One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation

Yuan Xiao Xiaokuan Zhang

Yingian Zhang

Radu Teodorescu

Department of Computer Science and Engineering
The Ohio State University
{xiao.465, zhang.5840} @ buckeyemail.osu.edu, {yingian, teodores} @ cse.ohio-state.edu

Abstract

Row hammer attacks exploit electrical interactions be-
tween neighboring memory cells in high-density dy-
namic random-access memory (DRAM) to induce mem-
ory errors. By rapidly and repeatedly accessing DRAMs
with specific patterns, an adversary with limited privilege
on the target machine may trigger bit flips in memory re-
gions that he has no permission to access directly. In this
paper, we explore row hammer attacks in cross-VM set-
tings, in which a malicious VM exploits bit flips induced
by row hammer attacks to crack memory isolation en-
forced by virtualization. To do so with high fidelity, we
develop novel techniques to determine the physical ad-
dress mapping in DRAM modules at runtime (to improve
the effectiveness of double-sided row hammer attacks),
methods to exhaustively hammer a large fraction of phys-
ical memory from a guest VM (to collect exploitable
vulnerable bits), and innovative approaches to break
Xen paravirtualized memory isolation (to access arbi-
trary physical memory of the shared machine). Our study
also suggests that the demonstrated row hammer attacks
are applicable in modern public clouds where Xen par-
avirtualization technology is adopted. This shows that
the presented cross-VM row hammer attacks are of prac-
tical importance.

1 Introduction

Security of software systems is built upon correctly im-
plemented and executed hardware-software contracts.
Violation of these contracts may lead to severe security
breaches. For instance, operating system security re-
lies on the assumption that data and code stored in the
memory subsystems cannot be altered without media-
tion by the software running with system privileges (e.g.,
OS kernels, hypervisors, efc.). However, the recently
demonstrated row hammer attacks [23], which are capa-
ble of inducing hardware memory errors without access-

ing the target memory regions, invalidate this assump-
tion, raising broad security concerns.

Row hammer attacks exploit a vulnerability in the de-
sign of dynamic random-access memory (DRAM). Mod-
ern high-capacity DRAM has very high memory cell
density which leads to greater electrical interaction be-
tween neighboring cells. Electrical interference from
neighboring cells can cause accelerated leakage of ca-
pacitor charges and, potentially, data loss. Although
these so-called “disturbance errors” have been known
for years, it has only recently been shown that these er-
rors can be triggered by software. In particular, [23] has
demonstrated that malicious programs may issue spe-
cially crafted memory access patterns, e.g., repeated and
rapid activation of the same DRAM rows, to increase
the chances of causing a disturbance error in neighbor-
ing rows.

Row hammer vulnerabilities have been exploited in
security attacks shortly after its discovery [4, 10, 16, 20].
In particular, Seaborn [4] demonstrated two privilege es-
calation attacks that exploit row hammer vulnerabilities:
One escaped from Google’s NaCl sandbox and the other
gained kernel memory accesses from userspace pro-
grams running on Linux operating systems. Other stud-
ies [10,16,20] aim to conduct row hammer attacks from
high-level programming languages, e.g., JavaScript, so
that an adversary can induce memory errors and escalate
privileges remotely, by injecting malicious JavaScript
code into the target’s web traffic (e.g., by hosting ma-
licious websites, cross-site scripting, man-in-the-middle
attacks, etc.).

In contrast to the client-side bit flip exploitations,
server-side row hammer attacks are much less under-
stood. One particularly interesting scenario where
server-side row hammer attacks are of importance is
in multi-tenant infrastructure clouds, where mutually-
distrusting cloud tenants (i.e., users of clouds) may co-
locate their virtual machines (VM) on the same physical
server, therefore sharing hardware resources, including

DRAMSs. Although server-grade processors and more
expensive DRAMs are believed to be less vulnerable to
row hammer attacks [23], studies have suggested that
even servers equipped with error correcting (ECC) mem-
ory are not immune to such attacks [12,23].

In this paper, we aim to explore row hammer attacks
in cross-VM settings, and shed some light on the secu-
rity, or lack thereof, in multi-tenant infrastructure clouds.
The goal of this research is not to extensively study how
vulnerable the cloud servers are. Rather, we explore
whether the isolation of cloud software systems—virtual
machines and hypervisors—can be circumvented by row
hammer attacks (and if so, how?), should the underlying
hardware become vulnerable.

Towards this end, we demonstrate cross-VM row ham-
mer attacks with high fidelity and determinism, which
can be achieved in the following pipelined steps.

First, determine physical address mapping in DRAM.
Double-sided row hammer attacks target a specific mem-
ory row by hammering its two neighboring rows to en-
hance the effectiveness of the attack [4,23]. Conducting
such attacks, however, requires knowledge of the physi-
cal memory mapping in DRAMs (i.e., bits in physical ad-
dresses that determine memory channels, DIMMs, ranks,
banks, and rows). This enables the identification of ad-
dresses in neighboring rows of the same bank. How-
ever such information is not publicly available for In-
tel processors and memory controllers. Moreover, the
same memory controller may map physical addresses to
DRAMs in different ways, depending on how DRAM
modules are configured.

To address this issue, we developed a novel algo-
rithm to determine the memory mapping at runtime
(Section 3). Each bank in a DRAM chip has a row buffer
that caches the most recently used row in a bank. There-
fore, by alternately accessing two rows in the same bank,
we expect a higher memory access latency due to row
buffer conflicts. The increase in access latency serves as
the basis for a timing channel which can be used to de-
termine if two physical memory addresses are mapped to
the same DRAM bank. Building on the timing-channel
primitive, we developed a novel graph-based algorithm
which models each bit in a physical address as a node in
a graph and establishes relationships between nodes us-
ing memory access latency. We show that the algorithm
is capable of accurately detecting the row bits, column
bits and bank bits. We empirically show the algorithm
can accurately identify the DRAM mapping schemes au-
tomatically within one or two minutes on the machines
we tested.

Second, conduct effective double-sided row hammer
attacks. With knowledge of the DRAM address map-
ping, we conduct double-sided row hammer attacks from

Xen guest VMs. We first empirically study which row
hammer attack methods (i.e., accessing memory with or
without mfence instructions, see Section 4) are most ef-
fective and lead to most bit flips. Then, in order to guar-
antee that sufficient exploitable bit flips (i.e., located at
specific memory locations and can be repeatedly induced
in row hammer attacks) are found, we conduct exhaus-
tive row hammer attacks from a guest VM to test all
DRAM rows that are accessible to the VM. Because each
VM is limited to a small portion of the entire physical
memory, we also develop methods to explore more phys-
ical memory than assigned to our VM initially. In addi-
tion, we design a safe mode that makes bit flips induced
by row hammer attacks less likely to crash the system.

Third, crack memory isolation enforced by virtual-
ization. Unlike prior work, which sprays large num-
bers of page tables and conducts random row hammer
attacks hoping that bit flips will occur in a page table
entry (PTE) [4], in our approach (Section 5), we use hy-
percalls to map page directories in the OS kernel of our
own VM to physical pages containing memory cells that
are vulnerable to row hammer attacks. We then conduct
row hammer attacks to deterministically flip the vulner-
able bit at anticipated positions in a page directory en-
try (PDE), making it point to a different page table. In
the context of this paper, we call such attack techniques
page table replacement attacks to indicate that the orig-
inal page table has been replaced with a forged one. We
empirically demonstrate in Section 6 that such attacks al-
low a Xen guest VM to have both read and write access
to any memory pages on the machine. We demonstrate
two examples to illustrate the power of the cross-VM row
hammer attacks: private key exfiltration from an HTTPS
web server and code injection to bypass password au-
thentication of an OpenSSH server. We emphasize that
with the attack techniques we propose in this paper, the
attacker’s capability is only limited by imagination.

We note our attacks primarily target Xen paravirtual-
ized VMs, which, although are gradually superseded by
hardware-assisted virtualization, are still widely used as
cloud substrates in public cloud like Amazon EC2. This
offers the adversary easy-to-break targets on servers with
vulnerable hardware. Given the existing evidence of suc-
cessful co-location attacks in public clouds [30, 32], we
recommend discontinuing the use of such virtualization
technology in cloud hosting services.

Contributions. This paper makes the following contri-
butions to the field:

e A novel graph-based algorithm incorporating timing-
based analysis to automatically reverse engineer the
mapping of the physical addresses in DRAMs.

e A novel page table replacement technique that allows
a malicious guest VM to have read and write accesses

to arbitrary physical pages on the shared machine.

e Implementation of effective double-sided row ham-
mer attacks from guest VMs, and a systematic evalu-
ation of the proposed techniques.

e Demonstration of two concrete examples to illustrate
the power of the cross-VM attacks: private key ex-
traction from HTTPS servers and code injection into
OpenSSH servers to bypass authentication.

Roadmap. We will first summarize related work in
the field and introduce background knowledge to set the
stage for our discussion (Section 2). We will then de-
scribe a novel graph-based algorithm for detecting phys-
ical address mapping in DRAMs (Section 3). We then
present a few technical details in our row hammer attack
implementation (Section 4) and a page table replacement
attack that enables arbitrary cross-VM memory accesses
(Section 5). Next, we evaluate the proposed techniques
(Section 6). Finally, we discuss existing countermea-
sures (Section 7) and conclude (Section 8).

2 Background and Related Work
2.1 DRAM Architecture

Modern memory systems are generally organized in mul-
tiple memory channels, each handled by its own dedi-
cated memory controller. A channel is partitioned into
multiple ranks. A rank consists of several DRAM chips
that work together to handle misses or refill requests
from the processor’s last-level cache. Each rank is also
partitioned into multiple banks. Each bank has a row
buffer to store the last accessed row in that bank. All
banks and ranks can generally support independent trans-
actions, allowing parallel accesses to the DRAM chips.
A typical memory system is illustrated in Figure 1.

Channel

|DIMM n

]

Column

DIMM 0

Row

| Rank 1

Rank 0
Chip| [Chip| |Chip| [Chip| Chip| [Chip| |Chip
0 1 2 3 4 5 6
8-bit

Figure 1: DRAM architecture.

Chip|
7
Data bus

64-bit

DRAM chips are large arrays of memory cells with
additional support logic for data access (read/write) and
refresh circuitry used to maintain data integrity. Mem-
ory arrays are organized in rows (wordlines) and columns
(bitlines) of memory cells.

Each memory cell consists of a capacitor that can be
charged and discharged to store a 0 or a 1. An access
transistor in each cell allows reads and writes to its con-
tent. The transistor is controlled through the wordline.
When the wordline is activated, the content of all the ca-
pacitors on that row are discharged to the bitlines. Sense
amplifier circuitry on each bitline amplifies the signal
and stores the result in the row buffer.

Additional circuitry in the memory arrays includes ad-
dress decoding logic to select rows and columns and in-
ternal counters to keep track of refresh cycles. In addition
to the cells dedicated for data storage, DRAM chips of-
ten include additional storage for ECC (error-correction
codes) or parity bits, to enable detection and/or correc-
tion of errors in the data array.

DRAM Refresh. The charge in the DRAM cell capaci-
tor drains over time due to leakage current. To prevent
data loss the content of the cell requires periodic “re-
fresh.” The refresh interval ranges between 32 and 64
milliseconds and is specified as part of the DDR memory
standard. Refresh operations are issued at rank granular-
ity in recent designs. Before issuing a refresh operation,
the memory controller precharges all banks in the rank. It
then issues a single refresh command to the rank. DRAM
chips maintain a row counter to keep track of the last row
that was refreshed — this row counter is used to determine
the rows that must be refreshed next.

DRAM address mapping. Given a physical memory
address, the location of the data in the DRAM chips
is determined by the DRAM address mapping schemes
used by the memory controllers. This information, while
available for some processors [3], is not revealed by
major chip companies like Intel or ARM. Some pre-
liminary exploration to determine DRAM address map-
ping on older Intel processors has been conducted by
Seaborn [5]. Concurrently to our work, Pessl et al. [29]
proposed methods to reverse-engineer physical address
mapping in DRAM on both Intel and ARM platforms.
Similar to our work, a timing-based approach was used
to determine whether two addresses were mapped to
two different rows of the same DRAM bank. Unlike
our work, brute-force approaches were taken to (1) col-
lect sets of memory addresses that are mapped to the
same banks by randomly selecting addresses from a large
memory pool and conducting the timing-based tests to
cluster them, and (2) to determine the XOR-schemes (see
Section 3) that are used by memory controllers, by test-
ing all possible combinations of XOR-schemes against
all sets of addresses.

The advantage of their approach over ours is that it
exhaustively searches XOR-schemes without the need to
reason about the complex logic behind them, as is done
in our paper. However, our method targets specific bit

combinations and therefore is more efficient. Specially,
it has been reported in [29] that it took about 20 minutes
to reverse engineer the DRAM mapping on a normally-
loaded system. Our approach, on the other hand, takes
less than two minutes (see Section 6). In addition, Pessl
et al. [29] also indicated that completeness is not guaran-
teed as it depends on random addresses. Hence, a com-
plete test using their approach may take even longer.

2.2 Row Hammer and DRAM Bit Flips

Modern DRAM chips tend to have larger capacity, and
hence higher density of memory cells. As a result, a
memory cell may suffer from disturbance errors due to
electrical interference from its neighboring cells. More-
over, certain memory access patterns, such as repeated
and frequent row activation (“row hammering”), may
easily trigger disturbance errors. The “row hammer”
problem caught Intel’s attention as early as 2012 and was
publicly disclosed around 2014 [13-15,19]. Independent
of Intel’s effort, Kim et al. [23] also reported that random
bit flips can be observed by specially crafted memory ac-
cess patterns induced by software programs.

The first practical row hammer exploit was published
by Seaborn from Google [4], who demonstrated privilege
escalation attacks exploiting row hammer vulnerabilities
to break the sandbox of Google’s NaCl, and to obtain
kernel memory accesses from userspace programs run-
ning on Linux operating systems. The study was quickly
followed up by others [10,16,20], who demonstrated row
hammer attacks using Javascript code, which meant that
the attacks could be conducted without special privileges
to execute binary code on target machines. This paper
follows the same line of research, but our focus is server-
side row hammer attacks, although some of the proposed
techniques will also be useful in other contexts.

It has been claimed that server-grade processors and
DRAM modules are less vulnerable to row hammer at-
tacks [23], especially when the server is equipped with
ECC-enabled DRAM modules. However, ECC is not the
ultimate solution to such attacks. The most commonly
used ECC memory modules implement single error-
correction, double error-detection mechanisms, which
can correct only one single-bit of errors within a 64-bit
memory block, and detect (but not correct) 2-bit errors
in the same 64-bit block. More bit errors cannot be de-
tected and data and code in memory will be corrupted
silently [23].

Dedicated defenses against row hammer vulnerabili-
ties by new hardware designs have been studied in [22].
Particularly, Kim et al. [22] proposes Counter-Based
Row Activation (CRA) and Probabilistic Row Activa-
tion (PRA) to address row hammer vulnerabilities. CRA
counts the frequency of row activations and proactively

activates neighboring rows to refresh data; PRA enables
memory controllers to activate neighboring rows with a
small probability for every memory access.

3 DRAM Addressing

Prior work [4] has indicated that double-sided row ham-
mer attacks are much more effective than single-sided
ones. We therefore focus on developing a software tool
to conduct double-sided row hammer attacks from within
virtual machines. To make the attack possible, we first
must find the physical memory address mapping in the
target DRAMs, and do so without physical accesses to
the machines. More precisely, we hope to determine
which bits in a physical address specify its mapping to
DRAM banks, rows and columns.

This information, however, is not available in the sys-
tem configuration or in the memory controller or DRAM
datasheets. Intel never discloses the mapping algorithm
in their memory controllers; moreover, the same mem-
ory controller will likely map the same physical address
to a different DRAM location if the number or size of
DRAM chips is changed. Therefore, in this section, we
present a method to reverse engineer the physical address
mapping in DRAM at runtime. We call this procedure bit
detection. It is important to note that we do not need to
differentiate address bits for banks, ranks, or channels as
long as their combination uniquely addresses the same
DRAM bank.

3.1 A Timing-Channel Primitive

We resort to a known timing channel [27] to develop our
bit detection primitive. The timing channel is established
due to the row buffer in each DRAM bank. When two
memory addresses mapped to the same DRAM bank in
different rows are alternatively accessed in rapid succes-
sion, the accesses will be delayed due to conflicts in the
row buffer (and subsequent eviction and reload of the
row buffer). Therefore, by conducting fast and repeated
accesses to two memory addresses, one can learn that
the two address are located in different rows of the same
bank if one observes longer access latency.

The algorithm is described in Algorithm 1. The input
to the algorithm, LATENCY(), is a set of bit positions in
the physical address space. We use [to denote the in-
put. For example, I = {b3,b17} represents the 3rd and
17th right-most bits of the physical address. LATENCY()
randomly selects 100 pairs' of memory addresses from a
large memory buffer, so that each pair of addresses dif-
fers only in the bit positions that are specified by the in-
put, I: in each pair, one address has ‘1’s at all these bit

1A sample size that is large enough to achieve statistical significance.

Algorithm 1: LATENCY()

Input:

{b;}: a set of physical address bits
Output:

Access latency: 1 (high) or 0 (low)
begin

Randomly select 100 pairs of memory addresses that differ only in
{b;}: One address in each pair with all b; = 1 and the other with all
b; = 0. Place all 100 pairs in address_pairs{ }

for each pair k in address_pairs{} do
Start time measurement
for j in 10° do
Access both addresses in k
clflush both addresses
insert memory barrier
end
Stop time measurement
end

Return the average access latency compared to baselines
end

positions and the other address has ‘0’s at all these posi-
tions.

The algorithm enumerates each pair of addresses by
measuring the average access latency to read each ad-
dress once from memory. Specifically, it accesses both
addresses and then issues clflush instructions to flush
the cached copies out of the entire cache hierarchy.
Hence the next memory access will reach the DRAM. A
memory barrier is inserted right after the memory flush
so that the next iteration will not start until the flush has
been committed. The total access time is measured by is-
suing rdtsc instructions before and after the execution.
The algorithm returns 1 (high) or 0 (low) to indicate the
latency of memory accesses. LATENCY()=1 suggests the
two physical addresses that differ only at the bit positions
specified in the input are located on different rows of the
same DRAM bank.

3.2 Graph-based Bit Detection Algorithms

Using the LATENCY() timing-channel primitive we de-
velop a set of graph-based bit detection algorithms.
Specifically, we consider each bit in a physical address
as a node in a graph; the edges in the graph are closely
related to the results of LATENCY(): The set of bits are
connected by edges, if, when used as the input to LA-
TENCY(), yields high access latency. But the exact con-
struction of these edges may differ in each of the graphs
we build, as will be detailed shortly. We define all such
nodes as set V = {b;}c|1 », where n is the total number
of bits in a physical address on the target machine. In the
following discussion, we use b; to refer to an address bit
position and a node interchangeably.

Our bit detection algorithms works under the assump-
tion that Intel’s DRAM address mapping algorithms may
use XOR-schemes to combine multiple bits in physical
addresses to determine one of the bank bits. An XOR-
scheme is a function which takes a set of bits as input

and outputs the XORed value of all the input bits. This
assumption is true for Intel’s DRAM address mapping,
which is evident according to prior studies [5, 25, 33].
Our empirical evaluation also confirms this assumption.

Detecting row bits and column bits. We first define a
set of nodes R = {b;|LATENCY({b;}) = 1,b; € V}. Be-
cause LATENCY ({b;}) = 1, any two memory addresses
that differ only in b; are located in different rows of the
same bank. Therefore, bit b; determines in which rows
the addresses are located, i.e., b; is a row bit. But as the
two addresses are mapped to the same bank, b; is not
used to address DRAM banks.

Next, we define set C = {b;|LATENCY({b;,b;}) =
1,Vb; € R,b; ¢ R}. It means that when accessing two ad-
dresses that differ only in a bit in C and a bit in R, we ex-
perience high latency in the LATENCY/() test—indicating
that the two addresses are in the same bank but different
rows. Therefore, the bits in C are not at all involved in
DRAM bank indexing (otherwise changing bits in C will
yield a memory address in a different bank). The bits in
C are in fact column bits that determine which column in
arow the address is mapped to.

Detecting bank bits in a single XOR-scheme. We con-
sider an undirected graph G| constructed on the subset
of nodes V—R — C. If LATENCY({b;,b,}) = 1, node b;
is connected with node b; by edge e(b;,b;). There could
be three types of connected components in such a graph:
In the type I connected components, only two nodes are
connected (Figure 2a). Because LATENCY ({b;,b;}) =1,
changing bits b; and b; together will yield an address in
a different row of the same bank. Hence, at least one of
b; and b; (usually only the more significant bit—the one
on the left2) will be the row bit; the XOR of the two is a
bank bit. More formally, if e(b;,b;) is an edge in com-
ponent type I (shown in Figure 2a), and i > j, b; is a row
bit, b; @ b; determines one bank bit.

In the type II connected components, a set of nodes
are connected through a hub node (Figure 2b). For in-
stance, nodes b;, by, and b; are connected via node b;.
Particularly in Figure 2b, i =20, j =15,k =16,1=17.
Due to the property of the LATENCY() test, b; © b; must
be a bank bit and at least one of the pair is a row bit.
The same arguments apply to b; G by and b; & b;. We
can safely deduce that b; ® b; ® by ® b; is a common
XOR-scheme in which the four bits are involved: Other-
wise, without loss of generality, we assume b; © b; @ by
and b; @ b; are two separate XOR-schemes. When two
addresses differ only in b; and b, although the value
of b; © b; ® by does not change for the two addresses,

2The timing-channel approach cannot determine which bit is actually
the row bit in this case. However, because memory controllers need
to minimize row conflicts in the same bank, row bits are usually more
significant bits in a physical address [5,33]. Our hypothesis turned out
to be valid in all the case studies we have conducted (see Table 1).

®

U U

Row bit Row bit

Row bit ——
Row bit

...|21|20|19|18|17|16|15|...

...|21|20|19|18|17|16|15|...

...|21|20|19|18|17|16|15|...

Bank bit Bank bit

(a) Connected component type |

(b) Connected component type 11

Bank bit

(c) Connected component type 11T

Figure 2: Detecting bank bits in a single XOR-scheme.

b; ® b; will be different, thus making the two addresses
in different banks. However, this conclusion contradicts
the fact that LATENCY ({b;,b;}) = 1. Moreover, we can
conclude that only b; is the row bit, because otherwise
if another bit is also a row bit, e.g., b;, we should ob-
serve LATENCY ({b;,br}) =1 (because b; and by, are in-
volved in the XOR-scheme b; ®b; ® by ® b; and b; is a
row bit). However that is not the case here. To summa-
rize, if e(b;,b}), e(b;,by) and e(b;,b;) constitute a type
II connected component in Figure 2b, b; is a row bit and
b; ® b; @ by ® b; determines a bank bit.

In the type III connected components, a clique
of nodes replaces the single hub node in type II
components—each node in the clique is connected to all
other nodes in type III components (Figure 2¢). As a sim-
ple example, we assume nodes b; and b; are connected by
edge e(b;,b;), and both of them are connected to nodes
by and b;, which are not connected directly. Particularly
in Figure 2¢, i = 18, j =20, k = 15, [= 16. From the
analysis of type II components, nodes b;, by and b; must
follow that b; is a row bit and b; @ by & b; determines
one bank bit. Similarly, we can conclude that b; is a
row bit and b; @ by @ b; determines one bank bit. More-
over, we can deduce that b; ® by ® b; and b; © by © b;
determine the same bank bit, otherwise two addresses
that differ in b; and b; will be in two different banks,
which conflicts with LATENCY ({b;,b;}) = 1. Therefore,
b;®b;j Dby Dby is a bank bit. As such, in a type III com-
ponent in Figure 2c, all nodes in the clique represent row
bits, and the XOR-scheme that involves all bits in the
components produces one bank bit.

Detecting bank bits in two XOR-schemes. On some
processors, certain bits can be involved in more than
one XOR-schemes. For instance, a bit b; can be used
in both b; ® b; ® by and b; ® by, © b,. To detect such
bit configuration, we consider another undirected graph
G, constructed on the subset of nodes V—R — C. If

LATENCY ({b;,b,b,}) = 1, the three nodes are con-
nected with each other by edges e(b;,b;), e(bi,by),
e(bj,by,). If none of the three edges exist in graph G;—
the graph we constructed in the single-XOR-scheme-bit
detection—it means these three nodes are involved in
two XOR-schemes b; © b; and b; @ by,: if two addresses
differ in only two bits (out of the three), at least one of
these two XOR-schemes will specify a different bank in-
dex; however, if two addresses differ in all three bits, the
outcome of both XOR-schemes are the same for the two
addresses, so they are in the same bank. One of these
three bits (the most significant among the three) will be
used in both XOR-schemes and serve as a row bit.

“‘@ C(20)=15,16,17,18

' C(15)=17,18,20
C(16)=17,18,20

C(17)=15,16,20

C(18)=15,16,20

Bank bit
Row bit

TorJeo]ro[as[urae] 5] -

Bank bit

Figure 3: Detecting bank bits in two XOR-schemes.

Let’s look at a more general example where five
nodes are involved (Figure 3). In this example, the
five nodes in the connected components of G, are bys,
bis, b17, b1g and byg. They are connected by four
triangles: (b1s,b18,b20), (b16.b17,b20), (b16,b18,b20),
(b15,b17,b20). Following the discussion in the pre-
vious paragraph, four XOR-schemes should be used

to index banks: by @ b5, by P big, by P b7 and
byo @ b1g. However, because byg @ b1s and by D bje
implies LATENCY ({b1s,b16,b20}) = 1, but a triangle
(b15,b16,b20) doesn’t exist in our analysis, some of these
XOR-schemes need to be merged together. To complete
the analysis in the graph, we categorize nodes accord-
ing to the set of nodes they are connected with. For
instance, by is connected with {b;s,b16,b17,b13} (i.e.,
C(b2) = bis,b16,b17,b18). The node with the most
connected neighbors is the one involved in both XOR-
schemes (in this case, byg) and therefore is a row bit. The
nodes with the same set of neighboring nodes are used in
the same XOR-scheme: b5 and b;¢ are both connected
with {b17,b13,b20}, and therefore one XOR-scheme will
be b5 & b1 P byg; similarly, the other XOR-scheme will
be b17 B b1g D byo.

Detecting bank bits in more XOR-schemes. If a bit
is involved in more than two XOR-schemes, we can ex-
tend the method for detecting two XOR-schemes to de-
tect it. Particularly, on the subset of nodes V—R — C,
we enumerate all combination of four bits and look for
LATENCY ({b;,b},bi,b;}) = 1, which, following the rea-
soning steps in the prior paragraph, suggests that one of
the bits is involved in three XOR-schemes. Again, we
need to study the connected components to determine
the configuration of actual XOR-schemes, which can be
done by following a similar process as for two-XOR-
scheme-bit detection. For concision we don’t repeat the
discussion here. However, it is worth noting we have not
observed any bits that are used in more than two XOR-
schemes on the machines we have tested.

4 Effective Row Hammer Attacks

In this section, we discuss several facets of constructing
effective row hammer attacks in practice.

Row hammer code with or without mfence. prior
work has proposed two ways of conducting row ham-
mer attacks, pseudo code shown in Figure 4. Particularly,
in each loop of the attacks, after accessing two memory
blocks in two rows and flushing them out of the cache us-
ing c1flush instructions, the attack code can choose to
proceed with or without an mfence instruction before en-
tering the next loop. The benefit of having an additional
mfence instruction is to force the c1flush instructions
to take effect before the beginning of the next loop, while
the downside is that it will slow down the execution of
the program and thus reduce the frequency of memory
accesses. We will empirically evaluate the two methods
in Section 6.2.

Deterministic row hammer attacks. Prior studies [5]
on row hammer exploitation randomly selected DRAM
rows to attack and counted on luck to flip memory bits

loop:
mov (X), %ri10
mov (Y), %ril0
clflush (X)
clflush (Y)
mfence
jmp loop

loop:
mov (X), %ri0
mov (Y), %r10
clflush (X)
clflush (Y)
jmp loop

(a) c1flush w/o mfence (b) c1flush w/ mfence

Figure 4: Pseudo code for row hammer attacks.

that happen to alter page tables. These approaches are
non-deterministic and thus hard to guarantee success. In
our paper, we propose to search exploitable bit flips that
can be repeated in multiple runs. As will be discussed in
Section 5, only bit flips at certain positions within a 64-
bit memory block can be exploited; also, only a fraction
of them are repeatable in row hammer attacks (we will
empirically evaluate the fraction of vulnerable bits that
are both exploitable and repeatable in Section 6.2.3). As
such, on those less vulnerable machines, especially cloud
servers, it is important to design methods to exhaustively
search for vulnerabilities so that at least one of the vul-
nerable bit satisfies all the requirements.

Exhaustive row hammering. To enumerate as many
DRAM rows as possible to look for vulnerable bits, we
developed the following data structure and algorithm to
conduct double-sided row hammer attacks on every row
in every bank: Especially, as will be shown later in
Table 1, some of the 12 least significant address bits are
bank bits, which means the same 4KB memory page are
not always mapped to the same row. As such, we de-
signed a new data structure to represent memory blocks
in the same row. Our key observation is that cache-line-
aligned memory blocks are always kept in the same row
for performance reasons. We call a cache-line-aligned,
64B in size, memory block a memory unit, which is the
smallest unit of memory blocks for the purpose of book-
keeping. We design a three dimension array: The first di-
mension represents the bank index, the second dimension
is the row index and the third dimension stores an array
of memory units mapped to the same row. For example,
on a Sandy Bridge processor with 2 memory channels, 1
DIMM per channel, 1 rank per DIMM, and 8 banks per
rank (totally 4GB memory), there are 2* = 16 elements
(i.e., 2 x 8 banks) in the first dimension, 216 — 65536
elements (i.e., number of rows per bank) in the second
dimension, 27 = 128 elements (i.e., number of memory
units per row) in the third dimension.

Another observation we had for conducting efficient
row hammer attacks is to avoid hammering on rows in se-
quential order. According to our experiments, a recently-
hammered row is harder to induce bit flips when its
neighboring rows are hammered. This is probably be-

cause the cells in this row has been recently charged
many times. Therefore, we targeted each row in a pseu-
dorandom order. Specially, we first generate a pseudo-
random permutation of all rows in a bank, and then se-
quentially test one row from each bank from the first to
the last one and start over, where rows in the same bank
are tested according to the pseudorandom order.

If no vulnerable bits were found in the first round
of the attack, one can reboot the VM to obtain access
to other DRAM rows and conduct row hammer attacks
again. Even in public clouds, we found that rebooting
the guest VMs will relaunch the VM on the same host,
and possibly assigned to different (but largely overlap-
ping) physical memory. As such, although each VM only
has access to a small fraction of DRAM banks and rows,
using such an approach will greatly increase the tested
portion of the DRAM. We will empirically evaluate this
technique in Section 6.2.

Safe mode. To safely conduct row hammer attacks with-
out crashing the co-located VMs and the host machine,
we optionally conduct the row hammer attacks in a safe
mode: In Figure 5, only when we control all memory
units in row n, n+2 and n — 2 do we conduct the double-
sided row hammer attacks on row n+ 1 and n — 1. As
rarely would the row hammer attacks affect rows beyond
row n £ 2, this method provides a safe mode to conduct-
ing row hammer attacks, which is particularly useful in
attacks conducted in public clouds.

| BANK m |
bit-fli
ROW n-2 vulnerable I
n- .
| piC hammer J
ROW n-1 | | vaddr 1 |
bit-flj
ROW [vulnerable I
n h

L__hammer [li¢]

ROW n+1 | vaddr 2 |

bit-fli

[vulnerable I

ROWN+2 bit |
| |

Figure 5: A safe mode of row hammer attacks.

5 Cracking Memory Isolation

In this section, we present methods to conduct cross-
VM attacks enabled by DRAM row hammer vulnerabili-
ties, which will allow a malicious paravirutalized VM to
break VM isolation and compromise integrity and confi-
dentiality of co-located VMs or even the VMM.

5.1 Xen Memory Management

Xen paravirtualization keeps three types of memory ad-
dress spaces: a virtual address space for each process, a
pseudo-physical address space for each VM, and a ma-
chine address space for the entire physical machine [17].
To be compatible with native OS kernels, a paravirtual-
ized OS kernel (e.g., already a part of mainstream Linux
kernel) maintains a contiguous pseudo-physical mem-
ory address space; the mapping between pseudo-physical
memory addresses and virtual addresses are maintained
at page-granularity, following the same semantic as its
non-virtualized counterparts. The major difference in
a Xen paravirtualized VM is the page frame number
(PFN) embedded in a page table entry (PTE): it is filled
with machine addresses rather than pseudo-physical ad-
dresses. This is because Xen paravirtualization does not
maintain a shadow page table in the hypervisor [17]. Ad-
dress translation conducted by the CPU only traverses
one layer of page tables. Such a memory management
mechanism is called direct paging [11]. The mapping
between each VM’s pseudo-physical memory pages to
machine memory pages is also kept in the hypervisor, but
guest VM are allowed to query the mapping information
by issuing hypercalls (e.g., HYPERVISOR _memory_op()).
The mapping between virtual memory pages, pseudo-
physical memory pages and machine memory pages are
illustrated in Figure 6.

To enable security isolation, the Xen hypervisor keeps
track of the type of each memory page: page tables, seg-
ment descriptor page and writable pages. The hypervi-
sor enforces an invariant that only writable pages can be
modified by the guest VM. Whenever a page table hierar-
chy is loaded into the CR3 register upon context switch,
the hypervisor validates the memory types of the page ta-
bles to ensure the guest VM does not subvert the system
by modifying the content of the page tables. On Intel’s
x86-64 platforms, the page tables are organized in four-
levels: PGD, PUD, PMD, PT3. Particularly of interest to
us are the entries of PMD and PT, which are dubbed page
directory entries (PDE) and page table entries (PTE), re-
spectively. The structures of PDEs and PTEs are illus-
trated in Figure 7.

It is worthwhile noting that besides Xen paravirtual-
ization technology, recent Xen hypervisors also support
hardware-assisted virtualization, dubbed HVM in Xen’s
term [18]. The memory management in Xen HVM is dif-
ferent from that in PVM in many aspects. Most notably,
in HVM, guest VMs can no longer learn the physical ad-
dress of the pseudo-physical memory pages, due to the
intervention of a second-layer page table that is only ac-

3We use Linux terminology in this paper. Intel manuals call them page
map level 4 (PML4, or PGD), page directory pointer tables (PDPT, or
PUD), page directory tables (PDT, or PMD), page tables [6]. In Xen’s
terminology, they are called L4, L3, L2 and L1 page tables [11].

Virtual Address
(Application)

PGD (L4)

Pseudo Physical
| | Address
(Kernel)

PUD (L3)

| P2M Table | | M2P Table |

| | Machine Address
(Hypervisor)

Figure 6: Memory management of Xen paravirtualized
VMs.

12 11 8 7 6 5 4 3 2 1 0

X P C|W|U|R
N N HEREEE
(a) PDE

63 62 52 51 12 11
|X| | PFN

98 7 6 5 4 3 2 1

0
P c[w[uTr
[eleolJs[¥Is[M)

(b) PTE

Figure 7: Structures of PDE, PTE.

cessible by the hypervisor. As such, much of the attack
techniques discussed in this section only works in Xen
paravirtualized machines.

5.2 Page Table Replacement Attacks

In this section, we present a method for a malicious guest
VM to exploit the bit flips induced by row hammer at-
tacks to gain arbitrary accesses to memory on the host
machine. Instead of relying on an unreliable trial-and-
error approach used in prior studies [4, 20], in which a
large number of page tables are sprayed to increase the
chances of bit flips taking place in PTEs, we propose a
novel approach that, given a set of DRAM bit flips that
an attacker could repeatedly induce, deterministically ex-
ploits the repeatable bit flips and gains access to physical
memory pages of other VMs or even the hypervisor.

To access the entire machine address space with both
read and write permissions, the attacker VM could do
so by modifying a page table entry within its own VM
so that the corresponding virtual address could be trans-
lated to a machine address belonging to other VMs or
the hypervisor. However, direct modification of PTEs in
this manner is prohibited. Every PTE update must go
through the hypervisor via hypercalls, and thus will be
declined. We propose a novel attack that achieves this
goal by replacing the entire page tables in a guest VM
without issuing hypercalls, which we call the page table
replacement attacks.

For the convenience of discussion, we first define the

following primitives:

e Addr(v) returns the machine address of a vulnerable
bit.

e Offset(v) returns the bitwise offset within a byte of
a vulnerable bit (the right-most bit has an offset of 0).

e Direction(v) could be one of 0 — 1, 1 — 0, or 0 <>
1, indicating the most likely bit flip directions.

e Position(v) = 64 — ((Addr(v) % 8) x 8 + 8 —
Offset(v)), indicating the index of the bit in a 64-
bit aligned memory block (e.g., a page table entry).
The right-most bit has a position of 0.

e Virt(p) returns the virtual address of the beginning
of a page p.

e Differ(P;,P») returns a set of indices of bits in
which the machine addresses of two memory pages
P; and P, differ.

Specially, when the vulnerable bit v satisfies
Position(v) € [12,M], where M is the highest bit of
the physical addresses on the target machine, the attacker
could exploit the flippable bit to replace an existing page
table with a carefully-crafted page table containing en-
tries pointing to physical pages external to the guest VM
via the following steps (Figure 8):

Virtual Address
[PGD offset I PUD offset l PMD offset I PTE offset l Page offset

CR3

pgd_t

pud_t

PGD pmd_t

ormal Page

PUD pte_t —
owned by self

! PT
Step 5|

malicious
te_t

Victim Page
owned by other guest

Shadow PMD
(vulnerable page)

Forged PT

Figure 8: Page table replacement attacks.

e Step 1: In the attacker’s VM, allocate and map one
virtual memory page (denoted p), so that the vul-
nerable bit v has the same page offset as one of the
PEN bits in p’s corresponding PDE. More accurately,
Virt(p)/20+12) = addr(v)/8 mod 2°. This can be
achieved by allocating 1GB (i.e., 512 x 512 x 4KB)
virtual pages in user space and map one of the pages
that satisfies the requirement.

e Step 2: In guest kernel space, select two phys-
ical pages, P, and P,, where Differ(P;,P,) =
{Position(v)} and Position(v) of P, is the
original state of the vulnerable bit (e.g., 0 if

Direction(v) =0 — 1). Copy p’s PT to P;. Then
deallocate all mappings to P; and make it read-only.

e Step 3: Copy p’s PMD to the physical page (denoted
P,) that contains the vulnerable bit v. Then change
the PDE (on P,) that contains v to point to P;. Then
deallocate all mappings to P, and make it read-only.

o Step 4: Issue hypercalls to update p’s corresponding
PUD entry with P,’s machine address, so that P, will
become the new PMD. The Hypervisor will check the
validity of the new PMD and all page tables it points
to. Although p’s PDE has been changed to point to
Py, because P; is exact the same as p’s original PT,
this step will also pass the security check by the hy-
pervisor.

o Step 5: Construct fake PTEs on P; so that they point
to physical pages outside the attacker VM. These are
the target memory pages that the attacker would like
to access.

e Step 6: Conduct row hammer attacks on the two
neighboring rows of the vulnerable bit v, until bit flip
is observed. p’s PDE will be flipped so that it will
point to P instead of P;.

e Step 7: Now the attacker can access p and the other
511 virtual pages controlled by the same page table
P, to access physical memory outside his own VM.
The attacker can also modify the PTEs in P, without
issuing hypercalls as he has the write privilege on this
forged page table.

Theoretically, (52 — 12)/64 = 62.5% vulnerable bits
can be exploited in page table replacement attacks, re-
gardless of flippable directions. In practice, because
physical addresses on a machine is limited by the avail-
able physical memory, which is much less than the al-
lowed (232 — 1)B. For example, with 128GB memory,
the most significant bit in a physical address is bit 38.
Therefore the fraction of vulnerable bits that are ex-
ploitable is about 41%. We will empirically show the
fraction of vulnerable bits that are exploitable in our at-
tacks in Section 6.

6 Evaluation

In this section, we will first evaluate the effectiveness
and efficiency of the bit detection algorithms (described
in Section 3) in Section 6.1, our row hammer attacks
(described in Section 4) in Section 6.2, and the cross-
VM memory access attacks (described in Section 5) in
Section 6.3.

6.1 Bit Detection Efficiency and Accuracy

We ran the bit detection algorithm detailed in Section 3
on a set of local machines. The processor and DRAM

10

configurations, together with the detected physical ad-
dress mapping in the DRAMs, are shown in Table 1. For
instance, on a machine equipped with an Intel Westmere
processor, Xeon E5620, and one DRAM chip (with 2
memory channels, 1 DIMM, 2 ranks, 8 banks, and 215
rows per bank), we ran our algorithm and found the bits
that determine bank indices are bg @ big, b13, bi4, boo,
b;1, and the bits that determine row indices are bits by¢ to
b19, and bits by; to b3y (totally 15 bits). We can see from
these results that older processors, such as Westmere and
Sandy Bridge, tend to have simpler XOR-schemes. More
recent processors may have complex schemes (probably
due to channel hashing [21]). For example, on an In-
tel Haswell Xeon E5-1607 v3 processor, we observed
that complicated XOR-schemes, such as b; &b, & b4 P
b1 ®b13 D byg and bg D b13 B b1s D b17 D byy are used to
determine DRAM banks. Moreover, only on recent pro-
cessors (e.g., Intel Broadwell Core i15-5300U) did we ob-
serve the same address bit involved in two XOR-schemes
(e.g., big and by9); other bits are at most used in one
XOR-scheme. In addition, row bits are mostly contigu-
ous bits, and on some processors can be split into two
segments. For example, on an Intel Xeon ES5-2640 v3
processor we tested on, the row bits are b5 ~ by7 and
by ~ bss.

Efficiency evaluation. Figure 9 shows the execution
time of the bit detection algorithms. Results for five
local machines (Intel Sandy Bridge Core i3-2120 with
4GB memory, Intel Broadwell Core i5-5300U with 8GB
memory, Intel Westmere Xeon E5620 with 4GB mem-
ory, Intel Haswell Xeon E5-2640 v3 with 32GB memory,
and Intel Haswell Xeon E5-1607 v3 with 16GB mem-
ory) and three cloud machines (one machine in Cloud-
lab, Emulab d820, with 128GB memory, and two ma-
chines on Amazon EC2, one cl.medium instance and
one c3.large instance, total memory size unknown) are
shown in Figure 9. Most of these experiments can finish
within one minute, with one exception of Xeon E5-2640
v3 which takes almost two minutes. The longer latency
for testing E5-2640 v3 may be caused by its use of DDR4
memory, while the others are equipped with DDR3 mem-
ory chips.

Validation. Because Intel does not publish the memory
mapping algorithms of their memory controllers, we do
not have ground truth to validate our algorithm. How-
ever, we show that our algorithm is very likely to produce
valid results for two reasons: First, in Table 1, the total
number of bank bits and row bits detected are consis-
tent with the DRAM configuration that we learned using
several third-party software tools, including dmidecode,
decode-dimmms and HWiNF064. Second, we conducted
double-sided row hammer attacks on some of the local
machines we have in our lab: Machine A, Sandy Bridge

Processor Processor Channels DIMMs Ranks Banks Rows Bank bits Row bits
Family Name
Intel X big~b
Westmere ‘ F?ngoeon ‘ 2 ‘ 1 ‘ 2 ‘ 8 ‘ 215 ‘ b6 @ bi6, b13, bia, bao, by ‘ b; sz
Intel Core 2 1 1 8 215 be, b14 D b7, b15 B b1g, bis D big by7 ~ b3
Sandy i3-2120
Bridge Intel Core 2 1 1 8 215 be, b1a D by7, bis Dbig, bie B big by7 ~ b3
15-2500
Intel Xeon b7 ©b12®Db1a ©bi6© bis S bas,
E5-1607 4 1 1 8 215 bg & b3S b5 S b7 S byy, bz ~ b3y
Haswell v3 b19 @® b2z, bao © baa, bay S bos
Intel Xeon 2 1 2 16 218 be ® by, by3, bsg, bys ~ b7
E5-2640 v3 b1 © b2, bio © a3, bao © boa by ~ b3s
Intel Core 16 b7 ®bg Dby © b1y Db13 D bi1g Dby,
Broadwell ‘ i5-5300U ‘ 2 ‘ 1 ‘ ! ‘ 8 ‘ 2 ‘ bia®bi7, bis ©bis, bic S big ‘ by ~bsz
Table 1: Identifying physical address mapping in DRAMs.
105.33

100

80

60

40,

Bit Detection Time (s)

20

Figure 9: Efficiency of bit detection.

13-2120, Machine B, Sandy Bridge i3-2120, Machine C,
Sandy Bridge i5-2500, and Machine D, Broadwell i5-
5300U%. Particularly on each of these machines, we in-
dexed each row of the same bank from 1 to 2%, where k
is the number of detected row bits; the index of a row is
given by the value presented by all row bits in the same
order as they are in the physical address. Then we con-
ducted row hammer attacks on row n+ 1 and n — 1 of the
same bank, where n ranged from 3 to 2'> — 2. If the bit
detection algorithm are correct, we should find more bit
flips in row n than row n+ 2 and n — 2, because double-
sided row hammer attacks have been reported to be more
effective [4]. It is apparent in Figure 10 that on all these
machines, much more bit flips were found in row n than
the other rows. For example, on machine A, 52.4% bit
flips were found in row n, while only 28.6% and 19.0%
flippable bits were found in row n — 2 and n + 2, respec-
tively. These results suggest that our algorithm to detect
the row bits and bank bits (including XOR-schemes) are
consistent with the true configuration with the DRAM.
We believe these evidence are strong enough to show the

4These set of machines, and the same naming convension, are also used
in the following experiments.

11

validity of our bit detection method.

80,
[Flips found in row n 73.6
70/|EER Flips found in row n-2
XX Flips found in row n+2
60 59.3
B 52.4
c 50
8
5
2 40
=
=
0
© 30
2
w
20 19.0 17.6
3 b2 124
oesoss! R 11.3
XK1 K
10 ool KRR
(% fotose!
Nodo! K
(R3] RS
0 KX DX KXXA
Machine A Machine B Machine C Machine D

Figure 10: Location of bit flips in double-sided row ham-
mer attacks. Row n+1 and n — 1 are frequently accessed
to induce disturbance errors.

6.2 Effectiveness of Row Hammer Attacks

We evaluated the effectiveness of our row hammer at-
tacks in two aspects: (1) whether the attacker controlled
physical memory can cover a significant portion of the
overall physical memory on the machine, and (2) the
number of bit flips induced by our double-sided row
hammer attacks compared with single-sided attacks.

6.2.1 Physical Memory Coverage

We experimented on four servers to evaluate the phys-
ical memory coverage. The first machine is a desktop
in our lab. It is equipped with a 3.3GHz Intel Core i3-
2120 processor and 8GB of memory, of which 1GB is
assigned to the virtual machine. The second machine is
another desktop with a 3.7GHz Intel Core i5-2500 pro-
cessor and 4GB of memory. The VM owns 1GB of the

memory. The third machine is a server in Cloudlab,
which is equipped with a 2.2GHz Intel Xeon E5-4620
processor with 128GHz of memory. The VM runs on
this machine is allowed to control 4GB of memory. The
fourth machine is a dedicated cloud server in Amazon
EC2. It has 128GB of memory and operates on a 2.8GHz
Intel E5-2680 v2 processor. Our VM was allocated 8GB
of memory.

We conducted the experiments as follows. On each
of these VMs, we ran a program to measure the physi-
cal pages that are accessible to the guest VM. Then we
rebooted our VM and measured the accessible physi-
cal memory again. After each reboot, some new phys-
ical pages will be observed (but some old pages will be
deallocated from this VM). We rebooted the VM several
times until no more new memory pages are observed af-
ter reboot. In Figure 11, the x-axis shows the number of
VM reboots (the first launch counted as one reboot) and
the y-axis shows the fraction of physical memory that
can be accessed by the VM. In the two local machines,
because no other VMs are competing for the physical
memory, the sets of accessible pages are relatively stable.
But still after reboots, more memory pages are accessi-
ble to the guest VMs. In the two cloud tests (one in EC2
and one in Cloudlab), the total physical memory sizes
are very large (i.e., 128GB). Although our VM were
only allocated 6.25% (in the EC2 test) and 3.125% (in
the Cloudlab test) physical memory initially, after sev-
eral reboots, our VM could access as much as 17.8% (in
the EC2 test) and 22.3% (in the Cloudlab test) of the to-
tal memory. The results suggest that row hammer at-
tacks are possible to enumerate a large fraction of the
physical memory even though the VM can only control a
small portion of it at a time. Therefore, by doing so, the
chances for a guest VM to induce exploitable and repeat-
able bit flips are not bound by the fixed size of physical
memory allocated to the VM.

6.2.2 Row Hammer Induced Bit Flips

To show that our double-sided row hammer attacks are
more effective than single-sided versions, we empirically
test how fast each method can induce memory bit flips.
In addition, we also tested with row hammer code both
with and without mfence to empirically evaluate the ef-
fectiveness of the two types of attack techniques
Particularly, we implemented four types of row ham-
mer attack tools: double-sided row hammer without
mfence instruction, double-sided row hammer with
mfence, single-sided row hammer without mfence, and
single-sided row hammer with mfence. In Figure 12,
we show the number of bit flips induced per hour by
one of these approaches on four machines: Machine
A, Sandy Bridge i3-2120, Machine B, Sandy Bridge

12

Reboot Time vs. Coverage

0.30
B -m- -m -§ -§---% @ -5 -5 -§ -§- -§---6-- -0
0.25¢
L}
0.20}
()
o
©
3 0.15f
>
o s
] v
0.10}
¥ -v Sandy Bridge i3-2120 1G_8G
0.05l *— Emulab d820 4G_128G]
e e EC2 Dedicated Host 8G_128G
= & Sandy Bridge i5-2500 1G_4G
00— 4 6 8 10 12 14 16

Reboot Time

Figure 11: Physical memory coverage after VM reboot-
ing.

19212

[double-sided w/o mfence
I double-sided w/ mfence
single-sided w/o mfence
B2 single-sided w/ mfence

3.43

Average flips found per hour

0.43 0.0

0o o

Machine A

0 0
Machine B

Machine C Machine D

Figure 12: Efficiency of double-sided row hammer at-
tacks.

13-2120, Machine C, Sandy Bridge i5-2500, and Ma-
chine D, Broadwell i5-5300U (memory configurations
are listed in Table 2).

We can see from the figure that our double-sided row
hammer is much more effective than the single-sided row
hammer attacks used in prior studies: Using single-sided
attacks, on machine A and machine B, no bit flips could
be observed, whether or not mfence was used. In con-
trast, using our double-sided row hammer attacks with-
out mfence, 4 or 5 bits can be flipped per hour. On the
most vulnerable machine C°, our double-sided row ham-
mer attacks can find as many as over 600k bit flips per
hour, while the best single-sided attacks can only find 23
bit flips per hour. We also find that row hammer without
mfence is more effective than with it. The trend is appar-
ent on all the four machines we tested on. As such, we
conclude that although mfence ensures that all memory
accesses reach the memory, the slowdown to the program
execution it brings about reduces the effectiveness of row

5Some machines are expected to be more vulnerable than others (see
Table 3, [23]), possibly due to higher memory density or lower DRAM
refreshing frequency.

hammer attacks. Our double-sided row hammer attacks
without mfence represent the most effective attack tech-
nique among the four.

While Figure 12 illustrates the rate of inducing bit
flips, Table 2 demonstrates the overall effectiveness of
our double-sided row hammer attacks (without mfence).
Particularly, the total execution time of the experiments
above and the total number of induced bit flips are shown
in Table 2. In each of the tests we stopped the row ham-
mer attacks once we have examined 50% of all DRAM
rows (all rows that are accessible by the VM without
reboot). We can see in the table the experiments took
about 10 to 20 hours on machine A, B, and C. The total
numbers of vulnerable bits found on machine A and B
were 63 and 91, respectively. In contrast to zero bit flips
induced by single-sided attacks that ran for 30 hours,
our double-sided attacks make these machines vulner-
able. On machine C, 5,622,445 vulnerable bits were
found within 10 hours. Machine D is the least vulner-
able among the four: only 25 vulnerable bits were found
in about 43 hours. The results show that different ma-
chines are vulnerable to row hammer attacks to different
extent.

Machine Execution Vulnerable
configuration time (hours) bits found
(Machine A)

Sandy Bridge i3-2120 (4GB) 18.37 63
(Machine B)

Sandy Bridge i3-2120 (4GB) 15.85 91
(Machine C)

Sandy Bridge i5-2500 (4GB) 9.08 5622445
(Machine D)

Broadwell i5-5300U (8GB) 42.88 25

Table 2: Execution time and detected vulnerable bits in
exhaustive row hammer attacks.

6.2.3 Vulnerable Bits Usability and Repeatability

We first report the fraction of vulnerable bits we found
on the four machines, machine A, B, C and D (configu-
rations listed in Table 2), that are usable in the page table
replacement attacks we discussed in Section 5. The total
number of bits that are used for analysis on these four
machines are listed in Table 2°. The results are shown in
Figure 13a: 36.5%, 31.9%, 32.8%, 40.0% of these bits
are in the PFN range of a page table entry, thus are us-
able in page table replacement attacks.

Prior studies [23] have shown that many of the bit flips
are repeatable. We try to confirm this claim in our own

OWe selected a subset of vulnerable bits, 100031 vulnerable bits, on
machine C for analysis because the entire set was too large to handle.

13

experiments. Specially, on these four machines, we re-
peated the row hammer attacks (10 times) against the
rows in which vulnerable bits were found during the first
sweep. We show, in Figure 13b, that 36.5%, 16.5%,
48.3%, and 12.0% of the vulnerable bits induced in the
first run could be flipped again (at least once) on these
four machines, respectively. These repeatable bit flips
can be exploited in our cross-VM exploits.

In addition, on machine C, we have found more than
one bit flippable within the same 64-bit memory block,
which are beyond correction even with ECC memory.
The distribution of vulnerable bits found in a 64-bit block
is shown in Figure 13c. Particularly, we found 95904
single-bit errors, 4013 two-bit errors, 112 three-bit errors
and 2 four-bit errors in the same 64-bit block.

6.3 Cross-VM Row Hammer Exploitation

We implemented our attack in a kernel module of Linux
operating system (kernel version 3.13.0) that ran on Xen
guest VMs. The hypervisor was Xen 4.5.1 (latest as of
January 2016). We conducted the attacks on machine
D, which is quipped with a Broadwell i5-5300U proces-
sor and 8GB of DRAM. However, we note that the at-
tacks should also work on other machines and software
versions as long as exploitable bits can be induced by
row hammer attacks. Particularly, we demonstrated the
power of the cross-VM row hammer attacks in two ex-
amples: In the first example, we demonstrated a confi-
dentiality attack where the adversary exploited the tech-
niques to steal TLS private keys from an Apache web
server; in the second example, we showed an integrity
attack, in which the attacker altered the program code of
an OpenSSH server to bypass the user authentication and
logged in the server without knowledge of credentials.

Arbitrary memory accesses. The first step of both at-
tacks is to obtain arbitrary accesses to the target memory
page. To do so, the adversary controlling a guest VM first
runs the bit detection algorithm described in Section 3 to
determine the row bits and bank bits of the machine, and
then performs row hammer attacks until he finds a ex-
ploitable and repeatable bit flip at desired bit position—
the PEN range of a PDE. We repeated the row hammer
attacks 10 times and on average it took 2.13 hours to find
the first useable bit flip. We emphasize machine D, the
one we experimented with, is the least vulnerable ma-
chine among all (see Figure 12). Then the adversary re-
places one of his own page tables with a forged one, us-
ing page table replacement attack techniques, and maps
512 of his virtual pages to 512 different physical pages.
The adversary scans all these pages directly because they
are mapped to his own address space. For each page, he
compares the content of the page with a specific pattern.
If the pattern is not found in these 512 pages, the ad-

Usability(%)

(=]
(=]

C
N\ad‘"“e :\ad\\r\e :\ad\"“e Mad\'me ©

(a) Vulnerable bits that are usable in page (b) Vulnerable bits that are repeatable af-
ter the first occurrence.

table replacement attacks.

C
‘,\3(_\’\'\“e P\,\ac‘(\'\“e Sv\ad\\“e Mac‘((\“e °

48.3 95904

10°

4013
= 10°

3 112
O 10°

10"
2
10°

Lo e e
2

3

oS
AB"

ofs

- 2\

(c) Distribution of vulnerable bits within
the same 64-bit memory block.

Figure 13: Statistics of the induced flippable bits.

versary modifies the PTEs directly as he already has the
write privilege on the forged page table, and searches in
another 512 physical pages. The translation lookaside
buffer (TLB) is flushed as needed to accommodate the
page table changes.

To speed up the searching, the adversary obtained a
list of machine page number (MFN) controlled by his
own VM from struct start_info.mfn list and ex-
cluded them from the list of physical pages to scan. As
an extension of this implemented approach, the adver-
sary may also reboot the VM several times to increase the
physical memory space that is accessible to his own VM
(as done in Section 4), thus reducing the search space
of the victim. Alternatively, we also believe it is feasi-
ble to exploit cache-based side-channel analysis to learn
the cache sets (physical address modulus the number of
cache sets) of the targets [26] to narrow down the search
space. We leave this optimization as future work.

6.3.1 Confidentiality Attacks

We show in this example that using the cross-VM row
hammer attacks, the adversary may learn the private key
of the Apache web servers of the neighboring VMs. Par-
ticularly, we set up two VMs on the same machine. The
victim ran an Apache web server in which an HTTPS
server was configured to support SSL/TLS using one
pair of public/private keys. The attacker VM conducted
the cross-VM row hammer attacks described above to
obtain read access to the physical memory owned by
the victim VM. When scanning each of the physical
pages belonging to another VM, the adversary checked
at each byte of the memory if it was the beginning of
a struct RSA, by first checking if some of its member
variables, such as version and padding, are integers, and
others, such as p, ¢, n are pointers, and, if so, calling
the RSA_check key () function provided by OpenSSL.
The function takes as argument a pointer to struct
RSA and validates (1) whether p and g are both prime
numbers, and (2) whether n = p X ¢ and (3) whether
(x*)? = x mod n. If the location passes the checks, it

14

is the beginning of an RSA structure, the private key
can be extracted. In fact, because at most memory lo-
cations, the basic checks will not pass, the expensive
RSA_check key () will not be called. If the adversary is
lucky enough to successfully guess the machine address
of the target memory page in the first trial, the average
time to complete the attack was 0.32s (including the time
to manipulate page tables, conduct row hammer attacks
to induce the desired bit flip, read the memory page and
check the validity of the private key, and write the ex-
tracted key to files). The overall execution time of the
attack depends on the number of physical pages scanned
before finding the target one, but on average scanning
one additional memory pages took roughly Sms.

6.3.2 Integrity Attacks

In this example, we show how to exploit row hammer
vulnerabilities to log in an OpenSSH server without pass-
words. Particularly, the victim was the management do-
main in Xen, the Dom0. In our testbed, DomO is con-
figured to use Pluggable Authentication Modules (PAM)
for password authentication. PAM offers Linux operat-
ing systems a common authentication scheme that can
be shared by different applications. Configuring sshd to
use PAM is a common practice in Red Hat Linux [8].
We pre-configured one legitimate user on the OpenSSH
server, and enabled both public key authentication and
password authentication. The adversary controls a regu-
lar guest VM, a DomU, that ran on the machine. We as-
sume the adversary has knowledge of the username and
public key of the legitimate user, as such information is
easy to obtain in practice.

To initiate the attack, the adversary first attempted to
log in as a legitimate user of the OpenSSH server from a
remote client using public/private keys. This step, how-
ever, is merely to create a window to conduct row ham-
mer attacks against the sshd process, which is created by
the sshd service daemon upon receiving login requests.
By receiving the correct public key for the legitimate
user, the server tries to locate the public key in the lo-

mov $0, Jeax
test %eax, %eax
jne <error_handling>

callqg pam_authenticate
test %eax, Y%eax
jne <error_handling>

(a) Code before attacks. (b) Code after attacks.

Figure 14: Pseudo code to illustrate attacks against the
OpenSSH server.

cal file (~/.ssh/authorized keys) and, if a match is
found, a challenge encrypted by the public key is sent to
the client. Then the OpenSSH server awaits the client
to decrypt his encrypted private key file and then use the
private key to decrypt the challenge and send a response
back to the server. In our attack, the adversary paused
on this step while he instructed the DomU attacker VM
to conduct the cross-VM row hammer attacks to obtain
access to the physical memory of Dom0’. The steps to
conduct the row hammer attacks were the same as de-
scribed in the previous paragraphs. Particularly, here the
adversary searched for a piece of binary code of sshd—
a code snippet in the sshpam_auth_passwd() function.
The signature can be extracted from offline binary disas-
sembling as we assume the binary code of the OpenSSH
server is also available to the adversary.

Once the signature was found, the adversary
immediately replaced a five-byte instruction “Oxe8
O0x1b 0x74 Oxfd 0xff” (binary code for “callq
pam_authenticate”) with another five-byte instruction
“0xb8 0x00 0x00 0x00 0x00” (binary code for “mov
$0 %eax”). Note here even though the memory page is
read-only in the victim VM, Dom0, the adversary may
have arbitrary read/write access to it without any re-
striction. Then the code snippet will be changed from
Figure 14a to Figure 14b. Upon successful authenti-
cation, pam_authenticate() will return O in register
%eax. The modified code assigned %eax value O directly,
without calling pam_authenticate(), so the authenti-
cation will be bypassed.

Then the adversary resumed the login process by en-
tering password to decrypt the private key. The private
key was incorrect so this step would fail anyway. Then
password authentication would be used as a fallback au-
thentication method, in which the adversary can log in
the server with any password, because it was not really
checked by the server.

Again, the time to complete the OpenSSH attack de-
pends on the number of physical pages scanned before
meeting the targeted one. If the target physical page is
the first to be examined by the adversary, the average

7We later found it is also possible to attack the daemon sshd process
directly. Due to the copy-on-write mechanism, newly forked sshd
processes will have the same copy of code, thus bypassing authentica-
tion without the aforementioned steps.

15

time to complete the attack was 0.322s, which included
the time to manipulate page tables, conduct row hammer
attacks to induce the desired bit flip, search the target
page for specific patterns, and inject code in the target
memory. If additional memory pages need to be scanned,
the average time to complete the pattern recognition in a
4KB memory page was 58Ls.

We note the two examples only illustrate some basic
uses of our presented cross-VM row hammer attacks as
attack vectors. Other innovative attacks can be enabled
by the same techniques. We leave the exploration of
other interesting attacks as future work.

6.4 Prevalence of Xen PVM in Public
Clouds

As shown in prior sections, Xen PVMs (paravirtualized
VMs) are very vulnerable to privilege escalation attacks
due to row hammer vulnerabilities. However, they are
still widely used in public clouds. Amazon EC28 as
a leading cloud provider still offer PV guests in many
of its instance types (see Table 3). Other popular cloud
providers such as Rackspace’ and IBM Softlayer'® are
also heavily relying on PV guests in their public cloud
services. In addition, PVMs are also the primary virtual-
ization substrate in free academic clouds like Cloudlab'!.

The prevalence of PV guests provides adversaries op-
portunities to perform bit detection, and hence double-
sided row hammer attacks in public clouds. With de-
tected bit flips, it also allows malicious page table manip-
ulation to enable arbitrary cross-VM memory accesses.
This kind of hardware attack is beyond control of the hy-
pervisor. Victims will suffer from direct impairment of
the system integrity or more sophisticated exploits of the
vulnerability from attackers.

cloud

‘ instance types
Amazon EC2 [7] |

|

|

tl, ml, m2, m3, cl, ¢3, hil, hsl

Rackspace [28] General purpose, Standard

Softlayer Single/Multi-tenant Virtual Server

d430, d810, d820, C220M4,
C220M4, ¢8220(x), 1320, d1360

Cloudlab

Table 3: Prevalence of Xen paravirtualized VMs in pub-
lic clouds.

8https://aws.amazon.com/ec2/
https://www.rackspace.com/

Ohttps://www.softlayer.com/

Uhttps://www.cloudlab.us/

7 Discussion on Existing Countermeasures

In this section, we discuss the existing software and hard-
ware countermeasures against the demonstrated cross-
VM row hammer attacks.

Row hammer resistance with hardware-assisted vir-
tualization. Many of the attacks presented in this pa-
per (e.g., bit detection, double-sided row hammering,
and also cross-VM memory accesses enabled by page
table manipulation) require the adversary to know the
machine address of his virtual memory. One way to
prevent physical address disclosure to guest VMs is to
adopt hardware-assisted virtualization, such as Intel’s
VT-x [31] and AMD’s AMD-V [2]. Particularly, VT-x
employs Extended Page Tables and AMD-V introduces
Nested Page Tables [1] to accelerate the processor’s ac-
cesses to two layers of page tables, one controlled by the
guest VM and the other controlled by the hypervisor. In
this way, the guest VMs may no longer observe the real
physical addresses, as they are not embedded in the PTEs
any more. Hardware-assisted virtualization also prevents
direct manipulation of page tables, and thus the privilege
escalation attacks presented in this paper are not feasible.
The transition from Xen paravirtualization to
hardware-assisted virtualization in public clouds started
a few years ago, but the progress has been very slow.
One reason is that paravirtualization used to have better
performance than hardware-assisted virtualization in
terms of networking and storage [9]. However, with the
recent advances in hardware-assisted virtualization tech-
nology, some HVM-based cloud instances (especially
PV on HVM) are considered having comparable, if not
better, performance [7]. Even so, given the prevalence
of paravirtualization in public clouds as of today, we
anticipate it will take many years before such technology
can gradually phase out. We hope our study offers to the
community motivation to accelerate such trends.

Row hammer resistance with ECC-enabled DRAMs.
As discussed in Section 2, the most commonly imple-
mented ECC mechanism is single error-correction, dou-
ble error-detection. Therefore, it can correct only one
single-bit of errors within a 64-bit memory block, and
detect (but not correct) 2-bit errors, causing the machines
to crash. ECC memory will make the row hammer at-
tacks much harder. Because 1-bit error and 2-bit er-
rors are more common than multi-bit errors (e.g., see
Figure 13c), and it is very likely the privilege escalation
attack will be thwarted either by bit correction or ma-
chine crashes before it succeeds. However, ECC mem-
ory does not offer strong security guarantees against row
hammer attacks!2. It is still possible for an adversary to

12A recent study by Mark Lanteigne has reported that ECC-equipped
machines are also susceptible to row hammer attacks [24].

16

trigger multiple (> 3) bit flips in the same 64-bit word
so that errors can be silently induced and later exploited.
Particularly, if the true physical address of an extremely
vulnerable rows is known to the adversary, hammering
around this specific row will greatly increase the adver-
sary’s chances of success.

We believe a combination of hardware and software
based defense will offer better security against row ham-
mer attacks. On the one hand, hardware protection raises
the bar of conducting row hammer attacks, and on the
other hand, software isolation prevents successful ex-
ploitation once such vulnerability is found by the adver-
sary.

8 Conclusion

In conclusion, we explored in this paper row hammer at-
tacks in the cross-VM settings, and successfully demon-
strated software attacks that exploit row hammer vul-
nerabilities to break memory isolation in virtualization.
Many techniques presented in this paper are novel: Our
graph-based bit detection algorithm can reliably deter-
mine row bits and XOR-schemes that are used to deter-
mine bank bits within one or two minutes. This novel
method enables the construction of double-sided attacks,
which significantly improves the fidelity of the attacks.
The page table replacement attacks present a determinis-
tic exploitation of row hammer vulnerabilities. The two
examples we demonstrated in the paper, private key exfil-
tration from an HTTPS web server and code injection to
bypass password authentication on an OpenSSH server,
illustrate the power of the presented cross-VM row ham-
mer attacks. The high-level takeaway message from this
paper can be summarized as: (1) Row hammer attacks
can be constructed to effectively induce bit flips in vul-
nerable memory chips, and (2) cross-VM exploitation of
row hammer vulnerabilities enables a wide range of se-
curity attacks. We also believe that although server-grade
processors and memory chips are more expensive and in
contrast are less vulnerable to row hammer attacks, se-
curity guarantees needs to be achieved by both hardware
and software solutions.

Acknowledgments

This work was supported in part by grant CRII-1566444
and CCF-1253933 from the National Science Founda-
tion. The authors would like to thank the shepherd of
our paper, Felix Schuster, and the anonymous review-
ers for the constructive suggestions that greatly helped
us improve the paper. We are grateful to CloudLab for
providing us access to their servers.

References

[1]

[2]

[5]

[6]

[8]

[9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

AMD-V nested paging. http://developer.amd.com/
wordpress/media/2012/10/NPT-WP-1%201-final-
TM.pdf. Accessed: 2016-06.

AMDO64 architecture programmers manual, volume 2: System
programming. http://developer.amd.com/wordpress/
media/2012/10/24593_APM_v21.pdf. Accessed: 2016-06.

BIOS and Kernel Developer’s Guide for AMD Athlon 64
and AMD Opteron Processors. http://support.amd.com/
TechDocs/26094 . pdf. revision:3.30, issue date: 2016-02.

Exploiting the DRAM rowhammer bug to gain kernel privi-
leges. http://googleprojectzero.blogspot.com/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html.

Accessed: 2016-01-23.

How physical addresses map to rows and banks in DRAM. http:
//lackingrhoticity.blogspot.com/2015/05/how—
physical-addresses-map-to-rows-and-banks.html.
Accessed: 2016-01-30.

Intel 64 and IA-32 architectures software developers man-
ual, combined volumes:1,2A,2B,2C,3A,3B and 3C. http:
//www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.
version 052, retrieved on Dec 25, 2015.

Linux AMI virtualization types. http://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/virtualization_
types.html. Accessed: 2016-06.

Product Documentation for Red Hat Enterprise Linux.
https://access.redhat.com/documentation/en/red-
hat-enterprise-1linux/. Accessed: 2016-06.

PV on HVM. http://wiki.xen.org/wiki/PV_on_HVM. Ac-
cessed: 2016-06.

Research report on wusing JIT to trigger rowhammer.
http://xlab.tencent.com/en/2015/06/09/Research-

report-on-using-JIT-to-trigger-RowHammer. Ac-
cessed: 2016-01-30.
X86 paravirtualised memory management. http:

//wiki.xenproject.org/wiki/X86_Paravirtualised_
Memory_Management. Accessed: 2016-01-23.

AICHINGER, B. P. DDR memory errors caused by row ham-
mer. http://www.memcon.com/pdfs/proceedings2015/
SAT104_FuturePlus.pdf.

BAINS, K., HALBERT, J. B., M0ozAK, C. P., SCHOENBORN,
T. Z., AND GREENFIELD, Z. Row hammer refresh command.
US9236110, Jan 03 2014.

BaAINs, K. S., AND HALBERT, J. B. Distributed row hammer
tracking. US20140095780, Apr 03 2014.

BAINS, K. S., HALBERT, J. B., SAH, S., AND GREENFIELD, Z.
Method, apparatus and system for providing a memory refresh.
US9030903, May 27 2014.

BosMAN, E., Razavi, K., Bos, H., AND GIUFFRIDA, C.
Dedup est machina: Memory deduplication as an advanced ex-
ploitation vector. In 37nd IEEE Symposium on Security and Pri-
vacy (2016), IEEE Press.

CHISNALL, D. The Definitive Guide to the Xen Hypervisor
(Prentice Hall Open Source Software Development Series). Pren-
tice Hall PTR, 2007.

DONG, Y., L1, S., MALLICK, A., NAKAJIMA, J., TIAN, K.,
XU, X., YANG, F., AND YU, W. Extending Xen with intel vir-
tualization technology. Intel Technology Journal 10, 3 (2006),
193-203.

17

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

GREENFIELD, Z., BAINS, K. S., SCHOENBORN, T. Z.,
MozAK, C. P., AND HALBERT, J. B. Row hammer condition
monitoring. US patent US8938573, Jan 30 2014.

GRUSS, D., MAURICE, C., AND MANGARD, S. Rowhammer.js:
A remote software-induced fault attack in JavaScript. In 13th
Conference on Detection of Intrusions and Malware and Vulner-
ability Assessment (2016).

JAHAGIRDAR, S., GEORGE, V., SODHI, 1., AND WELLS,
R. Power management of the third generation Intel
Core micro architecture formerly codenamed Ivy Bridge.
http://www.hotchips.org/wp-content/uploads/hc_
archives/hc24/HC24-1-Microprocessor/HC24.28.117-
HotChips_IvyBridge_Power_04.pdf, 2012.

KiMm, D.-H., NAIR, P., AND QURESHI, M. Architectural support
for mitigating row hammering in DRAM memories. Computer
Architecture Letters 14, 1 (Jan 2015), 9-12.

KiMm, Y., DALY, R., KiMm, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits
in memory without accessing them: An experimental study of
DRAM disturbance errors. In 41st Annual International Sympo-
sium on Computer Architecture (2014), IEEE Press.

LANTEIGNE, M. How rowhammer could be used to exploit
weaknesses in computer hardware. http://www.thirdio.
com/rowhammer.pdf, 2016. Accessed: Jun. 2016.

LIN, W.-F., REINHARDT, S., AND BURGER, D. Reducing
DRAM latencies with an integrated memory hierarchy design.
In 7th International Symposium on High-Performance Computer
Architecture (2001).

Liu, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In 36th IEEE
Symposium on Security and Privacy (2015), IEEE Press.

MOSCIBRODA, T., AND MUTLU, O. Memory performance at-
tacks: Denial of memory service in multi-core systems. In /6th
USENIX Security Symposium (2007), USENIX Association.

NOLLER, J. Welcome to performance cloud servers; have some
benchmarks. https://developer.rackspace.com/blog/
welcome-to-performance-cloud-servers-have-some-
benchmarks, 2013. Accessed: Jun. 2016.

PESsL, P., GrRuUSS, D., MAURICE, C., SCHWARZ, M., AND
MANGARD, S. DRAMA: Exploiting DRAM addressing for
cross-cpu attacks. In 25th USENIX Security Symposium (2016),
USENIX Association.

RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: Exploring information leak-
age in third-party compute clouds. In 16th ACM conference on
Computer and communications security (2009), ACM.

UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L.,
MARTINS, F. C. M., ANDERSON, A. V., BENNETT, S. M.,
KAGI, A., LEUNG, F. H., AND SMITH, L. Intel virtualization
technology. Computer 38, 5 (May 2005), 48-56.

VARADARAIJAN, V., ZHANG, Y., RISTENPART, T., AND SWIFT,
M. A placement vulnerability study in multi-tenant public clouds.
In 24th USENIX Security Symposium (2015), USENIX Associa-
tion.

WANG, D. T. Modern Dram Memory Systems: Performance
Analysis and Scheduling Algorithm. PhD thesis, College Park,
MD, USA, 2005.

