
Algorithms for Generalized Topic Modeling

Avrim Blum
Toyota Technological Institute at Chicago

avrim@ttic.edu

Nika Haghtalab
Computer Science Department

Carnegie Mellon University
nhaghtal@cs.cmu.edu

Abstract

Recently there has been significant activity in developing al-
gorithms with provable guarantees for topic modeling. In this
work we consider a broad generalization of the traditional
topic modeling framework, where we no longer assume that
words are drawn i.i.d. and instead view a topic as a complex
distribution over sequences of paragraphs. Since one could
not hope to even represent such a distribution in general (even
if paragraphs are given using some natural feature representa-
tion), we aim instead to directly learn a predictor that given a
new document, accurately predicts its topic mixture, without
learning the distributions explicitly. We present several natural
conditions under which one can do this from unlabeled data
only, and give efficient algorithms to do so, also discussing
issues such as noise tolerance and sample complexity. More
generally, our model can be viewed as a generalization of the
multi-view or co-training setting in machine learning.

1 Introduction

Topic modeling is an area with significant recent work in
the intersection of algorithms and machine learning (Arora
et al. 2012; Arora, Ge, and Moitra 2012; Arora et al. 2013;
Anandkumar et al. 2012; 2014; Bansal, Bhattacharyya, and
Kannan 2014). In topic modeling, a topic (such as sports,
business, or politics) is modeled as a probability distribution
over words, expressed as a vector ai. A document is gener-
ated by first selecting a mixture w over topics, such as 80%
sports and 20% business, and then choosing words i.i.d. from
the associated mixture distribution, which in this case would
be 0.8asports+0.2abusiness. Given a large collection of such
documents (and some assumptions about the distributions ai
as well as the distribution over mixture vectors w) the goal
is to recover the topic vectors ai and then to use the ai to
correctly classify new documents according to their topic mix-
tures. Algorithms for this problem have been developed with
strong provable guarantees even when documents consist of
only two or three words each (Arora, Ge, and Moitra 2012;
Anandkumar et al. 2012; Papadimitriou et al. 1998). In addi-
tion, algorithms based on this problem formulation perform
well empirically on standard datasets (Blei, Ng, and Jordan
2003; Hofmann 1999).
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As a theoretical model for document generation, however,
an obvious problem with the standard topic modeling frame-
work is that documents are not actually created by inde-
pendently drawing words from some distribution. Moreover,
important words within a topic often have meaningful corre-
lations, like shooting a free throw or kicking a field goal.
Better would be a model in which sentences are drawn i.i.d.
from a distribution over sentences. Even better would be
paragraphs drawn i.i.d. from a distribution over paragraphs
(this would account for the word correlations that exist within
a coherent paragraph). Or, even better, how about a model in
which paragraphs are drawn non-independently, so that the
second paragraph in a document can depend on what the first
paragraph was saying, though presumably with some amount
of additional entropy as well? This is the type of model we
study here.

Note that an immediate problem with considering such
a model is that now the task of learning an explicit distri-
bution (over sentences or paragraphs) is hopeless. While a
distribution over words can be reasonably viewed as a proba-
bility vector, one could not hope to learn or even represent
an explicit distribution over sentences or paragraphs. Indeed,
except in cases of plagiarism, one would not expect to see
the same paragraph twice in the entire corpus. Moreover, this
is likely to be true even if we assume paragraphs have some
natural feature-vector representation. Instead, we bypass this
issue by aiming to directly learn a predictor for documents—
that is, a function that given a document, predicts its mixture
over topics—without explicitly learning topic distributions.
Another way to think of this is that our goal is not to learn
a model that could be used to write a new document, but
instead just a model that could be used to classify a document
written by others. This is much as in standard supervised
learning where algorithms such as SVMs learn a decision
boundary (such as a linear separator) for making predictions
on the labels of examples without explicitly learning the dis-
tributions D+ and D− over positive and negative examples
respectively. However, our setting is unsupervised (we are
not given labeled data containing the correct classifications
of the documents in the training set) and furthermore, rather
than each data item belonging to one of the k classes (topics),
each data item belongs to a mixture of the k topics. Our goal
is given a new data item to output what that mixture is.

We begin by describing our high level theoretical formu-



lation. This formulation can be viewed as a generalization
both of standard topic modeling and of multi-view learning
or co-training (Blum and Mitchell 1998; Dasgupta, Littman,
and McAllester 2002; Chapelle, Schlkopf, and Zien 2010;
Balcan, Blum, and Yang 2004; Sun 2013). We then describe
several natural assumptions under which we can indeed ef-
ficiently solve the problem, learning accurate topic mixture
predictors.

2 Preliminaries

We assume that paragraphs are described by n real-valued
features and so can be viewed as points x in an instance
space X ⊆ R

n. We assume that each document consists of
at least two paragraphs and denote it by (x1,x2). Further-
more, we consider k topics and partial membership func-
tions f1, . . . , fk : X → [0, 1], such that fi(x) determines
the degree to which paragraph x belongs to topic i, and,
∑k

i=1 fi(x) = 1. For any vector of probabilities w ∈ R
k —

which we sometimes refer to as mixture weights — we define
Xw = {x ∈ R

n | ∀i, fi(x) = wi} to be the set of all para-
graphs with partial membership values w. We assume that
both paragraphs of a document have the same partial mem-
bership values, that is (x1,x2) ∈ ⋃

w
Xw × Xw, although

we also allow some noise later on. To better relate to the
literature on multi-view learning, we also refer to topics as
“classes” and refer to paragraphs as “views” of the document.

Much like the standard topic models, we consider an un-
labeled sample set that is generated by a two-step process.
First, we consider a distribution P over vectors of mixture
weights and draw w according to P . Then we consider dis-
tribution Dw over the set Xw × Xw and draw a document
(x1,x2) according to Dw. We consider two settings. In the
first setting, which is addressed in Section 3, the learner re-
ceives the instance (x1,x2). In the second setting, discussed
in Section 4, the learner receives samples (x̂1, x̂2) that have
been perturbed by some noise. In both cases, the goal of the
learner is to recover the partial membership functions fi.

More specifically, in this work we consider partial mem-
bership functions of the form fi(x) = f(vi · x), where
v1, . . . ,vk ∈ R

n are linearly independent and f : R → [0, 1]
is a monotonic function.1 For the majority of this work, we
consider f to be the identity function, so that fi(x) = vi · x.
Define ai ∈ span{v1, . . . ,vk} such that vi · ai = 1 and
vj ·ai = 0 for all j 6= i. In other words, the matrix containing
ais as columns is the pseudoinverse of the matrix containing
vis as columns, and ai can be viewed as the projection of
a paragraph that is purely of topic i onto span{v1, . . . ,vk}.
Define ∆ = CH({a1, . . . ,ak}) to be the convex hull of
a1, . . . ,ak.

Throughout this work, we use ‖ · ‖2 to denote the spectral
norm of a matrix or the L2 norm of a vector. When it is
clear from the context, we simply use ‖ · ‖ to denote these
quantities. We denote by Br(x) the ball of radius r around x.
For a M , we use M+ to denote the pseudoinverse of M .

1We emphasize that linear independence is a much milder as-
sumption than the assumption that topic vectors are orthogonal.

Generalization of Standard Topic Modeling

Let us briefly discuss how the above model is a generalization
of the standard topic modeling framework. In the standard
framework, a topic is modeled as a probability distribution
over n words, expressed as a vector ai ∈ [0, 1]n, where
aij is the probability of word j in topic i. A document is
generated by first selecting a mixture w ∈ [0, 1]k over k
topics, and then choosing words i.i.d. from the associated
mixture distribution

∑k
i=1 wiai. The document vector x̂ is

then the vector of word counts, normalized by dividing by
the number of words in the document so that ‖x̂‖1 = 1.

As a thought experiment, consider infinitely long docu-
ments. In the standard framework, all infinitely long docu-
ments of a mixture weight w have the same representation
x =

∑k
i=1 wiai. This representation implies x · vi = wi for

all i ∈ [k], where V = (v1, . . . ,vk) is the pseudo-inverse
of A = (a1, . . . ,ak). Thus, by partitioning the document
into two halves (views) x1 and x

2, our noise-free model with
fi(x) = vi · x generalizes the standard topic model for long
documents. However, our model is substantially more gen-
eral: features within a view can be arbitrarily correlated, the
views themselves can also be correlated, and even in the zero-
noise case, documents of the same mixture can look very
different so long as they have the same projection to the span
of the a1, . . . ,ak.

For a shorter document x̂, each feature x̂i is drawn accord-
ing to a distribution with mean xi, where x =

∑k
i=1 wiai.

Therefore, x̂ can be thought of as a noisy measurement of x.
The fewer the words in a document, the larger is the noise
in x̂. Existing work in topic modeling, such as (Arora, Ge,
and Moitra 2012; Anandkumar et al. 2014), provide elegant
procedures for handling large noise that is caused by drawing
only 2 or 3 words according to the distribution induced by x.
As we show in Section 4, our method can also tolerate large
amounts of noise under some conditions. While our method
cannot deal with documents that are only 2- or 3-words long,
the benefit is a model that is much more general in many
other respects.

Generalization of Co-training Framework

Here, we briefly discuss how our model is a generalization of
the co-training framework. The standard co-training frame-
work of Blum and Mitchell considers learning a binary classi-
fier from primarily unlabaled instances, where each instance
(x1,x2) is a pair of views that have the same classification.
For example, Blum and Mitchell and Balcan and Blum show
that if views are independent of each other given the classifi-
cation, then one can efficiently learn a halfspace from primar-
ily unlabeled data. In the language of our model, this corre-
sponds to a setting with k = 2 classes, unknown class vectors
v1 = −v2, where each view of an instance belongs to one
class fully using membership function fi(x) = sign(vi · x).
Our work generalizes co-training by extending it to multi-
class settings where each instance belongs to one or more
classes partially, using a partial membership function fi(·).



3 An Easier Case with Simplifying

Assumptions

We make two main simplifying assumptions in this section,
both of which will be relaxed in Section 4: 1) The documents
are not noisy, i.e., x1 ·vi = x

2 ·vi; 2) There is non-negligible
probability density on instances that belong purely to one
class. In this section we demonstrate ideas and techniques.

The Setting: We make the following assumptions. The
documents are not noisy, that is for any document (x1,x2)
and for all i ∈ [k], x1 · vi = x

2 · vi. Regarding distribution
P , we assume that a non-negligible probability density is
assigned to pure documents for each class. More formally,
for some ξ > 0, for all i ∈ [k], Prw∼P [w = ei] ≥ ξ.
Regarding distribution Dw, we allow the two paragraphs in a
document, i.e., the two views (x1,x2) drawn from Dw, to be
correlated as long as for any subspace Z ⊂ null{v1 . . . ,vk}
of dimension strictly less than n − k, Pr(x1,x2)∼Dw [(x1 −
x
2) 6∈ Z] ≥ ζ for some non-negligible ζ. One way to view

this in the context of topic modeling is that if, say, “sports”
is a topic, then it should not be the case that the second
paragraph always talks about the exact same sport as the first
paragraph; else “sports” would really be a union of several
separate but closely-related topics. Thus, while we do not
require independence we do require some non-correlation
between the paragraphs.

Algorithm and Analysis: The main idea behind our ap-
proach is to use the consistency of the two views of the
samples to first recover the subspace spanned by v1, . . . ,vk

(Phase 1). Once this subspace is recovered, we show that
a projection of a sample on this space corresponds to the
convex combination of class vectors using the appropriate
mixture weight that was used for that sample. Therefore, we
find vectors a1, . . . ,ak that purely belong to each class by
taking the extreme points of the projected samples (Phase
2). The class vectors v1, . . . ,vk are the unique vectors (up
to permutations) that classify a1, . . . ,ak as pure samples.
Phase 2 is similar to that of (Arora, Ge, and Moitra 2012).
Algorithm 1 formalizes the details of this approach.

Algorithm 1 ALGORITHM FOR GENERALIZED TOPIC
MODELS — NO NOISE

Input: A sample set S = {(x1
i ,x

2
i ) | i ∈ [m]} such that for

each i, first a vector w is drawn from P and then (x1
i ,x

2
i ) is

drawn from Dw.

Phase 1: Let X1 and X2 be matrices where the ith column
is x1

i and x
2
i , respectively. Let P be the projection matrix on

the last k left singular vectors of (X1 −X2).

Phase 2: Let S = {Px
j
i | i ∈ [m], j ∈ {1, 2}}. Let A

be a matrix whose columns are the extreme points of the
convex hull of S . (This can be found using farthest traversal
or linear programming.)2

Output: Return columns of A+ as v1, . . . ,vk.

Figure 1: v1,v2 correspond to class 1 and 2, and a1 and a2 corre-
spond to canonical vectors purely of class 1 and 2, respectively.

In Phase 1 for recovering span{v1, . . . ,vk}, note that for
any sample (x1,x2) drawn from Dw, we have that vi · x1 =
vi · x2 = wi. Therefore, regardless of what w was used to
produce the sample, we have that vi · (x1 − x

2) = 0 for all
i ∈ [k]. That is, v1, . . . ,vk are in the null-space of all such
(x1 − x

2). The assumptions on Dw show that after seeing
sufficiently many samples, (x1

i−x
2
i ) span a n−k dimensional

subspace. So, span{v1, . . . ,vk} can be recovered by taking
null{(x1 − x

2) | (x1,x2) ∈ Xw × Xw, ∀w ∈ R
k}. This

null space is spanned by the last k singular vectors of X1 −
X2, where X1 and X2 are matrices with columns x1

i and x
2
i ,

respectively. The next lemma, whose proof appears in the full
version of this paper (Blum and Haghtalab 2016), formalizes
this discussion.

Lemma 3.1. Let Z = span{(x1
i − x

2
i ) | i ∈ [m]}. Then,

m = O(n−k
ζ log( 1δ )) is sufficient such that with probability

1− δ, rank(Z) = n− k.

Using Lemma 3.1, Phase 1 of Algorithm 1 recovers
span{v1, . . . ,vk}. Next, we show that pure samples are the
extreme points of the convex hull of all samples when pro-
jected on the subspace span{v1, . . . ,vk}. Figure 1 demon-
strates the relation between the class vectors, vi, projection
of samples, and the projection of pure samples ai. The next
lemma, whose proof appears in the full version of this pa-
per (Blum and Haghtalab 2016), formalizes this claim.

Lemma 3.2. For any x, let x represent the projection of x
on span{v1, . . . ,vk}. Then, x =

∑

i∈[k](vi · x)ai.
With

∑

i∈[k](vi · x)ai representing the projection of x on
span{v1, . . . ,vk}, it is clear that the extreme points of the
set of all projected instances that belong to Xw for all w are
a1, . . . ,ak. Since in a large enough sample set, with high
probability for all i ∈ [k], there is a pure sample of type i,
taking the extreme points of the set of projected samples is
also a1, . . . ,ak. The following lemma, whose proof appears
in the full version of this paper (Blum and Haghtalab 2016),
formalizes this discussion.

Lemma 3.3. Let m = c( 1ξ log(
k
δ )) for a large enough

constant c > 0. Let P be the projection matrix for

span{v1, . . . ,vk} and S = {Px
j
i | i ∈ [m], j ∈ {1, 2}}



be the set of projected samples. With probability 1 − δ,
{a1, . . . ,ak} is the set of extreme points of CH(S ).

Therefore, a1, . . . ,ak can be learned by taking the ex-
treme points of the convex hull of all samples projected on
span({v1, . . . ,vk}). Furthermore, V = A+ is unique, there-
fore v1, . . . ,vk can be easily found by taking the pseudoin-
verse of matrix A. Together with Lemma 3.1 and 3.3 this
proves the next theorem regarding learning class vectors in
the absence of noise.

Theorem 3.4 (No Noise). There is a polynomial time algo-

rithm for which m = O
(

n−k
ζ ln( 1δ ) +

1
ξ ln(

k
δ )
)

is sufficient

to recover vi exactly for all i ∈ [k], with probability 1−δ.

4 Relaxing the Assumptions

In this section, we relax the two main simplifying assump-
tions from Section 3. We relax the assumption on non-noisy
documents and allow a large fraction of the documents to not
satisfy vi · x1 = vi · x2. In the standard topic model, this
corresponds to having a large fraction of short documents.
Furthermore, we relax the assumption on the existence of
pure documents to an assumption on the existence of “almost-
pure” documents.

The Setting: We assume that any sampled document has a
non-negligible probability of being non-noisy and with the
remaining probability, the two views of the document are
perturbed by additive Gaussian noise, independently. More
formally, for a given sample (x1,x2), with probability p0 >
0 the algorithm receives (x1,x2) and with the remaining
probability 1− p0, the algorithm receives (x̂1, x̂2), such that
x̂
j = x

j + e
j , where e

j ∼ N (0, σ2In).
We assume that for each topic, the probability that a docu-

ment is mostly about that topic is non-negligible. More for-
mally, for any topic i ∈ [k], Prw∼P [‖ei−w‖1 ≤ ε‖] ≥ g(ε),
where g is a polynomial function of its input. A stronger form
of this assumption, better known as the dominant admixture
assumption, assumes that every document is mostly about
one topic and has been empirically shown to hold on sev-
eral real world data sets (Bansal, Bhattacharyya, and Kannan
2014). Furthermore, in the Latent Dirichlet Allocation model,
Prw∼P [maxi∈[k] wi ≥ 1−ε] ≥ O(ε2) for typical values of
the concentration parameter.

We also make assumptions on the distribution over in-
stances. We assume that the covariance of the distribution
over (x1

i −x
2
i )(x

1
i −x

2
i )

> is larger than the noise covariance
σ2.3 That is, for some δ0 > 0, the least significant non-zero
eigen value of E(x1

i
,x2

i
)[(x

1
i − x

2
i )(x

1
i − x

2
i )

>], equivalently
its (n − k)th eigen value, is greater than 6σ2 + δ0. More-
over, we assume that the L2 norm of each view of a sample
is bounded by some M > 0. We also assume that for all

3This assumption is only used in Phase 1. One can assure that
this assumption holds by taking the average of several documents in
phase 1, where the average of documents (x̂1

1, x̂
2

1), . . . , (x̂
1

m, x̂2

m)
is
(
∑

m

i=1
x̂
1

i /m,
∑

m

i=1
x̂
2

i /m
)

. Since the noise shrinks in the aver-
aged documents, the noise level falls under the required level. This
would mildly increase the sample complexity.

i ∈ [k], ‖ai‖ ≤ α for some α > 0. At a high level, ‖ai‖s
are inversely proportional to the non-zero singular values of
V = (v1, . . . ,vk). Therefore, ‖ai‖ ≤ α implies that the k
topic vectors are sufficiently different.

Algorithm and Results: Our approach follows the
general theme of the previous section: First, recover
span{v1, . . . ,vk} and then recover a1, . . . ,ak by taking the
extreme points of the projected samples. In this case, in the
first phase we recover span{v1, . . . ,vk} approximately, by
finding a projection matrix P̂ such that ‖P − P̂‖ ≤ ε for
an arbitrarily small ε, where P is the projection matrix on
span{v1, . . . ,vk}. At this point in the algorithm, the projec-
tion of samples on P̂ can include points that are arbitrarily far
from ∆. This is due to the fact that the noisy samples are per-
turbed by N (0, σ2In), so, for large values of σ some noisy
samples map to points that are quite far from ∆. Therefore,
we have to detect and remove these samples before continu-
ing to the second phase. For this purpose, we show that the
low density regions of the projected samples can safely be
removed such that the convex hull of the remaining points is
close to ∆. In the second phase, we consider projections of
each sample using P̂ . To approximately recover a1, . . . ,ak,
we recover samples, x, that are far from the convex hull of
the remaining points, when x and a ball of points close to it
are removed. We then show that such points are close to one
of the pure class vectors, ai. Algorithm 2 and the details of
the above approach and its performance are as follows.

Algorithm 2 ALGORITHM FOR GENERALIZED TOPIC
MODELS — WITH NOISE

Input: A sample set {(x̂1
i , x̂

2
i ) | i ∈ [m]} such that for each i,

first a vector w is drawn from P , then (x1
i ,x

2
i ) is drawn from

Dw, then with probability p0, x̂j
i = x

j
i , else with probability

1− p0, x̂j
i = x

j
i +N (0, σ2In) for i ∈ [m] and j ∈ {1, 2}.

Phase 1:

1. Take m1 = Ω
(

n−k
ζ ln( 1δ ) +

nσ2M4r2

δ2
0
ε2

polylog(nrMεδ )
)

samples.
2. Let X̂1 and X̂2 be matrices where the ith column is x̂

1
i

and x̂
2
i , respectively.

3. Let P̂ be the projection matrix on the last k left singular
vectors of X̂1 − X̂2.

Denoising Phase:
4. Let ε′ = ε/(8r) and γ = g (ε′/(8kα)).

5. Take m2 = Ω
(

k
p0γ

ln 1
δ

)

fresh samples and let Ŝ =
{

P̂ x̂
1
i | ∀i ∈ [m2]

}

.

6. Remove x̂ from Ŝ , for which there are less than p0γm2

2

points within distance of ε′

2 in Ŝ .
Phase 2:

7. For all x̂ in Ŝ , if dist(x ,CH(Ŝ \ B6rε′(x̂))) ≥ 2ε′

add x̂ to C.
8. Cluster C using single linkage with threshold 16rε′. As-

sign any point from cluster i as âi.
Output: Return â1, . . . , âk.



Theorem 4.1. Consider any small enough ε > 0 and any
δ > 0, there is an efficient algorithm for which an unlabeled
sample set of size

m = O

(

n− k

ζ
ln(

1

δ
) +

nσ2M4r2

δ20ε
2

polylog(
nrM

εδ
)

+
k ln(1/δ)

p0 g(ε/(krα))

)

is sufficient to recover âi such that ‖âi − ai‖2 ≤ ε for all
i ∈ [k], with probability 1− δ. Where, r is a parameter that
depends on the geometry of the simplex ∆ and will be defined
in section 4.3.

The proof of Theorem 4.1 relies on the next lemmas re-
garding the performance of each phase of the algorithm. We
formally state them here, but defer their proofs to Sections 4.1,
4.2 and 4.3.

Lemma 4.2 (Phase 1). For any σ, ε > 0, it is sufficient to
have an unlabeled sample set of size

m = O

(

n− k

ζ
ln(

1

δ
) +

nσ2M2

δ20ε
2

polylog(
n

εδ
)

)

.

so with probability 1−δ, Phase 1 of Algorithm 2 returns a

matrix P̂ , such that ‖P−P̂‖2 ≤ ε.

Lemma 4.3 (Denoising). Let ε′ ≤ 1
3σ

√
k, ‖P − P̂‖ ≤

ε′/8M , and γ = g
(

ε′

8kα

)

. An unlabeled sample size of m =

O
(

k
p0γ

ln( 1δ )
)

is sufficient such that for Ŝ defined in Step 6

of Algorithm 2 the following holds with probability 1 − δ:

For any x ∈ Ŝ , dist(x,∆) ≤ ε′, and, for all i ∈ [k], there

exists âi ∈ Ŝ such that ‖âi − ai‖ ≤ ε′.

Lemma 4.4 (Phase 2). Let Ŝ be a set for which the conclu-
sion of Lemma 4.3 holds with the value of ε′ = ε/8r. Then,
Phase 2 of Algorithm 2 returns â1, . . . , âk such that for all
i ∈ [k], ‖ai − âi‖ ≤ ε.

We now prove our main Theorem 4.1 by directly leverag-
ing the three lemmas we just stated.

Proof of Theorem 4.1. By Lemma 4.2, sample set of size
m1 is sufficient such that Phase 1 of Algorithm 2 leads to
‖P − P̂‖ ≤ ε

32Mr , with probability 1 − δ/2. Let ε′ = ε
8r

and take a fresh sample of size m2. By Lemma 4.3, with
probability 1 − δ/2, for any x ∈ Ŝ , dist(x,∆) ≤ ε′, and,
for all i ∈ [k], there exists âi ∈ Ŝ such that ‖âi − ai‖ ≤ ε′.
Finally, by Lemma 4.4 we have that Phase 2 of Algorithm 2
returns âi, such that for all i ∈ [k], ‖ai − âi‖ ≤ ε.

Theorem 4.1 discusses the approximation of ai for all
i ∈ [k]. It is not hard to see that such an approximation
also translates to the approximation of class vectors, vi for
all i ∈ [k]. That is, using the properties of perturbation of
pseudoinverse matrices (see the full version of the paper
for details) one can show that ‖Â+ − V ‖ ≤ O(‖Â − A‖).
Therefore, V̂ = Â+ is a good approximation for V .

4.1 Proof of Lemma 4.2 — Phase 1

For j ∈ {1, 2}, let Xj and X̂j be n×m matrices with the ith

column being x
j
i and x̂

j
i , respectively. As we demonstrated

in Lemma 3.1, with high probability rank(X1 − X2) =
n − k. Note that the nullspace of columns of X1 − X2

is spanned by the left singular vectors of X1 − X2 that
correspond to its k zero singular values. We show that the
nullspace of columns of X1 − X2 can be approximated
within any desirable accuracy by the space spanned by the
k least significant left singular vectors of X̂1 − X̂2, given a
sufficiently large number of samples.

Let D = X1 − X2 and D̂ = X̂1 − X̂2. For ease of
exposition, assume that all samples are perturbed by Gaus-
sian noise N (0, σ2In).4 Since each view of a sample is per-
turbed by an independent draw from a Gaussian noise dis-
tribution, we can view D̂ = D + E, where each column
of E is drawn i.i.d from distribution N (0, 2σ2In). Then,
1
mD̂D̂> = 1

mDD> + 1
mDE> + 1

mED> + 1
mEE>. As a

thought experiment, consider this equation in expectation.
Since E[ 1mEE>] = 2σ2In is the covariance matrix of the
noise and E[DE> + ED>] = 0, we have

1

m
E

[

D̂D̂>

]

− 2σ2In =
1

m
E
[

DD>
]

. (1)

Moreover, the eigen vectors and their order are the same
in 1

mE[D̂D̂>] and 1
mE[D̂D̂>]− 2σ2In. Therefore, one can

recover the nullspace of 1
mE[DD>] by taking the space of the

smallest k eigen vectors of 1
mE[D̂D̂>]. Next, we show how

to recover the nullspace using D̂D̂>, rather than E[D̂D̂>].
Assume that the following properties hold:
1. Equation 1 holds not only in expectation, but also with

high probability. That is, with high probability, ‖ 1
mD̂D̂>−

2σ2In − 1
mDD>‖2 ≤ ε.

2. With high probability λn−k(
1
mD̂D̂>) > 4σ2 + δ0/2,

where λi(·) denotes the ith most significant eigen value.
Let D = UΣV > and D̂ = Û Σ̂V̂ > be SVD representations.
We have that 1

mD̂D̂> − 2σ2In = Û( 1
m Σ̂2 − 2σ2In)Û

>. By
property 2, λn−k(

1
m Σ̂2) > 4σ2 + δ0/2. That is, the eigen

vectors and their order are the same in 1
mD̂D̂> − 2σ2In and

1
mD̂D̂>. As a result the projection matrix, P̂ , on the least
significant k eigen vectors of 1

mD̂D̂>, is the same as the
projection matrix, Q, on the least significant k eigen vectors
of 1

mD̂D̂> − 2σ2In.

Recall that P̂ and P and Q are the projection matrices
on the least significant k eigen vectors of 1

mD̂D̂>, 1
mDD>,

and 1
mD̂D̂> − 2σ2I , respectively. As we discussed, P̂ = Q.

Now, using the Wedin sin θ theorem (Davis and Kahan 1970;
Wedin 1972) (see the full version of the paper for details)

4The assumption that with a non-negligible probability a sample
is non-noisy is not needed for the analysis and correctness of Phase
1 of Algorithm 2. This assumption only comes into play in the
denoising phase.



from matrix perturbation theory, we have,

‖P − P̂‖2 = ‖P −Q‖

≤ ‖ 1
mD̂D̂> − 2σ2In − 1

mDD>‖2
∣

∣

∣
λn−k(

1
mD̂D̂>)− 2σ2 − λn−k+1(

1
mDD>)

∣

∣

∣

≤ 2ε

δ0
,

where we use Properties 1 and 2 and the fact that
λn−k+1(

1
mDD>) = 0, in the last transition.

Concentration It remains to prove Properties 1 and 2.
We briefly describe our proof that when m is large, with
high probability ‖ 1

mD̂D̂> − 2σ2In − 1
mDD>‖2 ≤ ε

and λn−k(
1
mD̂D̂>) > 4σ2 + δ0/2. Let us first describe

1
mD̂D̂> − 2σ2In − 1

mDD> in terms of the error matrices.
We have

1

m
D̂D̂> − 2σ2In − 1

m
DD> =

(

1

m
EE> − 2σ2In

)

+

(

1

m
DE> +

1

m
ED>

)

. (2)

It suffices to show that for large enough m > mε,δ,
Pr[‖ 1

mEE> − 2σ2In‖2 ≥ ε] ≤ δ and Pr[‖ 1
mDE> +

1
mED>‖2 ≥ ε] ≤ δ. In the former, note that 1

mEE> is the
sample covariance of the Gaussian noise matrix and 2σ2In
is the true covariance matrix of the noise distribution. The
next two claims follow by the convergence properties of
sample covariance of the Gaussians and the use of Matrix
Bernstein inequality (Tropp 2015). See the full version of
this paper (Blum and Haghtalab 2016) for more details.

Claim 1. m = O(nσ
4

ε2 log( 1δ )) is sufficient to get ‖ 1
mEE>−

2σ2In‖2 ≤ ε, with probability 1− δ.

Claim 2. m=O(nσ
2M2

ε2 polylog n
εδ ) is sufficient to get

∥

∥

1
mDE>+ 1

mED>
∥

∥

2
≤ε, with probability 1−δ.

We prove that λn−k(
1
mD̂D̂>) > 4σ2 + δ0/2. Since for

any two matrices, the difference in λn−k can be bounded by
the spectral norm of their difference (see the full version of
the paper for details), by Equation 2, we have

∣

∣

∣

∣

λn−k

(

1

m
D̂D̂>

)

−λn−k

(

1

m
DD>

)
∣

∣

∣

∣

≤

∥

∥

∥

∥

2σ2I+

(

1

m
EE>−2σ2In

)

−

(

1

m
DE>+

1

m
ED>

)
∥

∥

∥

∥

≤ 2σ2+
δ0
4
,

where in the last transition we use Claims 1 and 2 with the
value of δ0/8 to bound the last two terms by a total of δ0/4.
Since λn−k(E[

1
mDD>]) ≥ 6σ2 + δ0, it is sufficient to show

that |λn−k(E[
1
mDD>]) − λn−k([

1
mDD>])| ≤ δ0/4. Simi-

larly as before, this is bounded by ‖ 1
mDD> − E[ 1mDD>]‖.

We use the Matrix Bernstein inequality to prove this concen-
tration result; see the full version of this paper (Blum and
Haghtalab 2016) for a proof.

Claim 3. m=O
(

M4

δ2
0

log n
δ

)

is sufficient to get
∥

∥

1
mDD>−E

[

1
mDD>

]∥

∥

2
≤ δ0

4 , with probability 1−δ.

This completes the analysis of Phase 1 of our algorithm
and the proof of Lemma 4.2 follows directly from the above
analysis and the application of Claims 1 and 2 with the error
of εδ0, and Claim 3.

4.2 Proof of Lemma 4.3 — Denoising Step

We use projection matrix P̂ to partially denoise the samples
while approximately preserving ∆ = CH({a1, . . . ,ak}). At
a high level we show that, in the projection of samples on P̂ ,
1) the regions around ai have sufficiently high density, and,
2) the regions that are far from ∆ have low density.

We claim that if x̂ ∈ Ŝ is non-noisy and corresponds

almost purely to one class then Ŝ also includes a non-
negligible number of points within O(ε′) distance of x̂ . This
is due to the fact that a non-negligible number of points (about
p0γm points) correspond to non-noisy and almost-pure sam-
ples that using P would get projected to points within a
distance of O(ε′) of each other. Furthermore, the inaccuracy
in P̂ can only perturb the projections up to O(ε′) distance.
So, the projections of all non-noisy samples that are almost
purely of class i fall within O(ε′) of ai. The following claim,
whose proof appears in the full version of this paper (Blum
and Haghtalab 2016), formalizes this discussion.

In the following lemmas, let D denote the flattened distri-
bution of the first paragraphs. That is, the distribution over
x̂
1 where we first take w ∼ P , then take (x1,x2) ∼ Dw,

and finally take x̂
1.

Claim 4. For all i ∈ [k], Prx∼D

[

P̂x ∈ Bε′/4(ai)
]

≥ p0γ.

On the other hand, any projected point that is far from the
convex hull of a1, . . . ,ak has to be noisy, and as a result, has
been generated by a Gaussian distribution with variance σ2.
For a choice of ε′ that is small with respect to σ, such points
do not concentrate well within any ball of radius ε′. In the
next claim, we show that the regions that are far from the
convex hull have low density.

Claim 5. For any z such that dist(z,∆) ≥ ε′, we have

Prx∼D

[

P̂x ∈ Bε′/2(z)
]

≤ p0γ
4 .

The next claim shows that in a large sample set, the fraction
of samples that fall within any of the described regions in
Claims 4 and 5 is close to the density of that region. The
proof of this claim follows from VC dimension of the set of
balls.

Claim 6. Let D be any distribution over Rk and x1, . . . ,xm

be m points drawn i.i.d from D. Then m = O( kγ ln 1
δ ) is

sufficient so that with probability 1− δ, for any ball B ⊆ R
k

such that Prx∼D[x ∈ B] ≥ 2γ, |{xi | xi ∈ B}| > γm
and for any ball B ⊆ R

k such that Prx∼D[x ∈ B] ≤ γ/2,
|{xi | xi ∈ B}| < γm.

Therefore, upon seeing Ω( k
p0γ

ln 1
δ ) samples, with prob-

ability 1 − δ, for all i ∈ [k] there are more than p0γm/2
projected points within distance ε′/4 of ai (by Claims 4 and
6), and, no point that is ε′ far from ∆ has more than p0γm/2
points in its ε′/2-neighborhood (by Claims 5 and 6). Phase
2 of Algorithm 2 leverages these properties of the set of



Figure 2: Demonstrating the distinction between points close to ai

and far from ai. The convex hull of CH(Ŝ|| \ Br2
(x̂)), which is

a subset of the blue and gray region, intersects Br1
(x̂) only for x̂

that is sufficiently far from ai’s.

projected points for denoising the samples while preserv-
ing ∆: Remove any point from Ŝ with fewer than p0γm/2
neighbors within distance ε′/2.

We conclude the proof of Lemma 4.3 by noting that the
remaining points in Ŝ are all within distance ε′ of ∆. Fur-
thermore, any point in Bε′/4(ai) has more than p0γm/2
points within distance of ε′/2. Therefore, such points re-
main in Ŝ and any one of them can serve as âi for which
‖ai − âi‖ ≤ ε′/4.

4.3 Proof of Lemma 4.4 — Phase 2

At a high level, we consider two balls around each projected
sample point x̂ ∈ Ŝ with appropriate choice of radii r1 < r2
(see Figure 2). Consider the set of projections Ŝ when points
in Br2(x) are removed from it. For points that are far from
all ai, this set still includes points that are close to ai for
all topics i ∈ [k]. So, the convex hull of Ŝ \ Br2(x) is
close to ∆, and in particular, intersects Br1(x). On the other
hand, for x that is close to ai, Ŝ \Br2(x) does not include
an extreme point of ∆ or points close to it. So, the convex
hull of Ŝ \ Br2(x) is considerably smaller than ∆, and in
particular, does not intersect Br1(x).

The geometry of the simplex and the angles between
a1, . . . ,ak play an important role in choosing the appropriate
r1 and r2. Note that when the samples are perturbed by noise,
a1, . . . ,ak can only be approximately recovered if they are
sufficiently far apart and the angles of the simplex at each ai

is far from being flat. That is, we assume that for all i 6= j,
‖ai−aj‖ ≥ 3ε. Furthermore, define r ≥ 1 to be the smallest
value such that the distance between ai and CH(∆\Brε(ai))
is at least ε. Note that such a value of r always exists and
depends entirely on the angles of the simplex defined by the
class vectors. Therefore, the number of samples needed for
our method depends on the value of r. The smaller the value
of r, the larger is the separation between the topic vectors and
the easier it is to identify them (See Figure 3). The next claim,
whose proof appears in the full version of this paper (Blum
and Haghtalab 2016), demonstrates this concept.

Claim 7. Let ε′ = ε/8r. Let Ŝ be the set of denoised projec-

tions, as in step 6 of Algorithm 2. For any x̂ ∈ Ŝ such that

for all i, ‖x̂−ai‖ > 8rε′, dist(x̂,CH(Ŝ \B6rε′(x̂))) ≤ 2ε′.

Figure 3: Parameter r is determined by the geometry of ∆.

Furthermore, for all i ∈ [k] there exists âi ∈ Ŝ such that

‖âi − ai‖ < ε′ and dist(âi,CH(Ŝ \B6rε′(âi))) > 2ε′.

Given the above structure, it is clear that set of points in C
are all within ε of one of the ai’s. So, we can cluster C using
single linkage with threshold ε to recover ai upto accuracy ε.

5 Additional Results and Extensions

In this section, we briefly mention some additional results and
extensions. We explain these and discuss other extensions (
such as alternative noise models) in more detail in the full
version of this paper (Blum and Haghtalab 2016).

Sample Complexity Lower bound As we observed the
number of samples required by our method is poly(n). How-
ever, as the number of classes can be much smaller than the
number of features, one might hope to recover v1, . . . ,vk,
with a number of samples that is polynomial in k rather than
n. Here, we show that in the general case Ω(n) samples are
needed to learn v1, . . . ,vk regardless of the value of k. See,
the full version of this paper (Blum and Haghtalab 2016) for
more information.

General function f(·) We also consider the general model
described in Section 2, where fi(x) = f(vi · x) for an un-
known strictly increasing function f : R+ → [0, 1] such
that f(0) = 0. We describe how variations of the techniques
discussed up to now can extend to this more general setting.
See, the full version of this paper (Blum and Haghtalab 2016)
for more information.

Alternative Noise Models We also discuss two additional
noise models and interesting open problems that arise in
these settings. In the first model, we consider the problem
of recovering v1, . . . ,vk in the presence of agnostic noise,
where for an ε fraction of the samples (x1,x2), x1 and x

2

correspond to different mixture weights. In the second model,
we consider the case of p0 = 0. That is, when every document
is affected by Gaussian noise N (0, σ2In), for σ � ε.
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