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In recent work of Luo and Hou [10], a new scenario for finite
time blow up in solutions of 3D Euler equation has been
proposed. The scenario involves a ring of hyperbolic points
of the flow located at the boundary of a cylinder. In this
paper, we propose a two dimensional model that we call
“hyperbolic Boussinesq system”. This model is designed to
provide insight into the hyperbolic point blow up scenario.
The model features an incompressible velocity vector field, a
simplified Biot—Savart law, and a simplified term modeling
buoyancy. We prove that finite time blow up happens for a
natural class of initial data.
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1. Introduction

The Euler equation of fluid mechanics has been derived in 1755 and appears to be the

second PDE ever written. The equation is nonlinear and nonlocal, which makes analysis

challenging. In particular, the question whether solutions corresponding to smooth initial

data remain globally regular remains open in three dimensions. There have been many
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attempts to resolve this problem either in the regularity direction, or by constructing
finite time blow up examples. We refer to [11,12] for history and more details.

Recently, a new scenario for finite time blow up in 3D Euler equation has been pro-
posed by Luo and Hou [10] based on extensive numerical simulations. The scenario is
axi-symmetric, and is set in a vertical cylinder » = 1 with no penetration boundary con-
ditions at the boundary and periodic boundary conditions in z. Angular components of
both vorticity, w?, and velocity u? obey odd symmetry with respect to z = 0 plane. The
resulting solution forms rolls which make all points satisfying » = 1 and z = 0 hyperbolic
points of the flow. It is at these points that very fast growth of vorticity w? is observed.

It is well known that the 2D Boussinesq system is essentially identical to the 3D
axi-symmetric Euler equation away from the axis » = 0 (see, e.g. [11]). Since in the
Hou—Luo scenario, the growth happens at the boundary and away from the axis, we will
operate with the 2D Boussinesq system directly. Recall that the 2D Boussinesq system
in vorticity form is given by

Do+ (- V) = Buvp, wlir,0) = wola), 1)
Orp+ (u ’ V)p =0, p(iE,O) = po(.’l?), (2)
u=V*+(-A)"w. (3)

We will consider this system in the half-space x5 > 0, and in (3) take Laplacian satisfying
Dirichlet boundary conditions on the boundary x5 = 0. Such choice corresponds to no
penetration boundary condition for u. The initial condition wp(x) is odd in 21 and po(z) is
even in x1; this symmetry is conserved by evolution. This set up corresponds to Hou-Luo
scenario turned by 7/2: 1 corresponds to z and z2 to r, and for the right initial data
we expect very fast growth of w at the origin. We note that, naturally, the problem of
global regularity vs finite time blow up for the system (1), (2), (3) is also open and well
known. It appears, for example, as one of the “eleven great problems of mathematical
hydrodynamics” in [15].

There have been several works which aimed to understand Hou-Luo scenario rig-
orously. Kiselev and Sverak [9] have looked at a geometry and initial data similar to
Hou-Luo scenario but in the 2D Euler case, which is equivalent to setting p = 0 in the
2D Boussinesq system. They constructed examples of solutions in the unit disk D for
which ||Vw||r= exhibits double exponential growth for all times. This is known to be the
fastest possible growth rate, as double exponential in time upper bounds on ||Vw||r
go back to work of Wolibner [14]. A key part of the construction in [9] is the following
representation formula for the fluid velocity near origin, x; 2 > 0:

4
wie,t) = (-1 ~a; / %w(%t)dy—i—Bi(m)mi, i=1,2, |Bi(2)] < Clwlze, (4)
Q(z)

where Q(z) is the “look back” set Q(z) ={y € D : y1 > 21, y2 > x2}. There are also
certain small exceptional sectors where (4) is not valid, buy we omit these details. The
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first term on the right hand side in (4) is, in certain regimes, the main term. It possesses
useful features: it is sign definite if w has fixed sign, and there is a hidden comparison-like
principle based on the increase of @ as x moves closer to the origin. These properties
play an important role in the proof of lower double exponential in time bound on the
gradient of vorticity.

Other works focused on 1D models of the Hou-Luo scenario. Hou and Luo [10] pro-
posed a model which has one-dimensional structure similar to (1), (2), but with the
effective Biot—Savart law given by u, = Hw, where H is the Hilbert transform. This
model can be viewed as 2D Boussinesq system restricted to the boundary x5 = 0, with
the Biot—Savart law obtained under assumption that vorticity is concentrated in a bound-
ary layer and does not depend on x5 in this boundary layer. A simpler 1D model with
Biot—Savart law inspired by (4) has been considered in [4], where it was also proved
that finite time blow up can happen for this model. In [8], more information on the
structure of blow up solutions has been obtained. Existence of finite time blow up in the
original Hou-Luo model has been proved in [3], and a more general argument applying
to a broader class of models was presented in [5]. Some infinite energy solutions of 2D
Boussinesq system with simple structure and growing derivatives, inspired by Hou-Luo
scenario, have been presented in [2].

Passing from the nonlinear analysis of 2D Euler equation [9] or 1D models [4,3] to
the 2D Boussinesq case presents many challenges. First, one needs to understand how
growth of vorticity happens in 2D geometry, and to develop a framework for controlling
it. Secondly, as opposed to the 2D Euler case, the vorticity no longer has fixed sign
(in 1 > 0 region), since the forcing term 9,,p will generate vorticity of the opposite
sign. This may deplete flow towards the origin which increases d,, p and drives vorticity
growth. Thirdly, analysis of Biot—Savart law that leads to (4) fails if vorticity can grow:
the terms that go into the Lipschitz error in (4) can no longer be controlled the same
way. Each of these complications is significant.

Our goal in this work is to address the first issue, and to develop a fully two dimen-
sional, incompressible model which exhibits finite time blow up. In this process, we will
be able to get some idea of the picture of blow up as well as introduce some relevant
objects. The model will have simplified Biot—Savart law and also simplified forcing term.
Similarly to (1), (2), (3) it can also be set on half space, but due to symmetry it suffices
to consider the first quadrant D := {z |z; > 0, x2 > 0}. The model is given by

O + (u- V)w = l%, w(x,0) = wo(), (5)
op+(u-V)p=0, p(z,0) Zpo(l‘), (6)
u= (om0 0000, )= [ Coed. n=ne @)

Yy1y22>1

Comparing this system with the 2D Boussinesq, note that we replaced 0, p with m—pl.
Given that we expect blow up to happen at the origin, and that p will initially be
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supported away from the origin, the second term is a natural model for the first one,

and has been proposed in [7]. The term ﬁ is also simpler, as it is sign definite if p has

fixed sign. Next, the form of the Biot—Savart law
u = (—z1Qx122,1), 222122, 1)) (8)

is patterned after the expression (4). If one also requires u to be incompressible, then a
simple computation shows that {2 can only depend on x;x5. Since every trajectory corre-
sponding to (7) is a hyperbola, we see that Q(z1x2,t) is constant along each trajectory,
at any given time. The form of the integral in (7) defining €2 is the simplest possible
with the same dimensional structure as the real Biot—Savart law. For a more complete
resemblance with (4), we could have taken the kernel in the integral defining 2 in (7) to
be 1";3“’42, but we will indicate below that this change makes no difference in terms of the
key properties of the model. We will call the system (5), (6), (7) “hyperbolic Boussinesq
system”, since this model is geared towards the hyperbolic point growth scenario, and

the trajectories of the system are precise hyperbolas.

Our main goal in this paper is to prove local well-posedness as well as finite time blow
up for hyperbolic Boussinesq system. We will say that f € K, if f has compact support
in D, f € C™"(D), and

0= min x> 0. 9
! zesupp(f) ! ©)

We set

1z, == I flenpy + [supp(f)] + 67

Theorem 1.1. Suppose wo, po € Ky, n > 1. Then there exists T = T(||woll k.., lpollx,)
such that there exists a unique solution w(x,t), p(x,t) of the hyperbolic Boussinesq sys-
tem (5), (6), (7) which belongs to C([0,T), K,).

Theorem 1.2. There exist smooth initial data wg, pg which are in K, for all n such that
the corresponding solution w(z,t), p(x,t) blows up in finite time. Specifically, finite time
blow up holds in the sense that ®(0,t) = 2f; 0(0, s) ds as well as fot llw(:, 8)|| Lo ds tend
to infinity as t approaches the blow up time Ty.

We note that in a recent independent work [6], a 2D model of Boussinesq system
with a different Biot—Savart law has been considered, and finite time blow up has been
proved by a very different method involving lower and upper bounds on the solution.
The Biot—Savart law of [6] is also given by (8). The difference is in the factor € which
is similar to the integral appearing in the main term of (4) with integration restricted
to a certain sector for technical reasons. However, such Biot—Savart law does not lead to
incompressible flow.
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Also, in a recent preprint [13], several new models are proposed for the 3D Euler
equation, and finite time blow up is proved for these models. The focus of [13] is on models
that share as many conservation law properties with 3D Euler equation as possible.
The modified Biot—Savart laws of [13] involve replacement of inverse Laplacian with a
multi-scale operator. Our goal here, on the other hand, is to study the specific blow up
scenario and to study models designed to develop intuition as well as framework for its
further analysis.

The paper is organized as follows. In Section 2 we introduce some useful explicit
formulas for the solution as well as sketch a proof of local well-posedness. In Section 3 we
take a detour and consider the hyperbolic analog of the 2D Euler equation, by setting p =
0 in the hyperbolic Boussinesq system. We discover that, in some sense, the 2D hyperbolic
Euler is “less singular” than the true 2D Euler, as its solution satisfies just single in time
exponential upper bound on the derivatives of vorticity (which is qualitatively sharp).
We note that the factor Q(z1x9,t) certainly does not satisfy the bound

1920, D)L < Cllw(,t)llze=,

from which the exponential bound on derivatives would easily follow. Instead, the only
bound available is similar to the 2D Euler case and involves a logarithm of higher order
norm such as [|[Vw|| e or |w||¢a. In the 2D Euler case, this leads to double exponential
growth examples, but the 2D hyperbolic Euler provides an interesting example where
such fast growth does not happen due dynamical depletion of nonlinearity. Finally, in
Section 4 we provide a proof of finite time blow up in solutions of the hyperbolic Boussi-
nesq system.

2. Preliminaries

Our first goal is to establish local well-posedness of the hyperbolic Boussinesq system.

It will be convenient for us to make a change of coordinates z; = log(z1z2), 22 =
z1—22 z1+=22

log(xza/x1); s0 x1 = e 2z, x3 =e 2z . We denote p(z,t) = p(z(z),t) and @(z,t) =
w(x(2),t). We also define

a1, 1) = e 1) = | / iz / IGLIFR (10)

the last equality can be verified by a straightforward computation making a coordinate
change in the integral for © in (7). The equations for @, p then read

2221

O+ 20,0 =e" 2 p, @(2,0) =ado(z), (11)
Oup+200.,p =0, p(2,0) = po(2). (12)
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Fig. 1. The initial data.

In the x coordinates, we think of the initial data wg, pg as smooth, non-negative, with
support contained in some rectangle 0 < § < z7 < C, 0 < 29 < C. We will see that for
the finite time blow up argument, only pg is important; we can set wy = 0. For the finite
time blow up argument, we will also need to assume that pg is not identically zero on
the x1 axis. In the z coordinates, this corresponds to @, po supported in the half-strip

—K <2logd <z —20<2logC <K, —00<2z1+2<2logC<K, (13)

where K is some fixed constant that only depends on wy. Moreover, for all z; small
enough, we have fR po(z1,22) dze > ¢ > 0; this follows from continuity of py and the fact
that it does not vanish on the z; axis. The structure of the initial data in both systems
of coordinates is illustrated on Fig. 1

For much of the rest of this paper, we will work in the z coordinate representation
of the hyperbolic Boussinesq system. Therefore, for the sake of simplicity, we will abuse
the notation and omit ~ over w, p and 2. It will be clear from the context whether we
are thinking of these functions in the z or in the original x coordinates. We can use
the method of characteristics to rewrite the system (11), (12), (10) in an equivalent
integral form. Notice that conveniently, in the z coordinates, the first component of the
characteristic does not change. Thus all characteristics are straight lines parallel to 2o
axis, and the speed of motion along these lines is modulated by the nonlocal function €.
Let us introduce a short cut notation

t t oo
1 B Z1, 29,
®(21,1) :2/9(21, 5//dz1/ Colsh’; )dZst. (14)
0 0 zZ1
We obtain
p(2,t) = po (21,22 — ®(21,1)) (15)

and
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t
W(Z,t):o.}o (21,22_ Zl, +/f 21722_ Zlvt)+q)(zlvs)) dS,
0

where f(z,5) = ez - p(z,s). Using (15), we can rewrite the solution as

t

w(z,t) = wo (21, 20 — ®(21,1)) + f1 (21, 22 — B(21,1)) / e2®(z19) gg. (16)
0

with fi(z1,22) = e 2z "po(z1, 22). Note that since pg(z) is supported on the finite strip
2logd < z1 — 29 < 2log C, we have that f1(z1, 22) is a bounded function with the same
regularity as pg.

Let us also provide integral formulas for the solution in the x coordinate represen-
tation. These can be obtained directly by solving (5), (6), or by making a change of
coordinates in (15), (16):

p(a,1) = po (116300 pe=190) 2y = log(aa); (17)

w(:r,t) = Wo (x162<1>(z1,t) Toe€ z‘b(227t))

t

2, (xle%q><21,t) R LI )) /efé(CP(th)f(b(zl,s))dS; (1)

0
t
w(y, s)
dZydzZ1ds = dyds. 19
N R T R
0 log(z1z2) R 0 y1y2>w122

We now begin to discuss the local well-posedness of the hyperbolic Boussinesq. As the
first step, let us obtain some a-priori estimates.

Lemma 2.1. Suppose that wo, po € Kpn, n > 1, and that w(z,t) and ®(x,t) satisfy (18),
(19) for allz € D, 0 <t <T. Assume that

sup  |®(log(x122),t)| < B < o0. (20)
zeD, 0<t<T

Then w(x,t), p(z,t) € C([0,T], Ky).

Proof. Let 0(t) = min(dy..+),0p(.,)), where d¢ is defined in (9). From (18), (17) and (20)
it follows that

e, )z < llwollzee +8(0) ™ e*F T o[,
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for every 0 < ¢t < T. Moreover, 6(t) > 6(0)e~B/2. Tt remains to estimate the derivatives
of the solution. Let us consider the first order derivatives of w(z,t), p(x,t) in (17), (18).
Let us use the representation

t ¢
®(log(z122),t 2/(2 T1%2,8) ds = 2/ w(y,Qs) dyds (21)
0 0

Y1Y2>T1T2

from (19). Then the only expression which appears that is not already clearly controlled
is 0,€(n, t), where we are using the = coordinate representation

Q(n,t) = / w(y, s) dy.

|y?

Y1y22>1n

But we can estimate

) 17 t
0pQ(n,t) = lim — / dy1 / dyz / it LZ“)Q
h—0 h Y1 n
(1) (1) yi + (y—l)

C||w('at)||L°°6(t)_

IA

Here, C' is a large constant so that the support of w(-, ) lies in {z; < C}. We will recycle
the constant C throughout the paper.

Higher order derivatives can be estimated inductively up to the level of regularity for
the initial data — second order derivative for w will involve terms that are clearly bounded
plus second order derivatives of €(n,t) which can be controlled by using bounds on the
first order derivatives of w(z,t) and so on. Continuity of the derivatives of w and p in
time follows from continuity in time for w(z,t) and p(x,t) as is clear from (17), (18) and
an inductive argument. 0O

Due to Lemma 2.1, to prove Theorem 1.1 it suffices to construct a solution with a
bounded ® and w (and then to address uniqueness). For this purpose, it will be more
convenient for us to work in the z coordinates. The key equations are clearly the vorticity
equation (16) and the phase equation (14); the equation for density effectively decouples
and can be easily solved once we have solved the other two.

Now we prove the existence and uniqueness of solutions to (16), (19).

Proof of Theorem 1.1. 1. Uniform bound on the iterates. Set wo(z,t) = wo(z), Po(21,t) =
0. Iteratively, define

t
wn(z,t) = wolz1, 22 — Pp_1(21,t)) + f1(21, 22 — Pr—1(21,1)) /e‘b”*l(zl’s) ds; (22)
0
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1 )
=- [dz dZo; 23
n(z,t 4/ / coshzz 23 (23)
t
D, (21,t) = Q/Qn(zl,s) ds. (24)
0
Let us set
1
T,(t) = sup |Qn(z1,t)] = 5 sup |0t P (21, 1)];
z1,m<n z1,m<n
M, (t) = sup lwm (2, )], Ln(t) = sup< | D (21, 1)]-
z, m<n Z1, mMsn

Observe that

\ A

2 /t (s (25)

0
T(t) < C(1+ Lo_1(t)) Ma(t). (26)

Indeed, due to our assumptions on the initial data (13) and the structure of the solution
(16), we have

Supp wp (21, 22,t) C {22 <21 +C+ L,—1(t)},

with C' = —2log §(0) according to (13) and so depending only on the initial data. In
general, throughout the paper C will denote constants that may change line to line but
can only depend on the initial data; sometimes we will make this dependence explicit.
It follows that for every z1,

Z21+C+Ly1(t)
Mn (t)de

cosh 2y S CMp(t)(1+ Ln-a (1)), (27)

(21, 8)] < C / 3,

Z1>21 —0o0

with constant C' independent of n. Since by definition L,_1(t) < L,(t), the estimates
(25), (26), (27) and Gronwall lemma together imply that

L (t) < eCJo Ma(9)ds _q, (28)

Then (16) leads to

t
Myt <c |14 / IS M g | AL (0) = ol e (29)
0
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Therefore, M, (t) < M,(t), where M, (t) satisfies equality instead of an inequality in
(29). Clearly there exists T' > 0 such that M, < C < oo for every ¢ € [0,T]. Then (25),
(26) imply that L, (t) is bounded on [0,T] as well, with T" as well as the upper bound C
independent of n.

2. Convergence. We now show that on time interval [0, T], the approximations w,,, @,
converge uniformly over the compact sets in R? to bounded functions w, ® which solve
(16), (14).

Let us denote

Gn(z1,t) = sup lwm (21, 22,t) — wWim—1(%1, 22, )|
zo, 21221, m<n

Observe that

t

C
/ds/dél / (A)n(21722a3) - (Un—l(ZhZQ, S) dZ2
cosh z9

0 z1

[P, (21,t) — Pr—1(21,1)]

IN

\ /\

t
‘Zl| +1 /Gn Z21,8)ds; (30)
0

the constants C' here depend only on the initial data. On the other hand, for ¢ € [0,T]
we have

lwn (21, 22,t) — wn—1(21,22,t)| < ([Vwolle + C|V fillpe) |Pr-1(21,t) — Pr—2(21,1)]

+ C’/ |D—1(21,8) — ®Pp—_a(z1, 5)| ds. (31)

Here C needs to be chosen large enough so that
(11l Lo + IV full poe )ellBmCbllze < ¢

form=mn—1,n—2and t € [0,T]. By combining the bounds (30), (31), we find

t

Gn(Zl,t) S C(1+ |21D/Gn_1(zl,8)d8
0

with a constant C that depends only on the initial data and 7. Iterating, we obtain

C™ (L4 |z ])mt"
n! '

Gn(zla t) S

This makes w,, Cauchy on all plane for every t € [0, T]; convergence is uniform on any set
z1 > A, 0 <t <T. Such convergence as well as uniform L* bound on w,, also implies
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the same type of convergence ®,(z1,t) — ®(z1,t). Moreover, it is straightforward to
check that w, @ satisfy (16), (14).

3. Uniqueness. The uniqueness of a bounded solution w, ® on [0,7] follows very
similarly to the convergence part by looking at the difference of two solutions and using
the upper bound on solutions as well as the resulting differential inequality. We omit the
details.

By Lemma 2.1, the proof of Theorem 1.1 is now complete. O

Finally, let us state one more regularity criterion that is claimed in Theorem 1.2. This
result is the direct analog of the well known Beale-Kato—Majda criterion for the 3D

Euler equation [1].

Proposition 2.2. Let w(z,t), p(x,t) be C([0,T)], K,) solution of the system (5), (6), (7).
If T is the largest time of existence of such solution, then we must have

t
ling [ el 1)] = dt = o0
0

Proof. Define
L(t) = sillp |D(21,1)].
An argument parallel to one leading to (28) then gives global in time bound
L(t) < Ce€ Jo llwCs)lizoe ds (32)

where the constant C' only depends on the initial data. Now global regularity follows
from Lemma 2.1. 0O

The last issue we would like to discuss in this section is to come back to the different
choice of the kernel in the definition of  in (7). In the introduction, we mentioned that
taking this kernel to be y1y»/|y|*, which follows (4) more closely, does not result in an
essential change of the analysis of the system. Indeed, the analog of z representation of
Q in (10) becomes

Z,t)
(a1, t /d / COShZQ) Az,

and analysis in this section as well as below can proceed along the same path and with
identical conclusion.



A. Kiselev, C. Tan / Advances in Mathematics 325 (2018) 34—55 45

3. The analog of the 2D Euler equation

The goal of this section is to provide more intuition on properties of the “hyperbolic”
Biot—Savart law (7). For this purpose, we will consider “hyperbolic” 2D Euler equation,
which is obtained by taking p =0 in (5):

Ow~+ (u-Vw=0, w(z,0)=wy(z), (33)

1
u=(—21Qx122,t), 22Q(x122, 1)), Q(122,1) = / Wu(y,t) dy. (34)

Y1Y2>T1T2

We will see that, similarly to the 2D Euler equation, its hyperbolic analog is globally
regular. However, there is one interesting difference — the hyperbolic version of 2D Euler
is in some sense more regular than the real 2D Euler equation. Namely, the rate of
growth of the derivatives of solutions of the hyperbolic 2D Euler equation can only be
exponential in time. For the sake of simplicity, we will restrict ourselves to the initial
data that is positive on D — note that the double exponential growth examples of [9]
involve exactly this class of the initial data.

Theorem 3.1. Suppose wy € K, n > 1. Then the system (33), (34) set in D has a unique
global solution w(zx,t) € K,,. Moreover, assume wg > 0 in D. Then

lw(-, D)k, < Ce, (35)

where the constant C' only depends on the initial data.
Moreover, there exist initial data w € K, n > 1, for which the exponential in time

growth of derivatives (including the first order ones) of the corresponding solution is
realized.

Global regularity of the solution follows immediately from Proposition 2.2, once we
observe that [|w(-,t)||L~ = ||wo|/L~ while the solution is still regular. Moreover, from
the explicit formula for solution (18), it follows that higher order derivatives of w(z,t)
satisfy double exponential upper bound in time:

Lemma 3.2. Suppose wy € K,,, n > 1, and w(z,t) is the corresponding global solution of
(33), (34) @n D. Then the higher order derivatives of w(x,t) satisfy

| D'w(z, t)|| o < CeCP0B@IT)0) < e (36)
or ever < [ < n, where the constant epends only on wy and [.
f y 1<l , wh h C depend ly dl
Proof. Recall our definition 0y = min,esupp(r) 21, and let us use a short cut §(t) = dy(. 1)

Without loss of generality, to simplify the computations, we will assume 6(0) < 1. When
p =0, (18) transforms into
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w(a, t) = wo (xle%@(log(mxg),t)7me—%@(log(xm),t)) .
Therefore,
§5(t) < 6(0)e 220, (37)
On the other hand, (32) and conservation of the L> norm of vorticity imply that
®(—o00,t) < CeCt. (38)

The bounds on the derivatives of w(z, t) now follow by direct differentiation and estimates
similar to the ones described in the proof of Lemma 2.1. O

Lemma 3.2 is in close parallel to the corresponding result for the classical 2D Euler
equation. Our next goal is to prove a sharper upper bound which is just exponential in
time (it will not be hard to see that it is in fact optimal).

Consider first the degenerate case where wy = 0 on the boundary of the quadrant 0D.
It will be easier for us to work in the z coordinate representation.

Recall the representation (21), and note that since w(x,t) > 0 in D, we have Q(0,t) =
max;>o (1, t). Since D is closed and wy € C'(D), we have wy(z1,72) < C'min(1, zs).
Therefore

Q(0,1) = /wo(

q}.le%{)(log(mlzﬁ,t)7 Toe~ %{)(log(zlzg),t))

dm</Cm1n(17x2) A

&3 + a3 x3 + a3

1 C oo C
T2 1
cld dey +C [ doy | —— dzy < C,
/“/x%x% nt /”/m%x% e
0 0 1 0

where the constant depends only on the initial data. By the first inequality in (36) and
by (21), the bound (35) follows.
Let us now consider the case where wo(x) does not identically vanish on 9D. As is clear

)

IN

from the preceding paragraph, to prove Theorem 3.1, it suffices to show global uniform
bound Q(0,t) < A < oo for all t. This is exactly what we will do. Note that this bound
does not follow from the global L control of w(x,t); it is easy to see that the integral
defining Q(0, t) diverges as a logarithm when the support of w(x, t) approaches the origin.
The uniform bound on (0,¢) will be a consequence of the dynamical properties of the
model. The proof is not straightforward, and some of the auxiliary results that we develop
here will also be useful for the proof of finite time blow up in the next section. It will be
convenient for us to work in the z coordinates. Note that when p = 0, (16) transforms
into

w(z,t) = wg (21,22 — P(21,1)) . (39)
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Without loss of generality, we will assume in this section that ||wg|/r = 1. The general
case can be reduced to it by a simple change of time variable.
Let us define

Z =sup{z | Jz2: (21, 22) € suppwp }.

Lemma 3.3. Suppose that 0 < wg € K,,, n > 1. Then for every z1 < Z, we have

D(z1,t) 2% 5o

Proof. Suppose not: there exists z; < Z such that ®(z;,t) < A < oo for every t. Then
the same is true for every z; satisfying z; < z; < Z, since ®(z1,¢t fo (21,8)ds, and
Q(z1, s) is monotone decaying in z; due to positivity of w. But then for every such z;
and for all ¢ we have

/W(21,227t) dzy = / wo(z1 — ®(21,1), 22) dzs > Clwg)e~214 > 0.

cosh z9 cosh z9
R R

This implies that Q(z;,t) > C(wo)fj e~ 1211744z > 0 for every t. But this bound
contradicts our assumption on ®(zy,t). O

Lemma 3.4. Suppose that wg € K,,, n > 1, wg > 0 and wy does not identically vanish on
0D. Then there exists Z1 such that for every z1 < Zy, we have

/w0(21,22) dzg > c(wp) > 0.
R

Proof. Direct calculation shows that

o0
d
/wo(21,22)d22 ZQ/WO <1‘1, < > xl,
I T
R 0

where we switched to wy in the x coordinates in the second integral. The integral on
the right hand side is bounded from below uniformly by a positive constant for all z;
sufficiently small, due to the assumption that wg € C' and does not identically vanish
on 0D. O

Let us denote H(z1,t) = 21 + ®(21,¢). Due to (13) and (39), we see that
supp w(z,t) C {(z1,22) : H(z1,t) — K < 20 < H(21,t) + K},

so that H describes how close, for a fixed z; and ¢, is the support of the solution from
the maximum of the weight 1/ cosh zs.
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Define the forward front, Fi(t), by
Fi(t) =min{z | H(z1,t) = —B}, (40)

where B > 1 is a sufficiently large constant that will be chosen below. Note that due
to our assumption on the initial data (13), and (38), we have that H(z1,t) = —o0 as
z1 — —oo for all t. Then due to Lemma 3.3, Fy(¢) is well defined for all times ¢t > tg.
Without loss of generality, we can choose tg large enough so that H(Z;,t) > 0 (and so in
particular Fy(t) < Zp) for all t > tg. The time to depends only on wp, and will be fixed
throughout the argument of this section.

Lemma 3.5. For every z1 < Zy such that H(z1,t) < —B, for every t > to, we have
Q(z1,t) >~ > 0, where the constant v only depends on wy.

Proof. Observe that

t
8Z1H(zl,t):1+2/8zlﬂ(zl,s)ds§1, (41)
0
since 0,,Q(z1,t) < 0 for all z; and t. Let us denote S the set of all Z; € 21, Z1] such that
|H(%1,t)| < 1. Due to H(z1,t) < =B < —1, H(Zy,t) > 0, and (41), it is straightforward
to see that |S| > 1. Then, by (39),

1 5 5 H(3 ¢
Q(zlvt) > Z/dgl/dzsz(ZhZz +21 (Zla )) >
S R

1
cosh z9 4

where ¢(wp) is the constant from Lemma 3.4, and K is the constant from (13). Note that
v is independent of B. 0O

The next proposition describes the structure of H(z1,t) for z; < Fy(¢).
Proposition 3.6. For every z; < Fy(t), we have 0, H(z1,t) > 1 — (v +tg)eX=B. In
particular, if we choose B large enough so that B> K, B> 1, and e = (7~ +t9)ef B <
1, then
1>0,,H(z,t)>1—€>0 (42)

for allt > tg, z1 < Fi(t).

Proof. Observe that
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so we need to estimate the integral on the right hand side. Since z; < F(t), we have
H(z,s) < —B for all ¢y < s < t. Therefore, by Lemma 3.5, we have Q(z1,s) > ~ for
every tg < s < t. It follows that H(z1,s) < —B —2y(t — s) for all ¢ < s < t. Using (13)
and ||wo||L~ = 1, we can estimate

t

/ds/dzgw0(21’22+zl_H(zl’s))

cosh z9
0 R
to t
< /ds/d22w0(21’22+21 — H(z1,5)) +/ds/d22“°(zl’22 - Hiz, o))
cosh 29 cosh 2o
0 R to R

t K—B—2vy(t—s)
< 2o B 4 /ds / 2e* dzg < (2t + yfl)erB. O

to —00

For the rest of this section, we will choose B so that e = (v~ + 2t9)eX~5 < 0.1.

Observe that by Proposition 3.6, with our choice of B, the function H(z1,t) is strictly
increasing in z; in the z; < Fy(t) region.

Note also that Proposition 3.6 implies that Fi (t) is continuous in time. Indeed, a jump
in Fy(t) would only be possible if D(z1,t) were not strictly monotone for z; < F(t).

In fact, the proof of Proposition 3.6 yields the following stronger statement.

Corollary 3.7. Suppose that H(z1,t) < —B for somet > tg. Then 0,, H(z1,t) > 1—€. As
a consequence, the function H(z1,t) is one-to-one in pre-image of (—oo, —B], and this
pre-image equals (—oo, F1(t)]. In particular, H(z1,t) > —B for every z; > Fi(t).

Proof. The proof of the bound on 9., H(z1,t) is identical to that in the proof of Propo-
sition 3.6. The rest of Corollary 3.7 follows immediately. 0O

One further consequence of Proposition 3.6 is that to control Q(—oo,t), it suffices to
estimate Q(Fy(t),t).

Corollary 3.8. For every t > tg, we have

Q(—o0,t) < QFL(t),t) + . LIS}
— €

Proof. By Proposition 3.6, we have

Fl(t)

Q(—o00,t) — Q(F1(t),t) = i / le/dZQ
—o0 R

wo(z1, 22 + 21 — H(z1,5))
cosh zo
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F1(t K—B—|z1—-F1(t)|(1—¢)
< - / dz / €*2 dzy
1 no 1
< _oK-B —(1—¢€)|z1—F1(t)] dzy < K—B.
_46 /e z1_—4(17€)e O
—00

Now we are ready to state a key proposition from which Theorem 3.1 will follow.

Proposition 3.9. Set Ay = 10000(B + K)2e2(B+K). Let t; be any time such that
Q(F1(t1),t1) = Ao. Then there exists 6t = §t(B, K) < 1 such that Q(F;(t1+0t),t;+0t) <
Ao/2, and Q(—o0,t) < 240eBHE for all t; <t <t + ot.

From Proposition 3.9 it follows, of course, that Q(—o0,t) is globally bounded, thus
proving the first part of Theorem 3.1.

Proof. Set 0t = 100(B + K)eBTK Aj!. Define R(t;) by the condition

1 t1+0t 1
5 / Q(R(tl),s)ds:EAoe_(BJrK).
t1

Note that if R(¢1) exists, then it is unique due to monotonicity of the left hand side in
the first argument of Q (the only possible exception is if wy vanishes for a range of z;
and R(t1) fits exactly there; this exception is trivial as this range of z; can be simply
collapsed into a single point without affecting anything). Let us consider two cases.

1. Suppose that R(t1) exists and R(t1) > F(t1). In this case, we claim that

Q(R(t1),t1 + 0t) < ‘f—g (43)

Indeed, by mean value theorem, we can find t5 € [t1,¢; + dt] such that

1
QR(t1), t) = 75 Aoe™ 1. (44)
Note that for every z; > R(t;) > F(t1), by Corollary 3.7 we have H(z1,t) > —B for
t > t1. The contribution of such z; to the integral providing the value of Q(R(t1),t2) is
equal to

/wo(z1,22 + 21 — H(z1,t2)) ds
cosh z, z

R

Due to (13) and the inequality H(z1,t2) > — B, this integral can increase by a factor of

B+K

at most e over the remaining times:
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/wO(Zl,ZQ +21 7H(Zl,8)) d22 < eB+K/ wO(Zl,ZQ +Zl — H(Zl,tQ))

sup
cosh 2o cosh z9

s>ta

dZQ .
R

This and (44) imply (43).
Observe that an identical argument shows that

Q(Fy(t1),t) < AgePTH (45)

for all t > tq, something that we will need later.
Let us now show that by time ¢, + d¢, the points z; satisfying F(t1) < z1 < R(t1) do
not contribute much to 2. By definition of R(t1), we have

t1+6t
Q(R(t1),s)ds =10(B + K).

ty

On the other hand, H(z1,t1) > —B. Then
H(z,t1+0t) > —B+20(B + K).

Therefore,

dZQ .

/ wO(Zl,ZQ + zZ1 — H(thl + 5t)) dZQ < eilo(BJrK) / wO(Zl,ZQ + zZ1 — H(Zl,tl))

cosh z9 cosh z9
R R

Hence,
Q(Fy(t1),t1 + 6t) — QR(t1), t1 + 0t) < e OEHIQF (1)), 1) = e 10BTE) 45 (46)
It remains to consider the contribution of z; < F(t;). Notice that due to (45), we
have

t1+0t
/ QF)(11), 5) ds < 6tAgeP+E < 100(B + K)e2 B+, (47)

t1

Set Y = Fy(t1) — 1000(B + K)e*(B+K)  We claim that Y < Fy(t; + dt), that is, for every
z1 <Y we have H(z1,t; + 6t) < —B. To show this, note first that by Proposition 3.6,
H(z1,t1) < —B— (1 —¢€)(F1(t) — z1). Next, using (47) and ||w(-,t)||p~ = 1, we estimate

t1+6t t1 46t t1+6t Fi(t1) ( )
w(z,s
Q ds < Q(F (¢ d dz 7 dzed
/ (z1,8)ds < / (F1(t1),s)ds + / / Zl/coshzg 20ds
t1 t1 31 21

< 100(B + K)e2 B+ L o(Fy (1) — 21)6t
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1
< 100(B + K)e?(B+E) 4 %e_B_K(F(tl) —z).

To ensure that H(z1,t; + §t) < —B holds for z; <Y, it suffices to verify that

ie—B—K(F(tl) -Y).

(1= O)(F1(t) = Y) = 200(B + K)e P 4

This clearly holds true by our choice of B in Proposition 3.6. Now since F(t; +dt) > Y,
the contribution of all z; < Fy(t1) to Q(—o0,t) for times t; <t < t; 4 4t cannot exceed

Q(—o00,t) — Q(Fy(t1),t) < 2000(B + K)e2BHE) 4 %eK‘B (48)
— €

by direct estimate and Corollary 3.8.
Combining estimates (43), (46) and (48) together, we find that

Q(F1(t1 4 0t),t1 + dt) < Q(—o00,t1 + dt)

IN

2 4 Age 1OBHE) 4 9000(B + K)e2(BHE) 4 9eK-B < %

by definition of Ay and our choice of B.
In addition, by (45) and (48), for every t; <t < t; + dt we have

Q(—00,t) < AgePTE 1-2000(B + K)eXBHE) 1 2eK=8 < 94,eBHK,

2. Suppose now that R(t;) < F(t1) or does not exist. This case is easier. We now have

t140t

1 Ay
- Q(F, < 20 ,—(B+K)
5t / (Fi(t1),s)ds < 7ge ’

t1

and Q(Fy(t1),t1 +0t) < Ap/10 by the same argument as the bound for Q(R(t1),t1 + 6t)
in the first case. We also have

Q(Fl (tl), t) S AQ@B+K

for all t; < t < t; + dt. Thus the range z; > Fj(t1) is controlled. The estimate for
z1 < Fi(t1) proceeds similarly to the first case, but now we have a better bound

t1+5t
Q(Fy(t1),s)ds < 5tf—8e—<B+K> < 10(B + K).

t1

Similarly to the first case, we can show that F(t; + 6t) > Fi(t1) — 20(B 4+ K). The rest
of the argument is parallel to the first case and in fact yields better bounds. O
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Finally, we note that (37) and Lemma 3.5 can be used in a straightforward way to
show existence of solutions to the hyperbolic 2D Euler equation with exponential growth
of derivatives. In fact, such behavior is generic if wy is non-negative in D and does not
identically vanish on the boundary. This observation completes the proof of Theorem 3.1.

4. Finite time blow up

We now come back to the full system (16), (14) and prove Theorem 1.2. For the sake
of simplicity, we will assume that wg = 0, while pg € K,, n > 1, pg > 0, and pg does
not identically vanish on dD. We will assume that the solution stays globally regular,
and obtain a contradiction. The hyperbolic Boussinesq system in the integral form can
be reduced to the single equation

t oo

1 s — B(51,5)) [ P g
(21, t) = —///fl Gz = 2(1.9) Jy e L dzndzyds, (49)
z1 R

2 cosh zo
0

with f1(z1,22) = el po(z1, 22).

Define
F5(t) = max{z |H(z1,t) =0}.

Clearly, an analog of Lemma 3.3 holds for the full system by an argument completely
parallel to the 2D hyperbolic Euler case. It follows that F5(t) is well-defined for all ¢ larger
than ¢y which only depends on py. Moreover, F5(t) is monotone decreasing, perhaps with
jumps, and tends to —oo as time advances. Let us define Z5 in the same fashion as 7
in Lemma 3.4, but for f; instead of wg: Zs is the maximal value such that for every
z1 < Zs, we have

/f1(21722) dze > c(po) > 0. (50)
R

Let us choose t3 > 0 so that F»(t2) = min(—10, Z3) or t2 = 0 if F5(0) < min(—10, Z3).

Lemma 4.1. For every t > to, for every z1 € [Fa(t), Fa(t) + 1], for every s such that
to < s <t, we have

B(1,5) 2 5lFals)]

Proof. Let s > g, and 21 € [Fa(s), F2(s) + 1]. Then due to the definition of F,, we have
H(z,s) > 0. This implies that

Fa(s)|

D(z1,8) > —2z1 > |Fa(s)| — 1> 5
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Now if z1 € [Fa(t), Fo(t) +1], then ®(z1, s) is even larger since F; is monotone decreasing
in time and ® is monotone decreasing in z;. O

Proof of Theorem 1.2. Consider the identity H(F5(t),t) = 0, t > to. Since Fy is mono-
tone, it is differentiable for a.e. t. Thus for a.e. ¢ we have

0= %H(PB( t),t) = 0., H(Fa(t),t)F5(t) + O, H(Fy(t), t). (51)

Observe that by Lemma 4.1, we have

_ e3®(21,8) g
O H (F(t), 1) = / / fi(z1,22 = ®(z1,1) fy e S dnadsy

cosh z9
Fg ) R
t Fg(t
> 1/64|Fz ) ds / /fl 21,22 + 21 —H(Zl,t)) dzadzy.
2 cosh 2o
ta F(t) R

Due to the definition of F» and the bound 9., H(z1,t) < 1, we have that for z; €
[F5(t), Fo(t) + 1], the inequality 0 < H(z1,t) < 1 holds. Then, using (13) and (50), we
can estimate

Fa(t)+1
/ f1 (21,22 + 21 — H(z1,1)) dopdzy
cosh z9
F2(t R
Fg(t)Jrl
1

>C ——dxn > C > 0.
= Clpo) / cosh H(z1,t) 1.2 Cilpo)

Fy(t)

Therefore, we arrive at the bound
t
OH (Fy(t), 1) > c/ei“%)l ds, (52)

where the constant C' depends only on pg. On the other hand, it follows from our usual
estimate and the definition of Fy that 1 > 9., H(F2(t),t) > 0. Combining this bound
with (51) and (52), we obtain

t
F) < ,C/e%wz(sn ds,

for a.e. t. Applying this differential inequality, it is straightforward to show that F(t)
tends to —oo in finite time. Therefore, ®(—o0,t) becomes infinite in finite time. Explicit
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formulas for the solution show that this means finite time blow up; by Proposition 2.2,
this also implies that

t
ling [ e, 1)] = dt = oo
0

for the blow up time T' < co. O
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