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ABSTRACT

Quanta Image Sensor (QIS) is a single-photon image sen-

sor that oversamples the light field to generate binary mea-

surements. Its single-photon sensitivity makes it an ideal

candidate for the next generation image sensor after CMOS.

However, image reconstruction of the sensor remains a chal-

lenging issue. Existing image reconstruction algorithms are

largely based on optimization. In this paper, we present the

first deep neural network approach for QIS image reconstruc-

tion. Our deep neural network takes the binary bit stream

of QIS as input, learns the nonlinear transformation and de-

noising simultaneously. Experimental results show that the

proposed network produces significantly better reconstruction

results compared to existing methods.

Index Terms— Quanta Image Sensor, single-photon

imaging, image reconstruction, deep neural networks

1. INTRODUCTION

Quanta Image Sensor (QIS) is a new type of image sensor

envisioned to supersede CMOS and CCD [1]. Having a very

small full-well capacity (1− 250 photoelectrons) and single-

photon sensitivity, QIS is perceived as an ideal candidate

for compensating the deterioration of signal-to-noise ratio in

small pixels. The sensor has an extremely high readout rate

(10k fps as in [2], and 156k fps in [3]), and can potentially

be made for very high spatial resolution [1, 4]. However, the

QIS data is binary: A pixel has a value 1 if the photon count

exceeds certain threshold, and has a value 0 if the photon

count is below the threshold. As a result, non-traditional im-

age reconstruction algorithms are need to recover the images,

as illustrated in Figure 1.

Existing image reconstruction methods for QIS are largely

based on maximum-likelihood (ML) or maximum a-posteriori

(MAP) estimation. These optimizations are done using gra-

dient descent [5], dynamic programming [7] or ADMM [8],

which are all time consuming. A significantly faster algorithm

is the Transform-Denoise method by Chan et al. [6], where

the authors use the variance stabilizing transform (VST) to
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Fig. 1. Image reconstruction of QIS. Given the binary bit planes,

the algorithm estimates the gray-scale image shown on the right.

(a) ML closed-form [5], 21.64 dB (b) Transform-Denoise [6], 30.53 dB

(c) Proposed Method, 31.45 dB (d) Ground Truth

Fig. 2. Image Reconstruction using ML [5], TD [6], and our pro-

posed RED-Net method.

convert the truncated Poisson random variables to Gaussian,

and then apply denoising algorithms for smoothing. In this

paper, we propose a deep neural network approach for QIS

image reconstruction. As shown in Figure 2, the neural net-

work has better performance than Transform-Denoise by a

substantial margin.

Using deep neural networks for image restoration prob-

lems is relatively new but has a strong momentum [9–15].

In [16], the authors proposed a neural network to unroll the

ISTA iteration with a sparsity prior. However, sparsity priors

are generally inferior to discriminative priors learned directly

by the neural networks [11]. A simple QIS reconstruction net-
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work is proposed by Rojas et al. [17], where they presented

a two-layer neural network to learn the Transform-Denoise

pipeline in [6]. However, despite the speed-up offered by

the network, the PSNR performance is worse than Transform-

Denoise using BM3D as the denoiser.

The key contribution of this paper is a new deep neu-

ral network based solution for QIS image reconstruction.

Different from [16] which assumes a sparsity prior, our net-

work learns the denoiser directly; And compared to [17], our

network has a significantly deeper layer to learn the trans-

formation. We present two designs: one mimics the entire

Transform-Denoise pipeline, and the other one substitutes

part of the Transform-Denoise pipeline. We show that both

networks has significantly better performance than the exist-

ing Transform-Denoise method.

2. QIS IMAGING MODEL

In this section we provide an overview of the QIS imaging

model. A pictorial illustration is shown in Figure 3. We shall

focus on a few important highlights of the model. Readers

interested in the details can refer to [5], [6] or [18].

•

•

•

K gk Poisson×

α
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Fig. 3. Image formation process of QIS.

2.1. Spatial-Temporal Oversampling

We model the incoming light intensity as a vector c =
[c0, . . . , cN−1]

T . We assume that cn is normalized to the

range [0, 1] for all n, and use a constant α > 0 to model the

gain factor.

QIS uses M ≫ N jots to oversample c. The ratio K
def
=

M/N is the spatial oversampling factor. The oversampling

process is modeled by an up-sampling operator and a lowpass

filter {gk} as shown in Figure 3. Mathematically, we define

the output of the oversampling process as

θ = αGc, (1)

where θ = [θ0, . . . , θM−1]
T denotes the light intensity sam-

pled at the M jots, and the matrix G ∈ R
M×N is a matrix

capturing the upsampling and the lowpass filter {gk}.

The lowpass filter {gk} can be arbitrary, e.g., B-spline as

mentioned in [5]. However, for efficient reconstruction we

shall assume that the filter is box-car. Physically, by using

a box-car filter we implicitly assume that the incident light

is focused on each jot, which is reasonable to some extent

because QIS is equipped with micro-lenses to focus incident

light. If {gk} deviates from the box-car but we still use box-

car for reconstruction, we say that there is model mismatch,

which will be studied in Section 4.

1− Sn

L T D T −1 K
α
Ψ−1

q (.)

Fig. 4. Transform-Densoise [6]: We apply a pair of transforms

(T , T −1) and a Gaussian denoiser D for QIS image reconstruction.

2.2. Truncated Poisson Process

The oversampled signal θ generates a sequence of Poisson

random variables according to the distribution

P(Ym,t = ym,t) =
θ
ym,t

m e−θm

ym,t!
, (2)

where m ∈ {0, 1, . . . ,M − 1} and t ∈ {0, 1, . . . , T − 1}
denote the m-th jot and the t-th independent measurement in

time, respectively. Denoting q ∈ N as the quantization thresh-

old, the final observed binary measurement Bm,t is a trunca-

tion of Ym,t, i.e., Bm,t = 1 when Ym,t ≥ q, and Bm,t = 0
otherwise. Hence, the distribution of Bm,t is

P(Bm,t = bm,t) =

{
Ψq(θm), if bm,t = 0,

1−Ψq(θm), if bm,t = 1.
(3)

where Ψq : R
+ → [0, 1] is the upper incomplete Gamma

function [19].

The goal of image reconstruction is to reconstruct the

underlying image c from the binary measurements B =
{Bm,t | m = 0, . . . ,M − 1, and t = 0, . . . , T − 1} as shown

in Figure 1. With the box-car kernel assumption, one can

show that the ML solution has a closed-form [6]:

ĉn =
K

α
Ψ−1

q

(
1−

Sn

L

)
, (4)

where Sn
def
=

∑T−1

t=0

∑K−1

k=0
BKn+k,t is the spatial-temporal

binning of the binary measurements, and L
def
= KT is the

combined spatial-temporal oversampling factor.

2.3. Transform-Denoise Approach

Our proposed deep neural network shares some similarity

with the Transform-Denoise in [6]. In Transform-Denoise,

the key observation is that the random variable Sn in (4) is

binomial. The binomial random variable in QIS has spa-

tially varying variance. Thus, one needs to stabilize its

variance using variance stabilizing transform (VST). The

VST used in Transform-Denoise is the Anscombe binomial

transform [20]:

Zn = T (Sn)
def
=

√
L+

1

2
sin−1

(√
Sn + 3

8

L+ 3

4

)
. (5)

After VST, standard Gaussian denoisers can be used to

smooth the image. The final result is obtained by an in-

verse VST. The overall Transform-Denoise pipeline is shown

in Figure 4.
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3. PROPOSED METHOD

3.1. Network Structure

The structure of our proposed neural network is shown in Fig-

ure 5. We call our network the QISNet. On the network

level, QISNet has the same structure as the very deep Resid-

ual Encoder-Decoder Network “RED-Net” architecture [21],

which was originally proposed for denoising. In this network

structure, there is a sequence of N convolutional layers andN
deconvolutional layers. The convolutional layers extract the

features from the input image, and the deconvolutional lay-

ers recover the details lost during the convolutional steps. As

mentioned in [22], the deconvolutional layers are necessary

for image restoration tasks because the convolutional layers

tend to oversmooth the image.

Fig. 5. The proposed QISNet consists of 15 convolutional layers

followed by 15 deconvolutional layers.

What makes QISNet different from RED-Net is that

RED-Net cannot be directly applied to the QIS image recon-

struction problem as RED-Net is designed for i.i.d. Gaussian

noise. The QIS data, as discussed, is binary following from

the truncated Poisson distribution. Therefore, in order to

apply the network to QIS, modifications are needed.

Our modification is based on the Transform-Denoise

pipeline. The insight is that while individual bits of the QIS

data follow a truncated Poisson distribution, the average of

the bits within a small spatial-temporal block 1 − Sn

L
is a Bi-

nomial random variable. If we further assume that the blocks

do not overlap, then 1 − Sn

L
can be regarded as an noisy

pixel where the distribution is independent (but not identical)

Binomial. As a result, if we feed 1 − Sn

L
into the network,

then a denoising network will be sufficient.

3.2. Two Designs for QISNet

Knowing that the input data to the QIS image reconstruction

is independent Binomial, we can now design different combi-

nations of the networks for the reconstruction task. Here we

present two designs.

The first design is to use the neural network to replace the

Gaussian denoiser in Transform-Denoise. We call this design

QISNet-TD (See Figure 5(a)). The idea of QISNet-TD is that

since the performance of Transform-Denoise depends heavily

on the denoiser, we should use a good denoiser. However, we

cannot simply put a pre-trained Gaussian noise network de-

noiser for this task because the pipeline involves other com-

ponents. We train the network while forcing it to learn the

presence of T , T −1 and K
α
Ψ−1

q (·).

T QISNet T −1 K
α
Ψ−1

q (.)

(a) QISNet-TD: Embeds QISNet into the TD framework.

QISNet-TD

QISNet

(b) QISNet: Use QISNet to learn the entire framework.

Fig. 6. The two proposed designs.

The second design is to use the QISNet to replace the en-

tire Transform-Denoise pipeline (See Figure 5(b)). This de-

sign is slightly more aggressive as we ask the neural network

to learn the denoiser, the nonlinear functions T and T −1,

and K
α
Ψ−1

q (·). The difference between QISNet-TD and QIS-

Net is the transforms T and T −1 (and the nonlinear function
K
α
Ψ−1

q (·) which is less important here). The inverse trans-

form T −1 is the algebraic inverse, which is a biased inverse

transformation. As L grows, the bias of T will cause the es-

timate to deviate from its ideal value. Therefore, as one may

expect, QISNet-TD performs worse than QISNet in general.

We will demonstrate this behavior in the experiment section.

3.3. Training and Parameters

We implement both QISNet-TD and QISNet using 15 convo-

lutional and 15 deconvolutional layers. Each layer uses 3× 3
kernels, and 64 feature maps. The network nonlinearity is

obtained using ReLu. The training dataset consists of 2000

images selected from the Pascal VOC 2008 dataset [23]. 128

patches of size 50× 50 are randomly extracted from each im-

age. The inputs used to train the networks are 1− Sn

L
, which

are images with Binomial “‘noise”. The ground truths are

the clean images. The loss function is L2-loss, which is opti-

mized using Adam optimizer with a learning rate of 0.0001.

The training converges to a local minimum [21] and it takes 8

hours using NVidia Geforce GTX TITAN GPU. For parame-

ters, we set q = 1, α = 2K2, and T = 16.

4. EXPERIMENTS

We synthesize QIS data from 77 images captured using a

Canon EOS Rebel T6i camera. The images are captured on

Purdue campus, which are guaranteed to be different from the

Pascal VOC 2008 dataset used for training.

4.1. Reconstruction Quality

We compare the proposed networks with the Transform-

Denoise using BM3D [6] and the classical MLE approach [5].

We study two cases: K = 1 and K = 2. Since T = 16, these

correspond to L = K2T = 16 and L = 64, respectively.

The results of the experiments are shown in Table 1. In

this table, we divide the study into two parts. The first part is
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(a) Input (1 of 64 frames) (b) ML solution [5], 21.91 dB (c) TD-BM3D [6], 26.60 dB

(d) QISNet-TD, 27.35 dB (e) QISNet, 27.36 dB (f) Ground Truth

Fig. 7. Reconstructed Images and their PSNR for L = 64.

the “Match” experiment, where during the QIS data synthesis

we assume that the lowpass filter gk is box-car. It is called

“Match” because the variableSn also assumes a box-car filter.

We observe that while TD-BM3D [6] offers almost 10dB

improvement over MLE [5], the proposed networks give ad-

ditional improvements. QISNet performs as good as than

QISNet-TD for small L (27.41dB). For large L, QISNet is

better (30.62dB with 30.51dB). This suggests that QISNet is

indeed able to learn the transforms (T , T −1) with sufficient

amount of data. Visually, the results in Figure 7 show that the

neural networks reconstruct more details.

4.2. Model Mismatch in G

The second part of the experiment is the “Mismatch” case.

Here, by mismatch we meant that the box-car filter used in

calculating Sn does not match with the lowpass filter used

for generating the QIS data. Note that if the lowpass filter gk
is not box-car, one has to use an iterative algorithm such as

gradient descent [5] or ADMM [8] to do the reconstruction.

Iterative algorithms are not preferred as they are practically

slow. Thus it is important to see how well the neural networks

can tolerate the model mismatch.

The results of this part of the experiment are shown in

Table 1. Our proposed QISNet-TD and QISNet are trained

assuming box-car functions. As we can see from the table, as

the mismatch becomes worse (from linear to cubic splines),

the reconstruction PSNR also drops. However, the PSNR

drop in the neural network approaches are not worse than

Transform-Denoise. In fact, for all the mismatch filters, the

Table 1. PSNR in dB for L = 16 and L = 64

Method
Mismatch Match

Linear Quad Cubic Box-Car

L
=

1
6

MLE 15.74 15.69 15.64 15.84

TD-BM3D 25.67 25.44 25.23 26.40

QISNet-TD 26.38 26.04 25.74 27.41

QISNet 26.39 26.05 25.76 27.40

L
=

6
4

MLE 19.94 19.93 19.92 21.12

TD-BM3D 25.45 25.40 25.33 29.90

QISNet-TD 25.51 25.47 25.39 30.51

QISNet 25.57 25.52 25.45 30.62

networks still produce better reconstruction quality. One

thing to note, however, is that if we know the lowpass fil-

ter, we can easily re-train the network to adapt to the filter.

Transform-Denoise does not have this flexibility.

5. CONCLUSION

We proposed deep neural networks for reconstructing images

for Quanta Image Sensors. Our networks can replace the ex-

isting Transform-Denoise pipeline, while offering better im-

age reconstruction results. Practically, we anticipate that the

networks can eventually be put on neuromorphic chips for

better speed and performance.
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