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Abstract

As datasets grow richer, an important challenge is to leverage the full features
in the data to maximize the number of useful discoveries while controlling for
false positives. We address this problem in the context of multiple hypotheses
testing, where for each hypothesis, we observe a p-value along with a set of
features specific to that hypothesis. For example, in genetic association studies,
each hypothesis tests the correlation between a variant and the trait. We have a
rich set of features for each variant (e.g. its location, conservation, epigenetics etc.)
which could inform how likely the variant is to have a true association. However
popular empirically-validated testing approaches, such as Benjamini-Hochberg’s
procedure (BH) and independent hypothesis weighting (IHW), either ignore these
features or assume that the features are categorical or uni-variate. We propose a
new algorithm, NeuralFDR, which automatically learns a discovery threshold as a
function of all the hypothesis features. We parametrize the discovery threshold as
a neural network, which enables flexible handling of multi-dimensional discrete
and continuous features as well as efficient end-to-end optimization. We prove
that NeuralFDR has strong false discovery rate (FDR) guarantees, and show that it
makes substantially more discoveries in synthetic and real datasets. Moreover, we
demonstrate that the learned discovery threshold is directly interpretable.

1 Introduction

In modern data science, the analyst is often swarmed with a large number of hypotheses — e.g. is a
mutation associated with a certain trait or is this ad effective for that section of the users. Deciding
which hypothesis to statistically accept or reject is a ubiquitous task. In standard multiple hypothesis
testing, each hypothesis is boiled down to one number, a p-value computed against some null
distribution, with a smaller value indicating less likely to be null. We have powerful procedures to
systematically reject hypotheses while controlling the false discovery rate (FDR) Note that here the
convention is that a “discovery” corresponds to a “rejected” null hypothesis.

These FDR procedures are widely used but they ignore additional information that is often available
in modern applications. Each hypothesis, in addition to the p-value, could also contain a set of
features pertinent to the objects being tested in the hypothesis. In the genetic association setting
above, each hypothesis tests whether a mutation is correlated with the trait and we have a p-value
for this. Moreover, we also have other features about both the mutation (e.g. its location, epigenetic
status, conservation etc.) and the trait (e.g. if the trait is gene expression then we have features on the
gene). Together these form a feature representation of the hypothesis. This feature vector is ignored
by the standard multiple hypotheses testing procedures.

In this paper, we present a flexible method using neural networks to learn a nonlinear mapping
from hypothesis features to a discovery threshold. Popular procedures for multiple hypotheses
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distribution of the p-value and the features with a two-group Gamma GLM mixture model and
spline regression. The multi-dimensional case is discussed without empirical validation. Hence
both methods have a similar limitation to IHW in that they do not provide an empirically validated
end-to-end approach for multi-dimensional features. This issue is addressed in [5], where the null
proportion is modeled as a linear combination of some hand-crafted transformation of the features.
NeuralFDR models this relation in a more flexible way.

2 Preliminaries

We have n hypotheses and each hypothesis i is characterized by a tuple (Pi,Xi, Hi), where Pi 2
(0, 1) is the p-value, Xi 2 X is the hypothesis feature, and Hi 2 {0, 1} indicates if this hypothesis
is null ( Hi = 0) or alternative ( Hi = 1). The p-value Pi represents the probability of observing
an equally or more extreme value compared to the testing statistic when the hypothesis is null, and
is calculated based on some data different from Xi. The alternate hypotheses (Hi = 1) are the
true signals that we would like to discover. A smaller p-value presents stronger evidence for a
hypothesis to be alternative. In practice, we observe Pi and Xi but do not know Hi. We define
the null proportion π0(x) to be the probability that the hypothesis is null conditional on the feature
Xi = x. The standard assumption is that under the null (Hi = 0), the p-value is uniformly distributed
in (0, 1). Under the alternative (Hi = 1), we denote the p-value distribution by f1(p|x). In most
applications, the p-values under the alternative are systematically smaller than those under the null. A
detailed discussion of the assumptions can be found in Sec. 5.

The general goal of multiple hypotheses testing is to claim a maximum number of discoveries based
on the observations {(Pi,Xi)}

n
i=1 while controlling the false positives. The most popular quantities

that conceptualize the false positives are the family-wise error rate (FWER) [8] and the false discovery
rate (FDR) [3]. We specifically consider FDR in this paper. FDR is the expected proportion of false
discoveries, and one closely related quantity, the false discovery proportion (FDP), is the actual
proportion of false discoveries. We note that FDP is the actual realization of FDR. Formally,

Definition 1. (FDP and FDR) For any decision rule t, let D(t) and FD(t) be the number of
discoveries and the number of false discoveries. The false discovery proportion FDP (t) and the

false discovery rate FDR(t) are defined as FDP (t) , FD(t)/D(t) and FDR(t) , E[FDP (t)].

In this paper, we aim to maximize D(t) while controlling FDP (t)  α with high probability. This
is a stronger statement than those in FDR control literature of controlling FDR under the level α.

Motivating example. Consider a genetic association study where the genotype and phenotype (e.g.
height) are measured in a population. Hypothesis i corresponds to testing the correlation between the
variant i and the individual’s height. The null hypothesis is that there is no correlation, and Pi is the
probability of observing equally or more extreme values than the empirically observed correlation
conditional on the hypothesis is null Hi = 0. Small Pi indicates that the null is unlikely. Here Hi = 1
(or 0) corresponds to the variant truly is (or is not) associated with height. The features Xi could
include the location, conservation, etc. of the variant. Note that Xi is not used to compute Pi, but it
could contain information about how likely the hypotheses is to be an alternative. Careful readers
may notice that the distribution of Pi given Xi is uniform between 0 and 1 under the null and f1(p|x)
under the alternative, which depends on x. This implies that Pi and Xi are independent under
the null and dependent under the alternative.

To illustrate why modeling the features could improve discovery power, suppose hypothetically that
all the variants truly associated with height reside on a single chromosome j⇤ and the feature is
the chromosome index of each SNP (see Fig. 2 (a)). Standard multiple testing methods ignore this
feature and assign the same discovery threshold to all the chromosomes. As there are many purely
noisy chromosomes, the p-value threshold must be very small in order to control FDR. In contrast, a
method that learns the threshold t(x) could learn to assign a higher threshold to chromosome j⇤ and
0 to other chromosomes. As a higher threshold leads to more discoveries and vice versa, this would
effectively ignore much of the noise and make more discoveries under the same FDR.

3 Algorithm Description

Since a smaller p-value presents stronger evidence against the null hypothesis, we consider the
threshold decision rule without loss of generality. As the null proportion π0(x) and the alternative
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Lemma 1. (Positive bias of the mirroring estimator)

E[dFD(t)]− E[FD(t)] =
nX

i=1

P
⇥
(Pi,Xi) 2 CM (t), Hi = 1

⇤
≥ 0. (2)

Remark 1. In practice, t(x) is always very small and f1(p|x) approaches 0 very fast as p ! 1.

Then for any hypothesis with (Pi,Xi) 2 CM (t), Pi is very close to 1 and hence P(Hi = 1) is very
small. In other words, the bias in (2) is much smaller than E[FD(t)]. Thus the estimator is accurate.

In addition, dFD(t) and FD(t) are both sums of n terms. Under mild conditions, they concentrate

well around their means. Thus we should expect that dFD(t) approximates FD(t) well most of the
times. We make this precise in Sec. 5 in the form of the high probability FDP control statement.

Third, we use cross validation to address the overfitting problem introduced by optimization. To
be more specific, we divide the data into M folds. For fold j, the decision rule tj(x;θ), before
applied on fold j, is trained and cross validated on the rest of the data. The cross validation is done by

rescaling the learned threshold tj(x) by a factor γj so that the corresponding mirror estimate \FDP
on the CV set is α. This will not introduce much of additional overfitting since we are only searching
over a scalar γ. The discoveries in all M folds are merged as the final result. We note here distinct
folds correspond to subsets of hypotheses rather than samples used to compute the corresponding
p-values. This procedure is shown in Fig. 2 (c). The details of the procedure as well as the FDP
control property are also presented in Sec. 5.

Algorithm 1 NeuralFDR

1: Randomly divide the data {(Pi,Xi)}
n
i=1 into M folds.

2: for fold j = 1, · · · ,M do
3: Let the testing data be fold j, the CV data be fold j0 6= j, and the training data be the rest.
4: Train tj(x;θ) based on the training data by optimizing

maximizeθ D(t(θ)) s.t. \FDP (t⇤j (θ))  α. (3)

5: Rescale t⇤j (x;θ) by γ⇤
j so that the estimated FDP on the CV data \FDP (γ⇤

j t
⇤
j (θ)) = α.

6: Apply γ⇤
j t

⇤
j (θ) on the data in fold j (the testing data).

7: Report the discoveries in all M folds.

The proposed method NeuralFDR is summarized as Alg. 1. There are two techniques that enabled
robust training of the neural network. First, to have non-vanishing gradients, the indicator functions
in (3) are substituted by sigmoid functions with the intensity parameters automatically chosen based
on the dataset. Second, the training process of the neural network may be unstable if we use random
initialization. Hence, we use an initialization method called the k-cluster initialization: 1) use
k-means clustering to divide the data into k clusters based on the features; 2) compute the optimal
threshold for each cluster based on the optimal group threshold condition ((7) in Sec. 5); 3) initialize
the neural network by training it to fit a smoothed version of the computed thresholds. See Supp. Sec.
2 for more implementation details.

4 Empirical Results

We evaluate our method using both simulated data and two real-world datasets3. The implementation
details are in Supp. Sec. 2. We compare NeuralFDR with three other methods: BH procedure
(BH) [3], Storey’s BH procedure (SBH) with threshold λ = 0.4 [21], and Independent Hypothesis
Weighting (IHW) with number of bins and folds set as default [15]. BH and SBH are two most
popular methods without using the hypothesis features and IHW is the state-of-the-art method that
utilizes hypothesis features. For IHW, in the multi-dimensional feature case, k-means is used to
group the hypotheses. In all experiments, k is set to 20 and the group index is provided to IHW as the
hypothesis feature. Other than the FDR control experiment, we set the nominal FDR level α = 0.1.

3We released the software at https://github.com/fxia22/NeuralFDR
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features: 1) the distance (GTEx-dist) between the SNP and the gene (measured in log base-pairs) ; 2)
the average expression (GTEx-exp) of the gene across individuals (measured in log rpkm); 3) the
evolutionary conservation measured by the standard PhastCons scores (GTEx-PhastCons).

The numbers of discoveries are shown in Tab. 2. For GTEx-2D, GTEx-dist and GTEx-exp are used.
For NeuralFDR, the number of discoveries increases as we put in more and more features, indicating
that it can work well with multi-dimensional features. For IHW, however, the number of discoveries
decreases as more features are incorporated. This is because when the feature dimension becomes
higher, each bin in IHW will cover a larger space, decreasing the resolution of the piecewise constant
function, preventing it from capturing the informative part of the feature.

The learned discovery thresholds of NeuralFDR are directly interpretable and match prior biological
knowledge. Fig. 4 (e) shows that the threshold is higher when SNP is closer to the gene. This allows
more discoveries to be made among nearby SNPs, which is desirable since we know there most
of the eQTLs tend to be in cis (i.e. nearby) rather than trans (far away) from the target gene [6].
Fig. 4 (f) shows that the NeuralFDR threshold for gene expression decreases as the gene expression
becomes large. This also confirms known biology: the highly expressed genes tend to be more
housekeeping genes which are less variable across individuals and hence have fewer eQTLs [6].
Therefore it is desirable that NeuralFDR learns to place less emphasis on these genes. We also show
that NeuralFDR learns to give higher threshold to more conserved variants in Supp. Sec. 1, which
also matches biology.

5 Theoretical Guarantees

We assume the tuples {(Pi,Xi, Hi)}
n
i=1 are i.i.d. samples from an empirical Bayes model:

Xi
i.i.d.
⇠ µ(X), [Hi|Xi = x] ⇠ Bern(1− π0(x)),

⇢
[Pi|Hi = 0,X = x] ⇠ Unif(0, 1)
[Pi|Hi = 1,X = x] ⇠ f1(p|x)

(4)

The features Xi are drawn i.i.d. from some unknown distribution µ(x). Conditional on the feature
Xi = x, hypothesis i is null with probability π0(x) and is alternative otherwise. The conditional
distributions of p-values are Unif(0, 1) under the null and f1(p|x) under the alternative.

FDR control via cross validation. The cross validation procedure is described as follows. The data
is divided randomly into M folds of equal size m = n/M . For fold j, let the testing set Dte(j) be
itself, the cross validation set Dcv(j) be any other fold, and the training set Dtr(j) be the remaining.
The size of the three are m, m, (M − 2)m respectively. For fold j, suppose at most L decision rules
are calculated based on the training set, namely tj1, · · · , tjL. Evaluated on the cross validation set,
let l⇤-th rule be the rule with most discoveries among rules that satisfies 1) its mirroring estimate

\FDP (tjl)  α; 2) D(tjl)/m > c0, for some small constant c0 > 0. Then, tjl∗ is selected to apply
on the testing set (fold j). Finally, discoveries from all folds are combined.

The FDP control follows a standard argument of cross validation. Intuitively, the FDP of the rules
{tjl}

L
l=1 are estimated based on Dcv(j), a dataset independent of the training set. Hence there is no

overfitting and the overestimation property of the mirroring estimator, as in Lemma 1, is statistical
valid, leading to a conservative decision that controls FDP. This is formally stated as below.

Theorem 1. (FDP control) Let M be the number of folds and let L be the maximum number of
decision rule candidates evaluated by the cross validation set. Then with probability at least 1− β,

the overall FDP is less than (1 + ∆)α, where ∆ = O
⇣q

M
αn

log ML
β

⌘
.

Remark 2. There are two subtle points. First, L can not be too large. Otherwise Dcv(j) may
eventually be overfitted by being used too many times for FDP estimation. Second, the FDP estimates
may be unstable if the probability of discovery E[D(tjl)/m] approaches 0. Indeed, the mirroring

method estimates FDP by \FDP (tjl) =
dFD(tjl)
D(tjl)

, where both dFD(tjl) and D(tjl) are i.i.d. sums of n

Bernoulli random variables with mean roughly αE[D(tjl)/m] and E[D(tjl)/m]. When their means
are small, the concentration property will fail. So we need E[D(tjl)/m] to be bounded away from
zero. Nevertheless this is required in theory but may not be used in practice.

Remark 3. (Asymptotic FDR control under weak dependence) Besides the i.i.d. case, NeuralFDR can
also be extended to control FDR asymptotically under weak dependence [13, 21]. Generalizing the
concept in [13] from discrete groups to continuous features X, the data are under weak dependence
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if the CDF of (Pi, Xi) for both the null and the alternative proportion converge almost surely to
their true values respectively. The linkage disequilibrium (LD) in GWAS and the correlated genes
in RNA-Seq can be addressed by such dependence structure. In this case, if learned threshold
is c-Lipschitz continuous for some constant c, NeuralFDR will control FDR asymptotically. The
Lipschitz continuity can be achieved, for example, by weight clipping [2], i.e. clamping the weights to
a bounded set after each gradient update when training the neural network. See Supp. 3 for details.

Optimal decision rule with infinite hypotheses. When n = 1, we can recover the joint den-
sity fPX(p,x). Based on that, the explicit form of the optimal decision rule can be obtained
if we are willing to further assumer f1(p|x) is monotonically non-increasing w.r.t. p. This
rule is used for the k-cluster initialization for NeuralFDR as mentioned in Sec. 3. Now sup-
pose we know fPX(p,x). Then µ(x) and fP |X(p|x) can also be determined. Furthermore, as

f1(p|x) = 1
1−π0(x)

(fP |X(p|x) − π0(x)), once we specify π0(x), the entire model is specified.

Let S(fPX) be the set of null proportions π0(x) that produces the model consistent with fPX.
Because f1(p|x) ≥ 0, we have 8p,x, π0(x)  fP |X(p|x). This can be further simplified as

π0(x)  fP |X(1|x) by recalling that fP |X(p|x) is monotonically decreasing w.r.t. p. Then we know

S(fPX) = {π0(x) : 8x, π0(x)  fP |X(1|x)}. (5)

Given fPX(p,x), the model is not fully identifiable. Hence we should look for a rule t that
maximizes the power while controlling FDP for all elements in S(fPX). For (P1,X1, H1) ⇠
(fPX, π0, f1) following (4), the probability of discovery and the probability of false discovery are
PD(t, fPX) = P(P1  t(X1)), PFD(t, fPX, π0) = P(P1  t(X1), H1 = 0). Then the FDP

is FDP (t, fPX, π0) = PFD(t,fPX,π0)
PD(t,fPX) . In this limiting case, all quantities are deterministic and

FDP coincides with FDR. Given that the FDP is controlled, maximizing the power is equivalent to
maximizing the probability of discovery. Then we have the following minimax problem:

max
t

min
π02S(fPX)

PD(t, fPX) s.t. max
π02S(fPX)

FDP (t, fPX, π0)  α, (6)

where S(fPX) is the set of possible null proportions consistent with fPX, as defined in (5).

Theorem 2. Fixing fPX and let π⇤
0(x) = fP |X(1|x). If f1(p|x) is monotonically non-increasing

w.r.t. p, the solution to problem (6), t⇤(x), satisfies

1.
fPX(1,x)

fPX(t⇤(x),x)
= const, almost surely w.r.t. µ(x) 2. FDR(t⇤, fPX, π⇤

0) = α. (7)

Remark 4. To compute the optimal rule t⇤ by the conditions (7), consider any t that satisfies (7.1).
According to (7.1), once we specify the value of t(x) at any location x, say t(0), the entire function is
determined. Also, FDP (t, fPX, π⇤

0) is monotonically non-decreasing w.r.t. t(0). These suggests the
following strategy: starting with t(0) = 0, keep increasing t(0) until the corresponding FDP equals
α, which gives us the optimal threshold t⇤. Similar conditions are also mentioned in [15, 16].

6 Discussion

We proposed NeuralFDR, an end-to-end algorithm to the learn discovery threshold from hypothesis
features. We showed that the algorithm controls FDR and makes more discoveries on synthetic and
real datasets with multi-dimensional features. While the results are promising, there are also a few
challenges. First, we notice that NeuralFDR performs better when both the number of hypotheses
and the alternative proportion are large. Indeed, in order to have large gradients for the optimization,
we need a lot of elements at the decision boundary t(x) and the mirroring boundary 1 − t(x). It
is important to improve the performance of NeuralFDR on small datasets with small alternative
proportion. Second, we found that a 10-layer MLP performed well to model the decision threshold
and that shallower networks performed more poorly. A better understanding of which network
architectures optimally capture signal in the data is also an important question.
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