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Abstract

We study a pressureless Euler system with a non-linear density-dependent align-
ment term, originating in the Cucker—Smale swarming models. The alignment term
is dissipative in the sense that it tends to equilibrate the velocities. Its density
dependence is natural: the alignment rate increases in the areas of high density
due to species discomfort. The diffusive term has the order of a fractional Lapla-
cian (—9,,)%/%, @ € (0, 1). The corresponding Burgers equation with a linear
dissipation of this type develops shocks in a finite time. We show that the align-
ment nonlinearity enhances the dissipation, and the solutions are globally regular
for all @ € (0, 1). To the best of our knowledge, this is the first example of such
regularization due to the non-local nonlinear modulation of dissipation.

1. Introduction

The Cucker-Smale Model Modeling of the self-organized collective behavior,
or swarming, has attracted a large amount of attention over the last few years. Even
an attempt at a brief review of this field is well beyond the scope of this intro-
duction, and we refer to the recent reviews [15,18,42]. A remarkable phenomenon
commonly observed in biological systems is flocking, or velocity alignment by
near-by individuals. One of the early flocking models, discrete in time and two-
dimensional, is commonly referred to as the Vicsek model: the angle 6; (¢) of the
velocity of i-th particle satisfies

6:(t+1) = D00 +nae. (1.1)

1
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Here, N;(t) = {j : |x;(¢) —x;(1)] < r}, with some r > 0 fixed, A is a uniformly
distributed random variable in [—1, 1], and n > 0 is a parameter measuring the
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strength of the noise. This model preserves the modulus of the particle velocity and
only affects its direction. First via numerical simulations and then by mathematical
tools, it has been shown that this model has a rich behavior, ranging from flocking
when 7 is small, to a completely chaotic motion for large 1, with a phase transition
at a certain critical value 7.

A natural generalization of the Vicsek model was introduced by CUCKER AND
SMALE [21]:

N
X=vi, O =%Zl¢<|xi—xj|><vj—vi>. (1.2)
]=

Here, {x;, v,-}fv: | represent, respectively, the locations and the velocities of the
agents. Individuals align their velocity to their neighbors, with the interaction
strength characterized by a non-negative influence function ¢(x) = 0. The rel-
ative influence is typically taken as a decreasing function of the distance between
individuals. An important flexible element of the Cucker—Smale model is that it
both does not impose a constraint on the velocity magnitude and it allows to analysis
of the behavior based on the decay properties of the kernel ¢ (r). One of the main
results of the Cucker—Smale paper was that, roughly, provided that ¢ (r) decays
slower than r—! as r — 400, then all velocities v; (¢) converge to a common limit
v(?), and the relative particle positions x;(z) — x;(t) — X;; also have a common
limit—the particles form a swarm moving with a uniform velocity. This is what we
would call a global flocking: all particles move with nearly identical velocities.

One potential shortcoming of the Cucker—Smale model is that an “isolated
clump” of particles may be more affected by a “far away” large mass than by its
own neighbors. Essentially, the dynamics inside a small clump would be suppressed
by the presence of a large group of particles “far away”. This can be balanced by a
different kind of averaging, rather than simple division by N in (1.2), as was done
by MoTscH AND TADMOR [35]:

N N
i = v, vi=%zl¢<|xi—x,»|)<v,-—vi), O =Y ¢(x —xl), (13)
j=

k=1
with some A > 0. This modification reinforces the local alignment over the long

distance interactions.

A Kinetic Cucker—-Smale Model Kinetic models are also commonly used to
describe the collective behavior when the number of particles is large, in terms of
the particle density f (¢, x, v), withx € Rd, v € R9. A kinetic limit of the Cucker—
Smale model was obtained by HA AND TADMOR [27], as a nonlinear and non-local
kinetic equation:

fr+v-Vif +Vy - (LIf1f) =0, (1.4)

with

LIf1@, x,v) = /H;Zd Px =y —v) f(t, y,v)dv'dy. (1.5)
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Together, (1.4)—(1.5) give a nonlinear kinetic version of the Cucker—Smale system.
It was shown in [16] that its solutions exhibit global flocking, in the sense that
the size of the support in x,

S(2) = sup{lx — y| : (x,v), (y, ") € supp(f(t,-, )},
remains uniformly bounded in time, and the support in v shrinks:
V(1) = sup{lv —v'| : (x,v), (y, V") € supp(f(t,-, )} — Oast — +oo,
(1.6)

under the assumption that ¢ (r) decays slower than r~lasr — 400. A similar

result was obtained in [41] for the kinetic Motsch—Tadmor system.
A kinetic model that combines the features of the Cucker—Smale and Motsch—
Tadmor models was proposed in a paper by KARPER ET AL. [28]:

Jo+v-Vof + Vo - (LIS +AVy - ((u(t, x) —v) f) = Ao f,  (17)

with L[ f] as in (1.5), & > 0, and the local average velocity u(¢, x) defined as

u(t,x) = vf(t, x,v)dv, p(t,x)= /d f(, x,v)dv. (1.8)
R

p(t,x) Jrd
The Laplacian in the right side of (1.7) takes into account the possible Brownian
noise in the velocity.
One should also mention a large body of literature on the kinetic versions of the
Vicsek model and its modifications, and their hydrodynamic limits; see [12,22-25]
and references therein.

An Euler Alignment Model The kinetic Cucker—Smale model can be further
“macroscopized” as a hydrodynamic model for the local density p(¢, x) and local
average velocity u(t, x) defined in (1.8). The standard formal derivation of the
hydrodynamic limit for nonlinear kinetic equations often relies on a (often hard to
justify) moment closure procedure. An alternative is to consider the “monokinetic”
solutions of (1.4)—(1.5) of the form

ft, x,v) =p,x)6(v —u(t, x)). (1.9)

In a sense, this is a “local alignment” (as opposed to global flocking) ansatz—the
particles move locally with just a single velocity but the velocity does vary in space.
Inserting this expression into (1.4)—(1.5) gives the Euler alignment system, which
we write in one dimension as

dp + dx(pu) = 0, (1.10)
3 (pu) + 3 (pu?) = /Rfﬁ(x =, y) —u, x)p, y)p(, x)dy.
(1.11)

The presence of the density p under the integral in the right side of (1.11) has a very
reasonable biological interpretation: the alignment effect between the individual
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agents becomes stronger where the density is high (assuming that the interaction
kernel ¢ is localized). As far as a rigorous derivation of the hydrodynamic limit is
concerned, the aforementioned paper [28] derives the hydrodynamic limit starting
from the “combined” Cucker—Smale—Motsch—Tadmor kinetic system (1.7):

dp + dc(pu) = 0, (1.12)
3 (ou) + 3 (pu?) + dyp = fR¢(x =V, y) —u(t, x)p, y)p, x)dy.
(1.13)

This system has an extra term dy p in the left side of (1.11) that can be thought of
as pressure, with the constitutive law p(p) = p. The pressure appears as a result
of the balance between the local interaction term in the left side of (1.7) and the
Laplacian in the right side. In particular, the starting point of the derivation is not the
single local velocity ansatz (1.9) but its smooth Maxwellian version (setting > = 1
in (1.7) for convenience)

_ 2
(v —u(t, x)) )7 (1.14)

f(tax,v)=,0(t,x)exp(— >

taken together with the assumption that the interaction is weak, ¢ — e¢, and a
large time—space rescaling (¢, x) — /e, x/¢.

Another version of the Euler equations as a model for swarming has been
proposed in [34], and formally justified in [19]:

0:p + 9x(pu) =0,
3 (pu) + dx(ou?) + dxp = apu — Bolul*u — fR VV(x — y)p(t, y)p(t, x)dy.
(1.15)

The key difference between models like (1.15) and the ones we consider here is the
absence of the regularizing term u(z, y) — u(t, x) in the right side, so one does not
expect the regularizing effect of the interactions that we will observe here.

The Euler Alignment System for Lipschitz Interaction Kernels When particles
do not interact, that is, ¢ (x) = 0, the system (1.10)—(1.11) is simply the pressure-
less Euler equations. In particular, in that case, (1.11) is the Burgers equation:

oru + udyu = 0. (1.16)

Its solutions develop a shock singularity in a finite time if the initial condition
up(x) has a point where d,uo(x) < 0. In particular, if uo(x) is periodic and not
identically equal to a constant, then u(x, t) becomes discontinuous in a finite time.
The function z(x, t) = —d,u(x, t) satisfies the continuity equation

0z + 0x(zu) = 0, (1.17)

and becomes infinite at the shock location.
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The singularity in the Burgers equation does not mean that there is a singularity
in the solution of kinetic equation; it only means that the ansatz (1.9) breaks down,
and we cannot associate a single velocity to a given position. This is a version of
“a shock implies no local alignment”. To illustrate this point, consider the solution
of free transport equation

o, f +vo, f =0, (1.18)
with the initial condition f(x) = §(v 4 x). The solution of the kinetic equation is
ft,x,v) = folx —vt,v) =8 +x —vt), (1.19)

hence the ansatz (1.9) fails at # = 1. This is the time when the corresponding Euler
equation

oru +udyu =0, (1.20)

with the initial condition u (0, x) = —x, develops a shock: u(¢, x) = —x /(1 —1).

The integral term in the right side of (1.11) has a dissipative nature when ¢ # 0;
it tries to regularize the velocity discontinuity. When the function ¢ (x) is Lipschitz,
this system has been investigated in [14] and [40] that show two results. First, a
version of global flocking: if ¢ decays slower than |x| ™! at infinity, and the solution
remains smooth for all 1 = 0 and the initial density pg is compactly supported, then
the support S; of p(¢, -) remains uniformly bounded in time, and

sup |u(t,x) —u(t,y)| - Oast — 4o0. (1.21)

)C,}’EST

An improvement in global regularity compared to the Burgers equation (1.16)
was also obtained in [14] and [40]. As we have mentioned, solutions of the latter
become discontinuous in a finite time provided there is a point x € R where the
initial condition uq(x) has a negative derivative: d,u(x) < 0. On the other hand,
solutions of the Euler alignment equations remain regular for initial data such that

0yup(x) = —(¢ * po)(x) forall x € R, (1.22)

while the solution blows up in a finite time if there exists xo € R such that
0xup(x) < —(¢ * po)(x). (1.23)
Thus, the presence of the dissipative term in (1.11) leads to global regularity for
some initial data that blows up for the Burgers equation: the right side of (1.22)

may be negative. However, a Lipschitz interaction kernel ¢ (x) arrests the shock
singularity for the Euler alignment equations only for some initial conditions.
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Singular Alignment Kernels Our interest is in singular interaction kernels of
the form ¢ (x) = |x|™#, with B > 0. One reason to consider such kernels is to
strengthen the effect of the local interactions compared to the effect of “far-away”
particles, in the spirit of the Motsch—Tadmor correction. The well-posedness of the
finite number of particles Cucker—Smale system with such interactions is a delicate
issue—the difficulty is in either ruling out the possibility of particle collisions, or
understanding the behavior of the system at and after a collision. This problem was
addressed in [37,38] for § € (0, 1)—it was shown that in this range, particles may
get stuck together but a weak solution of the ODE system can still be defined. When
B = 1, aset of initial conditions that has no particle collisions was described in [1].
The absence of collisions was proved very recently for general initial configurations
in [13]. As far as flocking is concerned, unconditional flocking was proved in [26]
for B € (0, 1), while for 8 = 1 there are initial configurations that do not lead to
global flocking—the long distance interaction is too weak. The well-posedness of
the kinetic Cucker—Smale system for 8 € (0, 1/2) was established in [36].
We consider here the alignment kernels ¢ (x) with 8 > 1:

c

¢a(x) = Mﬁ, (1.24)
with @ > 0. In particular, the decay of ¢ (x) at large |x| is faster than the 1/|x| decay
required for the Cucker—Smale and other proofs of flocking. It is compensated by
a very strong alignment for |x| — 0. The constant ¢, is chosen so that

S = f)

[ A= o'

A f =cq

Then the strong form of the Euler alignment system is
drp+ 9x(pu) =0 (1.25)

u(t,y) —u(t, x
Bt + udeut = cq / Llia)p(t, y)dy. (1.26)
Ry —x]

Let us first compare the Euler alignment system (1.25)—(1.26) to the Burgers
equation with a fractional dissipation

o +udyu = —A%u, (1.27)

obtained by formally setting p(#, x) = 1 in (1.26) and dropping (1.25) altogether.
This neglects the nonlinear mechanism of the dissipation. Global regularity of the
solutions of the fractional Burgers equation has been studied in [32]. One can
distinguish three regimes: first, when o > 1, the dissipative term in the right side
has a higher order derivative than the nonlinear term in the left side. This is the
sub-critical regime: the dissipation dominates the nonlinearity, and global existence
of the strong solutions can be shown in a reasonably straightforward manner using
the energy methods. On the other hand, when 0 < « < 1, the dissipation is
too weak to compete with the nonlinear term, which has a higher derivative, and
solutions with smooth initial conditions may develop a shock, as in the inviscid
case. The critical case is « = 1 when the dissipation and the nonlinearity contain
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derivatives of the same order. One may expect that then the nonlinearity may win
over the dissipation for some large data. This, however, is not the case: solutions
with smooth initial conditions remain regular globally in time. The proof of the
global regularity when o = 1 is much less straightforward than for « > 1 and does
not rely solely on the energy methods.

One may hope that the nonlinearity in the dissipative term in the right side of
(1.26) is actually beneficial, compared to the fractional Burgers equation (1.27).
Indeed, on the qualitative level, as the shock would form, the density p would be
expected to increase near the point of the shock. This, in turn, would increase the
dissipation in (1.26), moving the problem from “like a super-critical Burgers” to
“like a sub-critical Burgers”. This intuition, however, may be slightly misleading—
for instance, as we will see, strengthening the dissipation by increasing o does
not appear to make the problem any easier, or change its critical character. The
competition between the Burgers nonlinearity in the left side of (1.26) and the
nonlinear dissipation in the right side is rather delicate.

The aforementioned results of [ 14,40] may lead to a conjecture that a dissipation
term involving the convolution kernel ¢ ¢ L' asin (1.26), should lead to global
regularity. However, this is far from obvious. The global regularity argument of [14,
40] uses two ingredients: first, if, initially,

dytto + @ * po = 0 (1.28)
for all x € R, then
u+dxp =0 (1.29)

for all x € R and ¢+ = 0. Second, an L°°-bound on p is established. When ¢
is an L!-function, one deduces a lower bound oyu > —Cp, which is crucial for
global regularity. One may combine an argument of [14] with the Constantin—Vicol
nonlinear maximum principle to establish the L°°-bound for p in our case, as well.
However, in our case, the analogous inequality to (1.29) is

du — A% = 0. (1.30)

This fails to give the required lower bound on d,u based on just the L control of
0, and the global regularity does not follow easily from the uniform bound on the
density. Instead, we have to deploy a much subtler argument involving both upper
and lower bounds on the density and a non-trivial modification of the modulus of
continuity technique of [33].

The Main Result We consider here the Euler alignment system (1.25)-(1.26)
on the torus T, for « € (0, 1). In particular, this range of « corresponds to the
supercritical case for the fractional Burgers equation (1.27). We prove that the
nonlinear, density modulated dissipation qualitatively changes the behavior of the
solutions; instead of blowing up in a finite time, solutions are globally regular.

Theorem 1.1. For a € (0, 1), the Euler alignment system (1.25)—(1.26) with peri-
odic smooth initial data (pg, uo) such that po(x) > 0 for all x € T, has a unique
global smooth solution.
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The regularizing effect of a non-linear diffusion has been observed before, for
instance, in the chemotaxis problems with a nonlinear diffusion—see [5-9]. The
main novelties here are that the nonlinearity is non-local, and that, as we will see,
increasing o does not, contrary to a naive intuition, and unlike what happens in the
fractional Burgers equation, strengthen the regularization effect.

To explain the ideas behind the result and its proof, it is convenient to reformulate
the Euler alignment system (1.25)—(1.26) as the following system for p and G =
oxu — A%p:

dp + 9x(pu) = 0, (1.31)
3G + 9 (Gu) =0, (1.32)

with the velocity u related to p and G via
hu=Ap+G. (1.33)

We show in Section 2 that (1.25)—(1.26) and (1.31)—(1.33) are, indeed, equivalent
for regular solutions. Note that (1.33) only defines u up to its mean, which is
determined from the conservation of the momentum:

/p(x,t)u(x,t)dx = / po(x)ug(x)dx. (1.34)
T T

Somewhat paradoxically, (1.33) seems to indicate that increasing the dissipation o
makes the velocity more singular in terms of the density rather than more regular.
The solutions of (1.31)—(1.32) with the initial conditions pg(x), ug(x) such that

Go(x) = dxuo(x) — A%po(x) =0, (1.35)

preserve the constraint G = 0 for all # > 0, and (1.31)—(1.32) then reduces to a
single equation

0o+ 0x(pu) =0, du=A%, (1.36)

that is simpler to analyze. Note that (1.36) defines u(x, t) only up to its spatial
average—we assume that it has mean-zero for all # > 0. Equation (1.36) is inter-
esting in its own right, as a model for the 1D nonlinear porous medium flow with
fractional potential pressure. Global existence of the weak solutions was studied
by CAFFARELLI AND VAZQUEZ [11], for @ € (0, 2) and pg = 0. It has been further
investigated in [10], where it is shown that the weak solutions with L! initial data
instantly become Holder continuous and stay Holder for all time.

When o = 1, so that the velocity is the Hilbert transform of the density, the
model (1.36) was introduced as a 1D vortex sheet model in [4], and has been
extensively studied in [17] as a 1D model of the 2D quasi-geostrophic equation. In
particular, the global existence of classical solution if pp > 0is proved in [17] using
the algebraic properties of the Hilbert transform. A counterexample is also provided
that says if the initial data py consists a vacuum, solution could lose C! regularity
in finite time. It indicates that one can not extend the result in [10] to gain higher
regularity, and the assumption py > 0 is crucial to obtain global wellposedness.
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Our results in this paper can be directly applied to (1.36), and show the global
regularity of the solutions for all « € (0, 1). The strategy of the regularity proof
here is very different from that in [10,17]. A quintessential feature of (1.36) is
that increasing o does not help the dissipation in its competition with the Burgers
nonlinearity. Indeed, the toy model (1.36) can be written as

dp + (8;11\“/0) dp=—pA%p. (1.37)

Thus, the scalings of the dissipation in the right side and of the nonlinear transport
term in the left side are exactly the same, both in p and in x, no matter what « €
(0, 1) is. While the proof of global regularity for (1.37) is inspired by the nonlocal
maximum principle arguments of [32,33], the nonlinear nature of dissipative term
necessitates significant changes and new estimates. The upgrade of the proof from
global regularity of the model equation to the full system is also highly non-trivial
and requires new ideas.

We note that our results can be applied to the case « € [1, 2), where the global
behavior is the same as for the fractional Burgers equation. This case was recently
studied by [39] using different techniques. One can also extend our results to the
influence kernels of the form

_ XD
el

with a non-negative smooth compactly supported function y (). This is the analog
of the kernels in (1.24) for « = 0. We expect that as soon as the influence kernel
is not integrable, solutions remain regular. The proofs of these extensions require
some nontrivial adjustments and further technicalities compared to the arguments
in this paper, and will be presented elsewhere.

Our results also lead to global flocking behavior for (1.25)—(1.26). The period-
ical influence function

¢ (x)

(1.38)

Pp() = Y plx+m)

meR\T

has a positive lower bound for all x € T. Since the solution is smooth, one can use
the argument in [40] to obtain asymptotic flocking behavior in the sense that

sup |u(t,x) —u(t,y)| - Oast — +oo. (1.39)

x,yeT

This paper is organized as follows. In Section 2 we prove an a priori L°°-
bound on p, that is the key estimate for the regularity of the solutions, as well as
lower bound on p. The local well-posedness of the solutions is proved in Section 3.
Section 4 contains the proof of our main result, Theorem 1.1. Appendix A contains
the proof of an auxiliary technical estimate. Throughout the paper we denote by C,
C’, etc. various universal constants, and by C, C(’) etc. constants that depend only
on the initial conditions.
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2. Bounds on the Density

In this section, we prove the upper and lower bounds on the density p(z, x).
The upper bound is uniform in time, and is crucial for the global regularity. The
lower bound will deteriorate in time but will be sufficient for our purposes.

2.1. The Reformulation of the Euler Alignment System

We first explain how the Euler alignment system (1.25)—(1.26) is reformulated
as (1.31)—(1.32), as we will mostly use the latter. We only need to obtain (1.32)
for G defined in (1.33). The idea comes from [14]. We apply the operator A% to
(1.25), and use the identity

u()p(y) —u@)px) = u(y) —u@)]lp(y) + ux)[p(y) — p(x)]
to obtain

u(y) —u(x)

mp(y)dy — 3 (u(x)A%p)2.1)

A% p = —0, A%(pu) = caax/
R
On the other hand, applying d, to (1.26), we get

0, (Drtt) + B (U 10) = Cads / 1) —ulx) gy, (2.2)

R |y — x|t
Subtracting (2.1) from (2.2) gives an equation for the function G = d,u — A%p:
0:G + 0x(Gu) =0,

which is (1.32).
Let us comment on how to recover u from (1.33). Let us denote by

K= % /T,o(x, t)dx (2.3)

the average of p in T, which is preserved in time by (1.31), at least as long as p
remains smooth. Note that G (x, ¢) has mean zero automatically:

/G(x,t)dx = / Go(x)dx =0. 2.4)
T T
We also define

O(x, 1) = p(x,t) —«k, (2.5)

so that

/ O(x,t)dx = 0.
T
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Thus, the primitive functions of 6(x, t) and G(x, t) are periodic. We denote by
(¢, ¥r) the mean-zero primitive functions of (6, G), respectively:

O(x,1) = 0yp(x,t), /;Tgo(x, t)dx =0, (2.6)
and

G(x,t) = 0¥ (x, 1), Aw(x, t)dx = 0. 2.7
Then, u can be written as

u(x,t) = A% (x, t) + ¥ (x, 1) + In(). (2.8)

To determine Iy(7), we use the conservation of the momentum. Note that the con-
servation law form of (1.26) is

I/l(l, )7) —u(t,x)

y — x| p(t, y)dy. 29

3 (pu) + 3y (pu®) = cq /
R

Integrating (2.9) gives

_/pudx—ca// u@, 1) - LL(_X 2 oy, )p(x,t)dydx
— x|'Te

=) « /Au(y’t) ux(ﬁJr;)p(y,t)p(x,t)dydx=0,

meR\T ly+m
(2.10)

thus
/,o(x,t)u(x,t)dx = / po(xX)ug(x)dx.
T T

Together with (2.8), u is now uniquely defined, with Iy(¢) given by

1
I = — [/ po(x)uo(x)dx—/jrp(x,t) (A%, 1) + Y (x. 1) dx].
2.11)

Note that we have

/ p(x, HA%p(x, t)dx = /c/ A%p(x, t)dx + / (0 @(x, ))A%p(x,)dx =0,
T T T
(2.12)

thus

1
) = — [/ po(xX)uo(x)dx — / plx, DY (x, t)dx] . (2.13)
«|T| LJT T

In particular, Ip(t) is time-independent in the special case G = 0, that leads to
(1.36), and then we have

Io(2) = 1o(0). (2.14)
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2.2. The Upper Bound on the Density

We now prove an a priori L°° bound on p.

Theorem 2.1. Let p(x, t), u(x, t) be a strong solution to (1.25)—(1.26) for0 < ¢ <
T, with smooth periodic initial conditions py(x), ug(x) such that po(x) > 0 on T.
Then, there exists a constant Co > 0 that depends on py and ugy but not on T, so
that |p(-, t)||p < Co forallt 2 0.

This bound already indicates that the Euler alignment system behaves not as the
fractional Burgers equation. Indeed, if we couple fractional Burgers equation with
(1.25), the density may blow up for @ € (0, 1) for suitable smooth initial conditions.

The Proof of Theorem 2.1 As the functions p and G obey the same continuity
equation, their ratio F = G/p satisfies

& F +uo,F =0. (2.15)
It follows that F is uniformly bounded:
dxug — A%po

IFC Dl = I Follee = ‘
0

< 400,
LOO

as po and ug are smooth, and py is strictly positive.
In order to prove the upper bound on p, for a fixed r = 0, let x be such that

p(x,t) = max p(x,1). (2.16)
xeR
It follows from (1.31) that

0p(x, 1) = —u(x,1)orp(x,1) — p(x, )oxu(x, 1) = —p(x, 1)dyu(x, t).
2.17)

Thus, to obtain an a priori upper bound on p, it suffices to show that there exists
Cy that depends on the initial conditions pp and u¢ so that if p(x, ) > Cp, then

oxu(x,t) > 0. (2.18)
To obtain (2.18), note that
du=A"p+Fp = Ap— |[FollL=p. (2.19)

In order to bound A% p in the right side of (2.19) from below, we use the nonlinear
maximum principle for the fractional Laplacian, see [20, Theorem 2.3]:

91+a (%)

either A%p(x) = AY0(x) = 5
C||§0||Loo

or 0(X) = cllellee.  (220)

Here, the constant ¢ > 0 only depends on «. Recall that we denote by 6(x, t)
the mean-zero shift of p(x, ¢), as in (2.3) and (2.5), and by ¢(x, t) the mean-zero
primitive of 6 (x, ), as in (2.6). Note that [|¢(-, #)|| L is uniformly bounded:

loC. Dl = CIOC Olipt = ClloC Ol = Clleollz1- 2.21)
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Therefore, if
p(x,t) = 2k + Cllpoll 1, (2.22)
with a sufficiently large C, which depends only on pp and u¢, then
O(x,1) = p(x,1) —k = 2clloC, )| o>,

and the second possibility in (2.20) can not hold. Thus, as soon as (2.22) holds, we
have

(p(x, 1) —r)'H

= > Cop(x, 1), (2.23)
lpollg,

A%p(x,1) 2 C
with a constant Cy that depends on the initial condition pg. Going back to (2.19),
this implies

deu(x, 1) = Cop(E, 1) — | Follp~p(¥,1) > 0.

Thus, (2.18) indeed holds if p(X, t) > C, where C|, is a constant that depends only
on po and ug, and the proof of Theorem 2.1 is complete. O

One immediate consequence of Theorem 2.1 is that Io(¢) in (2.13) is uniformly
bounded for all time. Indeed, it suffices to bound

Mrp(x,t)lﬁ(x,t)dx S oGl G Dllz2,

while

WG D2 S CIGE D2 S CIGE Dlie = CllpC, Dllre | Folle= = C,
(2.24)

where C is a universal constant independent of f. Summarizing, we have
[1o(1)] = Co, (2.25)

with a constant Cq that depends only on pg and ug.
Thus, we have the following a priori bound on ||u|| ;2.

Corollary 2.2. Let p(x, 1), u(x, t) be a strong solution to (1.25)—(1.26) for 0 <
t < T, with smooth periodic initial conditions py(x), uo(x) such that po(x) > 0
on T. There exists a constant C that depends only on py and uqy but not not on T
so that ||u(-, t)|;2 < Coforall0 <t < T.

Proof. This follows immediately from the bound
luC, Ollz2 S 1A% C Ol + 1 ¢ DNz + o],
together with the bound
IA%e(C, Dl 2 = CIOC, D2 = CllpC, Dz, (2.26)
and (2.24)—(2.25). O
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The uniform upper bound on the density also implies a uniformly Lipschitz
bound on F.

Lemma 2.3. The function F = G/ p is Lipschitz, and the Lipschitz bound is uniform
in time.

Proof. Recall that F satisfies (2.15), thus p = 9, F satisfies the same continuity
equation as p:

0p+0:(up) =0, (2.27)
and w = p/p is a solution of
oyw 4+ ud,yw = 0.
It follows that ||w(-, t)||L = ||wg]| L, and therefore,
0x F (-, D)l = llwollzeeloC, D)l Lee.
Theorem 2.1 implies now that F' is Lipschitz, with a time-independent Lipschitz

bound. O

2.3. A Lower Bound on the Density

A uniform lower bound on p plays an important role as it keeps the dissipation
active. The following lemma ensures no creation of vacuum in finite time.

Lemma 2.4. Let p(x, 1), u(x, t) be a strong solution to (1.25)—(1.26) for0 <t <
T, with smooth periodic initial conditions py(x), ug(x) such that po(x) > 0 on T.
There exists a positive constant Coy > 0 that depends on pg and ug but not on T,
so that

o( forallx e Tand0 <t < T. (2.28)

'x’ t) z —’
Co(l+1)
Proof. Fix some ¢ > 0 and let x be such that
p(x, ) = min p(x, f).
X

Then we have

A%p(x,1) 20,
and thus
pm(t) = p(x,t) = min p(x, 1), (2.29)
xeT
satisfies
dpm (1) > _(Ac
5 =he@ ) = (=0, Dlp(x, 1) Z—(A%p(x. 1) + || Foll o pm (1)) pm (2)

> — || Foll oo om (1)*.
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If the minimum is achieved at more than one point, we just need to take a minimum
over all of them in the above estimate, which leads to the same bound. Notice that
om (1) is Lipschitz in time, so the estimate is valid for a.e. ¢, and d o, /df determines
pm (t). Integrating this differential inequality, we get

on(®) 2 _— ,
lom 1T + 1 Foll 1~

(2.30)

finishing the proof. O
In particular, in the special case G = 0, that is, for (1.36) we have the following.
Corollary 2.5. Let p(x, t) be the solution of (1.36). Then, we have

plx, 1) 2 miqrrl po(x), forallt > 0and x € T. (2.31)
X€E

3. The Local Wellposedness

The a priori bounds on p established in the previous section rule out some
kinds of finite time blow up, but do not imply that there is no finite time shock
formation. This remains to be shown. To proceed further, we first establish a local
well-posedness theory for solutions of the Euler alignment system with smooth
initial conditions.

Theorem 3.1. Let @ € (0, 1). Assume that the initial conditions py and uq satisfy

po € H*(T), meiqlrlpo(X) >0, deuo — A%pp € H-2(T), (3.1
X

with a sufficiently large even integer s > 0. Then, there exists Ty > O such that the
system (1.25)—(1.26) has a unique strong solution p(x, t), u(x, t) on [0, Ty], with

p € C([0, Tol, H*(T)) x L*([0, Tpl, H*T2(T)), u e C([0, Tol, H*'7(T)).
(3.2)

Moreover, a necessary and sufficient condition for the solution to exist on a time
interval [0, T] is

T
/(; 1850, |7 wdt < 00. (3.3)

Condition (3.3) is a Beale-Kato—Majda type criterion. It indicates that the solu-
tion is globally regular if dy p is uniformly bounded in the L* norm. We will show
that such bound actually does hold in Section 4, using the modulus of continuity
method.
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3.1. The Commutator Estimates

We will need some commutator estimates for the local well-posedness theory.
We will use the following notation:

(L, f.gl=L(fg)— fLg — gL/,
L, flg = L(fg) — fLg.

Lemma 3.2. The following commutator estimates hold:

(i) for any n = 1, we have

I3y, £, lllz2 < C(I1Bx fllellgl gn-t + 18xgllLoell £l ggn-1); (B4
(ii) for any y € (0, 1) and ¢ > 0, we have

ITAY, £, glli2 = Clflig2lIgllcr+es (3.5)
(iii) for any y > 0, we have
ITAY, flgll2 = C(I19x flleligl gy—1 + 1L fllm7 llgliee). (3.6)

Let us comment briefly on the proof of these estimates. Estimate (3.4) can be
obtained by the standard Gagliardo—Nirenberg interpolation inequality. As A% =
—32_, this estimate holds if we replace the operator 3" by A® with an even
integer s.

A version of (3.5) is discussed in [30, Theorem A.8]. We sketch the proof in
Appendix A. Finally, estimate (3.6) is due to KATO AND PONCE [29]. The proof is
similar to that of (3.5).

3.2. The Proof of the Local Well-Posedness

It will be convenient to use the variables (6, G), so that equations (1.31)—(1.32)
take the form

00 + 0,(Ou) = —koyu, 9;G + 9,(Gu) =0, 3.7
du =A% +G. (3.8)
Here « is the constant in time mean of p, as in (2.3).

Let us fix 7 > 0 and take a sufficiently large even integer s > 0. We will aim
to obtain a differential inequality on

Y(@) =1+ 0C, Dz +1GC, t)ll; . (3.9

o
T2

that will have bounded solutions on a time interval [0, Tp], with a sufficiently small
Ty depending on the initial conditions. To this end, we apply the operator A® to the
equation for 6 in (3.7), multiply the result by A6 and integrate in x:

1d

2 3 : 2
2 dr 10C, DIy = —/ (A0 - A*9, (Ou))dx —KlOC. DI srg

—K / (A%6 - A*G)dx. (3.10)
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The second term in the right side produces the dissipation. We shall use it to control
the other two terms.
We split the first term in the right side of (3.10) into three pieces:

/ASO - A9y (Qu)dx = f (ASQ . Asaxu) fdx + / (ASG . u) (A58x9) dx
—i—/AS@-[ASax,u,@]dx
— I+ 114111 (3.11)

Let us start with /:
1:/(1\‘?—%3”) A% (6 A*0) dx
=f<As_a78xu> (20 )-de—i-/(As_%&xu)-(A59)~<A%9>dx
+/ (A %a.u) - [a%, 2%, 0] dx

=L+ DL+ 1. (3.12)

For I;, we have, using (3.8):

I = / IATE0P2 - 6dx +[ (AS*%G) : (A”%@) -dx = Iy + Ipa.
The term /7 is controlled by the dissipation in the right side of (3.10): set

(1) = inf (x, 7).
fm 0=5t<t,xeT P

Note that p;,(#) > 0 by Lemma 2.4. Then we have, using Lemma 2.4:

Y S 2 < o — 2 < _ 2
I KIIGIIHH% s (6= K)IIGIIHH% = pm(t)IIGIIHH%. (3.13)

To bound 71> we use the Holder inequality,

Om
2] S G e-g 101 org 101 = ?IIGII "1 +—I|9||Lao||G||

377

(3.14)

In order to control the term /> in (3.12), we, once again, use (3.8), and the Holder
inequality:

[IA

L] (uen g 1G] g ) 101 N 6] 1

A

3 1 o 1
<161 g <$+§) IAZOIL 015, + SIGI%, 4. (B.15)
m
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The contribution of I3 in (3.12) is bounded using the commutator estimate (3.5):

S S
1151 = (161 4o + 1G] 4oo5 ) [T, 20,0 |

< C (00 svg + G omg ) 1015101 o1

IN

A

Pm 02 3 1Y 20002 2 1 2

—I61~ .« — + = ) CNON a  NON s + =GN . (3.16
2l ||Hs+2+(2pm +2) 100 4. 1015 + SIGIZ, g (3.16)
Next, we estimate the term /7 in (3.11), integrating by parts

1 .
(=7 V(AA@)2 Sdeu dx| £ C (1A“0 ) + IGlL) 10117, (3.17)

For the term /11 in (3.11), we apply the commutator estimate (3.4) and get

(LT S 000 s Il [A* 8y, w, 0] 112
< Clellas Noxuliolllms + 1001l Lo llull fs) - (3.18)

To estimate ||u|| gs in the right side, we apply Corollary 2.2 to get
lullzzs = el 2 + 135l st < € (14 161 gs-ta + [Gllggs—1) . (3.19)

We also have, using the uniform bound on the density,

|0(x) —60(y)|d
1A%0] < ca/ TR TR < (10l + 19:0012)
R X =yl
S Co(1+110x0] ) , (3.20)
with a constant Cy that depends on pg and uq. Therefore, d, u satisfies

[9xulliee = IA%EllL + [GllLe = C (L + 1050l + [IGllLe) . (3.21)

Together, (3.18)—(3.21) give
TS C (1 + 13601 + G l) (14 1013 + 1613, ) - (3.22)

The third term in the right side of (3.10) can be estimated as

K

o .

< < Pmygi2 Lo
= kOl o g 1G1 s-g = ?H@HHH% + f”G”ﬁS*z
m

/ (A%0) - (A*G)dx

Putting the above estimates together, we end up with the following inequality:

1d

1
2 < b 2 . 2 2
S 1617 < c(1+pm) (1418613 + 1G =) (1613 +1GI2 g +1)

2

1o
=500 g (3.23)
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In order to close the estimate, and obtain a bound on Y (¢) defined in (3.9), we write

%%”G”}% _ _/<As—%c) (A58, (Gu)) dx

— _f<AS—%G) : (uAS_%8XG> dx

— / (AS’%G) : [AS’%BX, u] Gdx=1IV+V. (324

The term IV can be treated as /1 via integration by parts, together with (3.20):
1 a 2
1Vi=3 ‘f (AS_7G> 9w dx

To bound V, we apply the commutator estimate (3.6), as well as (3.21):

< o o 2
S CA+19:0lz + 1Gl=) G g -

(3.25)

VIS 1G] 5g Il [A 20, u] Gl

=S ClGll - <||8xu||L°° G ,ys-g + IIGllellaxulle_%)
S CU+ [10x0] > + IIGIILoo)IIGIIiIS,% + ClIGlL=lIGll ys-g 101l g
=

Pm 2 1 2 2
?H@HHH% +C (1 + p—m||G||Loo + [|0x0]I L + ||G||L°O)> “G”H“%'
(3.26)

Now, estimates (3.23)—(3.26), together with the uniform bound on |G|, yield
an inequality

Om (1)
6

2
190G g

(3.27)

d
—Y@®HsC|(1
gTo= <+

2 —
pm(t)> I+ 110x0C, 1)1 700) Y (2)

For s > 3/2, H® is embedded in W1 This, together with Lemma 2.4, implies

%Y(t) SCA+D1+YD))YQ), (3.28)

and the local in time well-posedness for solutions with H* initial data follows.
Moreover, it follows from (3.27) that

T
Y(T) < Y(0) exp [c/ (1+1) (1 + ||ax9(-,z)||%oo) dt:|. (3.29)
0

For all finite 7 > 0, if the Beale-Kato—Majda criterion (3.3) is satisfied, the right
side of (3.29) is finite, whence

0 eC(0,T], H (T)), G(,t)eC ([0, T1, HS_%(T)) ,
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and thus p € C([0, T'], H*(T)). Furthermore, integrating (3.27) in [0, T'], we see
that if (3.3) holds, then

pu(T) 2
0 a ,
& 1 s o ev8) <+

thus p € L2([0, T1, H”%). To recover the conditions on u in (3.2), we apply
Corollary 2.2 and get

G O iia = G ON72 + [0 D|3-a < C+CY (1) < 0.

This ends the proof of Theorem 3.1.

4. The Global Regularity

In this section, we derive a uniform L°°-bound on 9, p, using a variant of the
modulus of continuity method. Together with the Beale—-Kato—Majda type criterion
(3.3), this will imply the global well-posedness of the Euler alignment system
(1.25)—(1.26), and prove Theorem 1.1. We will first consider the special case G = 0,
that is, the system (1.36). The nonlinear diffusive term makes the problem subtler
than in the SQG or Burgers equation case. Finally, we prove the result to the general
Euler alignment system, using a combination of an appropriate scaling argument,
estimate on the minimum of p, and additional regularity estimates. In this case,
the bound on 9, p will depend on time and may grow, but remains finite for every
t > 0.

For convenience, we work on R, and extend p and u periodically in space.

4.1. The Modulus of Continuity
We say that a function f obeys modulus of continuity w if

f@x) = f() <w(x -y, forallx,yeR.

We will work with the following modulus of continuity for the density p:

@) =1 log(e/5) + 6 — g1+, g 25,

“.1)

so that w is continuous at £ = §. The parameters § and y are sufficiently small
positive numbers to be specified later. The modulus w is continuous, piecewise
differentiable, increasing and concave, and satisfies

" (0) = —oo0. 4.2)

The following proposition describes the only possible modulus breakthrough sce-
nario for evolution equations.
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Proposition 4.1. ([33]). Suppose py obeys a modulus of continuity w that satisfies
(4.2). If the solution p(x, t) violates w at some positive time, then there must exist
t1 > 0 and x1 # y1 such that

p(x1,t1) — p(y1, 1) = @(|x1 — y1]), and p(-, t) obeys w for every 0 = t < .
4.3)

Thus, to prove that p obeys a modulus of continuity w for all times ¢t > 0, it is
sufficient to prove that if (4.3) holds, then

o (p(x1,t1) — p(y1, 1)) < 0. 4.4)

As aremark on the notation, we will again use C as a notation for various universal
constants that do not depend on 7', § and y.

4.2. The Global Regularity for the Special System with G = 0
Let us first consider the special case G = 0, or, equivalently, the system (1.36):
dp 4 0x(pu) =0, du=A%. 4.5)

As the mean of u is preserved by the evolution—see (2.14), we may assume without
loss of generality that

/ u(x,t)dx =0, (4.6)
T

for otherwise we would simply consider (4.5) in a frame moving the speed equal
to the mean of ug. Thus, we have

ulx, 1) = A%(x, t). 4.7)

Here, ¢(x, t) is the mean-zero primitive of 0(x, ), as in (2.6). We will prove the
following result:

Theorem 4.2. The system (4.5) with a smooth periodic initial condition py such
that po(x) > O for all x € T has a unique global smooth solution.

The key step in the proof is

Lemma 4.3. Suppose that m = minycTpo(x) > 0. Then there exist 8, and yy,,
independent of the period of the initial data, such that if po(x) obeys the modulus
of continuity w given by (4.1), then p(x, t) obeys w forallt > 0.

Theorem 4.2 is a consequence of Lemma 4.3. Indeed, suppose that Lemma 4.3 is
true. Notice that the equation (4.5) has a scaling invariance: if p(x, t) is a solution,
then so is

pr(x, 1) = p(rx, 2%1), (4.8)
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forany A > 0. From the properties of the modulus of continuity w given by (4.1) (in
particular its growth at infinity) it follows that we can find & > 0 sufficiently small
such that ,o)(\) (x) = po(rx) obeys w with § = §,,, ¥ = yi provided by Lemma 4.3.
Note that the rescaling (4.8) does not change the minimum of p. As §,, and y,, do
not depend on the period, Lemma 4.3 shows that p; (x, t) obeys w for all > 0. In
particular, it follows that

[0con(t,x)] <1, forallt >0andx € T. 4.9)

As we have mentioned, (4.9) together with the Beale-Kato—Majda type criterion
(3.3), implies that p, (¢, x) is a global in time solution of (4.5), and thus so is p(z, x).

Therefore, we only need to prove Lemma 4.3. Our strategy is as follows. Let
us assume that a modulus of continuity w, with some § and y is broken at a time
11, in the sense that (4.3) holds for some x1, y; € T. We denote

§=lx1—y1l >0, (4.10)
and, for simplicity, drop the time variable #; in the notation. We compute

d(p(x1) — p() = —d(pCe)u(x1)) + d (p(y)u(y))
—(u(x)dxp(x1) — u(y1)dep(y1))
—(pGx1) = p(yD)dcux)) — p(y) (Oxu(x1) — dxuyr))

—I+11+1I1 @11

We will obtain the following estimates for the three terms in the right side of (4.11):
to bound the first term we note that if €2(£) is a modulus of continuity for u, then
it follows from [33] that

1] = [u(x)dxp(x1) — u(y)dcp ()] = o (£)Q2(E). (4.12)
The modulus 2 (£) for u is given by the following:

Lemma 4.4. Let p obey the modulus of continuity w as in (4.1). There exists a
universal constant C > 0 so that then u(x) obeys a modulus of continuity

CE, 0<é& <,

Ce'w(§), €254 &1

2(8) é{

We will prove Lemma 4.4 later in this section.
Asw'(§) S 1for0 < & < §,and /(&) = y /& for & > §, we conclude that

Cé&, 0<é§ <3,

1] = o' )QE) = w(§) (4.14)

3
again, with the constant C > 0 that does not depend on py.
To bound the last two terms in the right side of (4.11) purely in terms of £ =
|x1 — y1| we will use the following lemma:
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Lemma 4.5. Let p obey the modulus of continuity w as in (4.1), and let x1, y1 be
the breakthrough points as in (4.3). There exists a constant C > 0 that may only
depend on o such that

Cifos§ =y,

= (4.15)
Cy§™“if§ >4,

A%p(x1) 2 —A@), A®):= {

and
cel=2,  0<&<s,

A%p(x1) = A%p(y1) 2 D1(§), Di(§) = {Ca)(é)é_‘" £>5 (4.16)

The first estimate in the above lemma gives a bound for the second term in (4.11):

IT=—(p(x1) — p(yD)A%p(x1) £ w () A), (4.17)
while (4.16) leads to:
111 = —p((A%p(x1) — A (yD) £ —mDy (&) (4.18)

Here, m is the minimum of p( and is preserved in time; see Corollary 2.5. Putting
(4.12), (4.17) and (4.18) together, we obtain

q(p(x1, 1) — p(y1, 1)) = @' (E)RE) + w(@)AE) —mD1(§).  (4.19)
For 0 < & < 6, using (4.13), (4.15) and (4.16), as well as the inequalities
wE SE D@1, 05§ <8, (4.20)
we see that
o' E)QE) + w(©AE) - %mm@) SCe—Cms' ™ <0, @21
provided that
§ < Cm?. (4.22)
On the other hand, for & 2 §, the above bounds tell us

Cyo®) _Cmo®) _
g g

1
o' (£)Q(E) + w(@)AE) — FmD1(E) = 0, (4.23)

if
y <Cm. (4.24)
Therefore, for § and y sufficiently small, we have

0 (p(x1,t1) —p(y1, 1)) <0, (4.25)

which is a contradiction to the assumption that #; is the first breakthrough tine.
Thus, @ can never be broken, and the proof of Lemma 4.3 is complete, except for
the proof of Lemmas 4.4 and 4.5. O
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4.2.1. The Dissipation Bound in Lemma 4.5 We first prove the dissipation
bound (4.16) in Lemma 4.5. It was shown in [31] that

A%p(x1) = A%p(y1) = D(§) (4.26)

with

§/2 - —w(E —
D(E) = ¢y [/0 20() — o€ +2n) —o@ 2n)dn

n1+a

+/<>° za)(s)—w(s+2n)+w(2ﬂ—5)dn]. 4.27)
&

2 nl+a

Both terms in the right side are positive due to the concavity of w.
To obtain a lower bound for D (&), we consider two cases. For & < §, we only
keep the first term. Note that

(€ +2n) S w(§) +20' )
due to the concavity of w, and
w(E —2n) = o) — 20/ (E)n + 20" 0’

due to the second order Taylor formula and the monotone growth of

2
o) = -2 :a)s*”"‘/z.
This gives
E/2 2
D(é)zC/o %dwcsl—“ﬂ, for0<g<s,  (428)

which is the first bound in (4.16).
For & > &, we only keep the second term in (4.27). Due to the concavity of w,
we have

3
w@2n+E) —w2n—§) S w2 =w®) +ylog2 = S0®). (429
if

<‘M& _S_SHWZ
V'= 21082 = 2log2

(4.30)

In that case, we have, using (4.29), that

*2w(&)—w(28)
nl+a

D(é)ica/

dnsz(é)'l@) ) e
£/2 a \2 &

(4.31)

and the proof of (4.16) is complete.
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4.2.2. A Lower Bound on A%p in Lemma 4.5 The next step is obtain the lower
bound (4.15) for A%p(x1, t1). As w is a modulus of p, we have for any z € R
p(2) = p(y) + oy —z), (4.32)
while
px1) = p(y1) + o(xi — yi). (4.33)

This implies a lower bound

A%p(x) = Ca/ p(x1) — )+ p0H1) — p(z)

|x1 _Z|1+(x
o[ @@ —oly —zD)
= /R |xp — z| 1+ &
_ ca/ w®) — a;(lé D 4y = — ). (4.34)
R |+

Our goal is to bound A(§) from above. Let us decompose the integral in the second
line of (4.34) as

_ _ —& & 2& oo
e [
—00 —£ & 2¢

= A+ Ay + A3+ Ay

We claim that A, and A3 are positive, so that their contribution to A(§) is negative.
Indeed, we can estimate A, using the concavity of w:

Az:/f wE) —oE—n-oEtn, 5,
0

nl+a

(4.35)

In addition, A3 = 0 simply due to the monotonicity of w, which implies

w(&) Z o(ln — &), for n € [§, 2¢].

It remains to bound Ay and A4 from below. We first consider 0 < & < §. In this
region, we can estimate A4 as follows:

ns [Tew-9, [T,
4 = 2 —ie dn 2 — Tra 9N
£ Ui 260 N
B /“ y log((n — §)/8) + 8 — 8"/ an
45 1+a
28
> _/ dT] 81+a/2)[
= 0 1+a
* log(n/9) _ _
—y/s de > —C8'7* —Cys. (4.36)

Thus, if we choose § < 1 and y < §, as in (4.30), we obtain

Ay 2 —C, for0<& <36, (4.37)
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The term A can be estimated similarly for 0 < & < §. Indeed, for & < §/2, we
have

00 §—& 00 1 8 S
P RS PR S T RS TR
£ niT e ne §—& nTe
 log(n/8
> _csime _cy [ 1800 s csie oy s el 43s)
5/2 77lJrot

provided that y satisfies (4.30). On the other hand, for §/2 < & < §, we have

® ] 8 +38 ® ylog(2n/8) + &
A1Z—f J/og((nJlré)/)Jr dné—f y log(2n/4) + dn
£ n +o £ 77lJroz
® ylog(2n/8) + &
2_f J/Og(lﬁ/)—f‘ dn
8/2 nite
> —C8'"* —Cys* = —C. (4.39)

Summing up the above computation, we conclude that
A%p(x1) 2 —A(E) 2 —Cif0 <& 6. (4.40)

On the other hand, if £ > §, we have the following estimates on A and A4:

5 log& — log(€ — ) y ['log(l —¢) Cy
Al:yf_oo li+a ”Z_s_a/_oo HECETE
(4.41)
and
*°log& —log(n — &) y [ log(¢—1) Cy
A4:y/2g e ”z_s_“/z e
(4.42)

Thus, we have the bound
A%p(x1) =2 —A(E) =2 —Cy& " for& > 6, (4.43)

finishing the proof of (4.15), as well as of Lemma 4.5. O

4.2.3. The Proof of Lemma 4.4 Next, we find a modulus of continuity €2 for u,
if p obeys w given by (4.1). We start with (4.7):

p(x) —px +y)

I (4.44)

u(x) = ¢y lim

el0 |y|>e

The first term in the right side can evaluated explicitly:

/ o) G, 200 (4.45)
|

y =
y|>e |)’|l+°‘ a &
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The second term in the right side of (4.44) can be re-written using integration by
parts as

/ <ﬂ(x+y)d _1<p(x+8)+¢(x—8) / O(x +y)
ly|>¢ |y|1+“ (o4 o |y|>e Sgn(y)|)’|“

(4.46)

As 0 € L, so that ¢ is uniformly Lipschitz, we can combine (4.45) and (4.46),
pass to the limit ¢ | 0, and obtain

Ca O(x +y)
=2 =2 gy 447
") « /ngn(y)lyla g 4D

Let us note that, since 6(x) is a periodic mean-zero function, the integral in the
right side of (4.47) converges as |y| — 400, and

() = & fG(X) 9(Xty)dy20_a/ p(x)—p(x?:y)dy_ (4.48)
a Jr  sgn(MIyl a Jr o sgn)lyl

Using an argument similar to that in the appendix of [33], one can show that, as

long as p(x) obeys a modulus of continuity w, the function u(x) given by (4.48)
obeys the modulus of continuity

Q(E):C( / W) 4+ g f wl(fz ) (4.49)

with a universal constant C > 0.
Thus, for 0 £ & < §, we get

Q(E)§C</ 1"‘dn+€/ 1"‘dn—|—€/ ”Og(’l’ji)”dn)
0

<c (52*“ L ESTY L EysTY 4 551*0‘) < ce, (4.50)

as long as we take y < §. This is the first inequality in (4.13).
For & > §, we use (4.49) to write

s _ sl4a/2
Q(§)<C(/ n'~“dn +/ ylog(n/s);(s Ty

y log(n/8) + 8 — s'+e/2
+§ / 1+Ol dn)

§/81
<c (527(1 4Elas _51+a/2)) +Cy517a/ og'?(h7
1

n(l
_ > logn
+CyES a/g/s n1+adn

< C (87 4+ 61700 — 817/ + Cye! (1 + log(€/8))
<C (87 +E'0©) £ 8 0 @), 451)

finishing the proof of Lemma 4.4.
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4.3. The Global Regularity for the Full System

We now consider the full system (1.31)—(1.33):

0:p + 0x(pu) =0, (4.52)
3G + 3, (Gu) =0, (4.53)
du = A% + G, (4.54)

without the extra assumption G = 0. Let us recall representation (2.8):
() = Ap() + (@) + Io) = uP (0) + u® (x). (4.55)

Here, ¢ (x) and ¥ (x) are the mean-zero primitives of 6 and G, respectively, as in
(2.6)—~(2.7), and I is given by (2.13).

Note that if p(x, t) and G (x, t) are solutions of (4.52)—(4.54), with the corre-
sponding velocity u(x, t), then

pi(x, 1) = p(Ax, 1%1), Gu(x, 1) = A" G(Ax, A1), (4.56)
are also solutions, with the corresponding velocity
up(x, 1) = A"y, A%1), (4.57)

and

o o G(x,t)
Fi(x,t) = F(x, A%t), F(x,t)= . (4.58)
p(x,1)
Note that if p; (x, ) obeys a modulus of continuity w, then p(x, #) obeys the mod-
ulus of continuity

W, (6) = w(A'E). (4.59)

The proof of the global regularity for the solutions of (4.52)—(4.54) is based on the
following lemma.

Lemma 4.6. Let w and w),_be as in (4.1) and (4.59), respectively. Given a smooth
periodic initial condition (pg, uo) for (4.52)—(4.54) and T > O, there exist 5 > 0,
y > 0and . > 0 so that p(x,t) obeys the modulus of continuity w, (§) for all
0 <t < T. The parameters 8, y and A may depend on o, pg, uy, and T.

This will imply a uniform bound on ||0yp|lz~ on 0 < ¢t < T. As T is arbitrary,
this is sufficient for the global regularity of the solutions, according to (3.3). Note
that p(x, ) obeys w, until a time 7 if and only if p, (x, ) obeys the modulus of
continuity w until the time 7, = A~%T, and this is what we will show. That is,
given pg and ug, and 7 > 0, we will find A > 0,8 > 0 and y > O sufficiently
small, so that (i) 05 (0, x) = po(Ax) obeys w, and (ii) p, (x, t) obeys w at least until
the time A~%T. The a priori bounds on p(x, t) and F (x, t) will play a crucial role
in the proof.

As in the case G = 0 considered above, we assume that a modulus of continu-
ity w of the form (4.1), with some § and y, is broken by p; at a time 1, at some



Global Regularity for the Fractional Euler Alignment System 29

X1, y1 € R, in the sense of (4.3). If T = [0, L], then p, is A_IL—periodic, and we
can restrict our attention to x1, y; € T) := 2~ IT. We also set

§=lx1—y1l >0, (4.60)
and drop the time variable #; in the notation. We decompose as in (4.11):

0 (pr(x1) — pa(¥1)) = —0x (oa (x)up(x1)) + 0x (oa (YDur(y1)) = R + Ry,
(4.61)

with the terms R; and R, coming from the contributions of u&l) and u&z) in (4.55).
We treat R; as before:

Ri = —(u” (D)3 0 (1) — 1 (31302 (1))
—(pax) = pa () xul” (1) = o2 () (Bl (1) — BV ()
=1 +11+111 (4.62)

Note that 7 and /1 can be estimated exactly as before: first, as in (4.14), we have

Cg, 0<é& <6,

1= (:y“’;f), -

with a constant C > 0 that does not depend on pg or ug. The term /I can be
bounded as in (4.17):

(4.63)

11 = w(§)A®), (4.64)

with A(€) defined in (4.15). The term /71 is bounded slightly differently from
(4.18)

11 < —p\P(T)Dy (§). (4.65)
Here, ,0,(")‘) (T) is the minimum of p; (x, t) over 0 < ¢ < A~%T, and D (§) is defined
in (4.16). The lower bound (2.30) in Lemma 2.4 implies that

1 1

" Lom©O)] T+ T Foll =
(4.66)

1\

o (T)

1
[P O]+ AT IR

N pn(0)
= T+ Tlouoll + TIApoll

= pm(T),

as follows from (4.58). That is, even though now, unlike in the special case G = 0,
the function p(x, ¢) does not necessarily obey the minimum principle, and py, (¢)
may decrease in time, the value of ,o,(n)‘ ) (t) does not depend on A > 0. Thus, we
may first choose the parameters 6 and y in the definition (4.1) of the modulus of
continuity w so that (4.22) and (4.24) hold with m replaced by p,,(T), and, in
addition, they satisfy (4.30). Next, we choose X sufficiently small, so that ,og (x) =
00(Ax) obeys the modulus of continuity w with the above choice of § and y.
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It remains to take into account the contribution of uf) to the right side of (4.61).
The goal is to control the corresponding terms in (4.11) by the dissipation, namely,
to show that

Ry = [u® (1) depa(x1) — 1l (302 (1)
+oa D (1) — pa (D ()|

1
=Ry + Ry < zﬁm(T)Dl(%“) (4.67)

Note that the flow u&z) (x) is Lipschitz, as

10,2 (2, )| = |G (1, )| S 10308, Y peo | Falt, Yz < Cor®,  (4.68)

with a constant Cy that depends on the initial conditions pg and uo butnoton A > 0.
Therefore, uf) obeys the modulus of continuity

Q(8) = Cor“g, (4.69)
and the first term in (4.67) can be bounded by
Roy = [u (D)3 pa (r) — u (03 pr ()] £ CA%E0/ (§). (470)
Let us recall from (4.1) and (4.16) that
o€ =1, Di(§)=Cig'"2 for0=§ =3, 4.71)

hence, we have

%51_% < iﬁm(T)Dl(E) for0 <& <6,

4.72)

Ro1 = Cor"E (§) S Cor%E <

provided that § and X are sufficiently small. On the other hand, we see from (4.1)
and (4.16) again that

/ 14 Cio(§)
= —, D =
WO =7 Di©) ==

It is also straightforward to check that D1 (§) is decreasing for & > §, provided that

, fors <& Lal. 4.73)

y < cd, 4.74)
with a sufficiently small constant ¢ > 0 that depends only on . We also have

oL
Laf

Hence, taking A sufficiently small, depending on L as well, we have the inequality

— 400, as A — 0, with L > 0 fixed. 4.75)

C1pm(T) 0(A"'L)
4 (L)

Ry = Cor“Ea/(§) = Cor"y <

Cipm(T) 0(§) _ 1
4 ge =4

A

om(T)D1(8), (4.76)
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for 8§ < & < LAa~!. Together, (4.72) and (4.76) show that

1_
Ry = me(T)Dl(%’). 4.77)
For the second term in (4.67), we write

Ry = |,0/\(X1)3xu§2)(xl) - p,\(yl)axuiz)(ylﬂ
= |0 (x1)? Fu(x1) — pa)* Fa )|
< 2%l Fllre < Cor®, (4.78)
with a constant Cy that depends only on the initial condition pg and ug. Then, for
A sufficiently small, we have, once again using the fact that w(£)/£% is decreasing
for & > § and (4.75):

Cipn(T) @(""'L) _ Cipw(T) 0(§)

Ry £ Coa® < <
e N ) L G

%ﬁm(nDl@), fors <& <AL (4.79)

To bound Ry; in the region 0 < & < §, we write
Ry = |p.(x1)* Fo(x1) — pa(v1)* ()|
< |pa(xe)? Fa(x1) — o2 01)* (x| + [0 D2 Fa(x1) — pa(y)? Fa ()|
<20l | Pl (@) + [1ox 3 oo 10 Fill Lo (4.80)

Lemma 2.3 guarantees that F' is Lipschitz, and the Lipschitz bound is uniform in
time, thus (4.58) implies

185 Fyll e < Coal™e,

with a constant Cy that depends only on the initial conditions. In addition, it follows
from (4.58) that

[ Fillpee = CoA”.

Inserting the last two bounds in (4.80), together with the expression for D (£) in
4.71), gives

C1in (D) 1oz _ on(T)
4 T4
Here the constant Cy depends only on the initial conditions pg and ug, and the
second inequality holds provided that § and XA are sufficiently small. This proves

(4.67), and finishes the proof of Lemma 4.6.

Let us recap the order in which we choose the parameters. The value of « is
fixed throughout the argument. Given the initial data, we also fix its period, L. We
can also assume that A does not exceed one. Next we choose ¢ sufficiently small so
that (4.22) (with m replaced by p,,(T)), (4.72), and (4.81) hold. Then we choose
y so that (4.24) (with m replaced by p,,(T)), (4.30) and (4.74) hold. Finally, we
choose A so that p; (0, x) obeys w with the above choice of §, y and so that (4.76)
and (4.79) hold. The proof of Theorem 1.1 is now complete. 0O

Ry = CoA®(w(§) +§) = Dy(§).  (4.81)
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A The Proof of a Commutator Estimate

In this section, we prove the commutator estimate (3.5),

LAY foglllz2 S I flzllglicr+e, v € (0, ).

The proof is for x € R”", though it can be easily adapted to periodic case. Let
(x, n) be smooth functions such that y is supported in aball {¢& : |&| < 4/3}, nis
supported in an annulus {& : 3/4 < |&| < 8/3}, and

XE+Y 0@ %) =1, V&R
q=0
It is standard to take
n) = x&/2) — x &),

which we will assume. Denote the Littlewood—Paley decomposition of f as

> Agf,where A, f =n(Q4D)f forq = 0,and A_|f = x(D)f. The
q 179 q

Besov norm is defined as [3]

1/r
Iflss, = <ZZ”|IAqf||’L,,) _
q

Let the partial sum S, /' = Zpgq_l A, f = x(279D) f. The Bony decompo-
sition states B

F§=Trg+Tgf +R(f 8).

where
q+1
Trg=) Se1f D8 R(FQ =Y Agf-Dgg. Agf= Y Apf
q q p=q—1

Proof of the commutator estimate. First, we observe

IfAY g2 S fI2IAY gl SN fllz2liglcre.
Therefore, it suffies to prove
IAY(f8) — gA” fllz2 S fIc2liglicr+e.
We apply the Bony decomposition to both terms, to get

AN (fg) =N (Trg) + AV (Ty f)+ AV (R(f. ) =11 + 1 + 15,
gAY f =Tiar g+ To(AY f) + R(AY f, g) =11; + 11, + 115.
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The terms Iy, Iy, I3, II3 can be estimated with standard paraproduct calculus,
sketched as follows:

il72 =D 1AGAY (Trg) 17, S D247 1Ay (Tr8) I3

q q
S 22 Si f - Agellra S 1 F172llgl o
- ,
I, =Y 1A Tar gl S D ISg 1A f - Agglla
q q

S IS 1A FlITa I AggllTe

2 2 2 2 2
S 281 flITa Mgl T S AFIT Mgy .
00,
q

112, £ DOIA (Ag f - Agg) 12,
q

SO PUNALS - Aggli £ Y 2NA FlITa A8l
q q

2 1,12
S IfI72N8l% v

13113, <Z||A A”f Agelli7 <Z| (A7 F) 172118 gl 7

< ZzZWHAqfllellAqgllLoo
q

< 2 2
S ||f||Lz||g||BOVO.2,

as C7 ¢ is embedded in By . These terms are nicely controlled.
The commutator structure is mainly used to estimate I, — II. Let us denote the
difference as III. Given any g € N,

AJI =" Ay (A7 (Sp18 - Apf) = Spo1g- AV (A, f)) = Y I,
p

Note that III, = 0 for |[p — g| = 5. Therefore, it is a finite sum. We discuss III,
and the other terms can be treated similarly.
Following from [30], we estimate III; in the Fourier side as

Iy (x) = //(I-’E +¢l”

—EINQTIE + O 27PN 8) f(£)§(0)e! E T dede.
Define a multiplier m(&, ¢) as

Y — Y
me,0) = S E e 1 oxaon.
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It is easy to check that m is uniformly bounded, compactly supported and C°. Let
mgq(§,¢) =m(271§,279¢), then

I, (x) = / / mg (€, 0) f ()] 2(0)e! EH"dedg
- // hg (5 2) - Ag f(x — v) - A7 Sy-1g(x — 2)dydz.
where
hy(y,z) = C// my (&, £)e' I dede.

Compute

/ / Iy (v, 2)ldydz = 2% / / 120y, 297)]dydz = f i1 (v, 2)ldydz <€ C,

where the last integral is bounded due to smoothness of m, and the constant C does
not depend on ¢g. Then, applying Young’s inequality, we get

I Nl 2 S g G IAG fll2IAY Sg—18llLoe STAG £l 2 Z 2PV A pgllpee.
p<q—1

We collect all modes and conclude

T, =D 1A 2 S A FI7 | DD 277 11Apglii
q q r<q—1
SY MAGFIT, D 2P A gl
q p<q—1

=D 2P0 gl Y 18IS SN2 N81R
14 q>p+1 B2

2 o2
SN2y
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