OPTIMAL TRANSPORTATION WITH CONSTANT CONSTRAINT

WYATT BOYER, BRYAN BROWN, ALYSSA LOVING, AND SARAH TAMMEN

We consider optimal transportation with constraint after Korman and McCann [KM11,
KM13], provide simplifications and generalizations of their examples and results, and
provide some new examples and results.

1. INTRODUCTION

The classical problem of optimal transportation seeks the least-cost way to move
material between two locations in R”. Monge [Mon, 1781] sought an optimal map-
ping. A more general problem after Kantorovich ([K], see [V, Thm. 3.1]) seeks a
cost-minimizing coupling between two measure spaces. If the coupling is absolutely
continuous, it is given by a density H on the product. Recently optimal transportation
has been used to better understand Riemannian manifolds and extend concepts such as
Ricci curvature to more general spaces (see [CMS], [V]).

Korman and McCann [KM11] add a constraint on the amount of material that can be
transported between any two locations, an upper bound A(x,y) on the density H. It is
easy to show (Prop. 2.2) that if 4 is not prohibitively small there is an optimal density
H which equals 0 or 4 almost everywhere.

In this paper we specialize to the case of constant o. We assume /& > 1, which is
necessary and sufficient for existence (Prop. 2.2). Focusing on the solutions of the form
0 or h almost everywhere, for this paper we define a transportation plan as a map F
from X to subsets of ¥ with measure 1/A.

Our main Section 3 recognizes that many old and new examples of optimal trans-
portation have the stronger "universal”" property of minimizing the cost at each point
separately. This leads to simplified proofs for many of the results and examples of
Korman and McCann ([KM11], [KM13]) as well as explicit examples of optimal trans-
portation plans for all constraints & > 1. For instance, Example 3.6, due to Korman and
McCann [KM11, Ex. 1.1], provides a very short proof that optimal transportation from
the unit interval to itself with cost (x — y)* with constraint 4 = 2 maps each point to
whichever half of the unit interval it lies in. Proposition 3.12 proves that the intersec-
tion of two optimal transportation plans is optimal under certain conditions. Proposi-
tion 3.17 shows that in the torus or any Lie group every admissible translation-invariant
transportation plan is optimal for some continuous cost.

Proposition 4.3 presents a simplified approach to the surprising symmetries for dual
cost constraints found by Korman and McCann [KM13, Sect. 4].

Section 5 relates the case of finite spaces to some known combinatorial computations
and asymptotic estimates.
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2. EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORTATION PLANS

Proposition 2.2 provides existence of an optimal transportation plan F for admissible
(constant) constraint A.

Definitions 2.1. Let X and Y be smooth manifolds, not necessarily compact, complete,
or connected. Let f and g be nonnegative densities on X and Y, yielding probability
measures on X and Y. A transportation plan F with constant constraint A > 1 is a
measurable map from X to £(Y) such that F(x) has measure 1/h in Y for almost all
x € X and such that {x € X |y € F(x)} has measure 1/h in X for almost all y € Y. (By
F measurable we mean that the associated density H (x,y), defined as the characteristic
function of F(x), is measurable.) For a cost function c(x,y) € L*(X X Y), the total cost
of transportation is defined as

c[F] =-/Xj);(x)c(x,y)dydx.

A transportation plan F is optimal if it minimizes cost.

Proposition 2.2. Let X and Y be smooth manifolds with nonnegative densities f and g
respectively and total measure 1. There exists an optimal transportation plan F(x) if
and only if the (constant) constraint h > 1.

Proof. If h < 1, F(x) cannot have measure 1/h. On the other hand, if & > 1, the set
of transportation densities I'(X,Y) is nonempty, namely H(x,y) = 1, and an optimal
transportation density exists by standard compactness arguments (see [KM11, Thm.
311

Because L™(X,Y) is the dual of L! (X,Y), by Alaoglu’s Theorem (see [R, Sect. 3.15)),
the unit ball is compact in the weak—x* topology. Thus the set of transportation densities
I'(X,Y) is compact as well as convex. By the Krein-Milman Theorem, every compact
convex set has an extreme point (see [E]), and thus I'(X,Y’) has an extreme point. The
set of optimal transportation densities is a convex face of I'(X,Y) which contains an
extreme point H, which is also an extreme point of I'(X,Y). Such an extreme H must
equal O or h almost everywhere, i.e., is a transportation plan F (see [KM13, Prop.
3.2]). a

Although we will not need it, we provide the following uniqueness theorem of Kor-
man and McCann.

Proposition 2.3. [KM13, Thm. 3.3] Let X and Y be smooth manifolds with nonnegative
densities [ and g respectively and total measure 1. If the cost c(x,y) is bounded, twice
differentiable, and non-degenerate, i.e. det[Di,-y ic(x,¥)] # 0 for almost all (x,y) € X x
Y, then an optimal transportation plan F (x) is unique (up to measure 0).

Proof. Theorem 3.3 in [KM13] gives a unique optimal density H. Since at least one
optimal transportation density is an extreme point of I', H must be an extreme point of
I" and thus a transportation plan F. []

PODFTECHNOLOGIES

Toals & Components for Senous Developers


http://www.pdf-technologies.com

OPTIMAL TRANSPORTATION 3

Additionally, we give necessary and sufficient conditions for a map F from X to
subsets of ¥ to be a transportation plan.

Proposition 2.4. Let F be a measurable map from X to subsets of Y with constant
constraint h > 1 such that F (x) has measure 1 /h inY for almost all x € X. F is a trans-
portation plan if and only if for every A C X of measure greater than 1/h, NycaF (x)
has measure 0.

Proof. If F is a transportation plan, the condition holds. Suppose that F is not a trans-
portation plan. Then it is not true that {x € X |y € F(x)} has measure 1/h for almost all
y. Since by Fubini’s Theorem the average

| flrexlye F@Yay= [ g(F()ax=1/n,
Y X

for some nontrivial subset of Y, {x € X |y € F(x)} has measure greater than 1/, and
the condition fails. O

3. UNIVERSALLY OPTIMAL TRANSPORTATION

Finding optimal transportation plans for a given cost and constraint is hard. For
example, the problem of optimal transportation from the unit interval I = [0, 1] to itself
with cost ¢(x,y) = (x—y)? is still open for h # 2 (see [KM11, Ex. 1.2], [KM13, Fig. 1]).
In certain cases, however, it is possible to minimize the cost at each point separately.

Definition 3.1. For two smooth manifolds X and Y, a transportation plan F for the cost
function ¢ under constant constraint & > 1 is universally optimal if for almost every

x € X it minimizes
f c(x,y)dy.
F(x)

It follows immediately that F is optimal.

Morgan uses this concept of universal optimality to generalize and give shorter proofs
of some of the examples of Korman and McCann.

Proposition 3.2. ([KM11, Ex. 1.3 ], [Mor, Prop. 1]) Let X be a Riemannian manifold
of unit volume, with a transitive group of measure-preserving isometries, with cost of
transportation c(x,y) increasing in distance with constant constraint h. Then unique
(universally) optimal transportation maps each x € X to a geodesic ball about x of
volume 1/h.

Proof. An optimal transportation plan F with constraint 2 must map a point x € X to
a set of volume at least 1/h, and the geodesic ball minimizes cost among such. By
the symmetry assumption, all balls of the same radius have the same volume, so the
set mapped to a target point y € Y is the ball about x with volume 1/h and the map
satisfies the definition of a transportation plan and is clearly uniquely optimal (up to
sets of measure 0). O

Proposition 3.3. ([KM11, Ex. 1.1 ], [Mor, Prop. 2]) Let X and Y be two Riemannian
manifolds of unit volume with cost of transportation c(x,y) and constant constraint
h > 1. Suppose that for almost all x € X, c(x,y) is negative for 1/h of the y’s in Y and
nonnegative for the rest, and for almost ally € Y, c(x,y) is negative for 1 /h of the x’s in
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X and nonnegative for the rest. Then unique (universally) optimal transportation maps
each x € X to the subset of Y with negative cost.

Proof. By hypothesis, both F(x) and {x € X |y € F(x)} have measure 1/A for almost
x € X and y € Y respectively, and F is clearly universally and uniquely optimal (up to
sets of measure 0). O

Proposition 3.4. Every transportation plan for which all images and inverse images
have measure 1/h is optimal for some cost.

Proof. Let c(x,y) = X (x)c(¥) — 1. Thus F is optimal by Proposition 3.3. O

Example 3.5. ((KM11, Ex. 1.1], [Mor, Ex. 2.1]) For integer & > 2, let X consist of &
equal-volume regions in R" such that the maximum diameter of a region is less than the
minimum distance between regions. Let c(x,y) be a cost function on X x X increasing
in distance. Then optimal transportation from X to itself with constant constraint A
maps the points of each region to itself. (To apply Proposition 3.3, subtract a constant
from the cost.)

Example 3.6. ((KM11, Ex. 1.1],[Mor, Ex. 2.2]) Let X be a centrally symmetric body
in R". For cost ¢(x,y) = —2x-y, which is equivalent to (x — y)? because its integral
differs by a constant, and constraint 4 = 2, (universally) optimal transportation from
X to itself maps x to y with x-y positive (see Fig. 1). In R! central symmetry is
unnecessary as long as the origin is the median. Similarly for any cost with the same
sign as x-y. The analysis generalizes to any centrally symmetric probability measure
on R” for which hyperplanes through the origin have measure 0 and to any probability
measure on R!. Optimal transportation from X to itself with cost —2x -y is still open
for constraint & # 2, though Korman and McCann give numerical estimates from some
cases (see [KMI11, Ex. 1.2], [KM13, Fig. 1]).

. + -
x s .

F(x)

®
Xy

FIGURE 1. Optimal transportation F from the unit ball in R? to itself
with cost ¢(x,y) = (x—y)? and constraint 4 = 2 maps each x to the half-
ball {x-y > 0}.

Example 3.7. Unique (universally) optimal transportation from the sphere S” to the ball
B"*1 with cost c(x,y) = (x —y)? and constraint # = 2 maps a point x to the half-ball

{x-y>0}.

Proof. As in Example 3.5, the cost is equivalent to —2x -y, which is negative precisely
on the asserted half-ball, proving the asserted map uniquely universally optimal. OJ
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Example 3.8. [Mor, Ex. 2.3] Let X be a planar region with h-fold rotational symmetry,
such as a square (h = 4) as in Figure 2. For cost

c(x,y) = cos(m/h)|x||y| —x-y,

and constant constraint £ > 1, (universally) optimal transportation maps all points on a
ray from the origin to a cone of angle 7 /h about that ray.

cost

F(x)

FIGURE 2. Optimal transportation F maps each x on a ray from the
origin to a cone about that ray.

Remark 3.9. [Mor, 2.4] Such examples of universally optimal transportation plans
from X; to ¥; extend to universally optimal transportation plans from ITX; to ITY; with a
cost which is negative if and only if the costs of the projections are all negative: optimal
transportation with constraint 2 = I'1h; maps to points of negative cost. In particular,
Example 3.8 generalizes to a product of such actions on R*" with cost negative if and
only if x;-y; > (cos 7 /h;)|x;||y;| for all i: optimal transportation with constant constraint
h = I1h; maps all points with projections on rays from the origin to a product of cones
of angle 7 /h; about the ray.

Remark 3.10. [Mor, 2.5] Such examples of universally optimal transportation plans
from X to ¥ with cost c(x,y) extend to universally optimal transportation plans on
warped products A x X, A x Y, as long as the cost ¢'(a,x,a,y) has the same sign as
¢(x,y). For example, for any 4 > 1, Proposition 3.3 on the sphere, with cost ¢(x,y) =
alx||y| —x -y, with a chosen so that optimal transportation maps to points of negative
cost, extends to the ball, with points on a ray from the origin mapped to a cone of
negative cost about that ray.

Remark 3.11. Although universally optimal transportation plans are by definition op-
timal transportation plans, the converse is not true in general. Consider transportation
from the unit interval to itself with cost of transportation increasing with distance and
constant constraint 2 = 2. Minimizing cost for each x does not even give a valid trans-
portation plan because because points near 0 and 1 are mapped to by less than half of
the interval.

Given two universally optimal transportation plans for two different costs, we seek
ways to generate a third cost and a related universally optimal transportation plan.
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Proposition 3.12. Let Fi and F, be optimal transportation plans from X to Y with
with costs ¢| and ¢, and constant constraints hy and h; respectively. Suppose that for
almost all x, F;(x) = {y € Y |ci(x,y) < 0}. If for some 1 < h < oo, for almost all x € X,
Fi(x) N F>(x) has measure 1/h, and for almost all y € Y, {x e X |y € Fi(x)} N{x €
X|y € F(x)} has measure 1/h, then F(x) = F1(x) N Fa(x) is a universally optimal
transportation plan from X to Y with cost ¢(x,y) = max(cy,c2) and constraint h.

Proof. Tt suffices to show that for almost all x € X, ¢(x,y) is negative for 1 /hof they € ¥
and nonnegative for the rest and for almost all y € ¥, ¢(x,y) is negative for 1/h of the
x € X and nonnegative for the rest. By hypothesis on F, for almost all x € X, ¢(x,y) is
negative for 1/h of the y € Y. It is nonnegative for the rest because for x ¢ F(x) implies
some c;(x,y) must be nonnegative, thus ¢(x,y) must also be nonnegative. The reverse
condition holds by similar argument. O

Corollary 3.13. Let X be a region with 4-fold rotational symmetry in R* with cost of
transportation from X to X given by c(x,y) = max((x-y),det[x|y]) where det[x|y| is the
determinant of the matrix with x and y as its column vectors. Mapping each point to
the region of negative cost uniquely gives (universally) optimal transportation for h = 4
(see Fig. 3).

Proof. The map F;(x) = {y € X |x-y > 0} is an optimal transportation plan from X to
itself with cost ¢;(x,y) = —x -y and constraint h = 2 (see Ex. 3.5). Similarly the cost
c2(x,y) = det|x|y] with constraint & = 2 satisfies the hypotheses of Proposition 3.3 and
thus the map F>(x) = {y € X | det[x|y] < 0} is an optimal transportation plan from X
to itself with cost ¢3(x,y) and constraint # = 2. By Proposition 3.12, if for almost all
x,y € X, F{(x)NF(x) and {x € X |y € Fi(x)} N{x € X|y € F>(x)} both have constant
measure 1/h for some h > 1, then F(x) = Fi(x) N F2(x) is an optimal transportation
plan from X to itself with cost c(x,y) = max(c;,cz) and constraint 1/h. For almost
all x € X, dFj(x) is the line through the origin normal to the line through x and the
origin and dF;(x) is the line through x and the origin. Because two normal lines both
through the origin partition a region with 4-fold rotational symmetry centered on the
origin in R? into four congruent regions, and exactly one of these regions is equivalent
to Fj(x) N Fa(x), it follows that Fj(x) N F>(x) has constant measure 1/4. Similarly, the
boundary of the set {x € X |y € F;(x)} is the line through the origin normal to the line
through y and the origin and the boundary of the set {x € X |y € F2(x)} is a line through
y and the origin. Thus, by the same argument as above, {x€ X |y€ Fi(x)}N{x€ X |y €
F>(x)} has measure 1/4. By Proposition 3.12, the asserted map is optimal. O
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. Fy(x)
A

Fy(x)

Cp = —X"¥

o= |xy|

"~

¢ = max(c,c;) F(x) = Fi(x) N Fy(x)

FIGURE 3. The intersection of optimal transportation plans yields a new
optimal transportation plan under certain hypothesis.

Remark 3.14. If the hypotheses of Proposition 3.12 hold, then the maps F(x) = Fj(x) U
F>(x) and F (x) = Fy (x) A Fo(x) are optimal transportation plans for costs ¢ = min(cy, ¢;)
and ¢’ = ¢y - ¢; and some constraints 4 and A’ respectively.

Example 3.15. Let X be a region with 4-fold rotational symmetry in R2. Then an
optimal transportation plan F' for cost

c(x,y) = ((cos3m/4h)|x||y| —x-y)((cos 7 /4h)|x|[y| — x-¥)
and constraint 2 = 2 maps points on a ray from the origin to two cones (see Figure 4).

. Fi(x)

¢, =alx|lyl —x-y

¢; =blx|lyl —x-y —> Fy(x)

¢'=10,C3 Fi(x)AF,(x)

FIGURE 4. Other set operations yield even more examples of optimal
transportation.

The condition in Proposition 3.12 that F;(x) N F>(x) have constant measure 1/ for
almost all x € X and some # is independent of the condition that {x € X |y € Fi(x)} N
{x € X |y € F>(x)} have constant measure 1 /A for almostall y € Y.

Example 3.16. Let X be {1,2,3,4} or equivalently the unit interval divided into four
quarters. Consider transportation Fj, F; from X to X, such that

R(1) ={3,4}, (1) = {1,4}
F(2) ={2,3}, A2(2) = {1,2}
F(3) ={1,2}, K,(3) = {2,3}
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Fl(4) = {114}1 F2(4) ~ {3’4}

Then F(x) = Fy(x) N F>(x) has constant measure 1/4 but {x € X |y € F(x)} = {x €
X|ye Fi(x)} N {x€X|y€ F(x)} has measure 1/2 for {2,4} and measure 0 for {1,3}.

Proposition 3.17. Let X be a Lie group. Given an open subset A of X with measure 1/h,
there exists a continuous cost function c(x,y) such that the unique (universally) optimal
transportation plan F from X to itself with constant constraint h maps the identity to
the set A and maps each element x € X to the set x-A = xA.

Proof. Let the cost c(x,y) equal the distance from y to the boundary of x - A, with neg-
ative cost on the interior of x- A and nonnegative cost on the complement of x-A. By
Proposition 3.3, the asserted map is optimal. O

Example 3.18. Let X = S' x S! with unit area. Given an open subset A C X with
measure 1/h, such as the H-shaped region in Figure 5, there exists a continuous cost
function c(x,y) such that the unique (universally) optimal transportation plan F from X
to itself with constant constraint # maps the origin to the set A and maps almost every x
to the set 7,(A), where 1, is the translation that takes the origin to x.

X2 X1

Xo

FIGURE 5. Optimal transportation F maps each x to an H-shaped region.

Example 3.19. Optimal transportation from a flat rectangular torus to itself with cost
¢(x,y) = min(d(x;,y;)) and constraint 4 maps each point to a neighborhood around the
coordinate axis centered at that point.
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cost

—_— - F(x)

cost

FIGURE 6. Optimal transportation on the flat rectangular torus maps
each x to a small neighborhood around the coordinate axis centered at
that point.

4. TRANSPORTATION AND SYMMETRY

Korman and McCann [KM13, Sect. 4] found surprising symmetries between opti-
mal transportation plans with dual constraints. Proposition 4.3 presents a simplified
approach.

Definition 4.1. A map f from X’ to X is called measure preserving if the measure of
A C X equals the measure of f~1(4) C X'.

Proposition 4.2. Let F be an optimal transportation plan from X to Y with cost c(x,y)
and constraint h. Let f and g be measure-preserving maps from X' to X and fromY' to
Y respectively. Then G(X') = g7V (F(f(x))) provides optimal transportation from X' to
Y’ with cost co (f,g) and constraint h.

Proof. We need to show that G(x') and G~1(y') both have measure 1/h and that the
total cost of transportation is minimal. For ¥’ € X', G(x') = g~ ! (F(f(x')) must have
the same measure as F(f(x’)) which is 1/h by hypothesis. Similarly, for y’ in ¥/,
G~ 1(y') = f-1(F~'(g(y')) must have the same measure as F~!(g(y’)) which is also
1/h by hypothesis. To show that G is optimal, we will show that G and F have the same
cost and that any other transportation plan G, from X’ to Y’ has the same cost as an
analogous transportation plan F; from X to Y and therefore must be of greater total cost
than G. The cost of transportation from x’ to y’ is equal to c(f ('), F(f(x')); thus G and
F have the same total cost of transportation. Let G, be another transportation map from
X'toY'. Let F(f(¥)) = g(G2). Then G, = g~} (F>(f(x')) and the result follows. [J

Proposition 4.3. ([KM13, Lemma 4.1], [Mor, Prop. 3]) Let M), M; be subsets of R"
or Riemannian manifolds with boundary or metric measure spaces of volume V. Let T;
be a measure-preserving map from M; to itself and let T = Ty X T». Let c(x,y) be a cost
satisfying coT = —c. Ifthe map F is an optimal transportation plan from My to M with
cost c¢(x,y) with constraint h, then the map T>(F' o Ty) is an optimal transportation plan
from My to M with cost ¢ and constraint k' where 1/h+1/h' = 1 and F'(x) = F (x)C.
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Proof. If F is an optimal transportation plan for cost ¢ and constraint A, then F(x)' =
F (x)C is the most expensive transportation plan for cost ¢ with constraint /', and hence
an optimal transportation plan for cost —c. Therefore T3(F’ o Tj) is an optimal trans-

portation plan for cost —co T = ¢ and constraint /. O
Example 4.4. ([Mor, Exp. 3.1], [KM13, Lemma 4.1]) Let My and M, be subsets of
R", with My centrally symmetric, and let the cost c(x,y) = —x-y (which is equivalent to

(x —y)?). Then central inversion in x carries optimal transportation with constraint h
to optimal transportation with constraint h'.

5. TRANSPORTATION PLANS ON FINITE SETS

Consider the case where X and Y are finite sets, say X = {1,2,..,m}andY = {1,2, .n}.
In this case we may assume that the constraint & is a common divisor of m and n. A
map F from X to Y is equivalent to the n x m matrix of Os and 1s with entry a;; = 1
if and only if i € F(j) (see [L], [W]). Such a matrix gives a transportation plan if and
only if the matrix has m/h 1s in each column and n/h 1s in each row. Thus the number
of transportation plans is equal to the number of n x m binary matrices with constant
column sums n/h and constant row sums m/h. Asymptotic estimates exists for large
m,n (see [CM1], [MW]). Canfield and McKay [CM2] have also computed the number
of such matrices for m,n < 30.
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