
(CZy2n U HyU Hyp), X) are then obtained as in Theorem 4.3. O
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4.6. The motive of Zy 2, over Q. Over the rationals, the quadratic form Q 2, is anisotro-
pic, although, as we have seen, it becomes isotropic over the field extension K =

QW/—1), with Qaonlg=t) = (n+1)- H. The motive of Zy 2, over Q(+/—1) is

a sum of Tate motives

M(Za20|K) = Z(n)[2n] @ Z(n)[2n] & @ Z(i)[2i],

i=0,....n—1,n+1,..2n

which corresponds to the Grothendieck class [Zy 2,] = [P2n+1] — P2+l Zoon] =
T4+ L2 @ — L) = 1+L 4+ + L1 421" + L™ 4 ... 4+ L2, Over
the field Q, the motive of Z, 2, is given by (4.5), with

mM(Zy,2nlQ) = m1 © my(1)[2]
when 7 is odd and

m(Za2nlg) = m1 @ Ro,qn & mi(D[2]

when 7 is even, where R @,, is a form of a Tate motive denoted by Rp q,n =

Q(/det(Qq.27))(n)[2n] in [19]. When passing to the quadratic field extension Q(+/—1)

these motivic decompositions become the decomposition into Tate motives given above.

Remark 4.6. The periods y», (o, o1, . .., a2,) associated to these mixed Tate motives
depend on the affine parameters «, o1, . . ., &p,. The heat kernel coefficients are obtained
as a further integration

an =/Vzn(a(t),a/(t),...,a(z”)(t))dh
R

which corresponds to restricting the affine parameters (¢, oy, ..., ®2,;) to a real curve
(a(t),d' @),...,a®@®)). Clearly, for an arbitrary choice of the real curve a(¢), the time
integration cannot be expected to retain the property of being a period in the algebro-
geometric sense. However, for particular choices of the scaling factor a(¢) this property
may be satisfied. The question of identifying a set of suitable time dependences (suitable
relations between the affine parameters o and «; along areal curve) can be approached by
considering natural (differential) equations that the periods y», (¢, 1, . . . , @2,) should
satisfy. Indeed, one expects that periods of families of algebraic varieties satisfy natural
differential equations, like the Picard—Fuchs equations for periods of families of curves.
In this setting, we expect an overall consistency between the appropriate differential
equations for the y»,, coming from the fact that the ay, are all coefficients of the heat
kernel. This question will be investigated in forthcoming work.
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5. Appendix: Explicit Density for the a, Coefficient

We use the formula (2.7) in the special case of r = 0 to calculate the term a; appearing
in the heat kernel expansion (2.6). In this case we have

a4y = ﬁRes ((DZ)*l) ,

where (D?)~! denotes the parametrix of D?. In order to use the formula (2.8), since
the dimension of the manifold is 4, we need to calculate the term o_4(x, &) that is
homogeneous of order —4 in the expansion of the symbol of (D?)~!. By performing
symbolic calculations we find the following explicit expression.

tr(o—4(r, 1, §))

B 32 ccn?(n)s;3 esct(n) 32522532 csc*(n)
“(t)() ('51 a(t)z Cgca_((z])7251 seca<(z')7;§4 ! a(’)6 (‘51 u<z>2 * “iﬁ@% + sei((g;s}y
. 32&¢a’ (1)? esc*(n) 8?;‘32 esct ()
a0 (5 + ke + S )1 s (4 8 4 T o s
192£267d (1)? csc4(n) 384 cot(n)sl £§7d (1) esc* ()
oo (e e S oo (s e i)
B 192 cot® ()§5 €5 esc () 384sec(n>slszs§sfa’(r>csc3<n)
o (6 e ) (6 )
64 cotz(n)é2 53 cscz(n) 16 cot(r]) cot(2r1)%‘32 cscz(n)
a6 e ) (g1 i
384 sec (n)5253 £2 csc?(n) 64522&‘ a’'(1)% csc(n)
Cany (é R “22((,’)’254)5 a(n)s (sl R RLLaU “ﬁfﬁ,’}?ﬂ‘*
4sza/<t>2csc2<n> 64sec2<n>s§s '(1)* esc? ()
o (e s e (e 2
48 Cot(n)élézé a' (1) ese? () 8s§a”<z) ese? (i)
a(ty? (sl R “22((,’)’254)4 a(t? (sl A AL
cscz(n) 12 cotz(n).;%2 cscz(n)

) 2
2 cse (n)Eg sec2 ()€}
a(t) (51 a(,)z FIOY a()?

) 4 4 SCmE | se?mE] ) 3
a(t) <§1 a(,)z 1) + )2

3251 2e2a" (1) esc® (i) 485125251/(1)2 csc2(n)
csc2<n>s secz(n)s csc?(mEd | secX(mé]
a(t)% <$1 a(t)z a([)2 3 a(,)z 4 ) 4 a(t)4 (“;:1 (Z)Z + 2 + 4 4

a(t)? a(t)?
96 COt(2U)§1§2§ a'(t) esc? ()

96 cot(n) cot(2n)§22$32 cscz(n)
5 cscz(n)ég secz(n)&
a(t) <‘§1 207t e a(r)?

. 6 esc?(NEF | sec?(NE] 4
a0 (E‘ a<z>2+ a0’ Tau?
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64 sec2(n)s§a% csc? ()

38451 525 24’ ()2 esc?(n)

“(’)6 (51 a(t)z +CSC:(Y)]§%2 +%> a(t)é <51 a(t)2 +Csiz<(z7;;§3 +Sef((rr)2ﬁ)5
384 secz(n)s%sfsz (1)? esc? () 384 cot(n)a&;s;a'm cse? ()

a(l)ﬁ (Sl a(r>2 CSC:((;;;& + Sef((r;]f})s ! (E‘ a<z>2 CSC;([?;% + wigﬁ)s
3845663(77)51&2&3 a'(r) esc(n) 320562(2n)$2

ay’ <§1 a<t>2 csij(ir)g% %Cazé,)]zm)s (t)< a<t>2 ngz((zr)g% Sezz((tr)];$}> ’

. 32 sec4(n)§22§f 32 sec4(n)§4 tan® ()

o0 (5 25 ) (7o e e

. 64 sec? (n)&7&2 tan® () 325 "(1)?

s (51 + o + 2 “6355,3254)4 a0 (6 + 56 + S 4 =T )

. 32sect(mEfa’ (1)? 45 2a'(1)?

a(r)® (sh;;)z + 2008 “;2(5;254)4 a(t)! (s + 5 oong “Cj(isz)3

. 4sec?(n)Eza(1)? 64sec2(n)$2 24/ (1)?

aw (5 + 5 + 250 *e;;;;;&)s a0 (6 + 56 + S 4 =)

. 3d’(1)2 . 96 cot(2n) sec? ()&5 &2 tan(n)

e T
384sec4(n)slszs;‘tan(n)a’(r) 384sec2(n>sls§a%tan(n)a/(r)

o7 (6ol + S a7 (o)

. 8522a”(z) 8 secz(n)éfa"(t)

O G R G e

. 6a" (t) B sec?(n)

e R (R k

B 4 B 24&2a" (1)

a2 (6 + 2+ S 0 )2 g (24 Hr e 2o

_ 125261’(02 16cot(2n)$1$2a’(t)

o (ST S o (5 S )

16 cot? (2n)&2 8 sec*(n)€7
_“(’ ) (5 Pt ;:7)2 + CSC:((;;;532 + %) a(?* (‘51 a(r)2 + “22((3;%2 + %) ’
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_ 12 secz(n)éf tan2(17) B 16 cot(2n) sec2(n)§f tan(n)
a@)* <$12+ aff)z + Csf((:)’;%z Sef((,')’ig‘%)3 a(r)* (El a(z)2 + Csi(f)’f’ 5622(57)7354)3
B 32&7&5a" (1) B 325e02(7l)$1 £la //(f)
w0 (6 g - 2+ ) (6 T =)
B 486774 (1)? - 48 sec’(n)&lela’ (1)?
o0 (5 a2 ) (e S )
B 96 cot(zmsls;a/(t) ~ 9600t(2n) sec?(é1&67a’ (1)
o (&0 e+ S5 O s (g e S o)
48 secz(mslszsf tan(n)a’ (1) B 192515 ya'(1)?
oo e e =) o ( et )
192 sec4(n)§12§4a/(t)2 B 384 sec2(n)gl2522§ a'(t)?
o it e ) oo (o T )
192 sec“(n)sgg;‘ tan® (1) 5.1)

3 csc?(mEF | sec?(DE] \ 5
a(t) <$1 a(t)2 + a([)2 + a([)Z

The density b_4(t, n, §) is obtained from tr(o_4(¢, 1, £)) above by eliminating all terms
with an odd exponent of &; in the numerator.
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