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In recent work of Luo and Hou [10], a new scenario for finite 
time blow up in solutions of 3D Euler equation has been 
proposed. The scenario involves a ring of hyperbolic points 
of the flow located at the boundary of a cylinder. In this 
paper, we propose a two dimensional model that we call 
“hyperbolic Boussinesq system”. This model is designed to 
provide insight into the hyperbolic point blow up scenario. 
The model features an incompressible velocity vector field, a 
simplified Biot–Savart law, and a simplified term modeling 
buoyancy. We prove that finite time blow up happens for a 
natural class of initial data.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Euler equation of fluid mechanics has been derived in 1755 and appears to be the 

second PDE ever written. The equation is nonlinear and nonlocal, which makes analysis 

challenging. In particular, the question whether solutions corresponding to smooth initial 

data remain globally regular remains open in three dimensions. There have been many 

* Corresponding author.

E-mail addresses: kiselev@math.duke.edu (A. Kiselev), ctan@rice.edu (C. Tan).

https://doi.org/10.1016/j.aim.2017.11.019
0001-8708/© 2017 Elsevier Inc. All rights reserved.



A. Kiselev, C. Tan / Advances in Mathematics 325 (2018) 34–55 35

attempts to resolve this problem either in the regularity direction, or by constructing 

finite time blow up examples. We refer to [11,12] for history and more details.

Recently, a new scenario for finite time blow up in 3D Euler equation has been pro-

posed by Luo and Hou [10] based on extensive numerical simulations. The scenario is 

axi-symmetric, and is set in a vertical cylinder r = 1 with no penetration boundary con-

ditions at the boundary and periodic boundary conditions in z. Angular components of 

both vorticity, ωθ, and velocity uθ obey odd symmetry with respect to z = 0 plane. The 

resulting solution forms rolls which make all points satisfying r = 1 and z = 0 hyperbolic 

points of the flow. It is at these points that very fast growth of vorticity ωθ is observed.

It is well known that the 2D Boussinesq system is essentially identical to the 3D 

axi-symmetric Euler equation away from the axis r = 0 (see, e.g. [11]). Since in the 

Hou–Luo scenario, the growth happens at the boundary and away from the axis, we will 

operate with the 2D Boussinesq system directly. Recall that the 2D Boussinesq system 

in vorticity form is given by

∂tω + (u · ∇)ω = ∂x1
ρ, ω(x, 0) = ω0(x), (1)

∂tρ + (u · ∇)ρ = 0, ρ(x, 0) = ρ0(x), (2)

u = ∇⊥(−Δ)−1ω. (3)

We will consider this system in the half-space x2 ≥ 0, and in (3) take Laplacian satisfying 

Dirichlet boundary conditions on the boundary x2 = 0. Such choice corresponds to no 

penetration boundary condition for u. The initial condition ω0(x) is odd in x1 and ρ0(x) is 

even in x1; this symmetry is conserved by evolution. This set up corresponds to Hou–Luo 

scenario turned by π/2: x1 corresponds to z and x2 to r, and for the right initial data 

we expect very fast growth of ω at the origin. We note that, naturally, the problem of 

global regularity vs finite time blow up for the system (1), (2), (3) is also open and well 

known. It appears, for example, as one of the “eleven great problems of mathematical 

hydrodynamics” in [15].

There have been several works which aimed to understand Hou–Luo scenario rig-

orously. Kiselev and Sverak [9] have looked at a geometry and initial data similar to 

Hou–Luo scenario but in the 2D Euler case, which is equivalent to setting ρ ≡ 0 in the 

2D Boussinesq system. They constructed examples of solutions in the unit disk D for 

which ‖∇ω‖L∞ exhibits double exponential growth for all times. This is known to be the 

fastest possible growth rate, as double exponential in time upper bounds on ‖∇ω‖L∞

go back to work of Wolibner [14]. A key part of the construction in [9] is the following 

representation formula for the fluid velocity near origin, x1,2 ≥ 0:

ui(x, t) = (−1)i 4

π
xi

∫

Q(x)

y1y2

|y|4
ω(y, t) dy + Bi(x)xi, i = 1, 2, |Bi(x)| ≤ C‖ω‖L∞ , (4)

where Q(x) is the “look back” set Q(x) = {y ∈ D : y1 ≥ x1, y2 ≥ x2}. There are also 

certain small exceptional sectors where (4) is not valid, buy we omit these details. The 
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first term on the right hand side in (4) is, in certain regimes, the main term. It possesses 

useful features: it is sign definite if ω has fixed sign, and there is a hidden comparison-like 

principle based on the increase of Q as x moves closer to the origin. These properties 

play an important role in the proof of lower double exponential in time bound on the 

gradient of vorticity.

Other works focused on 1D models of the Hou–Luo scenario. Hou and Luo [10] pro-

posed a model which has one-dimensional structure similar to (1), (2), but with the 

effective Biot–Savart law given by ux = Hω, where H is the Hilbert transform. This 

model can be viewed as 2D Boussinesq system restricted to the boundary x2 = 0, with 

the Biot–Savart law obtained under assumption that vorticity is concentrated in a bound-

ary layer and does not depend on x2 in this boundary layer. A simpler 1D model with 

Biot–Savart law inspired by (4) has been considered in [4], where it was also proved 

that finite time blow up can happen for this model. In [8], more information on the 

structure of blow up solutions has been obtained. Existence of finite time blow up in the 

original Hou–Luo model has been proved in [3], and a more general argument applying 

to a broader class of models was presented in [5]. Some infinite energy solutions of 2D 

Boussinesq system with simple structure and growing derivatives, inspired by Hou–Luo 

scenario, have been presented in [2].

Passing from the nonlinear analysis of 2D Euler equation [9] or 1D models [4,3] to 

the 2D Boussinesq case presents many challenges. First, one needs to understand how 

growth of vorticity happens in 2D geometry, and to develop a framework for controlling 

it. Secondly, as opposed to the 2D Euler case, the vorticity no longer has fixed sign 

(in x1 ≥ 0 region), since the forcing term ∂x1
ρ will generate vorticity of the opposite 

sign. This may deplete flow towards the origin which increases ∂x1
ρ and drives vorticity 

growth. Thirdly, analysis of Biot–Savart law that leads to (4) fails if vorticity can grow: 

the terms that go into the Lipschitz error in (4) can no longer be controlled the same 

way. Each of these complications is significant.

Our goal in this work is to address the first issue, and to develop a fully two dimen-

sional, incompressible model which exhibits finite time blow up. In this process, we will 

be able to get some idea of the picture of blow up as well as introduce some relevant 

objects. The model will have simplified Biot–Savart law and also simplified forcing term. 

Similarly to (1), (2), (3) it can also be set on half space, but due to symmetry it suffices 

to consider the first quadrant D := {x |x1 ≥ 0, x2 ≥ 0}. The model is given by

∂tω + (u · ∇)ω =
ρ

x1
, ω(x, 0) = ω0(x), (5)

∂tρ + (u · ∇)ρ = 0, ρ(x, 0) = ρ0(x), (6)

u = (−x1Ω(η, t), x2Ω(η, t)), Ω(η) =

∫

y1y2≥η

1

|y|2
ω(y, t) dy, η = x1x2. (7)

Comparing this system with the 2D Boussinesq, note that we replaced ∂x1
ρ with ρ

x1
. 

Given that we expect blow up to happen at the origin, and that ρ will initially be 
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supported away from the origin, the second term is a natural model for the first one, 

and has been proposed in [7]. The term ρ
x1

is also simpler, as it is sign definite if ρ has 

fixed sign. Next, the form of the Biot–Savart law

u = (−x1Ω(x1x2, t), x2Ω(x1x2, t)) (8)

is patterned after the expression (4). If one also requires u to be incompressible, then a 

simple computation shows that Ω can only depend on x1x2. Since every trajectory corre-

sponding to (7) is a hyperbola, we see that Ω(x1x2, t) is constant along each trajectory, 

at any given time. The form of the integral in (7) defining Ω is the simplest possible 

with the same dimensional structure as the real Biot–Savart law. For a more complete 

resemblance with (4), we could have taken the kernel in the integral defining Ω in (7) to 

be y1y2

|y|4 , but we will indicate below that this change makes no difference in terms of the 

key properties of the model. We will call the system (5), (6), (7) “hyperbolic Boussinesq 

system”, since this model is geared towards the hyperbolic point growth scenario, and 

the trajectories of the system are precise hyperbolas.

Our main goal in this paper is to prove local well-posedness as well as finite time blow 

up for hyperbolic Boussinesq system. We will say that f ∈ Kn if f has compact support 

in D, f ∈ Cn(D), and

δf = min
x∈supp(f)

x1 > 0. (9)

We set

‖f‖Kn
:= ‖f‖Cn(D) + | supp(f)| + δ−1

f .

Theorem 1.1. Suppose ω0, ρ0 ∈ Kn, n ≥ 1. Then there exists T = T (‖ω0‖Kn
, ‖ρ0‖Kn

)

such that there exists a unique solution ω(x, t), ρ(x, t) of the hyperbolic Boussinesq sys-

tem (5), (6), (7) which belongs to C([0, T ], Kn).

Theorem 1.2. There exist smooth initial data ω0, ρ0 which are in Kn for all n such that 

the corresponding solution ω(x, t), ρ(x, t) blows up in finite time. Specifically, finite time 

blow up holds in the sense that Φ(0, t) ≡ 2 
∫ t

0
Ω(0, s) ds as well as 

∫ t

0
‖ω(·, s)‖L∞ ds tend 

to infinity as t approaches the blow up time Tb.

We note that in a recent independent work [6], a 2D model of Boussinesq system 

with a different Biot–Savart law has been considered, and finite time blow up has been 

proved by a very different method involving lower and upper bounds on the solution. 

The Biot–Savart law of [6] is also given by (8). The difference is in the factor Ω which 

is similar to the integral appearing in the main term of (4) with integration restricted 

to a certain sector for technical reasons. However, such Biot–Savart law does not lead to 

incompressible flow.
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Also, in a recent preprint [13], several new models are proposed for the 3D Euler 

equation, and finite time blow up is proved for these models. The focus of [13] is on models 

that share as many conservation law properties with 3D Euler equation as possible. 

The modified Biot–Savart laws of [13] involve replacement of inverse Laplacian with a 

multi-scale operator. Our goal here, on the other hand, is to study the specific blow up 

scenario and to study models designed to develop intuition as well as framework for its 

further analysis.

The paper is organized as follows. In Section 2 we introduce some useful explicit 

formulas for the solution as well as sketch a proof of local well-posedness. In Section 3 we 

take a detour and consider the hyperbolic analog of the 2D Euler equation, by setting ρ ≡

0 in the hyperbolic Boussinesq system. We discover that, in some sense, the 2D hyperbolic 

Euler is “less singular” than the true 2D Euler, as its solution satisfies just single in time 

exponential upper bound on the derivatives of vorticity (which is qualitatively sharp). 

We note that the factor Ω(x1x2, t) certainly does not satisfy the bound

‖Ω(·, t)‖L∞ ≤ C‖ω(·, t)‖L∞ ,

from which the exponential bound on derivatives would easily follow. Instead, the only 

bound available is similar to the 2D Euler case and involves a logarithm of higher order 

norm such as ‖∇ω‖L∞ or ‖ω‖Cα . In the 2D Euler case, this leads to double exponential 

growth examples, but the 2D hyperbolic Euler provides an interesting example where 

such fast growth does not happen due dynamical depletion of nonlinearity. Finally, in 

Section 4 we provide a proof of finite time blow up in solutions of the hyperbolic Boussi-

nesq system.

2. Preliminaries

Our first goal is to establish local well-posedness of the hyperbolic Boussinesq system. 

It will be convenient for us to make a change of coordinates z1 = log(x1x2), z2 =

log(x2/x1); so x1 = e
z1−z2

2 , x2 = e
z1+z2

2 . We denote ρ̃(z, t) = ρ(x(z), t) and ω̃(z, t) =

ω(x(z), t). We also define

Ω̃(z1, t) = Ω(ez1 , t) =
1

4

∞
∫

z1

dz̃1

∫

R

ω̃(z̃, t)

cosh z̃2
dz̃2; (10)

the last equality can be verified by a straightforward computation making a coordinate 

change in the integral for Ω in (7). The equations for ω̃, ρ̃ then read

∂tω̃ + 2Ω̃∂z2
ω̃ = e

z2−z1
2 ρ̃, ω̃(z, 0) = ω̃0(z), (11)

∂tρ̃ + 2Ω̃∂z2
ρ̃ = 0, ρ̃(z, 0) = ρ̃0(z). (12)
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Fig. 1. The initial data.

In the x coordinates, we think of the initial data ω0, ρ0 as smooth, non-negative, with 

support contained in some rectangle 0 < δ ≤ x1 ≤ C, 0 ≤ x2 ≤ C. We will see that for 

the finite time blow up argument, only ρ0 is important; we can set ω0 = 0. For the finite 

time blow up argument, we will also need to assume that ρ0 is not identically zero on 

the x1 axis. In the z coordinates, this corresponds to ω̃0, ρ̃0 supported in the half-strip

−K ≤ 2 log δ ≤ z1 − z2 ≤ 2 log C ≤ K, −∞ < z1 + z2 ≤ 2 log C ≤ K, (13)

where K is some fixed constant that only depends on ω0. Moreover, for all z1 small 

enough, we have 
∫

R
ρ̃0(z1, z2) dz2 ≥ c > 0; this follows from continuity of ρ0 and the fact 

that it does not vanish on the x1 axis. The structure of the initial data in both systems 

of coordinates is illustrated on Fig. 1.

For much of the rest of this paper, we will work in the z coordinate representation 

of the hyperbolic Boussinesq system. Therefore, for the sake of simplicity, we will abuse 

the notation and omit ˜ over ω, ρ and Ω. It will be clear from the context whether we 

are thinking of these functions in the z or in the original x coordinates. We can use 

the method of characteristics to rewrite the system (11), (12), (10) in an equivalent 

integral form. Notice that conveniently, in the z coordinates, the first component of the 

characteristic does not change. Thus all characteristics are straight lines parallel to z2

axis, and the speed of motion along these lines is modulated by the nonlocal function Ω. 

Let us introduce a short cut notation

Φ(z1, t) = 2

t
∫

0

Ω(z1, s) ds =
1

2

t
∫

0

∞
∫

z1

dz̃1

∫

R

ω(z̃1, z2, s)

cosh z2
dz2ds. (14)

We obtain

ρ(z, t) = ρ0 (z1, z2 − Φ(z1, t)) (15)

and
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ω(z, t) = ω0 (z1, z2 − Φ(z1, t)) +

t
∫

0

f (z1, z2 − Φ(z1, t) + Φ(z1, s)) ds,

where f(z, s) = e
z2−z1

2 ρ(z, s). Using (15), we can rewrite the solution as

ω(z, t) = ω0 (z1, z2 − Φ(z1, t)) + f1 (z1, z2 − Φ(z1, t))

t
∫

0

e
1
2

Φ(z1,s) ds, (16)

with f1(z1, z2) = e
z2−z1

2 ρ0(z1, z2). Note that since ρ0(z) is supported on the finite strip 

2 log δ ≤ z1 − z2 ≤ 2 log C, we have that f1(z1, z2) is a bounded function with the same 

regularity as ρ0.

Let us also provide integral formulas for the solution in the x coordinate represen-

tation. These can be obtained directly by solving (5), (6), or by making a change of 

coordinates in (15), (16):

ρ(x, t) = ρ0

(

x1e
1
2

Φ(z1,t), x2e− 1
2

Φ(z1,t)
)

, z1 = log(x1x2); (17)

ω(x, t) = ω0

(

x1e
1
2

Φ(z1,t), x2e− 1
2

Φ(z2,t)
)

+ x−1
1 ρ0

(

x1e
1
2

Φ(z1,t), x2e− 1
2

Φ(z1,t)
)

t
∫

0

e− 1
2

(Φ(z1,t)−Φ(z1,s)) ds; (18)

Φ(z1, t) =
1

4

t
∫

0

∞
∫

log(x1x2)

∫

R

ω(z̃, s)

cosh z̃2
dz̃2dz̃1ds =

t
∫

0

∫

y1y2≥x1x2

ω(y, s)

|y|2
dyds. (19)

We now begin to discuss the local well-posedness of the hyperbolic Boussinesq. As the 

first step, let us obtain some a-priori estimates.

Lemma 2.1. Suppose that ω0, ρ0 ∈ Kn, n ≥ 1, and that ω(x, t) and Φ(x, t) satisfy (18), 

(19) for all x ∈ D, 0 ≤ t ≤ T . Assume that

sup
x∈D, 0≤t≤T

|Φ(log(x1x2), t)| ≤ B < ∞. (20)

Then ω(x, t), ρ(x, t) ∈ C([0, T ], Kn).

Proof. Let δ(t) = min(δω(·,t), δρ(·,t)), where δf is defined in (9). From (18), (17) and (20)

it follows that

‖ω(·, t)‖L∞ ≤ ‖ω0‖L∞ + δ(0)−1e3BT ‖ρ0‖L∞ ,
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for every 0 ≤ t ≤ T . Moreover, δ(t) ≥ δ(0)e−B/2. It remains to estimate the derivatives 

of the solution. Let us consider the first order derivatives of ω(x, t), ρ(x, t) in (17), (18). 

Let us use the representation

Φ(log(x1x2), t) = 2

t
∫

0

Ω(x1x2, s) ds = 2

t
∫

0

∫

y1y2≥x1x2

ω(y, s)

|y|2
dyds (21)

from (19). Then the only expression which appears that is not already clearly controlled 

is ∂ηΩ(η, t), where we are using the x coordinate representation

Ω(η, t) =

∫

y1y2≥η

ω(y, s)

|y|2
dy.

But we can estimate

∂ηΩ(η, t) = lim
h→0

1

h

C
∫

δ(t)

dy1

η+h
y1

∫

η
y1

dy2
ω(y, t)

|y|2
=

C
∫

δ(t)

dy1

y1

ω(y1, η
y1

, t)

y2
1 +

(

η
y1

)2

≤ C‖ω(·, t)‖L∞δ(t)−2.

Here, C is a large constant so that the support of ω(·, t) lies in {x1 ≤ C}. We will recycle 

the constant C throughout the paper.

Higher order derivatives can be estimated inductively up to the level of regularity for 

the initial data – second order derivative for ω will involve terms that are clearly bounded 

plus second order derivatives of Ω(η, t) which can be controlled by using bounds on the 

first order derivatives of ω(x, t) and so on. Continuity of the derivatives of ω and ρ in 

time follows from continuity in time for ω(x, t) and ρ(x, t) as is clear from (17), (18) and 

an inductive argument. �

Due to Lemma 2.1, to prove Theorem 1.1 it suffices to construct a solution with a 

bounded Φ and ω (and then to address uniqueness). For this purpose, it will be more 

convenient for us to work in the z coordinates. The key equations are clearly the vorticity 

equation (16) and the phase equation (14); the equation for density effectively decouples 

and can be easily solved once we have solved the other two.

Now we prove the existence and uniqueness of solutions to (16), (19).

Proof of Theorem 1.1. 1. Uniform bound on the iterates. Set ω0(z, t) = ω0(z), Φ0(z1, t) =

0. Iteratively, define

ωn(z, t) = ω0(z1, z2 − Φn−1(z1, t)) + f1(z1, z2 − Φn−1(z1, t))

t
∫

0

eΦn−1(z1,s) ds; (22)
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Ωn(z1, t) =
1

4

∞
∫

z1

dz̃1

∫

R

ωn(z̃, s)

cosh z̃2
dz̃2; (23)

Φn(z1, t) = 2

t
∫

0

Ωn(z1, s) ds. (24)

Let us set

Γn(t) = sup
z1,m≤n

|Ωm(z1, t)| ≡
1

2
sup

z1,m≤n
|∂tΦm(z1, t)|;

Mn(t) = sup
z, m≤n

|ωm(z, t)|, Ln(t) = sup
z1, m≤n

|Φm(z1, t)|.

Observe that

Ln(t) ≤ 2

t
∫

0

Γn(s) ds (25)

Γn(t) ≤ C(1 + Ln−1(t))Mn(t). (26)

Indeed, due to our assumptions on the initial data (13) and the structure of the solution 

(16), we have

supp ωn(z1, z2, t) ⊂ {z2 ≤ z1 + C + Ln−1(t)},

with C = −2 log δ(0) according to (13) and so depending only on the initial data. In 

general, throughout the paper C will denote constants that may change line to line but 

can only depend on the initial data; sometimes we will make this dependence explicit. 

It follows that for every z1,

|Ωn(z1, t)| ≤ C

∫

z̃1≥z1

dz̃1

z̃1+C+Ln−1(t)
∫

−∞

Mn(t)dz2

cosh z2
≤ CMn(t)(1 + Ln−1(t)), (27)

with constant C independent of n. Since by definition Ln−1(t) ≤ Ln(t), the estimates 

(25), (26), (27) and Gronwall lemma together imply that

Ln(t) ≤ eC
∫

t

0
Mn(s) ds − 1. (28)

Then (16) leads to

Mn(t) ≤ C

⎛

⎝1 +

t
∫

0

eC
∫

s

0
Mn(r) dr ds

⎞

⎠ , Mn(0) = ‖ω0‖L∞ . (29)
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Therefore, Mn(t) ≤ M̄n(t), where M̄n(t) satisfies equality instead of an inequality in 

(29). Clearly there exists T > 0 such that M̄n ≤ C < ∞ for every t ∈ [0, T ]. Then (25), 

(26) imply that Ln(t) is bounded on [0, T ] as well, with T as well as the upper bound C

independent of n.

2. Convergence. We now show that on time interval [0, T ], the approximations ωn, Φn

converge uniformly over the compact sets in R2 to bounded functions ω, Φ which solve 

(16), (14).

Let us denote

Gn(z1, t) = sup
z2, z̃1≥z1, m≤n

|ωm(z̃1, z2, t) − ωm−1(z̃1, z2, t)|.

Observe that

|Φn(z1, t) − Φn−1(z1, t)| ≤

∣

∣

∣

∣

∣

∣

t
∫

0

ds

C
∫

z1

dz̃1

∫

ωn(z̃1, z2, s) − ωn−1(z̃1, z2, s)

cosh z2
dz2

∣

∣

∣

∣

∣

∣

≤ C(|z1| + 1)

t
∫

0

Gn(z1, s) ds; (30)

the constants C here depend only on the initial data. On the other hand, for t ∈ [0, T ]

we have

|ωn(z1, z2, t) − ωn−1(z1, z2, t)| ≤ (‖∇ω0‖L∞ + C‖∇f1‖L∞) |Φn−1(z1, t) − Φn−2(z1, t)|

+ C

t
∫

0

|Φn−1(z1, s) − Φn−2(z1, s)| ds. (31)

Here C needs to be chosen large enough so that

(‖f1‖L∞ + ‖∇f1‖L∞)e‖Φm(·,t)‖L∞ ≤ C

for m = n − 1, n − 2 and t ∈ [0, T ]. By combining the bounds (30), (31), we find

Gn(z1, t) ≤ C(1 + |z1|)

t
∫

0

Gn−1(z1, s) ds

with a constant C that depends only on the initial data and T . Iterating, we obtain

Gn(z1, t) ≤
Cn(1 + |z1|)ntn

n!
.

This makes ωn Cauchy on all plane for every t ∈ [0, T ]; convergence is uniform on any set 

z1 ≥ A, 0 ≤ t ≤ T . Such convergence as well as uniform L∞ bound on ωn also implies 
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the same type of convergence Φn(z1, t) → Φ(z1, t). Moreover, it is straightforward to 

check that ω, Φ satisfy (16), (14).

3. Uniqueness. The uniqueness of a bounded solution ω, Φ on [0, T ] follows very 

similarly to the convergence part by looking at the difference of two solutions and using 

the upper bound on solutions as well as the resulting differential inequality. We omit the 

details.

By Lemma 2.1, the proof of Theorem 1.1 is now complete. �

Finally, let us state one more regularity criterion that is claimed in Theorem 1.2. This 

result is the direct analog of the well known Beale–Kato–Majda criterion for the 3D 

Euler equation [1].

Proposition 2.2. Let ω(x, t), ρ(x, t) be C([0, T ], Kn) solution of the system (5), (6), (7). 

If T is the largest time of existence of such solution, then we must have

lim
t→T

t
∫

0

‖ω(·, t)‖L∞ dt = ∞.

Proof. Define

L(t) = sup
z1

|Φ(z1, t)|.

An argument parallel to one leading to (28) then gives global in time bound

L(t) ≤ CeC
∫

t

0
‖ω(·,s)‖L∞ ds, (32)

where the constant C only depends on the initial data. Now global regularity follows 

from Lemma 2.1. �

The last issue we would like to discuss in this section is to come back to the different 

choice of the kernel in the definition of Ω in (7). In the introduction, we mentioned that 

taking this kernel to be y1y2/|y|4, which follows (4) more closely, does not result in an 

essential change of the analysis of the system. Indeed, the analog of z representation of 

Ω in (10) becomes

Ω̃(z1, t) =
1

8

∞
∫

z1

dz̃1

∫

R

ω̃(z̃, t)

(cosh z̃2)2
dz̃2,

and analysis in this section as well as below can proceed along the same path and with 

identical conclusion.
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3. The analog of the 2D Euler equation

The goal of this section is to provide more intuition on properties of the “hyperbolic” 

Biot–Savart law (7). For this purpose, we will consider “hyperbolic” 2D Euler equation, 

which is obtained by taking ρ ≡ 0 in (5):

∂tω + (u · ∇)ω = 0, ω(x, 0) = ω0(x), (33)

u = (−x1Ω(x1x2, t), x2Ω(x1x2, t)), Ω(x1x2, t) =

∫

y1y2≥x1x2

1

|y|2
ω(y, t) dy. (34)

We will see that, similarly to the 2D Euler equation, its hyperbolic analog is globally 

regular. However, there is one interesting difference – the hyperbolic version of 2D Euler 

is in some sense more regular than the real 2D Euler equation. Namely, the rate of 

growth of the derivatives of solutions of the hyperbolic 2D Euler equation can only be 

exponential in time. For the sake of simplicity, we will restrict ourselves to the initial 

data that is positive on D – note that the double exponential growth examples of [9]

involve exactly this class of the initial data.

Theorem 3.1. Suppose ω0 ∈ Kn, n ≥ 1. Then the system (33), (34) set in D has a unique 

global solution ω(x, t) ∈ Kn. Moreover, assume ω0 ≥ 0 in D. Then

‖ω(·, t)‖Kn
≤ CeCt, (35)

where the constant C only depends on the initial data.

Moreover, there exist initial data ω ∈ Kn, n ≥ 1, for which the exponential in time 

growth of derivatives (including the first order ones) of the corresponding solution is 

realized.

Global regularity of the solution follows immediately from Proposition 2.2, once we 

observe that ‖ω(·, t)‖L∞ = ‖ω0‖L∞ while the solution is still regular. Moreover, from 

the explicit formula for solution (18), it follows that higher order derivatives of ω(x, t)

satisfy double exponential upper bound in time:

Lemma 3.2. Suppose ω0 ∈ Kn, n ≥ 1, and ω(x, t) is the corresponding global solution of 

(33), (34) in D. Then the higher order derivatives of ω(x, t) satisfy

‖Dlω(x, t)‖L∞ ≤ CeCΦ(log(x1x2),t) ≤ CeCeCt

(36)

for every 1 ≤ l ≤ n, where the constant C depends only on ω0 and l.

Proof. Recall our definition δf = minx∈supp(f) x1, and let us use a short cut δ(t) = δω(·,t). 

Without loss of generality, to simplify the computations, we will assume δ(0) < 1. When 

ρ = 0, (18) transforms into
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ω(x, t) = ω0

(

x1e
1
2

Φ(log(x1x2),t), x2e− 1
2

Φ(log(x1x2),t)
)

.

Therefore,

δ(t) ≤ δ(0)e− 1
2

Φ(−∞,t). (37)

On the other hand, (32) and conservation of the L∞ norm of vorticity imply that

Φ(−∞, t) ≤ CeCt. (38)

The bounds on the derivatives of ω(x, t) now follow by direct differentiation and estimates 

similar to the ones described in the proof of Lemma 2.1. �

Lemma 3.2 is in close parallel to the corresponding result for the classical 2D Euler 

equation. Our next goal is to prove a sharper upper bound which is just exponential in 

time (it will not be hard to see that it is in fact optimal).

Consider first the degenerate case where ω0 ≡ 0 on the boundary of the quadrant ∂D. 

It will be easier for us to work in the x coordinate representation.

Recall the representation (21), and note that since ω(x, t) ≥ 0 in D, we have Ω(0, t) =

maxη≥0 Ω(η, t). Since D is closed and ω0 ∈ C1(D), we have ω0(x1, x2) ≤ C min(1, x2). 

Therefore

Ω(0, t) =

∫

D

ω0

(

x1e
1
2

Φ(log(x1x2),t), x2e− 1
2

Φ(log(x1x2),t)
)

x2
1 + x2

2

dx ≤

∫

D

C min(1, x2)

x2
1 + x2

2

dx

≤ C

1
∫

0

dx2

C
∫

0

x2

x2
1 + x2

2

dx1 + C

∞
∫

1

dx2

C
∫

0

1

x2
1 + x2

2

dx1 ≤ C,

where the constant depends only on the initial data. By the first inequality in (36) and 

by (21), the bound (35) follows.

Let us now consider the case where ω0(x) does not identically vanish on ∂D. As is clear 

from the preceding paragraph, to prove Theorem 3.1, it suffices to show global uniform 

bound Ω(0, t) ≤ A < ∞ for all t. This is exactly what we will do. Note that this bound 

does not follow from the global L∞ control of ω(x, t); it is easy to see that the integral 

defining Ω(0, t) diverges as a logarithm when the support of ω(x, t) approaches the origin. 

The uniform bound on Ω(0, t) will be a consequence of the dynamical properties of the 

model. The proof is not straightforward, and some of the auxiliary results that we develop 

here will also be useful for the proof of finite time blow up in the next section. It will be 

convenient for us to work in the z coordinates. Note that when ρ ≡ 0, (16) transforms 

into

ω(z, t) = ω0 (z1, z2 − Φ(z1, t)) . (39)
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Without loss of generality, we will assume in this section that ‖ω0‖L∞ = 1. The general 

case can be reduced to it by a simple change of time variable.

Let us define

Z = sup{z1 | ∃z2 : (z1, z2) ∈ supp ω0 }.

Lemma 3.3. Suppose that 0 ≤ ω0 ∈ Kn, n ≥ 1. Then for every z1 < Z, we have

Φ(z1, t)
t→∞
−→ ∞.

Proof. Suppose not: there exists z̄1 < Z such that Φ(z̄1, t) ≤ A < ∞ for every t. Then 

the same is true for every z1 satisfying z̄1 ≤ z1 ≤ Z, since Φ(z1, t) =
∫ t

0
Ω(z1, s) ds, and 

Ω(z1, s) is monotone decaying in z1 due to positivity of ω. But then for every such z1

and for all t we have

∫

R

ω(z1, z2, t)

cosh z2
dz2 =

∫

R

ω0(z1 − Φ(z1, t), z2)

cosh z2
dz2 ≥ C(ω0)e−|z1|−A > 0.

This implies that Ω(z̄1, t) ≥ C(ω0) 
∫ Z

z̄1
e−|z1|−A dz1 > 0 for every t. But this bound 

contradicts our assumption on Φ(z̄1, t). �

Lemma 3.4. Suppose that ω0 ∈ Kn, n ≥ 1, ω0 ≥ 0 and ω0 does not identically vanish on 

∂D. Then there exists Z1 such that for every z1 ≤ Z1, we have

∫

R

ω0(z1, z2) dz2 ≥ c(ω0) > 0.

Proof. Direct calculation shows that

∫

R

ω0(z1, z2) dz2 = 2

∞
∫

0

ω0

(

x1,
ez1

x1

)

dx1

x1
,

where we switched to ω0 in the x coordinates in the second integral. The integral on 

the right hand side is bounded from below uniformly by a positive constant for all z1

sufficiently small, due to the assumption that ω0 ∈ C1 and does not identically vanish 

on ∂D. �

Let us denote H(z1, t) = z1 + Φ(z1, t). Due to (13) and (39), we see that

supp ω(z, t) ⊂ {(z1, z2) : H(z1, t) − K ≤ z2 ≤ H(z1, t) + K},

so that H describes how close, for a fixed z1 and t, is the support of the solution from 

the maximum of the weight 1/ cosh z2.
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Define the forward front, F1(t), by

F1(t) = min{z1 | H(z1, t) = −B }, (40)

where B ≥ 1 is a sufficiently large constant that will be chosen below. Note that due 

to our assumption on the initial data (13), and (38), we have that H(z1, t) → −∞ as 

z1 → −∞ for all t. Then due to Lemma 3.3, F1(t) is well defined for all times t ≥ t0. 

Without loss of generality, we can choose t0 large enough so that H(Z1, t) ≥ 0 (and so in 

particular F1(t) ≤ Z1) for all t ≥ t0. The time t0 depends only on ω0, and will be fixed 

throughout the argument of this section.

Lemma 3.5. For every z1 ≤ Z1 such that H(z1, t) ≤ −B, for every t ≥ t0, we have 

Ω(z1, t) ≥ γ > 0, where the constant γ only depends on ω0.

Proof. Observe that

∂z1
H(z1, t) = 1 + 2

t
∫

0

∂z1
Ω(z1, s) ds ≤ 1, (41)

since ∂z1
Ω(z1, t) ≤ 0 for all z1 and t. Let us denote S the set of all z̃1 ∈ [z1, Z1] such that 

|H(z̃1, t)| ≤ 1. Due to H(z1, t) ≤ −B ≤ −1, H(Z1, t) ≥ 0, and (41), it is straightforward 

to see that |S| ≥ 1. Then, by (39),

Ω(z1, t) ≥
1

4

∫

S

dz̃1

∫

R

dz2
ω0(z̃1, z2 + z̃1 − H(z̃1, t))

cosh z2
≥

1

4
|S|c(ω0)e−K−1 ≡ γ,

where c(ω0) is the constant from Lemma 3.4, and K is the constant from (13). Note that 

γ is independent of B. �

The next proposition describes the structure of H(z1, t) for z1 ≤ F1(t).

Proposition 3.6. For every z1 ≤ F1(t), we have ∂z1
H(z1, t) ≥ 1 − (γ−1 + t0)eK−B. In 

particular, if we choose B large enough so that B ≥ K, B ≥ 1, and ε ≡ (γ−1+t0)eK−B <

1, then

1 ≥ ∂z1
H(z1, t) ≥ 1 − ε > 0 (42)

for all t ≥ t0, z1 ≤ F1(t).

Proof. Observe that

∂z1
H(z1, t) = 1 −

1

2

t
∫

0

ds

∫

R

dz2
ω0(z1, z2 + z1 − H(z1, s))

cosh z2
,
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so we need to estimate the integral on the right hand side. Since z1 ≤ F1(t), we have 

H(z1, s) ≤ −B for all t0 ≤ s ≤ t. Therefore, by Lemma 3.5, we have Ω(z1, s) ≥ γ for 

every t0 ≤ s ≤ t. It follows that H(z1, s) ≤ −B − 2γ(t − s) for all t0 ≤ s ≤ t. Using (13)

and ‖ω0‖L∞ = 1, we can estimate

t
∫

0

ds

∫

R

dz2
ω0(z1, z2 + z1 − H(z1, s))

cosh z2

≤

t0
∫

0

ds

∫

R

dz2
ω0(z1, z2 + z1 − H(z1, s))

cosh z2
+

t
∫

t0

ds

∫

R

dz2
ω0(z1, z2 + z1 − H(z1, s))

cosh z2

≤ 2t0eK−B +

t
∫

t0

ds

K−B−2γ(t−s)
∫

−∞

2ez2 dz2 ≤ (2t0 + γ−1)eK−B. �

For the rest of this section, we will choose B so that ε ≡ (γ−1 + 2t0)eK−B ≤ 0.1.

Observe that by Proposition 3.6, with our choice of B, the function H(z1, t) is strictly 

increasing in z1 in the z1 ≤ F1(t) region.

Note also that Proposition 3.6 implies that F1(t) is continuous in time. Indeed, a jump 

in F1(t) would only be possible if D(z1, t) were not strictly monotone for z1 ≤ F1(t).

In fact, the proof of Proposition 3.6 yields the following stronger statement.

Corollary 3.7. Suppose that H(z1, t) ≤ −B for some t ≥ t0. Then ∂z1
H(z1, t) ≥ 1 − ε. As 

a consequence, the function H(z1, t) is one-to-one in pre-image of (−∞, −B], and this 

pre-image equals (−∞, F1(t)]. In particular, H(z1, t) > −B for every z1 > F1(t).

Proof. The proof of the bound on ∂z1
H(z1, t) is identical to that in the proof of Propo-

sition 3.6. The rest of Corollary 3.7 follows immediately. �

One further consequence of Proposition 3.6 is that to control Ω(−∞, t), it suffices to 

estimate Ω(F1(t), t).

Corollary 3.8. For every t ≥ t0, we have

Ω(−∞, t) ≤ Ω(F1(t), t) +
1

1 − ε
eK−B .

Proof. By Proposition 3.6, we have

Ω(−∞, t) − Ω(F1(t), t) =
1

4

F1(t)
∫

−∞

dz1

∫

R

dz2
ω0(z1, z2 + z1 − H(z1, s))

cosh z2
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≤
1

4

F1(t)
∫

−∞

dz1

K−B−|z1−F1(t)|(1−ε)
∫

−∞

ez2 dz2

≤
1

4
eK−B

F1(t)
∫

−∞

e−(1−ε)|z1−F1(t)| dz1 ≤
1

4(1 − ε)
eK−B. �

Now we are ready to state a key proposition from which Theorem 3.1 will follow.

Proposition 3.9. Set A0 = 10000(B + K)2e2(B+K). Let t1 be any time such that 

Ω(F1(t1), t1) = A0. Then there exists δt = δt(B, K) ≤ 1 such that Ω(F1(t1+δt), t1+δt) ≤

A0/2, and Ω(−∞, t) ≤ 2A0eB+K for all t1 ≤ t ≤ t1 + δt.

From Proposition 3.9 it follows, of course, that Ω(−∞, t) is globally bounded, thus 

proving the first part of Theorem 3.1.

Proof. Set δt = 100(B + K)eB+KA−1
0 . Define R(t1) by the condition

1

δt

t1+δt
∫

t1

Ω(R(t1), s) ds =
1

10
A0e−(B+K).

Note that if R(t1) exists, then it is unique due to monotonicity of the left hand side in 

the first argument of Ω (the only possible exception is if ω0 vanishes for a range of z1

and R(t1) fits exactly there; this exception is trivial as this range of z1 can be simply 

collapsed into a single point without affecting anything). Let us consider two cases.

1. Suppose that R(t1) exists and R(t1) ≥ F (t1). In this case, we claim that

Ω(R(t1), t1 + δt) ≤
A0

10
. (43)

Indeed, by mean value theorem, we can find t2 ∈ [t1, t1 + δt] such that

Ω(R(t1), t2) =
1

10
A0e−(B+K). (44)

Note that for every z1 ≥ R(t1) ≥ F (t1), by Corollary 3.7 we have H(z1, t) ≥ −B for 

t ≥ t1. The contribution of such z1 to the integral providing the value of Ω(R(t1), t2) is 

equal to

∫

R

ω0(z1, z2 + z1 − H(z1, t2))

cosh z2
dz2.

Due to (13) and the inequality H(z1, t2) ≥ −B, this integral can increase by a factor of 

at most eB+K over the remaining times:
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sup
s≥t2

∫

R

ω0(z1, z2 + z1 − H(z1, s))

cosh z2
dz2 ≤ eB+K

∫

R

ω0(z1, z2 + z1 − H(z1, t2))

cosh z2
dz2.

This and (44) imply (43).

Observe that an identical argument shows that

Ω(F1(t1), t) ≤ A0eB+K (45)

for all t ≥ t1, something that we will need later.

Let us now show that by time t1 + δt, the points z1 satisfying F (t1) ≤ z1 ≤ R(t1) do 

not contribute much to Ω. By definition of R(t1), we have

t1+δt
∫

t1

Ω(R(t1), s) ds = 10(B + K).

On the other hand, H(z1, t1) ≥ −B. Then

H(z1, t1 + δt) ≥ −B + 20(B + K).

Therefore,

∫

R

ω0(z1, z2 + z1 − H(z1, t1 + δt))

cosh z2
dz2 ≤ e−10(B+K)

∫

R

ω0(z1, z2 + z1 − H(z1, t1))

cosh z2
dz2.

Hence,

Ω(F1(t1), t1 + δt) − Ω(R(t1), t1 + δt) ≤ e−10(B+K)Ω(F1(t1), t1) = e−10(B+K)A0. (46)

It remains to consider the contribution of z1 ≤ F (t1). Notice that due to (45), we 

have

t1+δt
∫

t1

Ω(F1(t1), s) ds ≤ δtA0eB+K ≤ 100(B + K)e2(B+K). (47)

Set Y = F1(t1) − 1000(B + K)e2(B+K). We claim that Y ≤ F1(t1 + δt), that is, for every 

z1 ≤ Y we have H(z1, t1 + δt) < −B. To show this, note first that by Proposition 3.6, 

H(z1, t1) ≤ −B − (1 − ε)(F1(t) − z1). Next, using (47) and ‖ω(·, t)‖L∞ = 1, we estimate

t1+δt
∫

t1

Ω(z1, s) ds ≤

t1+δt
∫

t1

Ω(F1(t1), s) ds +

t1+δt
∫

t1

F1(t1)
∫

z1

dz̃1

∫

R

ω(z, s)

cosh z2
dz2ds

≤ 100(B + K)e2(B+K) + 2(F1(t) − z1)δt
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≤ 100(B + K)e2(B+K) +
1

50
e−B−K(F (t1) − z1).

To ensure that H(z1, t1 + δt) < −B holds for z1 ≤ Y , it suffices to verify that

(1 − ε)(F1(t1) − Y ) ≥ 200(B + K)e2(B+K) +
1

25
e−B−K(F (t1) − Y ).

This clearly holds true by our choice of B in Proposition 3.6. Now since F1(t1 + δt) ≥ Y , 

the contribution of all z1 ≤ F1(t1) to Ω(−∞, t) for times t1 ≤ t ≤ t1 + δt cannot exceed

Ω(−∞, t) − Ω(F1(t1), t) ≤ 2000(B + K)e2(B+K) +
1

1 − ε
eK−B (48)

by direct estimate and Corollary 3.8.

Combining estimates (43), (46) and (48) together, we find that

Ω(F1(t1 + δt), t1 + δt) ≤ Ω(−∞, t1 + δt)

≤
A0

10
+ A0e−10(B+K) + 2000(B + K)e2(B+K) + 2eK−B <

A0

2

by definition of A0 and our choice of B.

In addition, by (45) and (48), for every t1 ≤ t ≤ t1 + δt we have

Ω(−∞, t) ≤ A0eB+K + 2000(B + K)e2(B+K) + 2eK−B ≤ 2A0eB+K .

2. Suppose now that R(t1) < F (t1) or does not exist. This case is easier. We now have

1

δt

t1+δt
∫

t1

Ω(F1(t1), s) ds ≤
A0

10
e−(B+K),

and Ω(F1(t1), t1 + δt) ≤ A0/10 by the same argument as the bound for Ω(R(t1), t1 + δt)

in the first case. We also have

Ω(F1(t1), t) ≤ A0eB+K

for all t1 ≤ t ≤ t1 + δt. Thus the range z1 ≥ F1(t1) is controlled. The estimate for 

z1 ≤ F1(t1) proceeds similarly to the first case, but now we have a better bound

t1+δt
∫

t1

Ω(F1(t1), s) ds ≤ δt
A0

10
e−(B+K) ≤ 10(B + K).

Similarly to the first case, we can show that F1(t1 + δt) ≥ F1(t1) − 20(B + K). The rest 

of the argument is parallel to the first case and in fact yields better bounds. �
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Finally, we note that (37) and Lemma 3.5 can be used in a straightforward way to 

show existence of solutions to the hyperbolic 2D Euler equation with exponential growth 

of derivatives. In fact, such behavior is generic if ω0 is non-negative in D and does not 

identically vanish on the boundary. This observation completes the proof of Theorem 3.1.

4. Finite time blow up

We now come back to the full system (16), (14) and prove Theorem 1.2. For the sake 

of simplicity, we will assume that ω0 ≡ 0, while ρ0 ∈ Kn, n ≥ 1, ρ0 ≥ 0, and ρ0 does 

not identically vanish on ∂D. We will assume that the solution stays globally regular, 

and obtain a contradiction. The hyperbolic Boussinesq system in the integral form can 

be reduced to the single equation

Φ(z1, t) =
1

2

t
∫

0

∞
∫

z1

∫

R

f1 (z̃1, z2 − Φ(z̃1, s))
∫ s

0
e

1
2

Φ(z̃1,r) dr

cosh z2
dz2dz̃1ds, (49)

with f1(z1, z2) = e
z2−z1

2 ρ0(z1, z2).

Define

F2(t) = max{z1 |H(z1, t) = 0}.

Clearly, an analog of Lemma 3.3 holds for the full system by an argument completely 

parallel to the 2D hyperbolic Euler case. It follows that F2(t) is well-defined for all t larger 

than t0 which only depends on ρ0. Moreover, F2(t) is monotone decreasing, perhaps with 

jumps, and tends to −∞ as time advances. Let us define Z2 in the same fashion as Z1

in Lemma 3.4, but for f1 instead of ω0: Z2 is the maximal value such that for every 

z1 ≤ Z2, we have

∫

R

f1(z1, z2) dz2 ≥ c(ρ0) > 0. (50)

Let us choose t2 > 0 so that F2(t2) = min(−10, Z2) or t2 = 0 if F2(0) ≤ min(−10, Z2).

Lemma 4.1. For every t ≥ t2, for every z1 ∈ [F2(t), F2(t) + 1], for every s such that 

t2 ≤ s ≤ t, we have

Φ(z1, s) ≥
1

2
|F2(s)|.

Proof. Let s ≥ t2, and z1 ∈ [F2(s), F2(s) + 1]. Then due to the definition of F2, we have 

H(z1, s) ≥ 0. This implies that

Φ(z1, s) ≥ −z1 ≥ |F2(s)| − 1 ≥
|F2(s)|

2
.
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Now if z1 ∈ [F2(t), F2(t) +1], then Φ(z1, s) is even larger since F2 is monotone decreasing 

in time and Φ is monotone decreasing in z1. �

Proof of Theorem 1.2. Consider the identity H(F2(t), t) = 0, t ≥ t2. Since F2 is mono-

tone, it is differentiable for a.e. t. Thus for a.e. t we have

0 =
d

dt
H(F2(t), t) = ∂z1

H(F2(t), t)F ′
2(t) + ∂tH(F2(t), t). (51)

Observe that by Lemma 4.1, we have

∂tH(F2(t), t) =
1

2

∞
∫

F2(t)

∫

R

f1 (z1, z2 − Φ(z1, t))
∫ t

0
e

1
2

Φ(z1,s) ds

cosh z2
dz2dz1

≥
1

2

t
∫

t2

e
1
4

|F2(s)| ds

F2(t)+1
∫

F2(t)

∫

R

f1 (z1, z2 + z1 − H(z1, t))

cosh z2
dz2dz1.

Due to the definition of F2 and the bound ∂z1
H(z1, t) ≤ 1, we have that for z1 ∈

[F2(t), F2(t) + 1], the inequality 0 ≤ H(z1, t) ≤ 1 holds. Then, using (13) and (50), we 

can estimate

F2(t)+1
∫

F2(t)

∫

R

f1 (z1, z2 + z1 − H(z1, t))

cosh z2
dz2dz1

≥ C(ρ0)

F2(t)+1
∫

F2(t)

1

cosh H(z1, t)
dz1 ≥ C1(ρ0) > 0.

Therefore, we arrive at the bound

∂tH(F2(t), t) ≥ C

t
∫

t2

e
1
4

|F2(s)| ds, (52)

where the constant C depends only on ρ0. On the other hand, it follows from our usual 

estimate and the definition of F2 that 1 ≥ ∂z1
H(F2(t), t) ≥ 0. Combining this bound 

with (51) and (52), we obtain

F ′
2(t) ≤ −C

t
∫

t2

e
1
4

|F2(s)| ds,

for a.e. t. Applying this differential inequality, it is straightforward to show that F2(t)

tends to −∞ in finite time. Therefore, Φ(−∞, t) becomes infinite in finite time. Explicit 
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formulas for the solution show that this means finite time blow up; by Proposition 2.2, 

this also implies that

lim
t→T

t
∫

0

‖ω(·, t)‖L∞ dt = ∞

for the blow up time T < ∞. �
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