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Abstract

Westudy a pressureless Euler systemwith a non-linear density-dependent align-
ment term, originating in the Cucker–Smale swarming models. The alignment term
is dissipative in the sense that it tends to equilibrate the velocities. Its density
dependence is natural: the alignment rate increases in the areas of high density
due to species discomfort. The diffusive term has the order of a fractional Lapla-
cian (−∂xx )

α/2, α ∈ (0, 1). The corresponding Burgers equation with a linear
dissipation of this type develops shocks in a finite time. We show that the align-
ment nonlinearity enhances the dissipation, and the solutions are globally regular
for all α ∈ (0, 1). To the best of our knowledge, this is the first example of such
regularization due to the non-local nonlinear modulation of dissipation.

1. Introduction

The Cucker–Smale Model Modeling of the self-organized collective behavior,
or swarming, has attracted a large amount of attention over the last few years. Even
an attempt at a brief review of this field is well beyond the scope of this intro-
duction, and we refer to the recent reviews [15,18,42]. A remarkable phenomenon
commonly observed in biological systems is flocking, or velocity alignment by
near-by individuals. One of the early flocking models, discrete in time and two-
dimensional, is commonly referred to as the Vicsek model: the angle θi (t) of the
velocity of i-th particle satisfies

θi (t + 1) = 1

|N i (t)|
∑

j∈Ni (t)

θ j (t) + η�θ. (1.1)

Here,Ni (t) = { j : |xi (t)− x j (t)| � r}, with some r > 0 fixed, �θ is a uniformly
distributed random variable in [−1, 1], and η > 0 is a parameter measuring the
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strength of the noise. This model preserves the modulus of the particle velocity and
only affects its direction. First via numerical simulations and then by mathematical
tools, it has been shown that this model has a rich behavior, ranging from flocking
when η is small, to a completely chaotic motion for large η, with a phase transition
at a certain critical value ηc.

A natural generalization of the Vicsek model was introduced by Cucker and
Smale [21]:

ẋi = vi , v̇i = 1

N

N∑

j=1

φ(|xi − x j |)(v j − vi ). (1.2)

Here, {xi , vi }N
i=1 represent, respectively, the locations and the velocities of the

agents. Individuals align their velocity to their neighbors, with the interaction
strength characterized by a non-negative influence function φ(x) � 0. The rel-
ative influence is typically taken as a decreasing function of the distance between
individuals. An important flexible element of the Cucker–Smale model is that it
both does not impose a constraint on the velocitymagnitude and it allows to analysis
of the behavior based on the decay properties of the kernel φ(r). One of the main
results of the Cucker–Smale paper was that, roughly, provided that φ(r) decays
slower than r−1 as r → +∞, then all velocities vi (t) converge to a common limit
v̄(t), and the relative particle positions xi (t) − x j (t) → x̄i j also have a common
limit—the particles form a swarm moving with a uniform velocity. This is what we
would call a global flocking: all particles move with nearly identical velocities.

One potential shortcoming of the Cucker–Smale model is that an “isolated
clump” of particles may be more affected by a “far away” large mass than by its
own neighbors. Essentially, the dynamics inside a small clumpwould be suppressed
by the presence of a large group of particles “far away”. This can be balanced by a
different kind of averaging, rather than simple division by N in (1.2), as was done
by Motsch and Tadmor [35]:

ẋi = vi , v̇i = λ

	i

N∑

j=1

φ(|xi − x j |)(v j − vi ), 	i =
N∑

k=1

φ(|xi − xk |), (1.3)

with some λ > 0. This modification reinforces the local alignment over the long
distance interactions.

A Kinetic Cucker–Smale Model Kinetic models are also commonly used to
describe the collective behavior when the number of particles is large, in terms of
the particle density f (t, x, v), with x ∈ R

d , v ∈ R
d . A kinetic limit of the Cucker–

Smale model was obtained by Ha and Tadmor [27], as a nonlinear and non-local
kinetic equation:

ft + v · ∇x f + ∇v · (L[ f ] f ) = 0, (1.4)

with

L[ f ](t, x, v) =
∫

R2d
φ(x − y)(v′ − v) f (t, y, v′)dv′dy. (1.5)
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Together, (1.4)–(1.5) give a nonlinear kinetic version of the Cucker–Smale system.
It was shown in [16] that its solutions exhibit global flocking, in the sense that

the size of the support in x ,

S(t) = sup{|x − y| : (x, v), (y, v′) ∈ supp( f (t, ·, ·))},
remains uniformly bounded in time, and the support in v shrinks:

V (t) = sup{|v − v′| : (x, v), (y, v′) ∈ supp( f (t, ·, ·))} → 0 as t → +∞,

(1.6)

under the assumption that φ(r) decays slower than r−1 as r → +∞. A similar
result was obtained in [41] for the kinetic Motsch–Tadmor system.

A kinetic model that combines the features of the Cucker–Smale and Motsch–
Tadmor models was proposed in a paper by Karper et al. [28]:

ft + v · ∇x f + ∇v · (L[ f ] f ) + λ∇v · ((u(t, x) − v) f ) = �v f, (1.7)

with L[ f ] as in (1.5), λ > 0, and the local average velocity u(t, x) defined as

u(t, x) = 1

ρ(t, x)

∫

Rd
v f (t, x, v)dv, ρ(t, x) =

∫

Rd
f (t, x, v)dv. (1.8)

The Laplacian in the right side of (1.7) takes into account the possible Brownian
noise in the velocity.

One should also mention a large body of literature on the kinetic versions of the
Vicsek model and its modifications, and their hydrodynamic limits; see [12,22–25]
and references therein.

An Euler Alignment Model The kinetic Cucker–Smale model can be further
“macroscopized” as a hydrodynamic model for the local density ρ(t, x) and local
average velocity u(t, x) defined in (1.8). The standard formal derivation of the
hydrodynamic limit for nonlinear kinetic equations often relies on a (often hard to
justify) moment closure procedure. An alternative is to consider the “monokinetic”
solutions of (1.4)–(1.5) of the form

f (t, x, v) = ρ(t, x)δ(v − u(t, x)). (1.9)

In a sense, this is a “local alignment” (as opposed to global flocking) ansatz—the
particles move locally with just a single velocity but the velocity does vary in space.
Inserting this expression into (1.4)–(1.5) gives the Euler alignment system, which
we write in one dimension as

∂tρ + ∂x (ρu) = 0, (1.10)

∂t (ρu) + ∂x (ρu2) =
∫

R

φ(x − y)(u(t, y) − u(t, x))ρ(t, y)ρ(t, x)dy.

(1.11)

The presence of the density ρ under the integral in the right side of (1.11) has a very
reasonable biological interpretation: the alignment effect between the individual
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agents becomes stronger where the density is high (assuming that the interaction
kernel φ is localized). As far as a rigorous derivation of the hydrodynamic limit is
concerned, the aforementioned paper [28] derives the hydrodynamic limit starting
from the “combined” Cucker–Smale–Motsch–Tadmor kinetic system (1.7):

∂tρ + ∂x (ρu) = 0, (1.12)

∂t (ρu) + ∂x (ρu2) + ∂xρ =
∫

R

φ(x − y)(u(t, y) − u(t, x))ρ(t, y)ρ(t, x)dy.

(1.13)

This system has an extra term ∂xρ in the left side of (1.11) that can be thought of
as pressure, with the constitutive law p(ρ) = ρ. The pressure appears as a result
of the balance between the local interaction term in the left side of (1.7) and the
Laplacian in the right side. In particular, the starting point of the derivation is not the
single local velocity ansatz (1.9) but its smooth Maxwellian version (setting λ = 1
in (1.7) for convenience)

f (t, x, v) = ρ(t, x) exp
(

− (v − u(t, x))2

2

)
, (1.14)

taken together with the assumption that the interaction is weak, φ → εφ, and a
large time–space rescaling (t, x) → t/ε, x/ε.

Another version of the Euler equations as a model for swarming has been
proposed in [34], and formally justified in [19]:

∂tρ + ∂x (ρu) = 0,

∂t (ρu) + ∂x (ρu2) + ∂xρ = αρu − βρ|u|2u −
∫

R

∇V (x − y)ρ(t, y)ρ(t, x)dy.

(1.15)

The key difference between models like (1.15) and the ones we consider here is the
absence of the regularizing term u(t, y) − u(t, x) in the right side, so one does not
expect the regularizing effect of the interactions that we will observe here.

TheEulerAlignment System forLipschitz InteractionKernels Whenparticles
do not interact, that is, φ(x) ≡ 0, the system (1.10)–(1.11) is simply the pressure-
less Euler equations. In particular, in that case, (1.11) is the Burgers equation:

∂t u + u∂x u = 0. (1.16)

Its solutions develop a shock singularity in a finite time if the initial condition
u0(x) has a point where ∂x u0(x) < 0. In particular, if u0(x) is periodic and not
identically equal to a constant, then u(x, t) becomes discontinuous in a finite time.
The function z(x, t) = −∂x u(x, t) satisfies the continuity equation

∂t z + ∂x (zu) = 0, (1.17)

and becomes infinite at the shock location.
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The singularity in the Burgers equation does not mean that there is a singularity
in the solution of kinetic equation; it only means that the ansatz (1.9) breaks down,
and we cannot associate a single velocity to a given position. This is a version of
“a shock implies no local alignment”. To illustrate this point, consider the solution
of free transport equation

∂t f + v∂x f = 0, (1.18)

with the initial condition f0(x) = δ(v + x). The solution of the kinetic equation is

f (t, x, v) = f0(x − vt, v) = δ(v + x − vt), (1.19)

hence the ansatz (1.9) fails at t = 1. This is the time when the corresponding Euler
equation

∂t u + u∂x u = 0, (1.20)

with the initial condition u(0, x) = −x , develops a shock: u(t, x) = −x/(1 − t).
The integral term in the right side of (1.11) has a dissipative nature when φ �≡ 0;

it tries to regularize the velocity discontinuity.When the function φ(x) is Lipschitz,
this system has been investigated in [14] and [40] that show two results. First, a
version of global flocking: if φ decays slower than |x |−1 at infinity, and the solution
remains smooth for all t � 0 and the initial density ρ0 is compactly supported, then
the support St of ρ(t, ·) remains uniformly bounded in time, and

sup
x,y∈St

|u(t, x) − u(t, y)| → 0 as t → +∞. (1.21)

An improvement in global regularity compared to the Burgers equation (1.16)
was also obtained in [14] and [40]. As we have mentioned, solutions of the latter
become discontinuous in a finite time provided there is a point x ∈ R where the
initial condition u0(x) has a negative derivative: ∂x u0(x) < 0. On the other hand,
solutions of the Euler alignment equations remain regular for initial data such that

∂x u0(x) � −(φ � ρ0)(x) for all x ∈ R, (1.22)

while the solution blows up in a finite time if there exists x0 ∈ R such that

∂x u0(x) < −(φ � ρ0)(x). (1.23)

Thus, the presence of the dissipative term in (1.11) leads to global regularity for
some initial data that blows up for the Burgers equation: the right side of (1.22)
may be negative. However, a Lipschitz interaction kernel φ(x) arrests the shock
singularity for the Euler alignment equations only for some initial conditions.
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Singular Alignment Kernels Our interest is in singular interaction kernels of
the form φ(x) = |x |−β , with β > 0. One reason to consider such kernels is to
strengthen the effect of the local interactions compared to the effect of “far-away”
particles, in the spirit of the Motsch–Tadmor correction. The well-posedness of the
finite number of particles Cucker–Smale system with such interactions is a delicate
issue—the difficulty is in either ruling out the possibility of particle collisions, or
understanding the behavior of the system at and after a collision. This problem was
addressed in [37,38] for β ∈ (0, 1)—it was shown that in this range, particles may
get stuck together but a weak solution of the ODE system can still be defined.When
β � 1, a set of initial conditions that has no particle collisions was described in [1].
The absence of collisionswas proved very recently for general initial configurations
in [13]. As far as flocking is concerned, unconditional flocking was proved in [26]
for β ∈ (0, 1), while for β � 1 there are initial configurations that do not lead to
global flocking—the long distance interaction is too weak. The well-posedness of
the kinetic Cucker–Smale system for β ∈ (0, 1/2) was established in [36].

We consider here the alignment kernels φ(x) with β > 1:

φα(x) = cα

|x |1+α
, (1.24)

with α > 0. In particular, the decay of φ(x) at large |x | is faster than the 1/|x | decay
required for the Cucker–Smale and other proofs of flocking. It is compensated by
a very strong alignment for |x | → 0. The constant cα is chosen so that

�α f = cα

∫

R

f (x) − f (y)

|x − y|1+α
dy, � = (−∂xx )

1/2.

Then the strong form of the Euler alignment system is

∂tρ + ∂x (ρu) = 0 (1.25)

∂t u + u∂x u = cα

∫

R

u(t, y) − u(t, x)

|y − x |1+α
ρ(t, y)dy. (1.26)

Let us first compare the Euler alignment system (1.25)–(1.26) to the Burgers
equation with a fractional dissipation

∂t u + u∂x u = −�αu, (1.27)

obtained by formally setting ρ(t, x) ≡ 1 in (1.26) and dropping (1.25) altogether.
This neglects the nonlinear mechanism of the dissipation. Global regularity of the
solutions of the fractional Burgers equation has been studied in [32]. One can
distinguish three regimes: first, when α > 1, the dissipative term in the right side
has a higher order derivative than the nonlinear term in the left side. This is the
sub-critical regime: the dissipation dominates the nonlinearity, and global existence
of the strong solutions can be shown in a reasonably straightforward manner using
the energy methods. On the other hand, when 0 < α < 1, the dissipation is
too weak to compete with the nonlinear term, which has a higher derivative, and
solutions with smooth initial conditions may develop a shock, as in the inviscid
case. The critical case is α = 1 when the dissipation and the nonlinearity contain
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derivatives of the same order. One may expect that then the nonlinearity may win
over the dissipation for some large data. This, however, is not the case: solutions
with smooth initial conditions remain regular globally in time. The proof of the
global regularity when α = 1 is much less straightforward than for α > 1 and does
not rely solely on the energy methods.

One may hope that the nonlinearity in the dissipative term in the right side of
(1.26) is actually beneficial, compared to the fractional Burgers equation (1.27).
Indeed, on the qualitative level, as the shock would form, the density ρ would be
expected to increase near the point of the shock. This, in turn, would increase the
dissipation in (1.26), moving the problem from “like a super-critical Burgers” to
“like a sub-critical Burgers”. This intuition, however, may be slightly misleading—
for instance, as we will see, strengthening the dissipation by increasing α does
not appear to make the problem any easier, or change its critical character. The
competition between the Burgers nonlinearity in the left side of (1.26) and the
nonlinear dissipation in the right side is rather delicate.

The aforementioned results of [14,40]may lead to a conjecture that a dissipation
term involving the convolution kernel φ /∈ L1, as in (1.26), should lead to global
regularity. However, this is far from obvious. The global regularity argument of [14,
40] uses two ingredients: first, if, initially,

∂x u0 + φ � ρ0 � 0 (1.28)

for all x ∈ R, then

∂x u + φ � ρ � 0 (1.29)

for all x ∈ R and t � 0. Second, an L∞-bound on ρ is established. When φ

is an L1-function, one deduces a lower bound ∂x u > −C0, which is crucial for
global regularity. One may combine an argument of [14] with the Constantin–Vicol
nonlinear maximum principle to establish the L∞-bound for ρ in our case, as well.
However, in our case, the analogous inequality to (1.29) is

∂x u − �αρ � 0. (1.30)

This fails to give the required lower bound on ∂x u based on just the L∞ control of
ρ, and the global regularity does not follow easily from the uniform bound on the
density. Instead, we have to deploy a much subtler argument involving both upper
and lower bounds on the density and a non-trivial modification of the modulus of
continuity technique of [33].

The Main Result We consider here the Euler alignment system (1.25)–(1.26)
on the torus T, for α ∈ (0, 1). In particular, this range of α corresponds to the
supercritical case for the fractional Burgers equation (1.27). We prove that the
nonlinear, density modulated dissipation qualitatively changes the behavior of the
solutions; instead of blowing up in a finite time, solutions are globally regular.

Theorem 1.1. For α ∈ (0, 1), the Euler alignment system (1.25)–(1.26) with peri-
odic smooth initial data (ρ0, u0) such that ρ0(x) > 0 for all x ∈ T, has a unique
global smooth solution.
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The regularizing effect of a non-linear diffusion has been observed before, for
instance, in the chemotaxis problems with a nonlinear diffusion—see [5–9]. The
main novelties here are that the nonlinearity is non-local, and that, as we will see,
increasing α does not, contrary to a naive intuition, and unlike what happens in the
fractional Burgers equation, strengthen the regularization effect.

To explain the ideas behind the result and its proof, it is convenient to reformulate
the Euler alignment system (1.25)–(1.26) as the following system for ρ and G =
∂x u − �αρ:

∂tρ + ∂x (ρu) = 0, (1.31)

∂t G + ∂x (Gu) = 0, (1.32)

with the velocity u related to ρ and G via

∂x u = �αρ + G. (1.33)

We show in Section 2 that (1.25)–(1.26) and (1.31)–(1.33) are, indeed, equivalent
for regular solutions. Note that (1.33) only defines u up to its mean, which is
determined from the conservation of the momentum:

∫

T

ρ(x, t)u(x, t)dx =
∫

T

ρ0(x)u0(x)dx . (1.34)

Somewhat paradoxically, (1.33) seems to indicate that increasing the dissipation α

makes the velocity more singular in terms of the density rather than more regular.
The solutions of (1.31)–(1.32) with the initial conditions ρ0(x), u0(x) such that

G0(x) = ∂x u0(x) − �αρ0(x) ≡ 0, (1.35)

preserve the constraint G = 0 for all t > 0, and (1.31)–(1.32) then reduces to a
single equation

∂tρ + ∂x (ρu) = 0, ∂x u = �αρ, (1.36)

that is simpler to analyze. Note that (1.36) defines u(x, t) only up to its spatial
average—we assume that it has mean-zero for all t > 0. Equation (1.36) is inter-
esting in its own right, as a model for the 1D nonlinear porous medium flow with
fractional potential pressure. Global existence of the weak solutions was studied
by Caffarelli and Vazquez [11], for α ∈ (0, 2) and ρ0 � 0. It has been further
investigated in [10], where it is shown that the weak solutions with L1 initial data
instantly become Hölder continuous and stay Hölder for all time.

When α = 1, so that the velocity is the Hilbert transform of the density, the
model (1.36) was introduced as a 1D vortex sheet model in [4], and has been
extensively studied in [17] as a 1D model of the 2D quasi-geostrophic equation. In
particular, the global existence of classical solution if ρ0 > 0 is proved in [17] using
the algebraic properties of theHilbert transform. A counterexample is also provided
that says if the initial data ρ0 consists a vacuum, solution could lose C1 regularity
in finite time. It indicates that one can not extend the result in [10] to gain higher
regularity, and the assumption ρ0 > 0 is crucial to obtain global wellposedness.
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Our results in this paper can be directly applied to (1.36), and show the global
regularity of the solutions for all α ∈ (0, 1). The strategy of the regularity proof
here is very different from that in [10,17]. A quintessential feature of (1.36) is
that increasing α does not help the dissipation in its competition with the Burgers
nonlinearity. Indeed, the toy model (1.36) can be written as

∂tρ +
(
∂−1

x �αρ
)

∂xρ = −ρ�αρ. (1.37)

Thus, the scalings of the dissipation in the right side and of the nonlinear transport
term in the left side are exactly the same, both in ρ and in x , no matter what α ∈
(0, 1) is. While the proof of global regularity for (1.37) is inspired by the nonlocal
maximum principle arguments of [32,33], the nonlinear nature of dissipative term
necessitates significant changes and new estimates. The upgrade of the proof from
global regularity of the model equation to the full system is also highly non-trivial
and requires new ideas.

We note that our results can be applied to the case α ∈ [1, 2), where the global
behavior is the same as for the fractional Burgers equation. This case was recently
studied by [39] using different techniques. One can also extend our results to the
influence kernels of the form

φ(x) = χ(|x |)
|x | , (1.38)

with a non-negative smooth compactly supported function χ(r). This is the analog
of the kernels in (1.24) for α = 0. We expect that as soon as the influence kernel
is not integrable, solutions remain regular. The proofs of these extensions require
some nontrivial adjustments and further technicalities compared to the arguments
in this paper, and will be presented elsewhere.

Our results also lead to global flocking behavior for (1.25)–(1.26). The period-
ical influence function

φp(x) =
∑

m∈R\T
φ(x + m)

has a positive lower bound for all x ∈ T. Since the solution is smooth, one can use
the argument in [40] to obtain asymptotic flocking behavior in the sense that

sup
x,y∈T

|u(t, x) − u(t, y)| → 0 as t → +∞. (1.39)

This paper is organized as follows. In Section 2 we prove an a priori L∞-
bound on ρ, that is the key estimate for the regularity of the solutions, as well as
lower bound on ρ. The local well-posedness of the solutions is proved in Section 3.
Section 4 contains the proof of our main result, Theorem 1.1. Appendix A contains
the proof of an auxiliary technical estimate. Throughout the paper we denote by C ,
C ′, etc. various universal constants, and by C0, C ′

0 etc. constants that depend only
on the initial conditions.
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2. Bounds on the Density

In this section, we prove the upper and lower bounds on the density ρ(t, x).
The upper bound is uniform in time, and is crucial for the global regularity. The
lower bound will deteriorate in time but will be sufficient for our purposes.

2.1. The Reformulation of the Euler Alignment System

We first explain how the Euler alignment system (1.25)–(1.26) is reformulated
as (1.31)–(1.32), as we will mostly use the latter. We only need to obtain (1.32)
for G defined in (1.33). The idea comes from [14]. We apply the operator �α to
(1.25), and use the identity

u(y)ρ(y) − u(x)ρ(x) = [u(y) − u(x)]ρ(y) + u(x)[ρ(y) − ρ(x)]
to obtain

∂t�
αρ = −∂x�

α(ρu) = cα∂x

∫

R

u(y) − u(x)

|y − x |1+α
ρ(y)dy − ∂x

(
u(x)�αρ

)
.(2.1)

On the other hand, applying ∂x to (1.26), we get

∂t (∂x u) + ∂x (u∂x u) = cα∂x

∫

R

u(y) − u(x)

|y − x |1+α
ρ(y)dy. (2.2)

Subtracting (2.1) from (2.2) gives an equation for the function G = ∂x u − �αρ:

∂t G + ∂x (Gu) = 0,

which is (1.32).
Let us comment on how to recover u from (1.33). Let us denote by

κ = 1

|T|
∫

T

ρ(x, t)dx (2.3)

the average of ρ in T, which is preserved in time by (1.31), at least as long as ρ

remains smooth. Note that G(x, t) has mean zero automatically:
∫

T

G(x, t)dx =
∫

T

G0(x)dx = 0. (2.4)

We also define

θ(x, t) = ρ(x, t) − κ, (2.5)

so that
∫

T

θ(x, t)dx = 0.
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Thus, the primitive functions of θ(x, t) and G(x, t) are periodic. We denote by
(ϕ, ψ) the mean-zero primitive functions of (θ, G), respectively:

θ(x, t) = ∂xϕ(x, t),
∫

T

ϕ(x, t)dx = 0, (2.6)

and

G(x, t) = ∂xψ(x, t),
∫

T

ψ(x, t)dx = 0. (2.7)

Then, u can be written as

u(x, t) = �αϕ(x, t) + ψ(x, t) + I0(t). (2.8)

To determine I0(t), we use the conservation of the momentum. Note that the con-
servation law form of (1.26) is

∂t (ρu) + ∂x (ρu2) = cα

∫

R

u(t, y) − u(t, x)

|y − x |1+α
ρ(t, y)dy. (2.9)

Integrating (2.9) gives

d

dt

∫

T

ρudx = cα

∫

T

∫

R

u(y, t) − u(x, t)

|y − x |1+α
ρ(y, t)ρ(x, t)dydx

=
∑

m∈R\T
cα

∫

T

∫

T

u(y, t) − u(x, t)

|y + m − x |1+α
ρ(y, t)ρ(x, t)dydx = 0,

(2.10)

thus
∫

T

ρ(x, t)u(x, t)dx =
∫

T

ρ0(x)u0(x)dx .

Together with (2.8), u is now uniquely defined, with I0(t) given by

I0(t) = 1

κ|T|
[∫

T

ρ0(x)u0(x)dx −
∫

T

ρ(x, t)
(
�αϕ(x, t) + ψ(x, t)

)
dx

]
.

(2.11)

Note that we have
∫

T

ρ(x, t)�αϕ(x, t)dx = κ

∫

T

�αϕ(x, t)dx +
∫

T

(∂xϕ(x, t))�αϕ(x, t)dx = 0,

(2.12)

thus

I0(t) = 1

κ|T|
[∫

T

ρ0(x)u0(x)dx −
∫

T

ρ(x, t)ψ(x, t)dx

]
. (2.13)

In particular, I0(t) is time-independent in the special case G ≡ 0, that leads to
(1.36), and then we have

I0(t) ≡ I0(0). (2.14)
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2.2. The Upper Bound on the Density

We now prove an a priori L∞ bound on ρ.

Theorem 2.1. Let ρ(x, t), u(x, t) be a strong solution to (1.25)–(1.26) for 0 � t �
T , with smooth periodic initial conditions ρ0(x), u0(x) such that ρ0(x) > 0 on T.
Then, there exists a constant C0 > 0 that depends on ρ0 and u0 but not on T , so
that ‖ρ(·, t)‖L∞ � C0 for all t � 0.

This bound already indicates that the Euler alignment system behaves not as the
fractional Burgers equation. Indeed, if we couple fractional Burgers equation with
(1.25), the densitymay blow up forα ∈ (0, 1) for suitable smooth initial conditions.

The Proof of Theorem 2.1 As the functions ρ and G obey the same continuity
equation, their ratio F = G/ρ satisfies

∂t F + u∂x F = 0. (2.15)

It follows that F is uniformly bounded:

‖F(·, t)‖L∞ � ‖F0‖L∞ =
∥∥∥∥
∂x u0 − �αρ0

ρ0

∥∥∥∥
L∞

< +∞,

as ρ0 and u0 are smooth, and ρ0 is strictly positive.
In order to prove the upper bound on ρ, for a fixed t � 0, let x̄ be such that

ρ(x̄, t) = max
x∈R ρ(x, t). (2.16)

It follows from (1.31) that

∂tρ(x̄, t) = −u(x̄, t)∂xρ(x̄, t) − ρ(x̄, t)∂x u(x̄, t) = −ρ(x̄, t)∂x u(x̄, t).

(2.17)

Thus, to obtain an a priori upper bound on ρ, it suffices to show that there exists
C0 that depends on the initial conditions ρ0 and u0 so that if ρ(x̄, t) > C0, then

∂x u(x̄, t) > 0. (2.18)

To obtain (2.18), note that

∂x u = �αρ + Fρ � �αρ − ‖F0‖L∞ρ. (2.19)

In order to bound �αρ in the right side of (2.19) from below, we use the nonlinear
maximum principle for the fractional Laplacian, see [20, Theorem 2.3]:

either �αρ(x̄) = �αθ(x̄) � θ1+α(x̄)

c‖ϕ‖α
L∞

or θ(x̄) � c‖ϕ‖L∞ . (2.20)

Here, the constant c > 0 only depends on α. Recall that we denote by θ(x, t)
the mean-zero shift of ρ(x, t), as in (2.3) and (2.5), and by ϕ(x, t) the mean-zero
primitive of θ(x, t), as in (2.6). Note that ‖ϕ(·, t)‖L∞ is uniformly bounded:

‖ϕ(·, t)‖L∞ � C‖θ(·, t)‖L1 � C‖ρ(·, t)‖L1 = C‖ρ0‖L1 . (2.21)
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Therefore, if

ρ(x̄, t) � 2κ + C‖ρ0‖L1 , (2.22)

with a sufficiently large C , which depends only on ρ0 and u0, then

θ(x̄, t) = ρ(x̄, t) − κ � 2c‖ϕ(·, t)‖L∞ ,

and the second possibility in (2.20) can not hold. Thus, as soon as (2.22) holds, we
have

�αρ(x̄, t) � C
(ρ(x̄, t) − κ)1+α

‖ρ0‖α
L1

� C0ρ(x̄, t)1+α, (2.23)

with a constant C0 that depends on the initial condition ρ0. Going back to (2.19),
this implies

∂x u(x̄, t) � C0ρ(x̄, t)1+α − ‖F0‖L∞ρ(x̄, t) > 0.

Thus, (2.18) indeed holds if ρ(x̄, t) > C ′
0, where C ′

0 is a constant that depends only
on ρ0 and u0, and the proof of Theorem 2.1 is complete. 
�

One immediate consequence of Theorem 2.1 is that I0(t) in (2.13) is uniformly
bounded for all time. Indeed, it suffices to bound

∣∣∣∣
∫

T

ρ(x, t)ψ(x, t)dx

∣∣∣∣ � ‖ρ(·, t)‖L2‖ψ(·, t)‖L2 ,

while

‖ψ(·, t)‖L2 � C‖G(·, t)‖L2 � C‖G(·, t)‖L∞ � C‖ρ(·, t)‖L∞‖F0‖L∞ � C,

(2.24)

where C is a universal constant independent of t . Summarizing, we have

|I0(t)| � C0, (2.25)

with a constant C0 that depends only on ρ0 and u0.
Thus, we have the following a priori bound on ‖u‖L2 .

Corollary 2.2. Let ρ(x, t), u(x, t) be a strong solution to (1.25)–(1.26) for 0 �
t � T , with smooth periodic initial conditions ρ0(x), u0(x) such that ρ0(x) > 0
on T. There exists a constant C0 that depends only on ρ0 and u0 but not not on T
so that ‖u(·, t)‖L2 � C0 for all 0 � t � T .

Proof. This follows immediately from the bound

‖u(·, t)‖L2 � ‖�αϕ(·, t)‖L2 + ‖ψ(·, t)‖L2 + |I0(t)|,
together with the bound

‖�αϕ(·, t)‖L2 � C‖θ(·, t)‖L2 � C‖ρ(·, t)‖L∞ , (2.26)

and (2.24)–(2.25). 
�
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The uniform upper bound on the density also implies a uniformly Lipschitz
bound on F .

Lemma 2.3. The function F = G/ρ is Lipschitz, and the Lipschitz bound is uniform
in time.

Proof. Recall that F satisfies (2.15), thus p = ∂x F satisfies the same continuity
equation as ρ:

∂t p + ∂x (up) = 0, (2.27)

and w = p/ρ is a solution of

∂tw + u∂xw = 0.

It follows that ‖w(·, t)‖L∞ = ‖w0‖L∞ , and therefore,

‖∂x F(·, t)‖L∞ � ‖w0‖L∞‖ρ(·, t)‖L∞ .

Theorem 2.1 implies now that F is Lipschitz, with a time-independent Lipschitz
bound. 
�

2.3. A Lower Bound on the Density

A uniform lower bound on ρ plays an important role as it keeps the dissipation
active. The following lemma ensures no creation of vacuum in finite time.

Lemma 2.4. Let ρ(x, t), u(x, t) be a strong solution to (1.25)–(1.26) for 0 � t �
T , with smooth periodic initial conditions ρ0(x), u0(x) such that ρ0(x) > 0 on T.
There exists a positive constant C0 > 0 that depends on ρ0 and u0 but not on T ,
so that

ρ(x, t) � 1

C0(1 + t)
, for all x ∈ T and 0 � t � T . (2.28)

Proof. Fix some t > 0 and let x be such that

ρ(x, t) = min
x

ρ(x, t).

Then we have

�αρ(x, t) � 0,

and thus

ρm(t) = ρ(x, t) = min
x∈T ρ(x, t), (2.29)

satisfies

dρm(t)

dt
=∂tρ(x, t) = [−∂x u(x, t)]ρ(x, t)�−(

�αρ(x, t) + ‖F0‖L∞ρm(t)
)
ρm(t)

� −‖F0‖L∞ρm(t)2.
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If the minimum is achieved at more than one point, we just need to take a minimum
over all of them in the above estimate, which leads to the same bound. Notice that
ρm(t) is Lipschitz in time, so the estimate is valid for a.e. t , and dρm/dt determines
ρm(t). Integrating this differential inequality, we get

ρm(t) � 1

[ρm(0)]−1 + t‖F0‖L∞
, (2.30)

finishing the proof. 
�

In particular, in the special case G ≡ 0, that is, for (1.36) we have the following.

Corollary 2.5. Let ρ(x, t) be the solution of (1.36). Then, we have

ρ(x, t) � min
x∈T ρ0(x), for all t > 0 and x ∈ T. (2.31)

3. The Local Wellposedness

The a priori bounds on ρ established in the previous section rule out some
kinds of finite time blow up, but do not imply that there is no finite time shock
formation. This remains to be shown. To proceed further, we first establish a local
well-posedness theory for solutions of the Euler alignment system with smooth
initial conditions.

Theorem 3.1. Let α ∈ (0, 1). Assume that the initial conditions ρ0 and u0 satisfy

ρ0 ∈ Hs(T), min
x∈T ρ0(x) > 0, ∂x u0 − �αρ0 ∈ Hs− α

2 (T), (3.1)

with a sufficiently large even integer s > 0. Then, there exists T0 > 0 such that the
system (1.25)–(1.26) has a unique strong solution ρ(x, t), u(x, t) on [0, T0], with

ρ ∈ C([0, T0], Hs(T)) × L2([0, T0], Hs+ α
2 (T)), u ∈ C([0, T0], Hs+1−α(T)).

(3.2)

Moreover, a necessary and sufficient condition for the solution to exist on a time
interval [0, T ] is

∫ T

0
‖∂xρ(·, t)‖2L∞dt < ∞. (3.3)

Condition (3.3) is a Beale–Kato–Majda type criterion. It indicates that the solu-
tion is globally regular if ∂xρ is uniformly bounded in the L∞ norm. We will show
that such bound actually does hold in Section 4, using the modulus of continuity
method.
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3.1. The Commutator Estimates

We will need some commutator estimates for the local well-posedness theory.
We will use the following notation:

[L, f, g] = L( f g) − f Lg − gL f,

[L, f ]g = L( f g) − f Lg.

Lemma 3.2. The following commutator estimates hold:

(i) for any n � 1, we have

‖[∂n
x , f, g]‖L2 � C

(‖∂x f ‖L∞‖g‖Hn−1 + ‖∂x g‖L∞‖ f ‖Hn−1
); (3.4)

(ii) for any γ ∈ (0, 1) and ε > 0, we have

‖[�γ , f, g]‖L2 � C‖ f ‖L2‖g‖Cγ+ε ; (3.5)

(iii) for any γ > 0, we have

‖[�γ , f ]g‖L2 � C
(‖∂x f ‖L∞‖g‖Hγ−1 + ‖ f ‖Hγ ‖g‖L∞

)
. (3.6)

Let us comment briefly on the proof of these estimates. Estimate (3.4) can be
obtained by the standard Gagliardo–Nirenberg interpolation inequality. As �2 =
−∂2xx , this estimate holds if we replace the operator ∂n

x by �s with an even
integer s.

A version of (3.5) is discussed in [30, Theorem A.8]. We sketch the proof in
Appendix A. Finally, estimate (3.6) is due to Kato and Ponce [29]. The proof is
similar to that of (3.5).

3.2. The Proof of the Local Well-Posedness

It will be convenient to use the variables (θ, G), so that equations (1.31)–(1.32)
take the form

∂tθ + ∂x (θu) = −κ∂x u, ∂t G + ∂x (Gu) = 0, (3.7)

∂x u = �αθ + G. (3.8)

Here κ is the constant in time mean of ρ, as in (2.3).
Let us fix T > 0 and take a sufficiently large even integer s > 0. We will aim

to obtain a differential inequality on

Y (t) := 1 + ‖θ(·, t)‖2Hs + ‖G(·, t)‖2
Hs− α

2
, (3.9)

that will have bounded solutions on a time interval [0, T0], with a sufficiently small
T0 depending on the initial conditions. To this end, we apply the operator �s to the
equation for θ in (3.7), multiply the result by �sθ and integrate in x :

1

2

d

dt
‖θ(·, t)‖2

Ḣ s = −
∫ (

�sθ · �s∂x (θu)
)
dx − κ‖θ(·, t)‖2

Ḣ s+ α
2

−κ

∫ (
�sθ · �s G

)
dx . (3.10)
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The second term in the right side produces the dissipation. We shall use it to control
the other two terms.

We split the first term in the right side of (3.10) into three pieces:

∫
�sθ · �s∂x (θu) dx =

∫ (
�sθ · �s∂x u

)
θdx +

∫ (
�sθ · u

) (
�s∂xθ

)
dx

+
∫

�sθ · [
�s∂x , u, θ

]
dx

= I + I I + I I I. (3.11)

Let us start with I :

I =
∫ (

�s− α
2 ∂x u

)
· �

α
2

(
θ · �sθ

)
dx

=
∫ (

�s− α
2 ∂x u

)
·
(
�s+ α

2 θ
)

· θdx +
∫ (

�s− α
2 ∂x u

)
· (

�sθ
) ·

(
�

α
2 θ

)
dx

+
∫ (

�s− α
2 ∂x u

)
·
[
�

α
2 ,�sθ, θ

]
dx

= I1 + I2 + I3. (3.12)

For I1, we have, using (3.8):

I1 =
∫

|�s+ α
2 θ |2 · θdx +

∫ (
�s− α

2 G
)

·
(
�s+ α

2 θ
)

· θdx = I11 + I12.

The term I11 is controlled by the dissipation in the right side of (3.10): set

ρm(t) = inf
0�τ�t,x∈T

ρ(x, τ ).

Note that ρm(t) > 0 by Lemma 2.4. Then we have, using Lemma 2.4:

− I11 − κ‖θ‖2
Ḣ s+ α

2
� (‖θ−‖L∞ − κ)‖θ‖2

Ḣ s+ α
2

� −ρm(t)‖θ‖2
Ḣ s+ α

2
. (3.13)

To bound I12 we use the Hölder inequality,

|I12| � ‖G‖
Ḣ s− α

2
‖θ‖

Ḣ s+ α
2
‖θ‖L∞ � ρm

6
‖θ‖2

Ḣ s+ α
2

+ 3

2ρm
‖θ‖2L∞‖G‖2

Ḣ s− α
2
.

(3.14)

In order to control the term I2 in (3.12), we, once again, use (3.8), and the Hölder
inequality:

|I2| �
(
‖θ‖

Ḣ s+ α
2

+ ‖G‖
Ḣ s− α

2

)
‖θ‖Ḣ s ‖�α

2 θ‖L∞

� ρm

6
‖θ‖2

Ḣ s+ α
2

+
(

3

2ρm
+ 1

2

)
‖�α

2 θ‖2L∞‖θ‖2
Ḣ s + 1

2
‖G‖2

Ḣ s− α
2
. (3.15)
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The contribution of I3 in (3.12) is bounded using the commutator estimate (3.5):

|I3| �
(
‖θ‖

Ḣ s+ α
2

+ ‖G‖
Ḣ s− α

2

) ∥∥∥
[
�

α
2 ,�sθ, θ

]∥∥∥
L2

� C
(
‖θ‖

Ḣ s+ α
2

+ ‖G‖
Ḣ s− α

2

)
‖θ‖Ḣ s ‖θ‖

C
α
2 +ε

� ρm

6
‖θ‖2

Ḣ s+ α
2

+
(

3

2ρm
+ 1

2

)
C2‖θ‖2

C
α
2 +ε

‖θ‖2
Ḣ s + 1

2
‖G‖2

Ḣ s− α
2
. (3.16)

Next, we estimate the term I I in (3.11), integrating by parts

|I I | = 1

2

∣∣∣∣
∫

(�sθ)2 · ∂x u dx

∣∣∣∣ � C
(‖�αθ‖L∞ + ‖G‖L∞

) ‖θ‖2
Ḣ s . (3.17)

For the term I I I in (3.11), we apply the commutator estimate (3.4) and get

|I I I | � ‖θ‖Ḣ s ‖ [
�s∂x , u, θ

] ‖L2

� C‖θ‖Hs (‖∂x u‖L∞‖θ‖Hs + ‖∂xθ‖L∞‖u‖Hs ) . (3.18)

To estimate ‖u‖Hs in the right side, we apply Corollary 2.2 to get

‖u‖Hs = ‖u‖L2 + ‖∂x u‖Hs−1 � C
(
1 + ‖θ‖Hs−1+α + ‖G‖Hs−1

)
. (3.19)

We also have, using the uniform bound on the density,

|�αθ | � cα

∫

R

|θ(x) − θ(y)|dy

|x − y|1+α
� C (‖θ‖L∞ + ‖∂xθ‖L∞)

� C0 (1 + ‖∂xθ‖L∞) , (3.20)

with a constant C0 that depends on ρ0 and u0. Therefore, ∂x u satisfies

‖∂x u‖L∞ � ‖�αθ‖L∞ + ‖G‖L∞ � C (1 + ‖∂xθ‖L∞ + ‖G‖L∞) . (3.21)

Together, (3.18)–(3.21) give

|I I I | � C (1 + ‖∂xθ‖L∞ + ‖G‖L∞)
(
1 + ‖θ‖2Hs + ‖G‖2Hs−1

)
. (3.22)

The third term in the right side of (3.10) can be estimated as

κ

∣∣∣∣
∫

(�sθ) · (�s G)dx

∣∣∣∣ � κ‖θ‖
Ḣ s+ α

2
‖G‖

Ḣ s− α
2

� ρm

6
‖θ‖2

Ḣ s+ α
2

+ 3κ2

2ρm
‖G‖2

Ḣ s− α
2
.

Putting the above estimates together, we end up with the following inequality:

1

2

d

dt
‖θ‖2Hs � C

(
1+ 1

ρm

)(
1+‖∂xθ‖2L∞ + ‖G‖L∞

) (
‖θ‖2Hs +‖G‖2

Hs− α
2

+ 1
)

−ρm

3
‖θ‖2

Hs+ α
2
. (3.23)
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In order to close the estimate, and obtain a bound on Y (t) defined in (3.9), we write

1

2

d

dt
‖G‖2

Ḣ s− α
2

= −
∫ (

�s− α
2 G

)
·
(
�s− α

2 ∂x (Gu)
)
dx

= −
∫ (

�s− α
2 G

)
·
(

u�s− α
2 ∂x G

)
dx

−
∫ (

�s− α
2 G

)
·
[
�s− α

2 ∂x , u
]

Gdx = I V + V . (3.24)

The term I V can be treated as I I via integration by parts, together with (3.20):

|I V | = 1

2

∣∣∣∣
∫ (

�s− α
2 G

)2 · ∂x u dx

∣∣∣∣ � C (1 + ‖∂xθ‖L∞ + ‖G‖L∞) ‖G‖2
Ḣ s− α

2
.

(3.25)

To bound V , we apply the commutator estimate (3.6), as well as (3.21):

|V | � ‖G‖
Ḣ s− α

2
‖
[
�s− α

2 ∂x , u
]

G‖L2

� C‖G‖
Ḣ s− α

2

(
‖∂x u‖L∞‖G‖

Hs− α
2

+ ‖G‖L∞‖∂x u‖
Hs− α

2

)

� C(1 + ‖∂xθ‖L∞ + ‖G‖L∞)‖G‖2
Hs− α

2
+ C‖G‖L∞‖G‖

Hs− α
2
‖θ‖

Hs+ α
2

� ρm

6
‖θ‖2

Hs+ α
2

+ C

(
1 + 1

ρm
‖G‖2L∞ + ‖∂xθ‖L∞ + ‖G‖L∞)

)
‖G‖2

Hs− α
2
.

(3.26)

Now, estimates (3.23)–(3.26), together with the uniform bound on ‖G‖L∞ , yield
an inequality

d

dt
Y (t) � C

(
1 + 1

ρm(t)

)
(1 + ‖∂xθ(·, t)‖2L∞)Y (t) − ρm(t)

6
‖θ(·, t)‖2

Hs+ α
2
.

(3.27)

For s > 3/2, Hs is embedded in W 1,∞. This, together with Lemma 2.4, implies

d

dt
Y (t) � C(1 + t)(1 + Y (t))Y (t), (3.28)

and the local in time well-posedness for solutions with Hs initial data follows.
Moreover, it follows from (3.27) that

Y (T ) � Y (0) exp

[
C

∫ T

0
(1 + t)

(
1 + ‖∂xθ(·, t)‖2L∞

)
dt

]
. (3.29)

For all finite T > 0, if the Beale–Kato–Majda criterion (3.3) is satisfied, the right
side of (3.29) is finite, whence

θ ∈ C([0, T ], Hs(T)), G(·, t) ∈ C
(
[0, T ], Hs− α

2 (T)
)

,
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and thus ρ ∈ C([0, T ], Hs(T)). Furthermore, integrating (3.27) in [0, T ], we see
that if (3.3) holds, then

ρm(T )

6
‖θ‖2

L2
(
[0,T ],Hs+ α

2
) < +∞,

thus ρ ∈ L2([0, T ], Hs+ α
2 ). To recover the conditions on u in (3.2), we apply

Corollary 2.2 and get

‖u(·, t)‖2Hs+1−α = ‖u(·, t)‖2L2 + ‖∂x u(·, t)‖2Hs−α � C + CY (t) < ∞.

This ends the proof of Theorem 3.1.

4. The Global Regularity

In this section, we derive a uniform L∞-bound on ∂xρ, using a variant of the
modulus of continuity method. Together with the Beale–Kato–Majda type criterion
(3.3), this will imply the global well-posedness of the Euler alignment system
(1.25)–(1.26), and proveTheorem1.1.Wewill first consider the special caseG ≡ 0,
that is, the system (1.36). The nonlinear diffusive term makes the problem subtler
than in the SQG or Burgers equation case. Finally, we prove the result to the general
Euler alignment system, using a combination of an appropriate scaling argument,
estimate on the minimum of ρ, and additional regularity estimates. In this case,
the bound on ∂xρ will depend on time and may grow, but remains finite for every
t > 0.

For convenience, we work on R, and extend ρ and u periodically in space.

4.1. The Modulus of Continuity

We say that a function f obeys modulus of continuity ω if

f (x) − f (y) < ω(|x − y|), for all x, y ∈ R.

We will work with the following modulus of continuity for the density ρ:

ω(ξ) =
{

ξ − ξ1+α/2, 0 � ξ < δ

γ log(ξ/δ) + δ − δ1+α/2, ξ � δ,
(4.1)

so that ω is continuous at ξ = δ. The parameters δ and γ are sufficiently small
positive numbers to be specified later. The modulus ω is continuous, piecewise
differentiable, increasing and concave, and satisfies

ω′′(0) = −∞. (4.2)

The following proposition describes the only possible modulus breakthrough sce-
nario for evolution equations.
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Proposition 4.1. ([33]). Suppose ρ0 obeys a modulus of continuity ω that satisfies
(4.2). If the solution ρ(x, t) violates ω at some positive time, then there must exist
t1 > 0 and x1 �= y1 such that

ρ(x1, t1) − ρ(y1, t1) = ω(|x1 − y1|), and ρ(·, t) obeys ω for every 0 � t < t1.

(4.3)

Thus, to prove that ρ obeys a modulus of continuity ω for all times t > 0, it is
sufficient to prove that if (4.3) holds, then

∂t (ρ(x1, t1) − ρ(y1, t1)) < 0. (4.4)

As a remark on the notation, we will again use C as a notation for various universal
constants that do not depend on T, δ and γ .

4.2. The Global Regularity for the Special System with G ≡ 0

Let us first consider the special case G ≡ 0, or, equivalently, the system (1.36):

∂tρ + ∂x (ρu) = 0, ∂x u = �αρ. (4.5)

As themean of u is preserved by the evolution—see (2.14), wemay assumewithout
loss of generality that

∫

T

u(x, t)dx = 0, (4.6)

for otherwise we would simply consider (4.5) in a frame moving the speed equal
to the mean of u0. Thus, we have

u(x, t) = �αϕ(x, t). (4.7)

Here, ϕ(x, t) is the mean-zero primitive of θ(x, t), as in (2.6). We will prove the
following result:

Theorem 4.2. The system (4.5) with a smooth periodic initial condition ρ0 such
that ρ0(x) > 0 for all x ∈ T has a unique global smooth solution.

The key step in the proof is

Lemma 4.3. Suppose that m = minx∈Tρ0(x) > 0. Then there exist δm and γm,

independent of the period of the initial data, such that if ρ0(x) obeys the modulus
of continuity ω given by (4.1), then ρ(x, t) obeys ω for all t > 0.

Theorem 4.2 is a consequence of Lemma 4.3. Indeed, suppose that Lemma 4.3 is
true. Notice that the equation (4.5) has a scaling invariance: if ρ(x, t) is a solution,
then so is

ρλ(x, t) = ρ(λx, λαt), (4.8)



22 Tam Do et al.

for any λ > 0. From the properties of the modulus of continuityω given by (4.1) (in
particular its growth at infinity) it follows that we can find λ > 0 sufficiently small
such that ρ0

λ(x) = ρ0(λx) obeys ω with δ = δm , γ = γm provided by Lemma 4.3.
Note that the rescaling (4.8) does not change the minimum of ρ. As δm and γm do
not depend on the period, Lemma 4.3 shows that ρλ(x, t) obeys ω for all t > 0. In
particular, it follows that

|∂xρλ(t, x)| � 1, for all t > 0 and x ∈ T. (4.9)

As we have mentioned, (4.9) together with the Beale–Kato–Majda type criterion
(3.3), implies that ρλ(t, x) is a global in time solution of (4.5), and thus so is ρ(t, x).

Therefore, we only need to prove Lemma 4.3. Our strategy is as follows. Let
us assume that a modulus of continuity ω, with some δ and γ is broken at a time
t1, in the sense that (4.3) holds for some x1, y1 ∈ T. We denote

ξ = |x1 − y1| > 0, (4.10)

and, for simplicity, drop the time variable t1 in the notation. We compute

∂t (ρ(x1) − ρ(y1)) = −∂x (ρ(x1)u(x1)) + ∂x (ρ(y1)u(y1))

= −(
u(x1)∂xρ(x1) − u(y1)∂xρ(y1)

)

−(
ρ(x1) − ρ(y1)

)
∂x u(x1) − ρ(y1)

(
∂x u(x1) − ∂x u(y1)

)

= I + I I + I I I. (4.11)

We will obtain the following estimates for the three terms in the right side of (4.11):
to bound the first term we note that if �(ξ) is a modulus of continuity for u, then
it follows from [33] that

|I | = |u(x1)∂xρ(x1) − u(y1)∂xρ(y1)| � ω′(ξ)�(ξ). (4.12)

The modulus �(ξ) for u is given by the following:

Lemma 4.4. Let ρ obey the modulus of continuity ω as in (4.1). There exists a
universal constant C > 0 so that then u(x) obeys a modulus of continuity

�(ξ) �
{

Cξ, 0 < ξ < δ,

Cξ1−αω(ξ), ξ � δ.
(4.13)

We will prove Lemma 4.4 later in this section.
As ω′(ξ) � 1 for 0 � ξ < δ, and ω′(ξ) = γ /ξ for ξ > δ, we conclude that

|I | � ω′(ξ)�(ξ) �

⎧
⎨

⎩

Cξ, 0 < ξ < δ,

Cγ
ω(ξ)

ξα
, ξ � δ,

(4.14)

again, with the constant C > 0 that does not depend on ρ0.
To bound the last two terms in the right side of (4.11) purely in terms of ξ =

|x1 − y1| we will use the following lemma:
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Lemma 4.5. Let ρ obey the modulus of continuity ω as in (4.1), and let x1, y1 be
the breakthrough points as in (4.3). There exists a constant C > 0 that may only
depend on α such that

�αρ(x1) � −A(ξ), A(ξ) :=
{

C if 0 � ξ � δ,

Cγ ξ−α if ξ > δ,
(4.15)

and

�αρ(x1) − �αρ(y1) � D1(ξ), D1(ξ) :=
{

Cξ1−α/2, 0 < ξ � δ,

Cω(ξ)ξ−α, ξ � δ.
(4.16)

The first estimate in the above lemma gives a bound for the second term in (4.11):

I I = −(
ρ(x1) − ρ(y1)

)
�αρ(x1) � ω(ξ)A(ξ), (4.17)

while (4.16) leads to:

I I I = −ρ(y)
(
�αρ(x1) − �αρ(y1)

)
� −m D1(ξ). (4.18)

Here, m is the minimum of ρ0 and is preserved in time; see Corollary 2.5. Putting
(4.12), (4.17) and (4.18) together, we obtain

∂t (ρ(x1, t1) − ρ(y1, t1)) � ω′(ξ)�(ξ) + ω(ξ)A(ξ) − m D1(ξ). (4.19)

For 0 � ξ < δ, using (4.13), (4.15) and (4.16), as well as the inequalities

ω(ξ) � ξ, ω′(ξ) � 1, 0 � ξ < δ, (4.20)

we see that

ω′(ξ)�(ξ) + ω(ξ)A(ξ) − 1

2
m D1(ξ) � Cξ − Cmξ1−α/2 < 0, (4.21)

provided that

δ < Cm2/α. (4.22)

On the other hand, for ξ � δ, the above bounds tell us

ω′(ξ)�(ξ) + ω(ξ)A(ξ) − 1

2
m D1(ξ) � Cγω(ξ)

ξα
− Cmω(ξ)

ξα
< 0, (4.23)

if

γ < Cm. (4.24)

Therefore, for δ and γ sufficiently small, we have

∂t (ρ(x1, t1) − ρ(y1, t1)) < 0, (4.25)

which is a contradiction to the assumption that t1 is the first breakthrough tine.
Thus, ω can never be broken, and the proof of Lemma 4.3 is complete, except for
the proof of Lemmas 4.4 and 4.5. 
�
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4.2.1. The Dissipation Bound in Lemma 4.5 We first prove the dissipation
bound (4.16) in Lemma 4.5. It was shown in [31] that

�αρ(x1) − �αρ(y1) � D(ξ) (4.26)

with

D(ξ) = cα

[∫ ξ/2

0

2ω(ξ) − ω(ξ + 2η) − ω(ξ − 2η)

η1+α
dη

+
∫ ∞

ξ/2

2ω(ξ) − ω(ξ + 2η) + ω(2η − ξ)

η1+α
dη

]
. (4.27)

Both terms in the right side are positive due to the concavity of ω.
To obtain a lower bound for D(ξ), we consider two cases. For ξ � δ, we only

keep the first term. Note that

ω(ξ + 2η) � ω(ξ) + 2ω′(ξ)η

due to the concavity of ω, and

ω(ξ − 2η) � ω(ξ) − 2ω′(ξ)η + 2ω′′(ξ)η2,

due to the second order Taylor formula and the monotone growth of

ω′′(ξ) = −α(2 + α)

4
ξ−1+α/2.

This gives

D(ξ) � C
∫ ξ/2

0

(−ω′′(ξ))η2

η1+α
dη = Cξ1−α/2, for 0 � ξ � δ, (4.28)

which is the first bound in (4.16).
For ξ > δ, we only keep the second term in (4.27). Due to the concavity of ω,

we have

ω(2η + ξ) − ω(2η − ξ) � ω(2ξ) = ω(ξ) + γ log 2 � 3

2
ω(ξ), (4.29)

if

γ � ω(δ)

2 log 2
= δ − δ1+α/2

2 log 2
. (4.30)

In that case, we have, using (4.29), that

D(ξ)�cα

∫ ∞

ξ/2

2ω(ξ)−ω(2ξ)

η1+α
dη�Cω(ξ) · 1

α

(
ξ

2

)−α

= C
ω(ξ)

ξα
, for ξ > δ,

(4.31)

and the proof of (4.16) is complete.



Global Regularity for the Fractional Euler Alignment System 25

4.2.2. A Lower Bound on �αρ in Lemma 4.5 The next step is obtain the lower
bound (4.15) for �αρ(x1, t1). As ω is a modulus of ρ, we have for any z ∈ R

ρ(z) � ρ(y) + ω(|y − z|), (4.32)

while

ρ(x1) = ρ(y1) + ω(|x1 − y1|). (4.33)

This implies a lower bound

�αρ(x1) = cα

∫

R

ρ(x1) − ρ(y1) + ρ(y1) − ρ(z)

|x1 − z|1+α
dz

� cα

∫

R

ω(ξ) − ω(|y1 − z|)
|x1 − z|1+α

dz

= cα

∫

R

ω(ξ) − ω(|ξ − η|)
|η|1+α

dη =: −A(ξ). (4.34)

Our goal is to bound A(ξ) from above. Let us decompose the integral in the second
line of (4.34) as

−A(ξ) = cα

∫

R

ω(ξ) − ω(|ξ − η|)
|η|1+α

dη =
∫ −ξ

−∞
+

∫ ξ

−ξ

+
∫ 2ξ

ξ

+
∫ ∞

2ξ

= A1 + A2 + A3 + A4.

We claim that A2 and A3 are positive, so that their contribution to A(ξ) is negative.
Indeed, we can estimate A2 using the concavity of ω:

A2 =
∫ ξ

0

2ω(ξ) − ω(ξ − η) − ω(ξ + η)

η1+α
dη � 0. (4.35)

In addition, A3 � 0 simply due to the monotonicity of ω, which implies

ω(ξ) � ω(|η − ξ |), for η ∈ [ξ, 2ξ ].
It remains to bound A1 and A4 from below. We first consider 0 � ξ � δ. In this
region, we can estimate A4 as follows:

A4 � −
∫ ∞

2ξ

ω(η − ξ)

η1+α
dη � −

∫ ξ+δ

2ξ

η

η1+α
dη

−
∫ ∞

ξ+δ

γ log((η − ξ)/δ) + δ − δ1+α/2

η1+α
dη

� −
∫ 2δ

0

dη

ηα
− (δ − δ1+α/2)

∫ ∞

δ

dη

η1+α

−γ

∫ ∞

δ

log(η/δ)

η1+α
dη � −Cδ1−α − Cγ δ−α. (4.36)

Thus, if we choose δ < 1 and γ < δ, as in (4.30), we obtain

A4 � −C, for 0 � ξ � δ. (4.37)
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The term A1 can be estimated similarly for 0 � ξ � δ. Indeed, for ξ < δ/2, we
have

A1 � −
∫ ∞

ξ

ω(η + ξ)

η1+α
dη � −

∫ δ−ξ

ξ

η

η1+α
dη −

∫ ∞

δ−ξ

γ log((η + ξ)/δ) + δ

η1+α
dη

� −Cδ1−α − Cγ

∫ ∞

δ/2

log(η/δ)

η1+α
dη � −Cδ1−α − Cγ δ−α � −C, (4.38)

provided that γ satisfies (4.30). On the other hand, for δ/2 � ξ � δ, we have

A1 � −
∫ ∞

ξ

γ log((η + ξ)/δ) + δ

η1+α
dη � −

∫ ∞

ξ

γ log(2η/δ) + δ

η1+α
dη

� −
∫ ∞

δ/2

γ log(2η/δ) + δ

η1+α
dη

� −Cδ1−α − Cγ δ−α � −C. (4.39)

Summing up the above computation, we conclude that

�αρ(x1) � −A(ξ) � −C if 0 � ξ � δ. (4.40)

On the other hand, if ξ > δ, we have the following estimates on A1 and A4:

A1 = γ

∫ −ξ

−∞
log ξ − log(ξ − η)

|η|1+α
dη = − γ

ξα

∫ −1

−∞
log(1 − ζ )

|ζ |1+α
dζ � −Cγ

ξα
,

(4.41)

and

A4 = γ

∫ ∞

2ξ

log ξ − log(η − ξ)

|η|1+α
dη = − γ

ξα

∫ ∞

2

log(ζ − 1)

ζ 1+α
dζ � −Cγ

ξα
,

(4.42)

Thus, we have the bound

�αρ(x1) � −A(ξ) � −Cγ ξ−α for ξ > δ, (4.43)

finishing the proof of (4.15), as well as of Lemma 4.5. 
�

4.2.3. The Proof of Lemma 4.4 Next, we find a modulus of continuity � for u,
if ρ obeys ω given by (4.1). We start with (4.7):

u(x) = cα lim
ε↓0

∫

|y|>ε

ϕ(x) − ϕ(x + y)

|y|1+α
dy. (4.44)

The first term in the right side can evaluated explicitly:
∫

|y|>ε

ϕ(x)

|y|1+α
dy = 2

α

ϕ(x)

εα
. (4.45)
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The second term in the right side of (4.44) can be re-written using integration by
parts as

∫

|y|>ε

ϕ(x + y)

|y|1+α
dy = 1

α

ϕ(x + ε) + ϕ(x − ε)

εα
+ 1

α

∫

|y|>ε

θ(x + y)

sgn(y)|y|α dy.

(4.46)

As θ ∈ L∞, so that ϕ is uniformly Lipschitz, we can combine (4.45) and (4.46),
pass to the limit ε ↓ 0, and obtain

u(x) = −cα

α

∫

R

θ(x + y)

sgn(y)|y|α dy. (4.47)

Let us note that, since θ(x) is a periodic mean-zero function, the integral in the
right side of (4.47) converges as |y| → +∞, and

u(x) = cα

α

∫

R

θ(x) − θ(x + y)

sgn(y)|y|α dy = cα

α

∫

R

ρ(x) − ρ(x + y)

sgn(y)|y|α dy. (4.48)

Using an argument similar to that in the appendix of [33], one can show that, as

long as ρ(x) obeys a modulus of continuity ω, the function u(x) given by (4.48)
obeys the modulus of continuity

�(ξ) = C

(∫ ξ

0

ω(η)

ηα
dη + ξ

∫ ∞

ξ

ω(η)

η1+α
dη

)
, (4.49)

with a universal constant C > 0.
Thus, for 0 � ξ � δ, we get

�(ξ) � C

(∫ ξ

0
η1−αdη + ξ

∫ δ

ξ

η1−αdη + ξ

∫ ∞

δ

γ log(η/δ) + δ

η1+α
dη

)

� C
(
ξ2−α + ξδ2−α + ξγ δ−α + ξδ1−α

)
� Cξ, (4.50)

as long as we take γ < δ. This is the first inequality in (4.13).
For ξ > δ, we use (4.49) to write

�(ξ) � C
( ∫ δ

0
η1−αdη +

∫ ξ

δ

γ log(η/δ) + δ − δ1+α/2

ηα
dη

+ξ

∫ ∞

ξ

γ log(η/δ) + δ − δ1+α/2

η1+α
dη

)

� C
(
δ2−α + ξ1−α(δ − δ1+α/2)

)
+ Cγ δ1−α

∫ ξ/δ

1

log η

ηα
dη

+Cγ ξδ−α

∫ ∞

ξ/δ

log η

η1+α
dη

� C
(
δ2−α + ξ1−α(δ − δ1+α/2)

)
+ Cγ ξ1−α(1 + log(ξ/δ))

� C
(
δ2−α + ξ1−αω(ξ)

)
� Cξ1−αω(ξ), (4.51)

finishing the proof of Lemma 4.4.
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4.3. The Global Regularity for the Full System

We now consider the full system (1.31)–(1.33):

∂tρ + ∂x (ρu) = 0, (4.52)

∂t G + ∂x (Gu) = 0, (4.53)

∂x u = �αρ + G, (4.54)

without the extra assumption G ≡ 0. Let us recall representation (2.8):

u(x) = �αϕ(x) + (ψ(x) + I0) =: u(1)(x) + u(2)(x). (4.55)

Here, φ(x) and ψ(x) are the mean-zero primitives of θ and G, respectively, as in
(2.6)–(2.7), and I0 is given by (2.13).

Note that if ρ(x, t) and G(x, t) are solutions of (4.52)–(4.54), with the corre-
sponding velocity u(x, t), then

ρλ(x, t) = ρ(λx, λαt), Gλ(x, t) = λαG(λx, λαt), (4.56)

are also solutions, with the corresponding velocity

uλ(x, t) = λ−(1−α)u(λx, λαt), (4.57)

and

Fλ(x, t) = λα F(λx, λαt), F(x, t) = G(x, t)

ρ(x, t)
. (4.58)

Note that if ρλ(x, t) obeys a modulus of continuity ω, then ρ(x, t) obeys the mod-
ulus of continuity

ωλ(ξ) = ω(λ−1ξ). (4.59)

The proof of the global regularity for the solutions of (4.52)–(4.54) is based on the
following lemma.

Lemma 4.6. Let ω and ωλ be as in (4.1) and (4.59), respectively. Given a smooth
periodic initial condition (ρ0, u0) for (4.52)–(4.54) and T > 0, there exist δ > 0,
γ > 0 and λ > 0 so that ρ(x, t) obeys the modulus of continuity ωλ(ξ) for all
0 � t � T . The parameters δ, γ and λ may depend on α, ρ0, u0, and T .

This will imply a uniform bound on ‖∂xρ‖L∞ on 0 � t � T . As T is arbitrary,
this is sufficient for the global regularity of the solutions, according to (3.3). Note
that ρ(x, t) obeys ωλ until a time T if and only if ρλ(x, t) obeys the modulus of
continuity ω until the time Tλ = λ−αT , and this is what we will show. That is,
given ρ0 and u0, and T > 0, we will find λ > 0, δ > 0 and γ > 0 sufficiently
small, so that (i) ρλ(0, x) = ρ0(λx) obeys ω, and (ii) ρλ(x, t) obeys ω at least until
the time λ−αT . The a priori bounds on ρ(x, t) and F(x, t) will play a crucial role
in the proof.

As in the case G ≡ 0 considered above, we assume that a modulus of continu-
ity ω of the form (4.1), with some δ and γ , is broken by ρλ at a time t1, at some
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x1, y1 ∈ R, in the sense of (4.3). If T = [0, L], then ρλ is λ−1L-periodic, and we
can restrict our attention to x1, y1 ∈ Tλ := λ−1

T. We also set

ξ = |x1 − y1| > 0, (4.60)

and drop the time variable t1 in the notation. We decompose as in (4.11):

∂t (ρλ(x1) − ρλ(y1)) = −∂x (ρλ(x1)uλ(x1)) + ∂x (ρλ(y1)uλ(y1)) = R1 + R2,

(4.61)

with the terms R1 and R2 coming from the contributions of u(1)
λ and u(2)

λ in (4.55).
We treat R1 as before:

R1 = −(
u(1)

λ (x1)∂xρλ(x1) − u(1)
λ (y1)∂xρλ(y1)

)

−(
ρλ(x1) − ρλ(y1)

)
∂x u(1)

λ (x1) − ρλ(y1)
(
∂x u(1)

λ (x1) − ∂x u(1)
λ (y1)

)

= I + I I + I I I. (4.62)

Note that I and I I can be estimated exactly as before: first, as in (4.14), we have

|I | �

⎧
⎨

⎩

Cξ, 0 < ξ < δ,

Cγ
ω(ξ)

ξα
, ξ � δ,

(4.63)

with a constant C > 0 that does not depend on ρ0 or u0. The term I I can be
bounded as in (4.17):

I I � ω(ξ)A(ξ), (4.64)

with A(ξ) defined in (4.15). The term I I I is bounded slightly differently from
(4.18)

I I I � −ρ(λ)
m (T )D1(ξ). (4.65)

Here, ρ(λ)
m (T ) is theminimum of ρλ(x, t) over 0 � t � λ−αT , and D1(ξ) is defined

in (4.16). The lower bound (2.30) in Lemma 2.4 implies that

ρ(λ)
m (T ) � 1

[
ρ

(λ)
m (0)

]−1 + λ−αT ‖Fλ
0 ‖L∞

= 1

[ρm(0)]−1 + T ‖F0‖L∞

� ρm(0)

1 + T ‖∂x u0‖L∞ + T ‖�αρ0‖L∞
:= ρ̄m(T ),

(4.66)

as follows from (4.58). That is, even though now, unlike in the special case G ≡ 0,
the function ρ(x, t) does not necessarily obey the minimum principle, and ρm(t)
may decrease in time, the value of ρ

(λ)
m (t) does not depend on λ > 0. Thus, we

may first choose the parameters δ and γ in the definition (4.1) of the modulus of
continuity ω so that (4.22) and (4.24) hold with m replaced by ρ̄m(T ), and, in
addition, they satisfy (4.30). Next, we choose λ sufficiently small, so that ρ0

λ(x) =
ρ0(λx) obeys the modulus of continuity ω with the above choice of δ and γ .
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It remains to take into account the contribution of u(2)
λ to the right side of (4.61).

The goal is to control the corresponding terms in (4.11) by the dissipation, namely,
to show that

R2 = ∣∣u(2)
λ (x1)∂xρλ(x1) − u(2)

λ (y1)∂xρλ(y1)
∣∣

+∣∣ρλ(x1)∂x u(2)
λ (x1) − ρλ(y1)∂x u(2)

λ (y1)
∣∣

= R21 + R22 <
1

2
ρ̄m(T )D1(ξ). (4.67)

Note that the flow u(2)
λ (x) is Lipschitz, as

|∂x u(2)
λ (t, x)| = |Gλ(t, x)| � |ρλ(t, ·)‖L∞‖Fλ(t, ·)‖L∞ � C0λ

α, (4.68)

with a constantC0 that depends on the initial conditions ρ0 and u0 but not on λ > 0.
Therefore, u(2)

λ obeys the modulus of continuity

�2(ξ) = C0λ
αξ, (4.69)

and the first term in (4.67) can be bounded by

R21 := ∣∣u(2)
λ (x1)∂xρλ(x1) − u(2)

λ (y1)∂xρλ(y1)
∣∣ � C0λ

αξω′(ξ). (4.70)

Let us recall from (4.1) and (4.16) that

ω′(ξ) � 1, D1(ξ) = C1ξ
1−α/2, for 0 � ξ � δ, (4.71)

hence, we have

R21�C0λ
αξω′(ξ)�C0λ

αξ <
C1ρ̄m(T )

4
ξ1−

α
2 <

1

4
ρ̄m(T )D1(ξ) for 0 � ξ � δ,

(4.72)

provided that δ and λ are sufficiently small. On the other hand, we see from (4.1)
and (4.16) again that

ω′(ξ) = γ

ξ
, D1(ξ) = C1ω(ξ)

ξα
, for δ � ξ � Lλ−1. (4.73)

It is also straightforward to check that D1(ξ) is decreasing for ξ > δ, provided that

γ < cδ, (4.74)

with a sufficiently small constant c > 0 that depends only on α. We also have

ω(λ−1L)

Lα
→ +∞, as λ → 0, with L > 0 fixed. (4.75)

Hence, taking λ sufficiently small, depending on L as well, we have the inequality

R21 � C0λ
αξω′(ξ) = C0λ

αγ <
C1ρ̄m(T )

4

ω(λ−1L)

(λ−1L)α

� C1ρ̄m(T )

4

ω(ξ)

ξα
� 1

4
ρ̄m(T )D1(ξ), (4.76)
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for δ � ξ � Lλ−1. Together, (4.72) and (4.76) show that

R21 � 1

4
ρ̄m(T )D1(ξ). (4.77)

For the second term in (4.67), we write

R22 = ∣∣ρλ(x1)∂x u(2)
λ (x1) − ρλ(y1)∂x u(2)

λ (y1)
∣∣

= ∣∣ρλ(x1)
2Fλ(x1) − ρλ(y1)

2Fλ(y1)
∣∣

� 2λα‖ρ‖2L∞‖F‖L∞ � C0λ
α, (4.78)

with a constant C0 that depends only on the initial condition ρ0 and u0. Then, for
λ sufficiently small, we have, once again using the fact that ω(ξ)/ξα is decreasing
for ξ > δ and (4.75):

R22 � C0λ
α � C1ρ̄m(T )

4

ω(λ−1L)

(λ−1L)α
� C1ρ̄m(T )

4

ω(ξ)

ξα

= 1

4
ρ̄m(T )D1(ξ), for δ � ξ � λ−1L . (4.79)

To bound R22 in the region 0 � ξ � δ, we write

R22 = ∣∣ρλ(x1)
2Fλ(x1) − ρλ(y1)

2Fλ(y1)
∣∣

�
∣∣ρλ(x1)

2Fλ(x1) − ρλ(y1)
2Fλ(x1)

∣∣ + ∣∣ρλ(y1)
2Fλ(x1) − ρλ(y1)

2Fλ(y1)
∣∣

� 2‖ρλ‖L∞‖Fλ‖L∞ω(ξ) + ‖ρλ‖2L∞‖∂x Fλ‖L∞ξ (4.80)

Lemma 2.3 guarantees that F is Lipschitz, and the Lipschitz bound is uniform in
time, thus (4.58) implies

‖∂x Fλ‖L∞ � C0λ
1+α,

with a constantC0 that depends only on the initial conditions. In addition, it follows
from (4.58) that

‖Fλ‖L∞ � C0λ
α.

Inserting the last two bounds in (4.80), together with the expression for D1(ξ) in
(4.71), gives

R22 � C0λ
α(ω(ξ) + ξ) � C1ρ̄m(T )

4
ξ1−α/2 = ρ̄m(T )

4
D1(ξ). (4.81)

Here the constant C0 depends only on the initial conditions ρ0 and u0, and the
second inequality holds provided that δ and λ are sufficiently small. This proves
(4.67), and finishes the proof of Lemma 4.6.

Let us recap the order in which we choose the parameters. The value of α is
fixed throughout the argument. Given the initial data, we also fix its period, L . We
can also assume that λ does not exceed one. Next we choose δ sufficiently small so
that (4.22) (with m replaced by ρ̄m(T )), (4.72), and (4.81) hold. Then we choose
γ so that (4.24) (with m replaced by ρ̄m(T )), (4.30) and (4.74) hold. Finally, we
choose λ so that ρλ(0, x) obeys ω with the above choice of δ, γ and so that (4.76)
and (4.79) hold. The proof of Theorem 1.1 is now complete. 
�
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A The Proof of a Commutator Estimate

In this section, we prove the commutator estimate (3.5),

‖[�γ , f, g]‖L2 � ‖ f ‖L2‖g‖Cγ+ε , γ ∈ (0, 1).

The proof is for x ∈ R
n , though it can be easily adapted to periodic case. Let

(χ, η) be smooth functions such that χ is supported in a ball {ξ : |ξ | � 4/3}, η is
supported in an annulus {ξ : 3/4 � |ξ | � 8/3}, and

χ(ξ) +
∞∑

q=0

η(2−qξ) ≡ 1, ∀ ξ ∈ R
n .

It is standard to take

η(ξ) = χ(ξ/2) − χ(ξ),

which we will assume. Denote the Littlewood–Paley decomposition of f as∑∞
q=−1 �q f , where �q f = η(2−q D) f for q � 0, and �−1 f = χ(D) f . The

Besov norm is defined as [3]

‖ f ‖Bs
p,r

=
(

∑

q

2rs‖�q f ‖r
L p

)1/r

.

Let the partial sum Sq f = ∑
p�q−1 �p f = χ(2−q D) f . The Bony decompo-

sition states

f g = T f g + Tg f + R( f, g),

where

T f g =
∑

q

Sq−1 f · �q g, R( f, g) =
∑

q

�̃q f · �q g, �̃q f =
q+1∑

p=q−1

�p f.

Proof of the commutator estimate. First, we observe

‖ f �γ g‖L2 � ‖ f ‖L2‖�γ g‖L∞ � ‖ f ‖L2‖g‖Cγ+ε .

Therefore, it suffies to prove

‖�γ ( f g) − g�γ f ‖L2 � ‖ f ‖L2‖g‖Cγ+ε .

We apply the Bony decomposition to both terms, to get

�γ ( f g) = �γ (T f g) + �γ (Tg f ) + �γ (R( f, g)) = I1 + I2 + I3,

g�γ f = T(�γ f )g + Tg(�
γ f ) + R(�γ f, g) = II1 + II2 + II3.
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The terms I1, II1, I3, II3 can be estimated with standard paraproduct calculus,
sketched as follows:

‖I1‖2L2 =
∑

q

‖�q�γ
(
T f g

) ‖2L2 �
∑

q

22qγ ‖�q
(
T f g

) ‖2L2

�
∑

q

22qγ ‖Sq−1 f · �q g‖2L2 � ‖ f ‖2L2‖g‖2
Bγ

∞,2
,

‖II1‖2L2 =
∑

q

‖�q T(�γ f )g‖2L2 �
∑

q

‖Sq−1�
γ f · �q g‖2L2

�
∑

q

‖Sq−1�
γ f ‖2L2‖�q g‖2L∞

�
∑

q

22qγ ‖Sq−1 f ‖2L2‖�q g‖2L∞ � ‖ f ‖2L2‖g‖2
Bγ

∞,2
,

‖I3‖2L2 �
∑

q

‖�γ
(
�̃q f · �q g

)
‖2L2

�
∑

q

22qγ ‖�̃q f · �q g‖2L2 �
∑

q

22qγ ‖�̃q f ‖2L2‖�q g‖2L∞

� ‖ f ‖2L2‖g‖2
Bγ

∞,2
,

‖II3‖2L2 �
∑

q

‖�̃q
(
�γ f

) · �q g‖2L2 �
∑

q

‖�̃q
(
�γ f

) ‖2L2‖�q g‖2L∞

�
∑

q

22qγ ‖�̃q f ‖2L2‖�q g‖2L∞

� ‖ f ‖2L2‖g‖2
Bγ

∞,2
,

as Cγ+ε is embedded in Bγ
∞,2. These terms are nicely controlled.

The commutator structure is mainly used to estimate I2 − II2. Let us denote the
difference as III. Given any q ∈ N,

�q III =
∑

p

�q
(
�γ (Sp−1g · �p f ) − Sp−1g · �γ (�p f )

) =:
∑

p

IIIp.

Note that IIIp ≡ 0 for |p − q| � 5. Therefore, it is a finite sum. We discuss IIIq
and the other terms can be treated similarly.

Following from [30], we estimate IIIq in the Fourier side as

IIIq(x) =
∫∫

(|ξ + ζ |γ

−|ξ |γ )η(2−q(ξ + ζ ))χ(2−(q−2)ζ )η(2−qξ) f̂ (ξ)ĝ(ζ )ei(ξ+ζ )xdξdζ.

Define a multiplier m(ξ, ζ ) as

m(ξ, ζ ) = |ξ + ζ |γ − |ξ |γ
|ζ |γ η(ξ + ζ )χ(4ζ )η(ξ).
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It is easy to check that m is uniformly bounded, compactly supported and C∞. Let
mq(ξ, ζ ) = m(2−qξ, 2−qζ ), then

IIIq(x) =
∫∫

mq(ξ, ζ ) f̂ (ξ)|ζ |γ ĝ(ζ )ei(ξ+ζ )xdξdζ

=
∫∫

hq(y, z) · �q f (x − y) · �γ Sq−1g(x − z)dydz,

where

hq(y, z) = C
∫∫

mq(ξ, ζ )ei(ξ y+ζ z)dξdζ.

Compute
∫∫

|hq(y, z)|dydz = 22q
∫∫

|h1(2
q y, 2q z)|dydz =

∫∫
|h1(y, z)|dydz � C,

where the last integral is bounded due to smoothness of m, and the constant C does
not depend on q. Then, applying Young’s inequality, we get

‖IIIq‖L2 �‖hq(·, ·)‖L1‖�q f ‖L2‖�γ Sq−1g‖L∞ �‖�q f ‖L2

∑

p<q−1

2pγ ‖�pg‖L∞ .

We collect all modes and conclude

‖III‖2L2 =
∑

q

‖�q III‖L2 �
∑

q

‖�q f ‖2L2

⎛

⎝
∑

p<q−1

2pγ ‖�pg‖L∞

⎞

⎠
2

�
∑

q

‖�q f ‖2L2

∑

p<q−1

22p(γ+ α
2 )‖�pg‖2L∞

=
∑

p

22p(γ+ ε
2 )‖�pg‖2L∞

∑

q>p+1

‖�q f ‖2L2 � ‖ f ‖2L2‖g‖2
B

γ+ ε
2∞,2

� ‖ f ‖2L2‖g‖2Cγ+ε .


�
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