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Abstract

We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the
problem of handwritten digit recognition using the spike triggered Normalized
Approximate Descent (NormAD) algorithm. Our network that employs neurons
operating at sparse biological spike rates below 300 Hz achieves a classification
accuracy of 98.17% on the MNIST test database with four times fewer parame-
ters compared to the state-of-the-art. We present several insights from extensive
numerical experiments regarding optimization of learning parameters and net-
work configuration to improve its accuracy. We also describe a number of strate-
gies to optimize the SNN for implementation in memory and energy constrained
hardware, including approximations in computing the neuronal dynamics and
reduced precision in storing the synaptic weights. Experiments reveal that even
with 3-bit synaptic weights, the classification accuracy of the designed SNN does
not degrade beyond 1% as compared to the floating-point baseline. Further, the
proposed SNN, which is trained based on the precise spike timing information
outperforms an equivalent non-spiking artificial neural network (ANN) trained
using back propagation, especially at low bit precision. Thus, our study shows
the potential for realizing efficient neuromorphic systems that use spike based

information encoding and learning for real-world applications.
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1. Introduction

The superior computational efficiency of biological systems has inspired the
quest to reverse engineer the brain in order to develop intelligent computing
platforms that can learn to execute a wide variety of data analytics and in-
ference tasks [1]. Artificial neural networks (ANNs), inspired by the network
architecture of the brain, have emerged as the state-of-the-art for various ma-
chine learning applications. In particular, inspired by the Nobel prize winning
work of Hubel and Weisel on elucidating the mechanisms of information rep-
resentation in the visual cortex [2], multi-layer convolutional neural networks
have shown impressive performance for a wide variety of applications such as
image recognition, natural language processing, speech recognition and video
analytics [3, 4, 5, 6, 7, 8, 9, 10, 11].

Nevertheless, the neurons in ANNs implement a memoryless nonlinear trans-
formation of the input synaptic signals to create real-valued output signals. This
is vastly different from the behavior of neurons in the brain, which encode infor-
mation in the timing of binary signals, called action potentials or spikes based
on the timing of incoming spike signals from upstream nodes. The third gener-
ation of artificial neural networks, also called spiking neural networks (SNNs),
have been introduced to mimic this key aspect of information processing in the
brain [12]. There is growing evidence that SNNs have significant computational
advantages as a result of their higher information representational capacity due
to the incorporation of the temporal dimension [13, 14, 15, 16]. Furthermore,
SNNs issue spikes sparsely - the observed spike rate in biological networks is
in the range of 0.1 to 300Hz - and they operate in an event-driven manner
[17, 18, 19, 20]. Therefore, highly energy efficient neuromorphic systems can be
realized in hardware based on SNNs, as is evidenced by recent demonstrations

21, 22, 23, 24, 25].
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Earlier efforts to build learning algorithms for SNNs were inspired by recent
discoveries from neuroscience that shed light on the synaptic (neuronal inter-
connections) mechanisms of adaptation based on the difference in the times of
issue of pre- and post-synaptic spikes. The most prominent among them is the
Remote Supervised Method (ReSuMe) [26], that adjusts the synaptic weights
based on the precise timing differences of the input and output neurons, in-
spired by the spike timing dependent plasticity (STDP) rule. Other spike based
learning algorithms that have been proposed include the SpikeProp algorithm
(though it was restricted to single spike learning) [27], SPAN and PSD, which
converted spikes to smoothened analog signals and defined a continuous time
cost function for training [28, 29]. Another important spike based supervised
learning rule was the Chronotron rule which used piece-wise gradient descent
and was demonstrated to be efficient in identifying different classes of random
spike trains [30]. Recently, the reward modulated STDP or R-STDP learning
has shown superior performance on several benchmark problems compared to
STDP SNNs and even traditional CNNs, even though training was limited to
a single layer in the network [31]. A variant of ReSuMe algorithm, called the
Delay Learning (DL)-ReSuMe, in addition to the synaptic weights, made use of
the transmission delays of synapses interconnecting the neurons as parameters
to train the network [32]. This algorithm has been shown to be superior in terms
of accuracy and speed of convergence compared to the basic ReSuMe algorithm.
The accurate synaptic efficiency adjustment method is another spike-error trig-
gered supervised learning rule based on STDP, which optimizes a cost function
defined in terms of membrane potential differences [33]. This method has been
used to demonstrate excellent performance in several UCI datasets with few
training parameters. The Synaptic Kernel Inverse Method (SKIM) [34], evalu-
ates the weights analytically rather than learning them iteratively and has been
applied to the problem of speech based digit recognition in a small network
with 50 neurons. Based on the SKIM method, the convex optimized synaptic
efficiencies (CONE) algorithm was developed [35] and was used for the prob-

lem of gait detection. The generalization capability of this algorithm and the
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noise tolerance of a variation of the algorithm called CONE-R has also been
demonstrated.

Our work focuses on applying a precise spike based supervised learning algo-
rithm to the MNIST (Modified National Institute of Standards and Technology
database) handwritten digit classification problem and optimizing the network
in terms of the number of learning parameters for implementation in energy and
memory constrained hardware.

In addition to the above mentioned learning methods, unsupervised learning
algorithms for SNNs have also been explored, based on the biological spike
timing dependent plasticity (STDP) rule [36, 37, 38, 39, 40, 41, 42]. While
these networks use multi-layered convolution architectures with more than one
million parameters and have achieved over 98% accuracy on the MNIST dataset
[38, 39], we demonstrate similar accuracy with 13x fewer parameters.

There are also several efforts directed towards developing architectures with
adaptive and evolving network structures [43, 44, 45, 46, 47]. SpikeTemp and
SpikeComp are algorithms where neurons are progressively added in the classi-
fier layer as the training algorithm approaches the optimal point [45, 46]. The
recently developed evolving architecture called NeuCube, directly inspired by
the brain [43], incorporates weight adjustments based on supervised and un-
supervised rules and additionally, adds new network neurons as per training
requirements.

Besides the above-mentioned approaches for designing learning algorithms
for SNNs that operate directly in the spike domain, several authors have pro-
posed to convert ANNSs trained with the well-established backpropagation algo-
rithm to SNNs so that the latter can be used as inference engines [48, 49, 50,
51, 52, 53]. ANN-to-SNN conversion imposes that the firing rate of a spiking
neuron in the SNN be proportional to the activation output of a non-spiking
neuron in the ANN. Various techniques such as approximating the response of a
spiking neuron with a smooth differentiable Rel.U-like function, weight normal-
ization, noise addition, lateral inhibition or spiking rate based pooling masks,

which is similar to max pooling operation, have been employed to this end.
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Using these approaches, state-of-the-art inference accuracies have been demon-
strated in spike domain equivalent of deep learning networks such as VGG-16
and Inception-V13 for ImageNet classification problem, and close to 2x reduc-
tion in the number of operations needed compared to CNNs for smaller problems
such as MNIST and CIFAR-10 [53]. Recently, a more biologically plausible al-
gorithm called the Feedback Alignment (FA) has been proposed, which unlike
the standard backpropagation uses two different sets of weights in the feed-
forward and feedback paths [54]. This method has also been demonstrated
in SNNs, using approximate differentiable functions of leaky integrate and fire
(LIF) spiking neurons to train them in an online manner. However, the FA rule
has lower performance compared to the standard backpropagation rule [52].

Towards the goal of demonstrating a learning SNN capable of high accuracy
and efficiency, we use the recently proposed Normalized Approximate Descent
(NormAD) algorithm to train the output layer weights of a three-layered net-
work with fixed convolutional kernel weights in the hidden layer. This spike-
triggered weight update rule frames the learning task as a supervised optimiza-
tion problem aimed at tuning the membrane potential to create spikes at desired
time instants. Compared to other deterministic learning algorithms in the spike
domain such as ReSuMe, at least 10x faster convergence characteristics have
been demonstrated using this algorithm for generating arbitrarily desired spike
streams [55].

Prior SNN based demonstration of handwritten digit recognition using spik-
ing versions of backpropagation of errors has achieved 98.7% based on a fully
connected 4—layer network and 99.31% with convolutional spiking networks, but
also with more than 4x higher number of trainable synapses compared to our
network [56]. The training algorithm employed in that work has a cost function
that is continuous in time defined in terms of the low pass filtered spike trains
(both input and output). Compared to the state-of-the-art networks which have
shown over 99% accuracy, our SNN trained with NormAD shows an accuracy of
98.17% on the test set of the MNIST database, with 4x fewer synaptic learning

parameters [3, 4, 11, 56]. Furthermore, if the network architecture and number
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of synaptic parameters are kept the same, we show that the accuracy and perfor-
mance of the NormAD trained SNN is slightly better than that of an equivalent
ANN trained using backpropagation.

This paper is organized as follows. We introduce the basic units of SNNs
in Section 2. Section 3 describes the architecture of our network, the spike en-
coding at the input and output of the network, and the training algorithm used
for weight updates. Section 4 describes several hyper-parameter tuning exper-
iments and the results achieved on the MNIST database. Section 5 discusses
the optimization of the network for implementation in energy and memory con-
strained hardware platforms by approximating the neuronal dynamics and using
low-precision bits for storing the synaptic weights. Finally, section 6 summarizes

the key conclusions of our work.

2. Spiking Neural Networks

SNNs are the third generation of neural networks employing neuron models
that are inspired by the biological mechanisms of neuronal signaling. While the
mechanism of spike process in biological neurons depends on complex interac-
tions of ion-channels on the cell membrane, a computationally simpler leaky
integrate and fire (LIF) model is typically used for simulation of spiking neural
networks [57]. This model represents the potential of a neuron as the voltage
across a capacitor connected in parallel with a leaky conductance path, and is
charged by incoming input currents. Accordingly, the membrane potential V' (t)

evolves according to the differential equation:

C%it) =—g(V(t) — EL) + Lsyn(t). (1)

When V() > Vr, a spike is issued and transmitted to the downstream synapses;
the membrane potential is reset to its resting value Ep, after the spike. We use
Ep = —=70mV and Vpr = 20mV in our simulations. C' = 300pF and g; =
30nS model the membrane’s capacitance and leak conductance, respectively.

Biological neurons enter a refractory period immediately after a spike is issued
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during which another spike cannot be issued. We implement this by holding the
membrane potential at V' (¢t) = E, for a short period ¢,.; = 3ms after the issue
of a spike. We also limit the membrane potential to the range [Ey,, V] through
clipping.

The spikes arriving at a synapse having a strength (weight) w, will gener-
ate a post-synaptic current (I, (t)) in its downstream neuron, given by the

expressions:

c(t) Z S(t—t') % (67’5/71 — e*t/”) (2)

Ioyn(t) = wxc(t). (3)

where t* denotes the time of issue of the i*" incoming spike and * is the convo-
lution operator. The variables 7 = 5ms and 75 = 1.25 ms model the shape of
the synaptic current kernel ¢(t) and denote its falling and rising time constants,
respectively. Note that the time of issue of spikes of a LIF neuron depends on
the incoming spike times and synaptic strength in a strong nonlinear fashion,

due to the weighted summation, integration and reset.

3. Network Architecture

As illustrated in Fig. 1, we designed a simple 3-layer SNN for classification of
handwritten digits from the MNIST database. Since MNIST images are 28 x 28
pixels, our network’s input layer has 784 neurons and the output layer has 10
neurons, each corresponding to a particular digit. The input layer neurons
connect to 8112 hidden layer neurons through twelve a priori fixed 3 x 3 sized
convolutional kernels. The synapses connecting this hidden layer to the output

layer are trained using the NormAD algorithm.

3.1. Input encoding
Biological sensory neurons employ complex transformations such as rate
coding, time-of-spike coding, population coding and phase coding to encode

real-world information in the spike domain [58]. Time-encoding machines that
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Figure 1: The proposed spiking neural network architecture for handwritten digit classifica-
tion. The spike trains from the input layer with 28 x 28 neurons are spatially convolved with
twelve filters (or convolution kernels) of size 3 x 3, resulting in the twelve feature maps of size
26 x 26. The synapses connecting the 8112 convolution layer neurons and the 10 output layer
neurons are tuned during training. There is a fixed winner-take-all (WTA) lateral inhibition

between the neurons in the output layer.

convert band-limited input signals to the spike domain such that their perfect
reconstruction is possible have been proposed in [59]. There are also some re-
cent works that use Gaussian receptive fields or Poisson encoding to directly
translate real-valued inputs to spike times [60, 40]. As we are dealing with
static images, we translate each gray-scale pixel value, in the range [0, 255], to
currents that can be applied as inputs to the spiking neurons. Accordingly, each

pixel value k is converted into a constant input current for the LIF neuron as:
i(k) =Ty + (k x I). (4)

where I, = 101.2pA is a scaling factor and Iy = 2700 pA is the maximum
constant amplitude current that does not generate a spike in the LIF neuron in
equation 1. As a result, a LIF neuron in the input layer issues spikes that are
uniformly spaced in time, with a frequency that is sub-linearly proportional to

the magnitude of its input current [61].

3.2. Convolutional feature extraction

The convolution layer of our network uses a priori determined fixed weights

for the different feature maps and serves to detect the key features of the image.
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The filter kernels are continuous curves as shown in Fig. 2(left), and incorporate
both excitatory and inhibitory connections. Our kernels are only 3 x 3 pixels
and were inspired by biological studies that suggest that the first few layers of

the visual cortex consist of small-sized visual receptive fields [2].

REERA
HEHR@AA

Figure 2: (left) Convolution filters used in our SNN are of size 3 X 3 pixels. The blue pixels

are the excitatory weights, while white pixels are inhibitory values. The magnitude of the
excitatory weight is 1.6 times that of the inhibitory weight. (right) The twelve spike count
feature maps corresponding to these filters obtained when an exemplary image of digit ‘9’ was
presented to the network. The color intensities in the 2D map depict the number of spikes

generated by the neurons of the hidden layer when the input was presented for 7" = 100 ms.

The filter kernels are spatially convolved with 28 x 28 spike trains arriving
from the input layer neurons, over a simulation period 7', with a stride of 1,
resulting in feature maps of size 26 x 26. The weight kernels have an overall
net higher inhibition than excitation, as it helped to better suppress the spikes
from unwanted edges of the input digit image in the corresponding feature map.
Fixed weights based on Gabor filters have been used before as the first layer
in a deep convolution neural network, and have shown an improvement in the
accuracy for the MNIST dataset compared to the original LeNet-5 network
[3, 62]. We use relatively simpler edge detection filters in the hidden layer of
our network.

The spikes from the input layer neurons pass through these synaptic weight
kernels to generate currents to the hidden layer neurons. The magnitude of the
current entering the hidden layer neurons is scaled such that on an average their
output spike rate is limited to 10 Hz. Fig. 2(right) shows the 2D feature maps

depicting the number of spikes generated by the neurons in the hidden layer
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when an exemplary image of digit 9 from the MNIST data-set is presented to
the network for 7= 100 ms. The different kernels are able to effectively encode

the edges and features of the input image in spike domain.

8.8. Learning layer

The synaptic weights connecting the hidden layer to the output classifier
layer are trained using the NormAD algorithm [55]. The weights are initialized
to zero at the beginning of training. Weights of all the 8112 x 10 synapses in
this fully-connected layer of the network are updated at the end of presentation

of each image, which lasts for the interval T, as:
w(n+1) =w(n) + Aw. (5)

The weight update, Aw is calculated only when there is a discrepancy be-
tween the spike times in the desired (S%(t)) and observed (S°(t)) spike trains,
e(t) = S4(t)—S°(t). As described in [55], this is achieved by defining a cost func-
tion in terms of the error between the desired (Vyes(t)) and observed (V(w,t))

neuron membrane potentials as:

1

T
Tw) =5 [ 1eO1Vaeslt) = Viow. ) (©

Using gradient descent on the instantaneous cost J(w, t) obtained by restricting
the limits of integral in equation 6 to an infinitesimally small interval around

time ¢, the instantaneous weight update term can be written as:
Aw(t) =n(t)VwJ(w,1) (7)
with
VwJ(w,t) = [e(t)|(Vaes(t) = V (W, 1))V V(w, 1) (8)

n(t) is a time dependent proportionality constant in equation 7. By normalizing
and approximating the dependence of membrane potential on the weights, it is

possible to obtain a closed form relationship for the weight update as:

=T ! (& a(t)
= [l o )

10
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where,

d(t) = c(t) * h(t), with h(t) = exp(—t/71)u(t). (10)

Here, ¢(t) is the synaptic kernel as described in equation 2 and wu(t) is the
Heaviside step function. The constant 7, = 1 ms represents the approximation
for the neuronal time constant, during training phase. Normalization helps in
eliminating the dependency on Ve, (t), which is an unknown term. The weight
update depends only on the output spike error e(t) and the incoming spike
trains, captured in (f(t) The constant 7, having the dimensions of synaptic
conductance, is a function of the number of input neurons, and is set to 200 pS
for our network with 8112 incoming synapses per output neuron.

In our network, the desired signal S%(¢) for the label neuron is a uniform
spike train with a frequency of 285 Hz, corresponding to a spike every 3.5ms,
which is slightly higher than the LIF refractory period of 3ms. There are no
spikes in the S¢(¢) for all the other neurons.

8.4. Lateral inhibition at the output layer

In addition to the feed-forward inputs from the convolution layer neurons,
each output layer neuron also receives lateral inhibitory inputs from the remain-
ing 9 output neurons, implement winner-take-all (WTA) dynamics, similar to
[56]. When a neuron spikes, its outgoing WTA synapses inject a negative current

to other neurons, thereby suppressing their spikes, as illustrated in Fig. 3.

3.5. Training methodology

During training, each image is presented to the network for a duration 7" and
all the output layer weights are updated after every image, similar to a stochastic
gradient descent (SGD) rule. We divide the MNIST training set into two parts:
50, 000 for training and remaining 10, 000 for validation. In each training epoch,
all the 50,000 images are presented once to the network. All the neurons’
membrane potentials are initialized to their resting value of F;, = —70mV and

the synaptic current variables are cleared at the beginning of each simulation.

11
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Figure 3: Membrane potential of two output layer neurons ‘3’ and ‘5’, when an input image
of digit ‘5’ was presented to the network. (left) Membrane potential without lateral inhibition
and (right) with lateral inhibition. It can be seen that lateral inhibition has suppressed the

incorrect neuron ‘3’ from issuing a spike.

The dynamics of the SNN is evaluated by numerical integration with a time-
step of At = 0.1 ms which is 10 times smaller than the learning time constant,
71, = 1 ms used in the NormAD algorithm (see section 3.3). The validation set
is used to tune the hyper-parameters of the network such as the variation in
the learning rate, optimal number of convolution kernels and the presentation
duration as discussed in the following subsections. The network accuracy was
determined on the MNIST test set consisting of 10,000 images. The details of
the GPU implementation of the algorithm are available in the supplementary

material.

4. Results

We now discuss the results of various experiments that we conducted in our
study to optimize the performance of our network. We start with the baseline
experiments that were conducted to analyze network performance, and then
discuss the sensitivity of the network to signal encoding parameters such as

image presentation duration, learning rate schedules and the network size.

12
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4.1. Accuracy metrics in spike domain

We primarily used two metrics to measure the accuracy of our network —
the first based on the spike count and the second based on the correlation C'; of
the observed spike trains with respect to a reference spike train. In the count
metric, the network’s output is decided based on the neuron having the highest
spike count. The spike correlation measure [63] between the output spike train

S2(t) for each neuron ¢ in the output layer and a reference spike train S”(¢) is

defined as:
LS, LIST(1)
O = s NZE ol D

where
L[S(t)] = S(t) * exp(—t/T)u(t). (12)
Here (x,y) represents the dot product of vectors x and y. The training signal

with a frequency fo+ = 285 Hz is also used as the reference signal during in-

ference. The neuron with the highest value of C' is declared the winner of the

classification.
35] . =— First spike time | _ 304" .
’ Spike count Test set

. +— Spike correlation| - A25_
A I s )
= N — 204 Y
o | \ @ TS aseesaas - o
5 25 £
w = LW 45

2.0+ - 10 T

0 5 10 15 20 0 10 20 30 40
Epoch number Epoch number

Figure 4: (left) The 3-layer SNN error on the MNIST test data-set based on the count,
correlation and first-spike-time metrics. It can be seen that the network classification error in
terms of first neuron to spike (in gray) during the presentation interval T', is worse by almost
1% compared to either count (blue) or the correlation metric (magenta). (right) For a 2-layer
SNN without the hidden layer, the error saturates to about 8%, even at 40 epochs of training,

illustrating the importance of the hidden layer.

The SNN is trained on the MNIST training set for 20 epochs. It can be seen

from Fig. 4 (left) that precise timing of spikes measured using the correlation

13
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metric gives a slightly higher accuracy for classification, though the spike count
metric is a simpler metric to evaluate. The classification accuracy of the network
is reported using the correlation metric for the succeeding sections in this paper,
with explicit mention of the count metric whenever it is used. We also considered
the classification accuracy based on the output neuron that spiked first during
the input presentation. However, the accuracy based on this metric at the
end of 20 epochs was only about 97.34%. While there is a significant drop in
accuracy compared to the correlation and spike count metrics, the prediction
can be made within 20 ms of image presentation in 99% of input samples using
the first-to-spike metric. This trade-off between latency and accuracy may be
especially attractive for low-power approximate computing applications.

We also note the crucial role the convolutional hidden layer plays in improv-
ing the network accuracy — in a 2-layer network with the 784 input neurons
connected directly to the 10 output layers, the network’s error saturates around

8% (Fig. 4(right)).

4.2. Learning rate schedule optimization

As discussed in [55], the optimal learning rate for the NormAD algorithm

1/2

depends on the number of input neurons, N;,, and scales according to a NZ-:LP

rule. We studied several protocols (learning rate schedules) to decrease the
learning rate during training (Table 1), which resulted in lowering the network
error by nearly 0.5% (Fig. 5).

Epoch dependent learning rate schedules have shown accuracy improvement
in previous works for ANN training [3, 64, 56]; in our study, we experimented
with these and several other schedules, shown in the Table 1. We use sched-
ule 5 which gave the best validation error after convergence, for the rest of

experiments in the paper.

4.8. Network parameter optimization

We also optimized the design parameters of the network such as the number

of the convolution kernels used in the hidden layer and the time period T used

14
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Table 1: Learning rate schedules

Scheme Learning rate (pS)

Schedule 1 | r¢o = 200, constant over all epochs, n
Schedule 2 | (1/n) decrease: r(n) = m
Schedule 3 | Exponential decrease: r(n) = rgexp(—k x n)

Schedule 4 | Step decrease by half every 5 epochs

Schedule 5 | Step decrease by half every 3 epochs

404 % —=— Schedule 1| _
‘ Schedule 2
\ Schedule 3| -
354 | —v— Schedule 4|_
S '] Schedule 5 |
N
[ 3 |
g 3.0 X
(11| Lt .
2.54 v‘..:.'..--..H"..i
Ag v v
20+ Harrreet
0 5 10 15 20

Epoch number
Figure 5: Network error on the validation set for five different rate schedules listed in Table 1.

for presenting each input image to the network. Increasing T results in longer
integration time to learn the features of each image, as more spikes (or error
points) are produced, resulting in a larger magnitude for the weight update.
However, from the perspective of improving the throughput for network perfor-
mance and preventing over-fitting, smaller values of T are more desirable. Fig. 6
shows the network performance as a function of the number of convolution ker-
nels and the presentation duration 7" for the images. The network accuracy is
optimized with 12 kernels and a presentation duration of 7' = 100 ms. We used
a constant inhibitory WTA synaptic strength of 1 nS for all connections in the

output layer.

15
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Figure 6: (left) Classification accuracy on the MNIST test set as a function of the number of
convolutional kernels; (right) the presentation duration, T'. The network accuracy is optimized

with 12 kernels and a presentation duration of 7' = 100 ms.

4.4. MNIST accuracy results

8w . . 3
a N —=— ANN: Test set
RN e —o— SNN: Test set ]
R \ —0o— ANN: Training sef|
61 —O— SNN: Training set| |
54 D i

Error (%)

:—: = = S = S B SRR R

0 5 10 15 20
Epoch number

Figure 7: Comparison of the MNIST error for the 3-layer SNN and an equivalent ANN with
the same network structure during 20 epochs of training. The SNN performance (0.18% error
for training set and 1.83% error for test set at convergence) is slightly better than that of the
ANN (0.28% error for training set and 2.0% for test set at convergence).

Having optimized the network hyper-parameters, we trained our SNN with
the complete MNIST dataset (60,000 images) for 20 epochs. The SNN achieved
an accuracy of 99.82% on the MNIST training set and 98.17% on the test set.

We also trained an equivalent ANN with the same architecture, i.e., the
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same number of neurons and connectivity patterns (but without the lateral
WTA connection) as the SNN in Fig. 1. We used the rectified linear unit
(ReLU) as the activation function of the neurons in this network. The weights
of the fully-connected layer were adjusted by the standard gradient descent
rule by back-propagating the network error. After fine-tuning the learning rate
schedule, this ANN achieved an accuracy of 98.0% on the MNIST test set, which
is close to the best case accuracy of around 98.50% reported on an equivalently
sized three-layered ANN [65]. The performance for training and test sets for
the SNN and ANN networks for 20 epochs of training is shown in Fig. 7. This
comparison shows that SNNs trained using the NormAD algorithm can obtain

performance similar to equivalent ANNs in benchmark classification problems.

Figure 8: The average of the trained weights (in pS) from the 12 kernels in the hidden layer
to the 10 neurons in the output layer is the effective internal representation of the digits
learned by the network. (Top) The average weights in the output layer of the SNN after 100
images presented once for training (when the test set accuracy was only 65.8%) and; (Bottom)

average weights after training (i.e., with 98.17% accuracy).

Fig. 8 shows the average of the trained weights of the synapses from the 12
feature maps to each of the 10 output neurons of SNN. When the network is
trained on the first 100 images, the weight maps closely resemble the images
of the training set digits, though the test set accuracy using these weights was
only about 65.8%. When the network is trained with all the 60,000 images in
the training set, the test set accuracy rises to 98.17%, thanks to a more complex

representation of the images that are captured by the synaptic weights in the
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network.

Table 2: MNIST classification accuracy comparison - our network architecture achieves over

98% accuracy with atleast four times fewer parameters than the state-of-the-art networks.

Network and learning algorithm Number of Test set
(BP stands for back-propagation) learning synapses | Accuracy
ANN (LeNet-5) [3] 331,984 99.05%
GCNN (LeNet-5 + Gabor filters) [62] | 331,984 99.32%
MCDNN (Multi-column Deep NN) [4] | 1,574,600 99.77%
DNN with DropConnect [66] 2,508,470 99.79%
SNN, with STDP [40] 5,017,600 95.0%
Deep SNN with STDP [38] 5,875,456 98.40%
Fully connected SNN, with BP [56] 328,984 98.77%
Convolution SNN with BP[56] 581,520 99.31%
Spiking ConvNet [49] 1,422,848 99.11%
SNN, with NormAD (this work) 81,120 98.17%
ANN, with BP (this work) 81,120 98.0%

To benchmark the classification performance of our network, we compare the
accuracy and number of learning synapses in other state-of-the-art approaches
for MNIST handwritten digit classification (Table 2). We note that while the
accuracy of our approach is about 1.6% worse than the best in class approach,
our network achieves this accuracy with four to twenty times fewer number of
trainable synaptic weights.

Table 3 presents the confusion matrix for the SNN based classification of the
MNIST test data-sets into 10 classes. It can be seen that for all the digits, the
true positive rate is 97% and above, demonstrating the high selectivity of the
classifier layer, even though this is not easily discernible from the weight maps

(Fig. 8). Ouly five images failed to elicit any spikes in the output neurons.
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Table 3: Confusion matrix for the SNN’s predicted output shows high selectivity of the Nor-

mAD trained classifier layer for each digit.

Actual 0 1 2 3 4 5 6 7 8 9
Predicted

0 973 | O 3 2 2 9 1 4 4

1 0 1126 | 1 0 0 0 2 4 0 4

2 2 3 1015 | 4 1 1 0 9 1 1

3 0 2 0 996 | O 7 1 1 6 4

4 0 1 2 0 964 | O 1 1 5 7

5 0 1 0 6 0 876 | 3 0 1 3

6 2 1 1 0 5 3 940 | O 1 0

7 1 1 6 2 0 1 0 1005 | 3 7

8 1 0 1 1 1 2 3 947 | 3

9 0 0 2 1 9 0 0 3 6 975
No spike 1 0 1 0 0 0 1 0 1
Total 980 1135| 1032| 1010 | 982 | 892 | 958 1028 | 974 1009

5. Network optimization

We now discuss the network optimization studies to translate the software

design for energy and memory constrained hardware platforms.

5.1. Low precision weight encoding

The ability of a network to maintain its accuracy even when the precision
for storing the network parameters is limited, is crucial for efficient hardware
implementations. It has been observed that accuracy degrades significantly
when low-precision weights are used for network emulation. For instance, a 5%
drop in accuracy (with the MNIST data-set) was observed even with 5-bits of
fixed-point precision for the synaptic weights in [67].

We test the ability of our SNN and ANN for inference as a function of the
precision of trained weights. We train the weights of both these networks in
double-precision and then measure the inference accuracy by quantizing these
weights, similar to the approach taken in [68] for designing a scalable hardware
solution. The histograms of the weights of our SNN and ANN after training with
NormAD and gradient descent, respectively, are observed to be log-normally dis-

tributed. Our quantization studies showed that dividing the range of weights
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into linear bins, rather than log-linear bins gives lesser degradation in perfor-
mance. Fig. 9 shows the drop in accuracy for our networks as the number of
levels for representing the trained weights are reduced. It can be seen that
even at 3-bit quantization, the degradation in SNN accuracy is within 1.0% for
T = 100ms compared to the floating point baseline. Further, across all quan-
tization values, the degradation in accuracy of the ANN is slightly worse than
that of the spiking network. It is also worth pointing out that compared to
previous reports such as [67], where the input spike rate was as high as 1500 Hz,
the firing rate in our SNN is in the range of 10 to 300 Hz, which is closer to the
observed biological spike rates. These results hence demonstrate the robustness
of the SNN architecture and its suitability for memory constrained hardware

platforms.

98- [CJANN _ — —TH
[_ISNN|

§977 ] B
>
(]
o
3
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95

2 3 4 5 6

Number of bits

Figure 9: Test accuracy as a function of the precision of the trained weights in the SNN and
ANN. Even at 2-bit precision, the SNN accuracy is only about 1% worse than the floating
point baseline. Further, the SNN accuracy is better than the corresponding ANN especially

at low bit-precision.

5.2. Approzimating neuronal dynamics

We also study the SNN’s performance when the dynamics of the neurons is

evaluated with lower precision. As mentioned in the section 3.5, the time step
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Figure 10: MNIST test accuracy (count metric) as a function of bit-precision of weights and
the presentation time 7', when the neuronal dynamics is approximated with a larger integration
time step of 1 ms. Even at 3-bits of precision and with 7" = 50 ms, the drop in accuracy is

within 1% of the baseline.

for numerical integration was chosen to be 0.1 ms for learning. Even though
there will be some error in the precise time of spike issue, a larger time step can
be used when the network is used for inference.

With At = 1ms, the neuronal response can be calculated 10x faster; Fig. 10
shows the test accuracy as a function of bit-precision and presentation times for
the 3-layer SNN. Here, we used the count metric to determine the test accu-
racy to simplify the computation further. At a bit-precision of 3-bits, the digit
identification can be completed in just 50 ms or with 50 points of neuronal inte-
gration with an accuracy of 97.31%. Hence, close to base-line accuracies can be
maintained in approximate network evaluation that permits higher throughput

for classification.

6. Conclusion and Future Work

We presented a highly compact and efficient 3-layer spiking neural network
for identifying handwritten digits, that achieved an accuracy of 98.17% on the
MNIST data set using the NormAD learning algorithm. All information in the
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network is encoded and processed in the spike domain at sparse biological spike
rates. Our studies show that using the precise time of spike issue for classifica-
tion gives slightly better accuracy compared to the simpler rate coding method.
We have also presented two techniques to co-optimize the network for hardware
implementation, by reducing the bit-precision of weights and approximating the
neuronal dynamics with higher integration time-step size.

The best convolution networks in both spiking and non-spiking versions that
have achieved over 99% accuracy on the MNIST database use at least over
300,000 adjustable synapses. The NormAD-trained SNN, on the other hand,
has 4x fewer learning parameters, making it amenable for implementation on
custom neuromorphic hardware with on-chip learning. Our studies also show
that as low as 3-bits of weight precision is sufficient to maintain close to baseline
accuracies in the SNN when used for inference. Compared to an equivalent ANN
with similar network architecture, the spike based training approach also shows
better accuracy, especially at lower precision for synaptic weight storage.

The NormAD weight update rule as used in this study can be applied only
for tuning the strength of synapses connected to the output layer of a network.
However, the methodology used to derive this rule can be extended to adjust the
weights of networks with hidden layers in a spike-triggered manner, based on the
chain rule of derivatives. Such weight update rules could be then used to pre-
train autoencoders which could be stacked and trained to develop deep spiking
networks, following the approaches used in deep learning today [5]. Quantifying
the performance of such deep spiking networks and determining their accuracy-
efficiency trade-offs for large benchmark classification problems is identified as

a topic for future exploration.
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