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BENFORD BEHAVIOR OF GENERALIZED ZECKENDORF DECOMPOSITIONS

ANDREW BEST, PATRICK DYNES, XIXI EDELSBRUNNER, BRIAN MCDONALD, STEVEN J. MILLER,
KIMSY TOR, CAROLINE TURNAGE-BUTTERBAUGH, AND MADELEINE WEINSTEIN

ABSTRACT. We prove connections between Zeckendorf decompositions and Benford’s law. Recall
that if we define the Fibonacci numbers by F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1, every positive
integer can be written uniquely as a sum of non-adjacent elements of this sequence; this is called
the Zeckendorf decomposition, and similar unique decompositions exist for sequences arising from
recurrence relations of the form Gn+1 = c1Gn + · · ·+ cLGn+1−L with ci positive and some other
restrictions. Additionally, a set S ⊂ Z is said to satisfy Benford’s law base 10 if the density of
the elements in S with leading digit d is log10 (1 +

1
d
); in other words, smaller leading digits are

more likely to occur. We prove that as n → ∞ for a randomly selected integer m in [0, Gn+1)
the distribution of the leading digits of the summands in its generalized Zeckendorf decomposition
converges to Benford’s law almost surely. Our results hold more generally: one obtains similar
theorems to those regarding the distribution of leading digits when considering how often values in
sets with density are attained in the summands in the decompositions.
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1. INTRODUCTION

Zeckendorf’s theorem states that every positive integer m can be written uniquely as a sum of
nonconsecutive Fibonacci numbers, where the Fibonacci numbers are defined by Fn+1 = Fn +
Fn−1 with F1 = 1 and F2 = 2 (we must re-index the Fibonaccis, as if we included 0 or had two
1’s we clearly could not have uniqueness). Such a sum is called the Zeckendorf decomposition
of m. Zeckendorf decompositions have been generalized to many other sequences, specifically
those arising from positive linear recurrences. More generally, we can consider a positive linear
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recurrence sequence given by

Gn+1 = c1Gn + · · ·+ cLGn+1−L, (1.1)

with ci nonnegative, L, c1 and cL positive, as well as rules to specify the first L terms of the
sequence and a generalization of the non-adjacency constraint to what is a legal decomposi-
tion. Unique decompositions exist both here and for other sequences; see [Al, Day, DDKMMV,
DDKMV, DG, FGNPT, GT, GTNP, Ke, KKMW, Len, MW1, MW2, Ste1, Ste2, Ze] for a sample
of the vast literature on this topic.

The purpose of this paper is to connect generalized Zeckendorf decompositions and Benford’s
law. First discovered by Newcomb [New] in the 1880s, it was rediscovered by Benford [Ben]
approximately fifty years later, who noticed that the distributions of the leading digits of numbers
in many data sets were not uniform. In fact, there was a strong bias towards lower values. For
example, the leading digit 1 appeared about 30% of the time and the leading digit 9 under 5% of
the time. Data sets with such leading digit distributions are said to follow Benford’s law. More
precisely, the probability of a first digit base B of d is logB(1 + 1/d), or more generally the
probability that the significand1 is at most s is logB(s). Benford’s law appears in astoundingly
many data sets, from physical constants to census information to financial and behavioral data,
and has a variety of applications (two of the most interesting being its use to detect accounting or
voting fraud). This digit bias is in fact quite natural once one realizes that a data set will follow
Benford’s law if its logarithms modulo 1 are equidistributed.2 See [Hi1, Hi2, MT-B, Rai] for more
on the theory of Benford’s law, as well as the edited volume [M] for a compilation of articles on
its theory and applications.

Before exploring whether or not the summands in Zeckendorf decompositions obey Benford’s
law, it’s natural to ask the question about the sequence of Fibonacci numbers themselves. The
answer is yes, and follows almost immediately from Binet’s formula,

Fn =
5 +

√
5

10

(

1 +
√
5

2

)n

+
5−

√
5

10

(

1−
√
5

2

)n

(1.2)

(note this is slightly different than the standard expression for Binet’s formula as we have re-
indexed our sequence so that the Fibonaccis begin 1, 2, 3, 5). The proof is completed by show-
ing the logarithms modulo 1 are equidistributed, which is immediate from the irrationality of
log10(

1+
√
5

2
) and Kronecker’s theorem (if α is irrational then nα is equidistributed modulo 1) and

simple book-keeping to bound the error of the secondary piece; see [DG, MT-B, Was] for details.
Instead of studying Benfordness of summands in Zeckendorf decompositions, we could instead

look at other properties of the summands, such as how often we have an even number or how often
they are a square modulo B for some fixed B. So long as our sequence has a positive density,
our arguments will be applicable.3 We quickly review this notion. Given a set of positive integers
G = {Gn}∞n=1 and a subset S ⊂ G, we let q(S, n) be the fraction of elements of G with index at

1If x > 0 and B > 1 we may uniquely write x as SB(x) · BkB(x), where SB(x) ∈ [1, B) is the significand of x
and kB(x) is an integer.

2Given a data set {xn}, let yn = log10 xn mod 1. If {yn} is equidistributed modulo 1 then in the limit the
percentage of the time it is in [α, β] ⊂ [0, 1] is just β − α. Letting α = log10 d and β = log10(d+ 1) implies that the
significand of x is d is log10(1 + 1/d).

3For example, in the limit one-third of the Fibonacci numbers are even. To see this we look at the sequence modulo
2 and find it is 1, 0, 1, 1, 0, 1, 1, 0, 1, . . . ; it is thus periodic with period 3 and one-third of the numbers are even.
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most n that are in S:

q(S, n) :=
#{Gi ∈ S : 1 ≤ i ≤ n}

n
. (1.3)

When limn→∞ q(S, n) exists, we define the asymptotic density q(S) as

q(S) := lim
n→∞

q(S, n), (1.4)

and for brevity often say the sequence S has density q(S).
In an earlier work we proved that if a set S has a positive density d in the Fibonaccis, then so too

do its summands in the Zeckendorf decompositions, and in particular Zeckendorf decompositions
using Fibonacci numbers follow Benford’s law [BDEMMTTW]. Our main result below is gener-
alizing these results to the case of a positive linear recurrence sequence, which is a sequence of
positive integers {Gn}∞n=1 and a set of non-negative coefficients c1, . . . , cL with c1, cL > 0,

Gn+1 = c1Gn + c1Gn−1 + · · ·+ cLGn+1−L, (1.5)

and prescribed positive initial terms G1, G2, . . . , GL.

Theorem 1.1. Fix a positive recurrence {Gn}. Let S ⊆ {Gn}∞n=1 be a set with positive density d,
and fix an ǫ > 0. As n → ∞, for an integer m selected uniformly at random from [0, Gn+1) the
proportion of the summands in m’s Zeckendorf decomposition which belong to S is within ǫ of d
with probability 1 + o(1).

We define some concepts needed to prove Theorem 1.1 in §2, in particular the notion of a super-
legal decomposition. We derive some needed properties of these decompositions, and then prove
our main result in §3 by showing related random variables (the number of summands, and the
number of summands in our set with positive density in our recurrence sequence) are strongly
concentrated.

2. LEGAL AND SUPER-LEGAL DECOMPOSITIONS

For the rest of the paper any positive linear recurrence sequence {Gn}∞n=1 satisfies (1.5) with
ci ≥ 0 and L, c1, cL ≥ 1.

Let {Gn}∞n=1 be a positive linear recurrence sequence. Its the characteristic polynomial is

f(λ) = c0λ
L + c1λ

L−1 + c2λ
L−2 + · · ·+ cL−1, (2.1)

with roots λ1, . . . , λL. By the Generalized Binet Formula (for a proof see, for example, Appendix
A of [BBGILMT]) we have λ1 is the unique positive root, λ1 > |λ2| ≥ · · · ≥ |λL|, and there exists
an A > 0 such that

Gn = Aλn
1 +O(nL−2λn

2 ). (2.2)

We introduce a few important terms needed to state our results.

Definition 2.1. Let {Gn} be a positive linear recurrence sequence. Given non-negative integers
a1, . . . , an, the sum

∑n
i=1 aiGn+1−i is a legal Zeckendorf decomposition if one of the following

conditions holds.
(1) We have n < L and ai = ci for 1 ≤ i ≤ n.
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(2) There exists an s ∈ {1, . . . , L} such that
a1 = c1, a2 = c2, · · · , as−1 = cs−1, and as < cs, (2.3)

as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and {bi}n−s−ℓ
i=1 with bi = as+ℓ+i is either legal or empty.

Definition 2.2. Let {Gn} be a positive linear recurrence sequence. Given non-negative integers
a1, . . . , an, the sum

∑n
i=1 aiGn+1−i is a super-legal Zeckendorf decomposition if there exists an

s ∈ {1, . . . , L} such that
a1 = c1, a2 = c2, · · · , as−1 = cs−1, and as < cs, (2.4)

as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and {bi}n−s−ℓ
i=1 with bi = as+ℓ+i is either super-legal or empty.

In other words, a decomposition is super-legal if it satisfies condition (2) of Definition 2.1.

Definition 2.3. Let {Gn} be a positive linear recurrence sequence, and assume that the sum
∑n

i=1 aiGn+1−i is a legal Zeckendorf decomposition. We call each string described by one of
the conditions of Definition 2.1 (not counting the additional 0’s) a block, and call the number of
terms in each block its length.

We note that every super-legal Zeckendorf decomposition is legal and that a concatenation of
super-legal Zeckendorf decompositions makes a super-legal Zeckendorf decomposition.

Example 2.4. The recurrence Gn+1 = Gn+2Gn−1+3Gn−2 withG0 = G1 = 1, G2 = 3 produces
the sequence 1, 3, 8, 17, 42, 100, 235, 561, . . . . The decomposition of 1274 is

1274 = 561 + 2(235) + 2(100) + 42 + 1 = G8 + 2G7 + 2G6 +G5 +G1. (2.5)

This example gives coefficients (1, 2, 2, 1, 0, 0, 0, 1), so the blocks of 1274 are (1, 2, 2), (1, 0),
and (1), with lengths 3, 2, and 1 respectively. Note that even though the definition of a block
excludes the additional 0’s (i.e., the as+1 = as+2 = · · · = as+ℓ = 0 from the Definition 2.1),
it is still permissible for a block to end with a 0. The decomposition for 1274 is legal but not
super-legal, since the final block (1) satisfies condition (1) but not condition (2) from Definition
2.1.

Example 2.5. An example of a super-legal decomposition using the recurrence from Example 2.4
is

1277 = 561 + 2(235) + 2(100) + 42 + 3 + 1 = G8 + 2G7 + 2G6 + G5 +G2 +G1, (2.6)

which gives coefficients (1, 2, 2, 1, 0, 0, 1, 1). In this case, the final block is (1, 1), which satisfies
the condition of Definition 2.2.

Given two legal decompositions, we do not necessarily obtain a new legal sequence by concate-
nating the coefficients. However, if we require that the leading block be super-legal, we do obtain
a new legal decomposition by concatenation. With the help of a few lemmas which help us count
the number of super-legal decompositions, we can circumvent this obstruction.

Lemma 2.6. Let {Gn} be a positive linear recurrence sequence with relation given by (1.5), and
let Hn be the number of super-legal decompositions using only G1, G2, . . . , Gn. We have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L. (2.7)
4
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Proof. Note that Hn+1 − Hn is the number of super-legal decompositions with largest element
Gn+1. We count how many such decompositions there are by summing over the possible lengths
of the leading block. Say the leading block is of length j with 1 < j ≤ L. Then the leading block
is (c1, c2, . . . , cj−1, aj), where aj is chosen from {0, 1, . . . , cj − 1}. Therefore there are cj ways
of choosing this leading block. Because we require Gn+1 to be included in the decomposition,
if j = 1 there are c1 − 1 ways of choosing this leading block, since the leading coefficient must
be nonzero. For any choice of leading block of length j, there are Hn+1−j ways of choosing the
remaining coefficients. Therefore, we find that

Hn+1 −Hn =

L
∑

j=1

cjHn+1−j −Hn, (2.8)

completing the proof. �

Lemma 2.7. Let {Gn} be a positive linear recurrence sequence, and let Hn be the number of
super-legal decompositions using only G1, G2, . . . , Gn. Then limn→∞Hn/Gn exists and is posi-
tive.

Proof. Since Hn is generated by the same recursion as Gn, it has the same characteristic polyno-
mial, which then has the same roots. Therefore for some B ≥ 0 we have

Hn = Bλn
1 +O(nL−2λn

2 ). (2.9)

Thus limn→∞Hn/Gn = B/A and it suffices to show that B > 0. Note that we always have
Hj > 0, so we must have

α := min
1≤j≤L

Hj

Gj

> 0. (2.10)

It follows by induction on n that Hn ≥ αGn for all n. Thus we conclude that B > 0, as desired.
�

3. DENSITY THEOREM

To prove the main result as stated in Theorem 1.1, we compute expected values and variances of
the relevant random variables. An essential part of the ensuing analysis is the following estimate
on the probability that aj = k for a fixed k, and showing that it has little dependence on j. We
prove the theorem via casework based on the structure of the blocks in the decomposition of m.
Namely, in the case that aj is in the rth position of a block of length ℓ, the two subcases are r = ℓ
(that is, aj is the last element in the block) or r < ℓ (that is, aj is not the last element in the block).
This is why the notion of a super-legal decomposition is useful; if we want to know whether the
legal decomposition (a1, a2, . . . , an) has a block that terminates at ar, this is equivalent to whether
(a1, a2, . . . , ar) forms a super-legal decomposition. So, we first prove some useful lemmas and
then collect our results to prove Theorem 1.1.

Lemma 3.1. Let {Gn} be a positive linear recurrence sequence, and choose an integer m uni-
formly at random from [0, Gn+1), with legal decomposition

m =
n
∑

j=1

ajGn+1−j. (3.1)

Note that this defines random variables A1, . . . , An taking on values a1, . . . , an.
5
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Let pj,k(n) := Prob (Aj = k) . Then, for log n < j < n− logn, we have

pj,k(n) = pk(n)(1 + o(1)), (3.2)

where pk(n) is computable and does not depend on j.

Proof. We divide the argument into cases based on the length of the block containing aj , as well
as the position aj takes in this block. Suppose that aj is in the rth place in a block of length ℓ. In
order to have aj = k, we must either have r < ℓ and k = cr, or r = ℓ and k < cr.

In the former case, there are cℓ ways to choose the terms in the block containing aj , due to the
cℓ choices there are for the final term, and everything else is fixed. There are Hj−r ways to choose
the coefficients for the terms greater than those in the block containing aj , and Gn−j−ℓ+r+1 ways
to choose the smaller terms.

We now consider the latter case, where r = ℓ and k < cr. There is now only one possibility for
the coefficients in the block containing aj , but the rest of the argument remains the same as in the
previous case. Therefore, by Lemma 2.7 we find that

Nj,k,ℓ,r(n) := #{m ∈ Z ∩ [0, Gn+1) : aj = k, aj is in the rth position in a block of length ℓ}

=







cℓGn−j−ℓ+r+1Hj−r if r < ℓ, k = cr,
Gn−j−ℓ+r+1Hj−r if r = ℓ, k < cr,
0 otherwise

= Nk,ℓ,r(n)(1 + o(1)), (3.3)

where

Nk,ℓ,r(n) :=







cℓABλn−ℓ+1
1 if r < ℓ, k = cr,

ABλn−ℓ+1
1 if r = ℓ, k < cr,

0 otherwise,
(3.4)

and Nk,ℓ,r(n) does not depend on j; these formulas follow from applications of the Generalized
Binet Formula to the sequences for the Gn’s and Hn’s. We conclude the proof by noting that

pj,k(n) =
1

Gn+1

L
∑

ℓ=1

ℓ
∑

r=1

Nj,k,ℓ,r(n) =

(

1

Gn+1

L
∑

ℓ=1

ℓ
∑

r=1

Nk,ℓ,r(n)

)

· (1 + o(1)) , (3.5)

where we used (3.3) to replace Nj,k,ℓ,r(n). The claim now follows by defining

pk(n) :=
1

Gn+1

L
∑

ℓ=1

ℓ
∑

r=1

Nk,ℓ,r(n) (3.6)

and noting that its size is independent of j. More is true, as the Generalized Binet Formula again
gives us that Gn+1 is a constant times λn+1

1 (up to lower order terms), and similarly the sum for
pk(n) is a multiple of λn+1

1 plus lower order terms. �

We also use the following result, which follows immediately from Theorems 1.2 and 1.3 in
[MW1] (see also [MW2] for a survey on the subject).

Lemma 3.2. Let {Gn} be a positive linear recurrence sequence, with s(m) the number of sum-
mands in the decomposition of m. That is, for m =

∑n
j=1 ajGn+1−j , let s(m) :=

∑n
j=1 aj . Let

6
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Xn(m) be the random variable defined byXn(m) = s(m), wherem is chosen uniformly at random
from [0, Gn+1). Then

E[Xn(m)] = nC + o(n) and Var[Xn(m)] = o(n2). (3.7)

We define another random variable similarly.

Lemma 3.3. Let {Gn} be a positive linear recurrence sequence, and let S ⊆ {Gn} be a set with
positive density d in {Gn}. Form chosen uniformly at random in [0, Gn+1), let

Yn(m) :=
∑

j∈Tn

aj , (3.8)

where Tn = {j ≤ n|Gn+1−j ∈ S}. Then, for some constant C > 0, we have
E[Yn(m)] = dnC + o(n), Var[Yn(m)] = o(n2). (3.9)

Proof. We first compute the expected value. We have

E[Yn(m)] = E

[

∑

j∈Tn

aj

]

=
∑

j∈Tn

E[aj ] =
∑

j∈Tn

∞
∑

k=1

kpj,k(n)

= O(logn) +
∑

j∈Tn

∞
∑

k=1

kpk(n)(1 + o(1)).

= O(logn) + dn(1 + o(1))
∞
∑

k=1

kpk(n)

= O(logn) + d(1 + o(1))
n
∑

j=1

∞
∑

k=1

kpk(n)

= O(logn) + d(1 + o(1))

n
∑

j=1

∞
∑

k=1

kpj,k(n)

= O(logn) + d(1 + o(1))
n
∑

j=1

E[aj ] = O(logn) + E[Xn(m)]d(1 + o(1))

= dnC + o(n). (3.10)
Note that the above sums are actually finite, since pj,k = pk = 0 for sufficiently large k. The
log n term appears since Lemma 3.1 only allows us to say pj,k = pk(1 + o(1)) when log n < j <
n− log n. We now must consider the variance. First note that if i+ log n < j, then letting

qi,r(n) := Prob (the block containing ai ends at ai+r|ai = k) , (3.11)
we have

Prob (aj = ℓ|ai = k) =

L−1
∑

r=1

qi,r(n)pj−i−r,ℓ(n)

= (1 + o(1))pℓ(n)

L−1
∑

r=1

qi,r(n)

= pℓ(n)(1 + o(1)). (3.12)
7
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Thus, we compute

E[Yn(m)2] = E

[

∑

i,j∈Tn

aiaj

]

=
∑

i,j∈Tn

E[aiaj ]

=
∑

i,j∈Tn

∞
∑

k,ℓ=1

kℓpi,k(n)Prob (aj = ℓ|ai = k)

= O(n logn) + 2
∑

i,j∈Tn

2 logn<i+logn<j<n−logn

∞
∑

k,ℓ=1

kℓpi,k(n)Prob (aj = ℓ|ai = k)

≤ O(n logn) + 2
∑

i,j∈Tn

2 logn<i+logn<j<n−logn

∞
∑

k,ℓ=1

kℓpk(n)pℓ(n)(1 + o(1))

= O(n logn) + (1 + o(1))d2n2

∞
∑

k,ℓ=1

kℓpk(n)pℓ(n)

= O(n logn) + (1 + o(1))d2n2

(

∞
∑

k=1

kpk(n)

)2

= O(n logn) + d2n2C2(1 + o(1)) = d2n2C2 + o(n2). (3.13)

Thus

Var[Yn(m)] = E[Yn(m)2]− E[Yn(m)]2 = o(n2), (3.14)

completing the proof. �

We are now ready to prove our main result. The idea of the proof is that the results above
strongly concentrate Yn(m) and Xn(m).

Proof of Theorem 1.1. Note that the proportion of the summands in m’s Zeckendorf decomposition
which belong to S is Yn(m)

Xn(m)
, where Xn(m), Yn(m) are defined as in the previous lemmas. Therefore

it suffices to show that for any ǫ > 0, with probability 1 + o(1) we have
∣

∣

∣

∣

Yn(m)

Xn(m)
− d

∣

∣

∣

∣

< ǫ. (3.15)

By Chebyshev’s inequality, letting g(n) = n1/2Var[Xn(m)]−1/4, we obtain

Prob

(

|Xn(m)− E[Xn(m)]| > E[Xn(m)]

g(n)

)

≤ Var[Xn(m)]g(n)2

E[Xn(m)]2
= o(1). (3.16)

Letting

e1(n) :=
1

nC

(

E[Xn(m)]

g(n)
+ |E[Xn(m)]− nC|

)

, (3.17)

we have with probability 1 + o(1) that

nC(1− e1(n)) ≤ Xn(m) ≤ Cn(1 + e1(n)). (3.18)
8
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Note that e1(n) = o(1). A similar argument for Yn(m) shows that there exists some e2(n) = o(1)
such that with probability 1 + o(1) we have

dnC(1− e2(n)) ≤ Yn(m) ≤ dnC(1 + e2(n)). (3.19)

Therefore, we have that
Yn(m)

Xn(m)
≤ dnC(1 + e2(n))

nC(1− e1(n))
< d+ ǫ, (3.20)

with probability 1 + o(1), and we can similarly obtain
Yn(m)

Xn(m)
> d− ǫ. (3.21)

Thus we conclude that with probability 1 + o(1)
∣

∣

∣

∣

Yn(m)

Xn(m)
− d

∣

∣

∣

∣

< ǫ, (3.22)

completing the proof. �

4. CONCLUSION AND FUTURE WORK

We were able to handle the behavior of Zeckendorf decompositions in fairly general settings
by cleverly separating any decomposition into manageable blocks. The key step was the notion
of a super-legal decomposition, which simplified the combinatorial analysis of the generalized
Zeckendorf decompositions significantly. This allowed us to prove not just Benford behavior for
the leading digits, but also similar results for other sequences with positive density.

We obtained results for a large class of linear recurrences by considering only the main term of
Binet’s formula for each linear recurrence. In future work we plan on revisiting these problems
for other sequences. Obvious candidates include far-difference representations [Al, DDKMV], f -
decompositions [DDKMMV], and recurrences with leading term zero (some of which do not have
unique decompositions) [CFHMN1, CFHMN2].
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