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ABSTRACT
In this work we consider online decision-making in settings where
players want to guard against possible adversarial attacks or other
catastrophic failures. To address this, we propose a solution concept
in which players have an additional constraint that at each time step
they must play a diversified mixed strategy: one that does not put
too much weight on any one action. This constraint is motivated by
applications such as finance, routing, and resource allocation, where
one would like to limit one’s exposure to adversarial or catastrophic
events while still performing well in typical cases. We explore prop-
erties of diversified strategies in both zero-sum and general-sum
games, and provide algorithms for minimizing regret within the
family of diversified strategies as well as methods for using taxes
or fees to guide standard regret-minimizing players towards diversi-
fied strategies. We also analyze equilibria produced by diversified
strategies in general-sum games. We show that surprisingly, requir-
ing diversification can actually lead to higher-welfare equilibria,
and give strong guarantees on both price of anarchy and the social
welfare produced by regret-minimizing diversified agents. We addi-
tionally give algorithms for finding optimal diversified strategies in
distributed settings where one must limit communication overhead.
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1 INTRODUCTION
A common piece of advice when one needs to make decisions in
the face of unknown future events is “Don’t put all your eggs in one
basket.” This is especially important when there is potential for an
adversarial attack or catatrophic failure. In this work, we consider
game-theoretic problems from this perspective. We design online
learning algorithms for achieving good performance subject to such
exposure-limiting constraints on behavior, and analyze the effects of
these constraints on the expected value obtained (in zero-sum games)
and the overall social welfare produced (in general-sum games).

As an example, consider a standard game-theoretic scenario: an
agent must drive from point A to point B and has n different routes it
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can take. We could model this as a game M where rows correspond
to the n routes, columns correspond to m possible traffic patterns,
and entry M(i, j) is the cost for using route i under traffic pattern
j. However, suppose the agent is carrying valuable documents and
is concerned an adversary might try to steal them. In this case, to
reduce the chance of this happening, we might require that no route
have more than (say) 10% probability. The agent then wants to
minimize expected travel time subject to this requirement. Or in an
investment scenario, if rows correspond to different investments and
columns to possible market conditions, we might have an additional
worry that perhaps one of the investment choices is run by a crook.
In this case, we may wish to restrict the strategy space to allocations
of funds that are not too concentrated.

To address such scenarios, for ϵ ∈ [ 1n , 1] let us define a probability
distribution (or allocation) P to be ϵ-diversified if P(i) ≤ 1

ϵn for all
i. For example, for ϵ = 1

n this is no restriction at all, for ϵ = 1
this requires the uniform distribution, and for intermediate values
of ϵ this requires an intermediate level of diversification. We then
explore properties of such diversified strategies in both zero-sum
and general-sum games as well as give algorithmic guarantees.

For zero-sum games, definevϵ to be the minimax-optimal value of
the game in which the row player is restricted to playing ϵ-diversified
mixed strategies. Natural questions we address are: Can one design
adaptive learning algorithms that maintain ϵ-diversified distribu-
tions and minimize regret within this class so they never perform
much worse than vϵ ? Can a central authority “nudge” a generic
non-diversified regret-minimizer into using diversified strategies via
fines or taxes (extra loss vectors strategically placed into the event
stream) such that it maintains low-regret over the original sequence?
And for reasonable games, how much worse is vϵ compared to the
non-diversified minimax value v? We also consider a dual problem
of producing a strategy Q for the column player that achieves value
vϵ against all but an ϵ fraction of the rows (which an adversary can
then aim to attack).

One might ask why not model such an adversary directly within
the game, via additional columns that each give a large loss to one
of the rows. The main reason is that these would then dominate the
minimax value of the game. (And they either would not have values
within the usual [0, 1] range assumed by regret-minimizing learners,
or, if they were scaled to lie in this range, they would cause all
other events to seem roughly the same). Instead, we want to consider
learning algorithms that optimize for more common events, while
keeping to the constraint of maintaining diversified strategies. We
also remark that one could also make diversification a soft constraint
by adding a loss term for not diversifying.

We next consider general-sum games, such as routing games and
atomic congestion games, in which k players interact in ways that
lead to various costs being incurred by each player. We show that



surprisingly, requiring a player to use diversified strategies can actu-
ally improve its performance in equilibria in such games. We then
study the ϵ-diversified price of anarchy: the ratio of the social cost
of the worst equilibrium subject to all players being ϵ-diversified to
the social cost of the socially-best set of ϵ-diversified strategies. We
show that in some natural games, even requiring a small amount of
diversification can dramatically improve the price of anarchy of the
game, though we show there also exist games where diversification
can make the price of anarchy worse. We also bring several threads
of this investigation together by showing that for the class of smooth
games defined by Roughgarden [25], for any diversification param-
eter ϵ ∈ [ 1n , 1], the ϵ-diversified price of anarchy is no worse than
the smoothness of the game, and moreover, players using diversified
regret-minimizing strategies will indeed approach this bound. Thus,
we get strong guarantees on the quality of interactions produced by
self-interested diversified play. Finally, we consider how much diver-
sification can hurt optimal play, showing that in random unit-demand
congestion games, diversification indeed incurs a low penalty.

Lastly, we consider an information-limited, distributed, “big-data”
setting in which the number of rows and columns of the matrix M is
very large and we do not have it explicitly. Specifically, we assume
the n rows are distributed among r processors, and the only access
to the matrix M we have is via an oracle for the column player
that takes in a sample of rows and outputs the column player’s best
response. What we show is how in such a setting to produce near
optimal strategies for each player in the sense described above, from
very limited communication among processors.

In addition to our theoretical results, we also present experimental
simulations for both zero-sum and general-sum games.

1.1 Related Work
There has been substantial work on design of “no-regret” learn-
ing algorithms for repeated play of zero-sum games [7, 10, 15].
Multiplicative Weight Update methods [2, 21] are a specific type
of no-regret algorithm that have received considerable attention in
game theory [15, 16], machine learning [11, 15], and many other
research areas [1, 20], due to their simplicity and elegance.

We consider the additional constraint that players play diversified
mixed strategies, motivated by the goal of reducing exposure to
adversarial attacks. The concept of diversified strategies, sometimes
called “smooth distributions”, appears in a range of different areas
[12, 17, 20]. [9] considers a somewhat related notion where there is a
penalty for deviation from a given fixed strategy, and shows existence
of equilibria in such games. Also related is work on adversarial
machine learning, e.g., [13, 18, 27]; however, in this work we are
instead focused on decision-making scenarios.

Our distributed algorithm is inspired by prior work in distributed
machine learning [4, 11, 14], where the key idea is to perform weight
updates in a communication efficient way. Other work on the impact
of adversaries in general-sum games appears in [3, 5, 6].

2 ZERO-SUM GAMES
We begin by studying two-player zero-sum games. Recall that a
two-player zero-sum game is defined by a n ×m matrix M . In each
round of the game, the row player chooses a distribution P over the
rows of M , and the column player chooses a distribution Q over the

Algorithm 1 Multiplicative Weights Update algorithm with Re-
stricted Distributions

Initialization: Fix a γ ≤ 1
2 . Set P (1) to be the uniform distribution.

for t = 1, 2, . . . ,T do
(1) Choose distribution P (t )

(2) Receive the pure strategy jt for the column player
(3) Compute the multiplicative update rule

P̂
(t+1)
i = P

(t )
i (1 − γ )M (i, jt )/Z (t )

where Z (t ) =
∑
i P

(t )
i (1 − γ )M (i, jt ) is the normalization

factor.
(4) Project P̂ (t+1) into Pϵ

P (t+1) = argmin
P ∈Pϵ

RE(P ∥ P̂ (t+1))

end for

columns of M . The expected loss of the row player is

M(P ,Q) = PTMQ =
∑
i, j

P(i)M(i, j)Q(j),

where M(i, j) ∈ [0, 1] is the loss suffered by the row player if the row
player plays row i and the column player plays column j. The goal
of the row player is to minimize its loss, and the goal of the column
player is to maximize this loss. The minimax value v of the game is:

v = min
P

max
Q

M(P ,Q) = max
Q

min
P

M(P ,Q).

2.1 Multiplicative Weights and Diversified
Strategies

We now consider row players restricted to only playing diversified
distributions, defined as follows.

Definition 2.1. A distribution p ∈ ∆n is called ϵ-diversified if
maxi pi ≤ 1

ϵn .

Let Pϵ be the set of all ϵ-diversified distributions, and let vϵ be
the minimax value of the game subject to the row player restricted
to playing in Pϵ . Note that the range of ϵ is between 1/n and 1. It
is easy to verify that Pϵ is a convex set. As a result, the minimax
theorem applies to Pϵ [26], and we call the minimax value vϵ :

vϵ = min
P ∈Pϵ

max
Q

M(P ,Q) = max
Q

min
P ∈Pϵ

M(P ,Q).

The multiplicative weights update algorithm [19, 21] can be nat-
urally adapted to maintain diversified strategies by projecting its
distributions into the class Pϵ if they ever step outside of it. This is
shown in Algorithm 1. By adapting the analysis of [19] to this case,
we arrive at the following regret bound.

THEOREM 2.2. For any 0 < γ ≤ 1/2 and any positive integer T ,
Algorithm 1 generates distributions P (1), . . . , P (T ) ∈ Pϵ to responses
j1, . . . , jT , such that for any P ∈ Pϵ ,∑T

t=1M(P (t ), jt ) ≤ (1 + γ )
∑T
t=1M(P , jt ) +

RE(P ∥P (1))
γ ,

where RE(p ∥ q) =
∑
i pi ln(pi/qi ) is relative entropy.

By combining Algorithm 1 with a best-response oracle for the
column player, and applying Theorem 2.2 and a standard argument
[2, 16] we have:



THEOREM 2.3. Running Algorithm 1 for T steps against a best-
response oracle, one can construct mixed strategies P̄ and Q̄ s.t.

max
Q

M(P̄ ,Q) ≤ vϵ + ∆T and min
P ∈Pϵ

M(P , Q̄) ≥ vϵ − ∆T ,

for ∆T = 2
√

ln(1/ϵ )
T , where P̄ = 1

T
∑T
t=1 P

(t ) and Q̄ = 1
T
∑T
t=1 jt .

PROOF. We can sandwich the desired inequalities inside a proof
of the minimax theorem as follows:

min
P ∈Pϵ

max
Q

M(P ,Q) ≤ max
Q

M(P̄ ,Q) = max
Q

1
T

T∑
t=1

M(P (t ),Q)

≤
1
T

T∑
t=1

max
Q

M(P (t ),Q) =
1
T

T∑
t=1

M(P (t ), jt )

≤ min
P ∈Pϵ

1 + γ
T

T∑
t=1

M(P , jt ) +
ln(1/ϵ)
γT

≤ min
P ∈Pϵ

M(P , Q̄) + γ +
ln(1/ϵ)
γT

≤ max
Q

min
P ∈Pϵ

M(P ,Q) + γ +
ln(1/ϵ)
γT

If we set γ =
√

ln(1/ϵ )
T , then ∆T = γ +

ln(1/ϵ )
γT = 2

√
ln(1/ϵ )
T . The

two inequalities in the theorem follow by skipping the first and the
last inequalities from the proof above, respectively. □

The next theorem shows that the distribution Q̄ in Theorem 2.3
is also a good mixed strategy for the column player against any
row-player strategy if we remove a small fraction of the rows.

THEOREM 2.4. By running Algorithm 1 for T steps against a
best-response oracle, we can construct a mixed strategy Q̄ such that
for all but an ϵ fraction of the rows i, M(i, Q̄) ≥ vϵ − γ . Moreover

we can do this with at most T = O
(

log(1/ϵ )
γ 2(1+γ−vϵ )

)
oracle calls.

PROOF. We generate distributions P (1), . . . , P (T ) ∈ Pϵ by using
Algorithm 1. Let jt be the column returned by the oracle with the
input P (t ). After T =

⌈
log(1/ϵ )

γ 2(1+γ−vϵ )

⌉
+ 1 rounds, we set the mixed

strategy Q̄ = 1
T
∑T
t=1 jt . Set E = {i |M(i, Q̄) < vϵ − γ }. Suppose for

contradiction that |E | ≥ ϵn. Let P = uE , the uniform distribution on
E and 0 elsewhere. It is easy to see that uE ∈ Pϵ , since |E | ≥ ϵn.

By the assumption of the oracle, we havevϵT ≤
∑T
t=1M(P (t ), jt ).

In addition, by Theorem 2.2, we have

T∑
t=1

M(P (t ), jt ) ≤ (1 + γ )
T∑
t=1

M(P , jt ) +
RE(P ∥ P (1))

γ
.

For any i ∈ E,
∑T
t=1M(i, jt ) = T ·M(i, Q̄) < (vϵ − γ )T . Since P is

the uniform distribution on E, we have
∑T
t=1M(P , jt ) < (vϵ − γ )T .

Furthermore, since |E | ≥ ϵn, we have

RE(P ∥ P (1)) = RE(uE ∥ u) ≤ ln(1/ϵ).

Putting these facts together, we get vϵT ≤ (1+γ )(vϵ −γ )T + ln(1/ϵ )
γ ,

which implies T ≤
ln(1/ϵ )

γ 2(1+γ−vϵ )
, a contradiction. □

Algorithm 2 Multiplicative Weights Update algorithm with Inter-
ventions

Initialization: Fix a γ ≤ 1
2 . Set P (1) to be the uniform distribution.

for t = 1, 2, . . . ,T do
(1) Choose distribution P (t )

(2) Receive the pure strategy jt for the column player
(3) Compute the multiplicative update rule

P
(t+1)
i = P

(t )
i (1 − γ )M (i, jt )/Z (t )

where Z (t ) =
∑
i P

(t )
i (1 − γ )M (i, jt ) is the normalization

factor.
(4) While P (t+1) is not (1−γ )ϵ-diversified, run multiplicative

update (Step 3) on fake loss vector ℓ defined as:

ℓi =
 1 if P (t+1)i > 1

(1−γ )ϵn
0 if P (t+1)i ≤ 1

(1−γ )ϵnend for

2.2 Diversifying Dynamics
Algorithm 1 and Theorem 2.2 show that it is possible for a player
to maintain an ϵ-diversified distribution at all times while achiev-
ing low regret with respect to the entire family Pϵ of ϵ-diversified
distributions. However, suppose a player, who say is allocating an
investment portfolio among n investments, does not recognize the
need for maintaining a diversified distribution and simply uses the
standard multiplicative-weights algorithm to minimize regret. For ex-
ample, the player might not realize that the matrix M only represents
“typical” behavior of investments, and that a crooked portfolio man-
ager or clever hacker could cause an entire investment to be wiped
out. This player might quickly reach a dangerous non-diversified
portfolio in which nearly all of its weight is just on one row.

Suppose, however, that an investment advisor or helpful authority
has the ability to charge fees on actions whose weights are too high,
that can be viewed as inserting fake loss vectors into the stream of
loss vectors observed by the player’s algorithm. We show here that
by doing so in an appropriate manner, this advisor or authority can
ensure that the player both (a) maintains diversified distributions, and
(b) incurs low regret with respect to the family Pϵ over the sequence
of real loss vectors. Viewed another way, this can be thought of as
an alternative to Algorithm 1 with slightly weaker guarantees but
that does not require the projection. The algorithm remains efficient.

THEOREM 2.5. Algorithm 2 generates distributions P (1), . . . , P (T )

such that

(a) P (t ) ∈ P(1−γ )ϵ for all t , and

(b) for any P ∈ Pϵ we have
T∑
t=1

M(P (t ), jt ) ≤ (1 + γ )
T∑
t=1

M(P , jt ) +
RE(P ∥ P (1))

γ
.

PROOF. For part (a) we just need to show that the while loop
in Step 4 of the algorithm halts after a finite number of loops. To
show this, we show that each time a fake loss vector is applied, the
gap between the maximum and minimum total losses (including
both actual losses and fake losses) over the rows i is reduced. In



particular, the multiplicative-weights algorithm has the property that
the probability on an action i is proportional to (1 − γ )L

i
total where

Litotal is the total loss (actual plus fake) on action i so far; so, the
actions of highest probability are also the actions of lowest total
loss. This means that in Step 4, there exists some threshold τ such
that ℓi = 1 for all i of total loss at most τ and ℓi = 0 for all i of
total loss greater than τ . Since we are adding 1 to those actions of
total loss at most τ , this means that the gap between the maximum
and minimum total loss over all the actions is decreasing, so long
as that gap was greater than 1. However, note that if P (t+1) is not
(1 − γ )ϵ-diversified then the gap between maximum and minimum
total loss must be greater than 1, by definition of the update rule and
using the fact that ϵ ≤ 1. Therefore, the gap between maximum and
minimum total loss is strictly reduced on each iteration (and reduced
by at least 1 if any row is ever updated twice) until P (t+1) becomes
(1 − γ )ϵ-diversified.

For part (b), define L
alд
actual =

∑T
t=1M(P (t ), jt ) to be the actual

loss of the algorithm and define LPactual =
∑T
t=1M(P , jt ) to be the

actual loss of some ϵ-diversified distribution P . We wish to show
that Lalдactual is not too much larger than LPactual . To do so, we begin
with the fact that, by the usual multiplicative weights analysis, the
algorithm has low regret with respect to any fixed strategy over the
entire sequence of loss vectors (actual and fake). Say the algorithm’s
total loss is L

alд
total = L

alд
actual + L

alд
f ake and the total loss of P is

LPtotal = LPactual + L
P
f ake . We know that

L
alд
total ≤ (1 + γ )LPtotal +

RE(P ∥P (1))
γ ,

which we can rewrite as:

L
alд
actual + L

alд
f ake ≤ (1 + γ )LPactual + (1 + γ )L

P
f ake +

RE(P ∥P (1))
γ .

Thus, to prove part (b) it suffices to show that Lalдf ake ≥ (1+γ )LPf ake .
But notice that on each fake loss vector, for each index i such that
ℓi = 1, the algorithm has strictly more than 1

(1−γ )ϵn >
1+γ
ϵn proba-

bility mass on row i. In contrast, P has at most 1
ϵn probability mass

on row i, since P is ϵ-diversified. Therefore L
alд
f ake ≥ (1 + γ )LPf ake

and the proof is complete. □

This analysis can be extended to the case of an advisor who only
periodically monitors the player’s strategy. If the advisor monitors
the strategy every k steps, then in the meantime the maximum prob-
ability that any row i can reach is 1

(1−γ )k ϵn . So, part (a) of Theorem

2.5 would need to be relaxed to P (t ) ∈ P(1−γ )k ϵ . However, part (b)
of Theorem 2.5 holds as is.

2.3 How close is vϵ to v?
Restricting the row player to play ϵ-diversified strategies can of
course increase its minimax loss, i.e., vϵ ≥ v. In fact, it is not hard
to give examples of games where the gap is quite large. For example,
suppose the row player has one action that always incurs loss 0, and
the remaining n−1 actions always incur loss 1 (whatever the column
player does). Then v = 0 but for ϵ ∈ [ 1n , 1], vϵ = 1 − 1

ϵn .
However, we show here that for random matrices M , the gap

between the two is quite small. I.e., the additional loss incurred due

to requiring diversification is low. A related result, in a somewhat
different model, appears in [22].

THEOREM 2.6. Consider a random n × n game M where each
entry M(i, j) is drawn i.i.d. from some distribution D over [0, 1]. With

probability ≥ 1 − 1
n , for any ϵ ≤ 1, we have vϵ −v = O

(√
logn
n

)
.

PROOF. Let µ = Ex∼D [x] be the mean of distribution D. We
will show that v and vϵ are both close to µ. To argue this, we
will examine the value of the uniform distribution Punif for the row
player, and the value of the uniform distributionQunif for the column
player. In particular, notice that v ≥ mini M(i,Qunif ) because Qunif
is just one possible strategy for the column player, and by definition,
v = mini M(i,Q∗) where Q∗ is the minimax optimal strategy for
the column player, and the row player’s loss under Q∗ is greater
than or equal to the row player’s loss under Qunif since the column
player is trying to maximize the row player’s loss. Similarly, vϵ ≤

maxj M(Punif , j) since Punif is just one possible diversified strategy
for the row player, and by definition vϵ = maxj M(P∗, j) where P∗

is the minimax optimal diversified strategy for the row player and
the row player is trying to minimize loss. So, we have

min
i

M(i,Qunif ) ≤ v ≤ vϵ ≤ max
j

M(Punif , j).

Thus, if we can show that with high probability mini M(i,Qunif ) and
maxj M(Punif , j) are both close to µ, then this will imply that v and
vϵ are close to each other.

Let us begin with Punif . Notice that M(Punif , j) is just the average
of the entries in the jth column. So, by Hoeffding bounds, there
exists a constant c such that for any given column j,

Pr
[
M(Punif , j) > µ + c

√
logn
n

]
≤ 1

2n2 ,

where the probability is over the random draw of M . By the union
bound, with probability at least 1 − 1

2n , this inequality holds simul-
taneously for all columns j. Since Punif is ϵ-diversified, as noted
above this implies thatvϵ ≤ µ+c

√
(logn)/n with probability at least

1 − 1
2n .

On the other hand, by the same reasoning, with probability at least
1 − 1

2n the uniform distribution Qunif for the column player has the

property that for all rows i, M(i,Qunif ) ≥ µ − c

√
logn
n . This implies

as noted above that v ≥ µ − c

√
logn
n . Therefore, with probability at

least 1 − 1
n , vϵ −v ≤ 2c

√
logn
n as desired. □

3 GENERAL-SUM GAMES
We now consider k-player general-sum games. In general-sum games,
players each wish to maximize their own payoff, and these may not
be opposites of each other even with k = 2. Instead of minimax
optimality, the natural solution concept now is a Nash equilibrium.

We begin by showing that unlike zero-sum games, it is now
possible for the payoff of a player at equilibrium to actually be
improved by requiring it to play a diversified strategy. This is a bit
peculiar because constraining a player is actually helping it.

We then consider the relationship between the social cost at equi-
librium and the optimal social cost, when all players are required to
use diversified strategies. We call the ratio of these two quantities



the diversified price of anarchy of the game, in analogy to the usual
price of anarchy notion when there is no diversification constraint.
We show that in some natural games, even requiring a small amount
of diversification can significantly improve the price of anarchy of
the game, though there also exist games where diversification can
make the price of anarchy worse. Finally, we bring several threads
of this investigation together by showing that for the class of smooth
games defined by Roughgarden [25], for any diversification parame-
ter ϵ ∈ [ 1n , 1], the ϵ-diversified price of anarchy is no worse than the
smoothness of the game, and moreover that players using diversified
regret-minimizing strategies (such as those in Sections 2.1 and 2.2)
will indeed approach this bound.

3.1 The Benefits of Diversification
First, let us formally define the notion of a Nash equilibrium subject
to a (convex) constraint C, where C could be a constraint such as
“the row player must use an ϵ-diversified strategy”.

Definition 3.1. A set of mixed strategies (P1, . . . , Pk ) is a Nash
equilibrium subject to constraint C if no player can unilaterally
deviate to improve its payoff without violating constraint C. We will
just call this a Nash equilibrium when C is clear from context.

We now consider the case of k = 2 players, and examine how
requiring the row player to diversify can affect its payoff at equi-
librium. For zero-sum games, the value vϵ was always no better
than the minimax value v of the game, since constraining the row
player can never help it. We show here that this is not the case for
general-sum games: requiring a player to use a diversified strategy
can in some games improve its payoff at equilibrium.

THEOREM 3.2. There exist 2-player general-sum games for
which a diversification constraint on the row player lowers the
row player’s payoff at equilibrium, and games for which such a
constraint increases the row player’s payoff at equilibrium.

PROOF. Consider the following two bimatrix games (entries here
represent payoffs rather than losses):

Game A : 2, 2 1, 1
1, 1 0, 0 Game B : 1, 1 3, 0

0, 0 1, 3

In Game A, the unique Nash equilibrium has payoff of 2 to each
player, and requiring the row player to be diversified strictly lowers
both player’s payoffs. On the other hand, diversification helps the
row player in Game B. Without a diversification constraint, in Game
B the row player will play the top row and the column player will
therefore play the left column, giving both players a payoff of 1.
However, requiring the row-player to put probability 1

2 on each row
will cause the column player to choose the right column, giving the
row player a payoff of 2 and the column player a payoff of 1.5. □

Routing games [24] are an interesting class of many-player games
where requiring all players to diversify can actually improve the
quality of the equilibrium for everyone. An example is Braess’ para-
dox [8] shown in Figure 1. In this example, k players need to travel
from s to t and wish to take the cheapest route. Edge costs are given
in the figure, where ke is the number of players using edge e. At
Nash equilibrium, all players choose the route s-a-b-t and incur a
cost of 2. However, if they must put equal probability on the three

𝑏

𝑠

𝑎

𝑡

1

0

1

𝑘𝑠,𝑎/𝑘

𝑘𝑏,𝑡/𝑘

Figure 1: Braess’ paradox. Here, k players wish to travel from
s to t , and requiring all players to use diversified strategies im-
proves the quality of the equilibrium for everyone.

routes they can choose from, the expected cost of each player ap-
proaches only 1

3 (
2
3 + 1) +

1
3 (

2
3 +

2
3 ) +

1
3 (1 +

2
3 ) = 1 + 5

9 . Thus, even
though from an individual player’s perspective, diversification is a
restriction that increases robustness at the expense of higher aver-
age loss, overall, diversification can actually improve the quality of
the resulting equilibrium state. In the next section, we discuss the
social cost of diversified equilibria in many-player games in more
detail, analyzing what we call the diversified price of anarchy as
well as the social cost that results from all players using diversified
regret-minimizing strategies.

3.2 The Diversified Price of Anarchy
We now consider structured general-sum games with k ≥ 2 players.
In these games, each player i chooses some strategy si from a strat-
egy space Si . The combined choice of the players s = (s1, . . . , sk ),
which we will call the outcome, determines the cost that each player
incurs. Specifically, let costi (s) denote the cost incurred by player
i under outcome s, and let cost(s) =

∑k
i=1 costi (s) denote the over-

all social cost of s. Let s∗ = argminscost(s), i.e., the outcome of
optimum social cost. The price of anarchy of a game is defined as
the maximum ratio cost(s)/cost(s∗) over all Nash equilibria s. If the
price of anarchy of a game is low, then it means that all Nash equi-
libria have social cost that is not too much worse than the optimum.

We can analogously define the ϵ-diversified price of anarchy:

Definition 3.3. Let s∗ϵ denote the outcome of optimum social
cost subject to each player choosing an ϵ-diversified strategy. The ϵ-
diversified price of anarchy is the maximum ratio cost(sϵ )/cost(s∗ϵ )
over all outcomes sϵ that are Nash equilibria subject to all players
playing ϵ-diversified strategies.

Note that for any game, the 1-diversified price of anarchy equals
1, because players are all required to play the uniform distribution.
This suggests that as we increase ϵ , the ϵ-diversified price of anarchy
should drop, though as we show, in some games it is not monotone.

3.2.1 Examples. As a simple example, in consensus games,
each player i is a distinct node in a k-node graph G. Players each
choose one of two colors, red or blue, and the cost of player i is
the number of neighbors it has of color different from its own. The
social cost is the sum of the players’ costs, and to keep ratios finite
we add 1 to the total. The optimal s∗ is either “all blue” or “all red”



in which each player has a cost of 0, so the social cost is 1. However,
if the graph is a complete graph minus a matching, then there exists
an equilibrium in which half of the players choose red and half the
players choose blue. Each player has k

2 − 1 red neighbors and k
2 − 1

blue neighbors, so the social cost of this equilibrium is Θ(k2). This
means the price of anarchy is Θ(k2). However, if we require players
to play ϵ-diversified strategies for any constant ϵ > 1

2 (i.e., they
cannot play pure strategies), then for anym-edge graph G, even the
optimum outcome has cost Ω(m) since every edge has a constant
probability of contributing to the cost. So the diversified price of
anarchy is O(1).

As another example, consider atomic congestion games [23].
Here, we have a set R of resources (e.g., edges in a graph G) and
each player i has a strategy set Si ⊆ 2R (e.g., all ways to select a path
between two specified vertices in G). The cost incurred by a player
is the sum of the costs of the resources it uses (the cost of its path)
and what makes this a game is that the cost of a resource depends
on the number of players using it. Specifically, each resource j has
a cost function c j (kj ) where kj is the number of players who are
using resource j. The cost functions c j could be increasing, such
as in packet routing where latency increases with the number of
users of an edge, or decreasing, such as players splitting the cost of a
shared printer. When examining diversified strategies, we sometimes
view players as making fractional choices, such as sending half
their packets down one path and half of them down another. The
quantity kj then denotes the total fractional usage of resource j (or
equivalently, the expected number of users of that resource).

Non-monotonicity. An example of an atomic congestion game
where some diversification can initially increase the price of anarchy
is the following. Suppose there are four resources, and each player
just needs to choose one of them. The costs of the resources behave
as follows:

c1(k1) = 1, c2(k2) = 5, c3(k3) = 6/k3, c4(k4) = 6/k4.

Assume the total number of players k is at least 13. The optimal
outcome s∗ is for all players to choose resource 3 (or all choose
resource 4) for a total social cost of 6. The optimal ϵ-diversified
outcome for ϵ = 1

2 (i.e., each player can put weight at most 1
2 on any

given resource) is for all players to put half their weight on strategy
3 and half their weight on strategy 4, for a total cost of 12. The
worst Nash equilibrium is for all players to choose strategy 1, for
a total cost of k, giving a price of anarchy of k/6. However if we
require players to be ϵ-diversified for ϵ = 1

2 , there is now a worse
equilibrium where each player puts half its weight on strategy 1 and
half its weight on strategy 2, for a total cost of 3k and a diversified
price of anarchy of 3k/12 = k/4. So, increasing ϵ from 1

4 up to 1
2

increases the price of anarchy, and then increasing ϵ further to 1 will
then decrease the price of anarchy to 1.

3.2.2 General Bounds. We now present a general bound on
the diversified price of anarchy for games, as well as for the social
welfare when all players use diversified regret-minimizing strate-
gies such as given in Sections 2.1 and 2.2, using the smoothness
framework of Roughgarden [25].

Definition 3.4. [25] A general-sum game is (λ, µ)-smooth if for
any two outcomes s and s∗,

k∑
i=1

costi (s
∗
i , s−i ) ≤ λ cost(s∗) + µ cost(s).

Here, (s∗i , s−i ) means the outcome in which player i plays its action
in s∗ but all other players play their action in s.

THEOREM 3.5. If a game is (λ, µ)-smooth, then for any ϵ , the
ϵ-diversified price of anarchy is at most λ

1−µ .

PROOF. Let s = sϵ be some Nash equilibrium subject to all play-
ers playing ϵ-diversified strategies, and let s∗ = s∗ϵ be an outcome
of optimum social cost subject to all players choosing ϵ-diversified
strategies. Since s is an equilibrium, no player wishes to deviate to
their action in s∗; here we are using the fact that s∗ includes only
ϵ-diversified strategies, so such a deviation would be legal. Therefore
cost(s) ≤

∑k
i=1 costi (s

∗
i , s−i ) ≤ λ cost(s∗) + µ cost(s). Rearranging,

we have (1 − µ)cost(s) ≤ λ cost(s∗), so cost(s)/cost(s∗) ≤ λ
1−µ . □

Roughgarden [25] shows that atomic congestion games with
affine cost functions, i.e., cost functions of the form c j (kj ) = ajkj +

bj , are ( 53 ,
1
3 )-smooth. So, their ϵ-diversified price of anarchy is at

most 2.5. We now adapt the proof in Roughgarden [25] to show that
players with vanishing regret with respect to diversified strategies
will also approach the bound of Theorem 3.5.

THEOREM 3.6. Suppose that in repeated play of a (λ, µ)-smooth
game, each player i uses a sequence of mixed strategies s(1)i , . . . , s

(T )
i

such that for any ϵ-diversified strategy s∗i we have:

1
T

T∑
t=1

costi (s(t )) ≤
1
T

T∑
t=1

costi (s
∗
i , s

(t )
−i ) + ∆T .

Then the average social cost over the T steps satisfies

1
T

T∑
t=1

cost(s(t )) ≤
λ

1 − µ
cost(s∗) +

k∆T
1 − µ

.

In particular, if ∆T → 0 then the average social cost approaches the
bound of Theorem 3.5.

PROOF. Combining the assumption of the theorem, the definition
of social cost, and the smoothness definition we have:

1
T

T∑
t=1

cost(s(t )) =
1
T

T∑
t=1

k∑
i=1

costi (s(t ))

(definition of social cost)

≤

k∑
i=1

[
1
T

T∑
t=1

costi (s
∗
i , s

(t )
−i ) + ∆T

]
(assumption of theorem)

=
1
T

T∑
t=1

[ k∑
i=1

costi (s
∗
i , s

(t )
−i )

]
+ k∆T

(rearranging)

≤
1
T

T∑
t=1

[
λ cost(s∗) + µ cost(s(t ))

]
+ k∆T .

(applying smoothness)



Rearranging, we have:

(1 − µ)
1
T

T∑
t=1

cost(s(t )) ≤ λ cost(s∗) + k∆T ,

which immediately yields the result of the theorem. □

3.3 The Cost of Diversification
We now complement the above results by considering how much
worse cost(s∗ϵ ) can be compared to cost(s∗) in natural games. We
focus here on unit-demand congestion games where each strategy
set Si ⊆ R; that is, each player i selects a single resource in Si . In
particular, we focus on two important special cases: (a) c j (kj ) =
1/kj ∀j (players share the cost of their resource equally with all
others who make the same choice; this can be viewed as a game-
theoretic distributed hitting-set problem), and (b) c j (kj ) = kj ∀j, i.e.,
linear congestion games. To avoid unnecessary complication, we
assume all Si have the same size n, i.e., every player has n choices.
We will also think of the number of choices per player n as O(1),
whereas the number of players k and the total number of resources
R may be large.

Unfortunately, in both cases (a) and (b), the cost of diversification
can be very high in the worst case. For case (a) (cost sharing), a bad
scenario is if there is a single element j∗ such that Si ∩ Si′ = j∗

for all pairs i , i ′. Here, cost(s∗) = 1 since all players can choose
j∗, but for any ϵ ∈ [ 2n , 1], we have E[cost(s∗ϵ )] = Ω(k), since even
in the best solution each player has a 50% chance of choosing a
resource that no other player chose. For case (b) (linear congestion),
a bad scenario is if there are n − 1 elements j∗1 , . . . , j

∗
n−1 such that

Si ∩Si′ = {j∗1 , . . . , j
∗
n−1} for all pairs i , i ′. Here, cost(s∗) = k since

each player can choose a distinct resource, but for any ϵ ∈ [ 2n , 1],
we have E[cost(s∗ϵ )] = Ω(k2/(n − 1)), which is Ω(k2) for n = O(1).
So, in both cases, the ratio cost(s∗ϵ )/cost(s

∗) = Ω(k).
However, in the average case (each Si consists of n random

elements from R) the cost of diversification is only O(1).

THEOREM 3.7. For both (a) unit-demand cost-sharing and (b)
unit-demand linear congestion games, with n = O(1) strategies per
player and random strategy sets Si , E[cost(s∗ϵ )] = O(E[cost(s

∗)]).

PROOF. Let us first consider (a) unit-demand cost-sharing. One
lower bound on cost(s∗) is that it is at least the cardinality of the
largest collection of disjoint strategy sets Si ; for n = 2 this is the
statement that the smallest vertex cover in a graph is at least the size
of the maximum matching. Now consider selecting the random sets
Si one at a time. For i ≤ R/n2, the first i sets cover at most R/n
resources, so set Si+1 has at least a constant probability of being
disjoint from the first i. This means that the expected size of the
largest collection of disjoint strategy sets is at least Ω(min{k,R/n2}).
On the other hand, a trivial upper bound on cost(s∗ϵ ), even for ϵ = 1, is
min{k,R}, since at worst each player takes a separate resource until
all resources are used. Thus, for n = O(1), we have E[cost(s∗ϵ )] =
O(E[cost(s∗)]).

Now let us consider (b) unit-demand linear congestion. In this
case, a lower bound on cost(s∗) is the best-case allocation of all
resources equally divided. In this case we have k/R usage per re-
source for a total cost of R × (k/R)2 = k2/R. Another lower bound
is simply k, so we have cost(s∗) ≥ max{k,k2/R}. On the other

hand, we can notice that s∗ϵ for a fully-diversified ϵ = 1 and random
sets Si is equivalent to players choosing resources independently
at random. In this case, the social cost is identical to the analysis
of random hashing: E[cost(s∗1)] = E[

∑
j k

2
j ] = k + k(k − 1)/R. Thus,

E[cost(s∗ϵ )] = O(E[cost(s
∗)]) as desired. □

4 DISTRIBUTED SETTING
We now consider a large-scale distributed setting where the actions of
the row player are partitioned among k entities, such as subdivisions
within a company or machines in a distributed system. At each time
step, the row player asks for a number of actions from each entity,
and plays a mixed strategy over them. However, asking for actions
requires communication, which we would like to minimize.

Our aim is to obtain results similar to Theorem 2.4 with low
communication complexity, measured by the number of actions
requested and any additional constant-sized words communicated.
Let d ≤ logm denote the VC-dimension or pseudo-dimension of
the set of columns H , viewing each row as an example and each
column as a hypothesis. A baseline approach is that the row player
samples O( dϵ 2 log

1
ϵ ) times, from the uniform multinomial distribu-

tion over {1, . . . ,k} and asks each entity to send the corresponding
number of actions to the row player. The row player can then use
the same algorithm (Algorithm 1) as in the centralized setting over
the sampled actions, and will lose only an additional ϵ in the value
of its strategy. The communication complexity of this method is
O( dϵ 2 log

1
ϵ ) actions plus O(k) additional words. Here, we provide

an algorithm that reduces communication to O(d log(1/ϵ)). The idea
is to show that in Algorithm 1, each iteration of the multiplicative
weight update can be simulated in the distributed setting with O(d)
communication. Then, since there are at most O(log(1/ϵ)) iterations,
the desired result follows.

More specifically, we show that in each iteration, we can do the
following two actions communication efficiently:

(1) For any distribution P over the rows partitioned across k
entities, obtain a column j such that M(P , j) ≥ vϵ .

(2) Update the distribution using the received column j.

To achieve the first statement, assume there is a centralized oracle,
which for any ϵ-diversified distribution P returns a column j such
that M(P , j) ≥ vϵ . For any distribution P partitioned across k entities,
each agent first sends its sum of weights to the row player. Then,
the row player samples O( d

(1−α )2v2
ϵ
) actions (0 < α < 1) across

the k agents proportional to their sum of weights, where d is the
VC-dimension of H . By the standard VC-theory, a mixed strategy
P ′ of choosing a uniform distribution over the sampled actions is a
(1−α)vϵ -approximation for H , i.e. M(P ′, j) ≥ M(P , j)− (1−α)vϵ ≥

αvϵ for all column j ∈ H . The communication complexity of this
step is O( d

(1−α )2v2
ϵ
) actions plus O(k) additional words. For (2),

we show steps 3 and 4 in Algorithm 1 can be simulated with low
communication. Step 3 is easy: just send column j to all entities,
and each entity then updates its own weights. What is left is to
show that the projection step in Algorithm 1 can be simulated in the
distributed setting. Fortunately, this projection step has been studied
before in the distributed machine learning literature [11], where an
efficient algorithm with O(k log2(d/ϵ)) words of comunication is
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Figure 2: Simulated resuls of Braess’ paradox after T = 10, 000
rounds. Loss decreases as we adopt a more diversified strategy.

proposed. We summarize our results for the distributed setting with
the following theorem.

THEOREM 4.1. Given a centralized oracle, which for any ϵ-
diversified distribution P returns a column j such that M(P , j) ≥ vϵ .
If the actions of the row players are distributed across k entities,
there is an algorithm that constructs a mixed strategy Q such that
for all but an ϵ fraction of the rows i, M(i,Q) ≥ αvϵ − γ , 0 <
α < 1. The algorithm requests at most O( log(1/ϵ )

γ 2(1+γ−αvϵ )
· d
(1−α )2v2

ϵ
)

actions and uses an additional O( log(1/ϵ )
γ 2(1+γ−αvϵ )

· k log2(d/ϵ)) words
of communication.

5 EXPERIMENTS
To better understand the benefit of diversified strategies, we give
some empirical simulations for both two-player zero-sum games
and general-sum games. For all the experiments, we fix γ = 0.2 and
show the results of using different values of ϵ .

Two-player zero-sum games. The row player has n = 10 actions
to choose from, where each round, each action ai returns a uniformly
random reward ri ∈ [i/n, 1]. The game is played for T = 10, 000
rounds. Note that the n-th action has the highest expected reward.

We consider two scenarios in which a rare but catastrophic event
occurs. The first scenario is that at time T , the cumulative reward
gained from choosing the n-th action becomes zero. The second
scenario is that the n-th action incurs a large negative reward of −T
in time step T . Both of these can be viewed as different ways of
simulating a bad event where, for instance, the shares of a company
become worthless when the company goes bankrupt.

The results for both scenarios, averaged over 10 independent
trials, are shown in Figure 3. One can see that as expected, in the
normal situation, the diversified strategy gains less reward. However,
when the rare event happens, the non-diversified strategy gains very
low (even negative) reward. In both cases, a modest value of ϵ = 0.4
achieves a high reward whether the bad event happens or not.

General-sum games. We play the routing game defined in Braess’
paradox (see Figure 1). Each player has three routes to choose from
(s-a-b-t , s-a-t , and s-b-t) in each round, so ϵ ∈ [1/3, 1]. As anlyzed
in Section 3.1, without the diversified constraint (i.e., ϵ = 1/3), the
game quickly converges to the Nash equilibrium where all players
choose the route s-a-b-t and incur a loss of 2. The best strategy in
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Figure 3: Average reward overT = 10, 000 rounds with different
values of ϵ . When the rare event happens, the non-diversified
strategy gains very low (even negative) reward.

this case is to play the 1-diversified strategy, which incur a lower
loss of about 1.55. See Figure 2 for the results using other ϵ values.

6 CONCLUSION
We consider games in which one wants to play well without choosing
a mixed strategy that is too concentrated. We show that such a
diversification restriction has a number of benefits, and give adaptive
algorithms to find diversified strategies that are near-optimal, also
showing how taxes or fines can be used to keep a standard algorithm
diversified. Further, our algorithms are simple and efficient, and can
be implemented in a distributed setting. We also analyze properties
of diversified strategies in both zero-sum and general-sum games,
and give general bounds on the diversified price of anarchy as well
as the social cost achieved by diversified regret-minimizing players.
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