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IRRATIONALITY MEASURE AND LOWER BOUNDS FOR 7(z)
DAVID BURT, SAM DONOW, STEVEN J. MILLER, MATTHEW SCHIFFMAN, AND BEN WIELAND

ABSTRACT. In this note we show how the irrationality measure of ((s) = 72/6 can be used to obtain
explicit lower bounds for 7(x). We analyze the key ingredients of the proof of the finiteness of the
irrationality measure, and show how to obtain good lower bounds for 7(z) from these arguments as
well. While versions of some of the results here have been done by other authors, our arguments are
more elementary and yield a lower bound of order z/ log x as a natural boundary.

1. INTRODUCTION

One of the most important functions in number theory is 7 (x), the number of primes at most .
Many of the proofs of the infinitude of primes fall naturally into one of two categories. First, there
are those proofs which provide a lower bound for 7(z). A classic example of this is Chebyshev’s
proof (see [Dal, IMT-B])) that there is a constant ¢ such that cx/log x < 7(x). Another method of proof
is to deduce a contradiction from assuming there are only finitely many primes. One of the nicest
such arguments is due to Furstenberg (see Chapter 1 of [[AZl), who gives a topological proof of the
infinitude of primes. As is often the case with arguments along these lines, we obtain no information
about how rapidly 7(z) grows.

Sometimes proofs which at first appear to belong to one category in fact belong to another. For ex-
ample, Euclid proved there are infinitely many primes by noting the following: ifnot, and if py, ..., pnx
is a complete enumeration, then either p; - - - pyy + 1 is prime or else it is divisible by a prime not in our
list. A little thought shows this proof belongs to the first class, as it yields there are at least & primes
at most 22", thus 7(z) > log, log, ().

For the other direction, we examine a standard ‘special value’ proof; see [MT-B] for proofs of all
the claims below. Consider the Riemann zeta function

oo

1 _
Cs) =Y —= [ t=p)", (L.1)
n=1 p prime

which converges for Jts > 1; the product representation follows from the unique factorization prop-
erties of the integers. One can show ((2) = 72/6. As 72 is irrational, there must be infinitely many
primes; if not, the product over primes at s = 2 would be rational. While at first this argument may
appear to belong to the second class (proving 7 (z) tends to infinity without an estimate of its growth),
the purpose of this note is to show that it belongs to the first class, and we will obtain an explicit,
though very weak, lower bound for 7(z) for all x. We deliberately do not attempt to obtain the op-
timal bounds attainable through this method, but rather concentrate on proving the easiest possible
results which best highlight the idea. We conclude by showing how our weak estimates can be fed
back into the argument to obtain (infinitely often) massive improvement over the original bounds; our
best results here are almost as good as the estimates from Euclid’s argument.
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Our lower bounds for () use the fact that the irrationality measure of 72/6 is bounded. An upper
bound on the irrationality measure of an irrational « is a number u such that there are only finitely
many pairs p and ¢ with
o-Pl <L

q q"
The irrationality measure p;,.(«) is defined to be the infimum of the bounds and need not itself be a
bound. Liouville constructed transcendental numbers by studying numbers with infinite irrationality
measure, and Roth proved the irrationality measure of an algebraic number is 2. Currently the best
known bound for ¢(2) is due to Rhin and Viola [RV2]], who give 5.45 as a bound on its irrationality
measure. Unfortunately, the published proofs of these bounds use good upper and lower bounds for
d, :=lem(1,...,n). These upper and lower bounds are obtained by appealing to the Prime Number
Theorem (or Chebyshev type bounds); this is a problem for us, as we are trying to prove a weaker
version of the Prime Number Theorem (which we are thus subtly assuming in one of our steps!)ﬂ

In the arguments below we first examine consequences of the finiteness of the irrationality mea-
sure of 72/6, deriving lower bounds for 7(z) in §21 Our best result is Theorem 2.3} where we show
pire(m2/6) < oo implies that there is an M such that w(z) > 2;}‘5}% — M infinitely often. We
conclude in §3] by describing how we may modify the standard irrationality measure proofs to yield
weaker irrationality bounds which do not require stronger input on d,, then we are assuming. Theo-
rems [2.2] and are unconditional (explicitly, we may remove the assumption that the irrationality
measure of 72 /6 is finite through a slightly more involved argument). Theorem 3.1l requires results
from Rhin and Viola’s [RV2] proof of the irrationality measure, though it only needs weaker results
that are independent of the Prime Number Theorem. In Theorem we show that the irrationality
measure arguments yield w(x) > o(x/log z) for infinitely many = (where f(z) = o(g(z)) means that
lim, . f(z)/g(x) = 0), which shows (as one would expect) that =/ log x is a natural boundary for
these methods.

(1.2)

2. LOWER BOUNDS FOR 7(x)
Define T'(x, k) by T'(z, k) = 2" («"(«"(-- " x) - - -)), with x occurring k times.

Theorem 2.1. As ju;,,(72/6) < 5.45, there exists an Ny so that, for all k sufficiently large,
m(T(No, 2k)) > k. (2.1)
Proof. For any integer N let py and qx be the relatively prime integers satisfying

]7—N=H<1—Z%)_1=H(1+p21_1)- )

N p<N p<N

Assume there are no primes p € (N, f(N)], where f(z) is some rapidly growing function to be
determined later. If f(N) is too large relative to N, we will find that py /gy is too good of a rational
approximation to 72 /6, and thus there must be at least one prime between N and f(NN). Under our
assumption, we find

DN w2

gy 6

PN 1
— IV H)<1+p2_1). (2.3)

N p>f(N

"For another example along these lines, see Kowalski [K]. He proves 7(x) > loglog x by combining the irrationality
measure bounds of ((2) with deep results on the distribution of the least prime in arithmetic progressions. Our goal here is
to see how far elementary methods can be pushed; in particular, we are trying to see how far one can get without using input
about the distribution of primes in progressions. See also [IS]], where Sondow proves that p,, 11 < (p1 - - -pn)zf‘m‘(l/ <),
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Clearly py/qn < 7?/6, and

1 1
1 — ] 1
H ( +p2—1) B H < +p2—1)

p>f(N)

IN

exp | > log (1 + ﬁ) (2.4)

1 1 1
< oo | ¥ oty ) <o (smp ) @9

(the last inequality follows by the replacing the sum over n > f(NN) + 2 with an integral). Standard
properties of the exponential function yield

py T 72 B X( 1 1 )‘ (10
et rm )| S vy 20

o <«
gy 6] — 6
The largest gy can be is N'!?, which happens only if all integers at most N are prime. Obviously we
can greatly reduce this bound, as the only even prime is 2; however, our purpose is to highlight the
method by using the most elementary arguments possible. If we take f(z) = (x!)', we find (for N
sufficiently large) that

2
m PN

6 vl - SN T &
however, this contradicts Rhin and Viola’s bound on the irrationality measure of 72/6 (pu(72/6) <
5.45). Thus there must be a prime between N and f(N). Note f(N) < NN < (14N)M"Y for large
N. Letting f*)(N) denote the result of applying f a total of k times to N, for N, sufficiently large

we see for large k that there are at least k primes at most 7'(14 Ny, 2k). U

10 1
= 2.7)

The inverse of the function T'(N, —) is called the log™ function to base N. It is the number of times
one can iterate the logarithm without the number becoming non-positive and leaving the domain of
the logarithm. It is this extremely slowly growing function that the above theorem yields as a lower
bound for 7(x). The base was determined by the irrationality bound and unspecified (but constructive)
bound on the size of the finite number of approximations violating the irrationality bound.

Of course, this bound arises from assuming that all the numbers at most x are prime (as well as some
weak estimation); however, if all the numbers at most = are prime then there are a lot of primes, and
we do not need to search for a prime between N and f(V)! This interplay suggests that a more careful
argument should yield a significantly better estimate on 7(x), if not for all = then at least infinitely
often. We will use an upper bound on r(z) with the inequality gy < T - y(p* —1) < N**™). While
isolating the true order of magnitude of our bound is difficult, we can easily prove the following.

Theorem 2.2. The finiteness of the irrationality measure of 72 /6 implies the existence of an M > 0
such that for infinitely many x we have 7(x) > logloglog(x) — M.

Proof. We choose our constants below to simplify the exposition, and not to obtain the sharpest results.
Let b be a bound on the irrationality measure of 72/6. The theorem trivially follows if m(z) >
(log z)°~! /4b infinitely often, so we may assume that 7(z) < (logx)®~!/4b for all = sufficiently
large. Thus the denominator ¢y in our rational approximation in equation (2.7), when we consider
primes at most NV for N sufficiently large, has the bound

& < NP — exp(2br(N)log N) < exp <(10g2N) ) < P aii(N) ) (2.8)
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Thus, if f(N) = exp(log(N)¢), we have checked the right-hand inequality of equation (2.7)), which
in this case is that 10/f(N) < 1/¢% < 10/ exp(log N)¢. This cannot hold for N sufficiently large
without violating Rhin and Viola’s bound on the irrationality measure, unless of course there is a
prime between N and f(N). Thus there must be a prime between N and f(N) for all N large.
Define x,, by xy = € and iterating by applymg f, so that x,,,1 = f(z,) = exp((log x,)¢). Then

log 2,41 = (log x,)¢, so log x,, = (logz¢)¢" = expe™ or x,, = exp(exp e”). Once x, is sufficiently
large so that the above argument applies, there is a prime between every pair of x;, so there are at least
n — M primes less than x,,. O

The simple argument above illustrates how our result can improve itself (at least for an increasing
sequence of x’s). Namely, the lower bound we obtain is better the fewer primes there are, and if
there are many primes we can afford to wait awhile before finding another prime. By more involved
arguments, one can show that 7(z) > h(x) infinitely often for many choices of i (x). Sadly, however,
none of these arguments allow us to take h(z) = loglogx. Our attempts at obtaining such a weak
bound gave us a new appreciation of the estimate from Euclid’s argument! Our best result along these
lines is the following.

Theorem 2.3. The finiteness of the irrationality measure of 72 /6 implies the existence of an M > (

such that for infinitely many x we have 7(x) > ﬁ)‘ﬁ% - M

Proof. The proof is similar to that in Theorem As before, let b be a bound on the irrationality
measure of 72 /6. We assume that m(z) < (loglog x)/4b for all sufficiently large x, as otherwise the
claim trivially follows. We show that there is a prime between x,, and x,,1, where x,, = exp(exp a,)
and the sequence a,, is defined by a,,,1 = a,+log a,,. Itis easy to show that a,, grows like n log n; from
there the growth of x,, proves the theorem. Consider h(z) = log log log 2/ log log x. Note logh(””
log log x, so our assumption can be rewritten as 7(z) < (log"® x)/4b for large x. Therefore, if N is
sufficiently large we have the bound

Tr =

exp (logh(N )+l N)
10

1 N
b < N2 — exp(2bm(N)log N) < exp (%) < (2.9)

Setting f(N) = exp(log"™*! N), we see that for large N there must be a prime between N and
f(N). We define z,, by iterating f (so x,+1 = f(x,)), starting at x5 = exp(exp(e)). The recursion
can be rewritten as loglog z,,.1 = (h(x,) + 1) loglog z,,. In terms of a,, = loglog x,,, this is a, 11 =

<1°§% + 1) a, = a, + loga,. For an upper bound, we have a,, < 2nlogn. We prove this by
induction. For the base case, a, = ¢ < 4log 2. If a,, < 2nlogn withn > 2, then

ant1 < 2nlogn +log(2nlogn) < (2n+1)logn +logn < (2n+ 2)log(n + 1). (2.10)

For a lower bound, note that loga; > 1 so a,, > n. This improves to a,.1 — a, = loga, > logn.
Therefore a,+1 > > ,_;logk > ["logzdx = nlogn —n + 1. Thus nlogn —n < a, < 2nlogn.
Therefore 7(x,) > n — M, where ), is large enough that the assumed bound on 7(x,;) applies.
To derive our asymptotic conclusions, we need to know the inverse of the sequence z,,. For n large
there are at least n — M primes that are at most x, = exp(expa,) < exp(exp(2nlogn). Letting
x = exp(exp(2nlogn), we find n is at least log log x/2 log log log x. Therefore, for infinitely many
x we have 7(x) > loglogx/2logloglogx — M (where we subtract M for the same reasons as in
Theorem 2.2)). O

Remark 2.4. The lower bound from Theorem 23] is slightly weaker than the one from Euclid’s ar-

gument, namely that w(x) > log, log, x. It is possible to obtain slightly better results by assuming

instead that w(x) < (loglogz)°®) / b; a good choice is to take c(x) = log g(z) / log(g(z)log g(x))
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with g(z) = loglogx/logloglogx. The sequence a,.1 = a, + loga, which arises in our proof
is interesting, as the Prime Number Theorem states the leading term in the average spacing be-
tween primes of size x for large x is log x! Thus a, is approximately the n™ prime p,,; for example,
a1000000 "~ 15479041 and P1000000 — 15485863, which diﬁ’er by about 044%

3. BOUNDS FOR THE IRRATIONALITY MEASURE OF 72/6

We briefly describe how to modify standard arguments on the irrationality measure of ((2) = 7%/6
to make Theorems and 2.3 unconditional. As always, we merely highlight the ideas and do not
attempt to prove optimal results. We follow the argument in [RV1]], and by A(x) = o(B(x)) we mean
lim, o A(x)/B(x) = 0. With d,, = lem(1, ..., n), they show the existence of sequences {a,, }, {b,,}
such that

H dxd
an = baC(2 / bty ow)dedy _ 3.1)

1 _ l’y n+1
for a sequence of polynomials Hn(u, v) with 1nteger coeﬂiments, with p, 0 > 0 such that

(RV1) limsup,_,. &l < and

n

(RV2) Tim,, ., elo—buC@] _ _

n

Then y;,,(¢(2)) < 1+ £ (this is their Lemma 4, and is a special case of Lemma 3.5 in [C]).
Unfortunately (for us), they use the Prime Number Theorem to prove that d,, = exp(n + o(n)). From
this they deduce that there exist constants a and b such that for any € > 0, (i) exp((a+2—¢€)n) < d21,
<exp((a+24€)n) and (ii) |b,| < exp((b+2+€)n). Note (i) and (ii) imply (RV1) and (RV2) for our
sequences {a, } and {b,} with p = b+ 2 and 0 = 2 — a, which gives p;,(¢(2)) < (a — b)/(a + 2).
It is very important that the upper and lower bounds of d,, are close, as the limit in (RV2) needs to
exist. We now show how to make Theorems 2.2] and independent of the Prime Number Theorem
(i.e., we do not assume the irrationality measure of ((2) is finite, as the published proofs we know
use the Prime Number Theorem). Assume w(x) < logx for all = sufficiently large; if not, then
m(x) > logx infinitely often and Theorems [2.2] and 2.3] are thus trivial. Under this assumption, we
have 1 < d,, < exp(log®n). The lower bound is clear. For the upper bound, note the largest power of
a prime p < n that is needed is [log,n| < logn/logp. Thus

1
< leogn/logp = exp (Z ogn . lng) = exp(ﬂ'(n) IOgTZ), (32)

log p

p<n p<n

the claimed upper bound follows from our assumption that (x) < logz. We now find for any € > 0
that (i”) exp((a — €)n) < d?1, < exp((a + €)n + 2log®n) and (ii’) |b,| < exp((b+ €)n + 2log® n).
We again find that (RV1) and (RV2) hold, and 1;,,(((2)) < (a — b)/a.

Using the values of a and b from their paper, we obtain (under the assumption that 7(x) < log )
that 1;,,(¢(2)) is finite. Thus Theorems [2.2and 2.3 are independent of the Prime Number Theorem.
Using the values of a and b in [RV1]], we can prove that 7 (z) is quite large infinitely often.

Theorem 3.1. Let g(x) be any function satisfying g(x) = o(x/logx). Then infinitely often mw(x) >
g(x). In particular, for any € > 0 we have w(z) > x/log" ™  infinitely often.
Proof. We assume m(z) < g(z) for all z sufficiently large, as otherwise the claim is trivial. In [RV1]]

numerous admissible values of a and b are given (and the determination of these bounds does not use
any estimates on the number of primes); we use a = —2.55306095 ... and b = 1.70036709 . . . (page
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102). From (3.2) we have 1 < d,, < exp(n(n)logn). Using 7(z) < g(z) we find (i) exp((a — €)n)
< d%I, < exp((a + €)n + 2g(n)logn) and (ii’) |b,| < exp((b + €)n + 2g(n)logn). We again find
(RV1) and (RV2) hold, with the same values of a and b. For example, to see that (RV2) holds we need
to show lim,, . (1/n)log |a, — 0,{(2)| = —0. As a,, — b,((2) = d?1,,, we have for any ¢ > 0 that

— 1 n— 0nC(2 . 2 1
lim @7 oy 08l = 0GR (et 2g(n)logn (3.3)
n— 00 n n— 00 n n— 00 n
Our assumption on g(x) implies that lim,, ., £ (")iog" = 0, and thus the limit exists as before. We

find we may take p = b and ¢ = —a, which yields 1, (¢(2)) < 1—2 = 1.666... < 2. As
the irrationality exponent of an irrational number is at least 2 (see [MT-B]] for a proof of this and a
proof of the irrationality of 7?), this is a contradiction. Thus 7(z) cannot be less than g(z) for all =
sufficiently large (and thus infinitely often we beat Euclid by an enormous amount). U

Remark 3.2. We have proved the above in the case of m(x) = o(x/log x). Now, suppose we wanted
to get w(x) ~ cx/logx for some x. Then, following the calculations above, we would have b, <
(b+ e)n + 2g(nlog(n)) = (b+ €)n + 2cn, so then taking the limit sup as above gives p = b+ 2c.
However; if we attempt to take the limit for o, we get (a — e)n < d?I, < exp((a + €)n + 2cn),
and then we can find a < lim,,_,(log|a, — b,{(2)|)/n < a + 2c. Notably, the upper and lower
bounds are not equal, so we do not know if the limit exists, to show this we would need to have a
non-trivial lower bound on d.,,, which requires the Prime Number Theorem. However, if we had the
limit equal to the upper bound, we would have —o = a + 2c¢, and then the irrationality of m* implies
win(C(2)) > 1 — Y2 \which would give us that ¢ < 0.213. So, this is possible to show if a lower

a+2c’
bound for d,, can be found independent of the Prime Number Theorem.

Remark 3.3. It was essential that the limit in (RV2) exist in the above argument. If w(x) > x/logx
infinitely often and 7(x) < x/ log' " x infinitely often then our limit might not exist and we cannot use
Lemma 4 of [RV1]]. Kowalksi [K]] notesd that knowledge of ((s) as s — 1 yields w(z) > z/log'** z
infinitely often, which is significantly better than his proof using knowledge of ((2) and Linnik’s the-
orem on the least prime in arithmetic progressions to get m(x) > loglogx. We may interpret our
arguments as correcting this imbalance, as now an analysis of ((2) gives a comparable order of mag-
nitude estimate. It is interesting that the correct growth rate of w(x), namely x/logx, surfaces in
these arguments as a natural boundary!

We conclude by improving Theorem 3.1l to show that not only are we infinitely often close to the
true order of growth, but when we are close we are close for large stretches of integers. For notational
simplicity we work with logarithms below, but one can easily modify the argument to o(z/ log ).

Corollary 3.4. For any € > 0 there exists an increasing sequence of numbers X, ¢ tending to infinity
such that for each n, 7(x) > x/log"t* x for almost all v < X, =

Proof. Let Y, be an increasing sequence tending to infinity so that the result of Theorem [3.1] holds
with exponent € = €/2; thus 7(Y,,z) > Y, 2/ log!+</? Y,z

Let X, = = anglogg/ 2 Y,z we show the claim in the theorem holds for almost all z < X, .. We
may assume Y, ; < x < X, ¢, as the fraction of numbers less than X, z which are also less than Y, ¢
tends to zero (the percentage is just 1/ log”? Y}, 7).

The claim follows by showing m(x) > z/log" ™z for such z. We use the fact that 7 () is non-
decreasing, and by definition of Y, ; there are at least Y, z/ log1+g/ 2 Y, z primes at most X,, . The
worst case for us would be that these are all the primes up to X, z, but as the number of primes at most

%His note incorrectly mixed up a negation, and the claimed bound of m(x) > !¢ is wrong.
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x is non-decreasing we have 7(z) > Y,, ¢/ log”g/ 2 Y, z for all = under consideration; we now need to
rewrite this in terms of . We have

Y,z T log_’g/2 Y,z T T
m(x) > — > = - = — > — 34
( ) — 10g1+5/2 Yn,’E — 10g1+5/2 Yn,’E logl—l—e Yn,? = logl—l—e x ( )
thus for  in the desired range we have 7(z) > =/ log' "z, completing the proof. O
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