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Abstract

We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the

problem of handwritten digit recognition using the spike triggered Normalized

Approximate Descent (NormAD) algorithm. Our network that employs neurons

operating at sparse biological spike rates below 300 Hz achieves a classification

accuracy of 98.17% on the MNIST test database with four times fewer parame-

ters compared to the state-of-the-art. We present several insights from extensive

numerical experiments regarding optimization of learning parameters and net-

work configuration to improve its accuracy. We also describe a number of strate-

gies to optimize the SNN for implementation in memory and energy constrained

hardware, including approximations in computing the neuronal dynamics and

reduced precision in storing the synaptic weights. Experiments reveal that even

with 3-bit synaptic weights, the classification accuracy of the designed SNN does

not degrade beyond 1% as compared to the floating-point baseline. Further, the

proposed SNN, which is trained based on the precise spike timing information

outperforms an equivalent non-spiking artificial neural network (ANN) trained

using back propagation, especially at low bit precision. Thus, our study shows

the potential for realizing efficient neuromorphic systems that use spike based

information encoding and learning for real-world applications.
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1. Introduction1

The superior computational efficiency of biological systems has inspired the2

quest to reverse engineer the brain in order to develop intelligent computing3

platforms that can learn to execute a wide variety of data analytics and in-4

ference tasks [1]. Artificial neural networks (ANNs), inspired by the network5

architecture of the brain, have emerged as the state-of-the-art for various ma-6

chine learning applications. In particular, inspired by the Nobel prize winning7

work of Hubel and Weisel on elucidating the mechanisms of information rep-8

resentation in the visual cortex [2], multi-layer convolutional neural networks9

have shown impressive performance for a wide variety of applications such as10

image recognition, natural language processing, speech recognition and video11

analytics [3, 4, 5, 6, 7, 8, 9, 10, 11].12

Nevertheless, the neurons in ANNs implement a memoryless nonlinear trans-13

formation of the input synaptic signals to create real-valued output signals. This14

is vastly different from the behavior of neurons in the brain, which encode infor-15

mation in the timing of binary signals, called action potentials or spikes based16

on the timing of incoming spike signals from upstream nodes. The third gener-17

ation of artificial neural networks, also called spiking neural networks (SNNs),18

have been introduced to mimic this key aspect of information processing in the19

brain [12]. There is growing evidence that SNNs have significant computational20

advantages as a result of their higher information representational capacity due21

to the incorporation of the temporal dimension [13, 14, 15, 16]. Furthermore,22

SNNs issue spikes sparsely - the observed spike rate in biological networks is23

in the range of 0.1 to 300 Hz - and they operate in an event-driven manner24

[17, 18, 19, 20]. Therefore, highly energy efficient neuromorphic systems can be25

realized in hardware based on SNNs, as is evidenced by recent demonstrations26

[21, 22, 23, 24, 25].27

2



Earlier efforts to build learning algorithms for SNNs were inspired by recent28

discoveries from neuroscience that shed light on the synaptic (neuronal inter-29

connections) mechanisms of adaptation based on the difference in the times of30

issue of pre- and post-synaptic spikes. The most prominent among them is the31

Remote Supervised Method (ReSuMe) [26], that adjusts the synaptic weights32

based on the precise timing differences of the input and output neurons, in-33

spired by the spike timing dependent plasticity (STDP) rule. Other spike based34

learning algorithms that have been proposed include the SpikeProp algorithm35

(though it was restricted to single spike learning) [27], SPAN and PSD, which36

converted spikes to smoothened analog signals and defined a continuous time37

cost function for training [28, 29]. Another important spike based supervised38

learning rule was the Chronotron rule which used piece-wise gradient descent39

and was demonstrated to be efficient in identifying different classes of random40

spike trains [30]. Recently, the reward modulated STDP or R-STDP learning41

has shown superior performance on several benchmark problems compared to42

STDP SNNs and even traditional CNNs, even though training was limited to43

a single layer in the network [31]. A variant of ReSuMe algorithm, called the44

Delay Learning (DL)-ReSuMe, in addition to the synaptic weights, made use of45

the transmission delays of synapses interconnecting the neurons as parameters46

to train the network [32]. This algorithm has been shown to be superior in terms47

of accuracy and speed of convergence compared to the basic ReSuMe algorithm.48

The accurate synaptic efficiency adjustment method is another spike-error trig-49

gered supervised learning rule based on STDP, which optimizes a cost function50

defined in terms of membrane potential differences [33]. This method has been51

used to demonstrate excellent performance in several UCI datasets with few52

training parameters. The Synaptic Kernel Inverse Method (SKIM) [34], evalu-53

ates the weights analytically rather than learning them iteratively and has been54

applied to the problem of speech based digit recognition in a small network55

with 50 neurons. Based on the SKIM method, the convex optimized synaptic56

efficiencies (CONE) algorithm was developed [35] and was used for the prob-57

lem of gait detection. The generalization capability of this algorithm and the58
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noise tolerance of a variation of the algorithm called CONE-R has also been59

demonstrated.60

Our work focuses on applying a precise spike based supervised learning algo-61

rithm to the MNIST (Modified National Institute of Standards and Technology62

database) handwritten digit classification problem and optimizing the network63

in terms of the number of learning parameters for implementation in energy and64

memory constrained hardware.65

In addition to the above mentioned learning methods, unsupervised learning66

algorithms for SNNs have also been explored, based on the biological spike67

timing dependent plasticity (STDP) rule [36, 37, 38, 39, 40, 41, 42]. While68

these networks use multi-layered convolution architectures with more than one69

million parameters and have achieved over 98% accuracy on the MNIST dataset70

[38, 39], we demonstrate similar accuracy with 13× fewer parameters.71

There are also several efforts directed towards developing architectures with72

adaptive and evolving network structures [43, 44, 45, 46, 47]. SpikeTemp and73

SpikeComp are algorithms where neurons are progressively added in the classi-74

fier layer as the training algorithm approaches the optimal point [45, 46]. The75

recently developed evolving architecture called NeuCube, directly inspired by76

the brain [43], incorporates weight adjustments based on supervised and un-77

supervised rules and additionally, adds new network neurons as per training78

requirements.79

Besides the above-mentioned approaches for designing learning algorithms80

for SNNs that operate directly in the spike domain, several authors have pro-81

posed to convert ANNs trained with the well-established backpropagation algo-82

rithm to SNNs so that the latter can be used as inference engines [48, 49, 50,83

51, 52, 53]. ANN-to-SNN conversion imposes that the firing rate of a spiking84

neuron in the SNN be proportional to the activation output of a non-spiking85

neuron in the ANN. Various techniques such as approximating the response of a86

spiking neuron with a smooth differentiable ReLU-like function, weight normal-87

ization, noise addition, lateral inhibition or spiking rate based pooling masks,88

which is similar to max pooling operation, have been employed to this end.89
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Using these approaches, state-of-the-art inference accuracies have been demon-90

strated in spike domain equivalent of deep learning networks such as VGG-1691

and Inception-V13 for ImageNet classification problem, and close to 2× reduc-92

tion in the number of operations needed compared to CNNs for smaller problems93

such as MNIST and CIFAR-10 [53]. Recently, a more biologically plausible al-94

gorithm called the Feedback Alignment (FA) has been proposed, which unlike95

the standard backpropagation uses two different sets of weights in the feed-96

forward and feedback paths [54]. This method has also been demonstrated97

in SNNs, using approximate differentiable functions of leaky integrate and fire98

(LIF) spiking neurons to train them in an online manner. However, the FA rule99

has lower performance compared to the standard backpropagation rule [52].100

Towards the goal of demonstrating a learning SNN capable of high accuracy101

and efficiency, we use the recently proposed Normalized Approximate Descent102

(NormAD) algorithm to train the output layer weights of a three-layered net-103

work with fixed convolutional kernel weights in the hidden layer. This spike-104

triggered weight update rule frames the learning task as a supervised optimiza-105

tion problem aimed at tuning the membrane potential to create spikes at desired106

time instants. Compared to other deterministic learning algorithms in the spike107

domain such as ReSuMe, at least 10× faster convergence characteristics have108

been demonstrated using this algorithm for generating arbitrarily desired spike109

streams [55].110

Prior SNN based demonstration of handwritten digit recognition using spik-111

ing versions of backpropagation of errors has achieved 98.7% based on a fully112

connected 4−layer network and 99.31% with convolutional spiking networks, but113

also with more than 4× higher number of trainable synapses compared to our114

network [56]. The training algorithm employed in that work has a cost function115

that is continuous in time defined in terms of the low pass filtered spike trains116

(both input and output). Compared to the state-of-the-art networks which have117

shown over 99% accuracy, our SNN trained with NormAD shows an accuracy of118

98.17% on the test set of the MNIST database, with 4× fewer synaptic learning119

parameters [3, 4, 11, 56]. Furthermore, if the network architecture and number120
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of synaptic parameters are kept the same, we show that the accuracy and perfor-121

mance of the NormAD trained SNN is slightly better than that of an equivalent122

ANN trained using backpropagation.123

This paper is organized as follows. We introduce the basic units of SNNs124

in Section 2. Section 3 describes the architecture of our network, the spike en-125

coding at the input and output of the network, and the training algorithm used126

for weight updates. Section 4 describes several hyper-parameter tuning exper-127

iments and the results achieved on the MNIST database. Section 5 discusses128

the optimization of the network for implementation in energy and memory con-129

strained hardware platforms by approximating the neuronal dynamics and using130

low-precision bits for storing the synaptic weights. Finally, section 6 summarizes131

the key conclusions of our work.132

2. Spiking Neural Networks133

SNNs are the third generation of neural networks employing neuron models134

that are inspired by the biological mechanisms of neuronal signaling. While the135

mechanism of spike process in biological neurons depends on complex interac-136

tions of ion-channels on the cell membrane, a computationally simpler leaky137

integrate and fire (LIF) model is typically used for simulation of spiking neural138

networks [57]. This model represents the potential of a neuron as the voltage139

across a capacitor connected in parallel with a leaky conductance path, and is140

charged by incoming input currents. Accordingly, the membrane potential V (t)141

evolves according to the differential equation:142

C
dV (t)

dt
= −gL(V (t)− EL) + Isyn(t). (1)143

When V (t) ≥ VT , a spike is issued and transmitted to the downstream synapses;144

the membrane potential is reset to its resting value EL after the spike. We use145

EL = −70 mV and VT = 20 mV in our simulations. C = 300 pF and gL =146

30 nS model the membrane’s capacitance and leak conductance, respectively.147

Biological neurons enter a refractory period immediately after a spike is issued148
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during which another spike cannot be issued. We implement this by holding the149

membrane potential at V (t) = EL for a short period tref = 3 ms after the issue150

of a spike. We also limit the membrane potential to the range [EL, VT ] through151

clipping.152

The spikes arriving at a synapse having a strength (weight) w, will gener-153

ate a post-synaptic current (Isyn(t)) in its downstream neuron, given by the154

expressions:155

c(t) =
∑
i

δ(t− ti) ∗
(
e−t/τ1 − e−t/τ2

)
(2)156

Isyn(t) = w × c(t). (3)157

where ti denotes the time of issue of the ith incoming spike and ∗ is the convo-158

lution operator. The variables τ1 = 5 ms and τ2 = 1.25 ms model the shape of159

the synaptic current kernel c(t) and denote its falling and rising time constants,160

respectively. Note that the time of issue of spikes of a LIF neuron depends on161

the incoming spike times and synaptic strength in a strong nonlinear fashion,162

due to the weighted summation, integration and reset.163

3. Network Architecture164

As illustrated in Fig. 1, we designed a simple 3-layer SNN for classification of165

handwritten digits from the MNIST database. Since MNIST images are 28×28166

pixels, our network’s input layer has 784 neurons and the output layer has 10167

neurons, each corresponding to a particular digit. The input layer neurons168

connect to 8112 hidden layer neurons through twelve a priori fixed 3× 3 sized169

convolutional kernels. The synapses connecting this hidden layer to the output170

layer are trained using the NormAD algorithm.171

3.1. Input encoding172

Biological sensory neurons employ complex transformations such as rate173

coding, time-of-spike coding, population coding and phase coding to encode174

real-world information in the spike domain [58]. Time-encoding machines that175
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Figure 1: The proposed spiking neural network architecture for handwritten digit classifica-

tion. The spike trains from the input layer with 28 × 28 neurons are spatially convolved with

twelve filters (or convolution kernels) of size 3× 3, resulting in the twelve feature maps of size

26× 26. The synapses connecting the 8112 convolution layer neurons and the 10 output layer

neurons are tuned during training. There is a fixed winner-take-all (WTA) lateral inhibition

between the neurons in the output layer.

convert band-limited input signals to the spike domain such that their perfect176

reconstruction is possible have been proposed in [59]. There are also some re-177

cent works that use Gaussian receptive fields or Poisson encoding to directly178

translate real-valued inputs to spike times [60, 40]. As we are dealing with179

static images, we translate each gray-scale pixel value, in the range [0, 255], to180

currents that can be applied as inputs to the spiking neurons. Accordingly, each181

pixel value k is converted into a constant input current for the LIF neuron as:182

i(k) = I0 + (k × Ip) . (4)183

where Ip = 101.2 pA is a scaling factor and I0 = 2700 pA is the maximum184

constant amplitude current that does not generate a spike in the LIF neuron in185

equation 1. As a result, a LIF neuron in the input layer issues spikes that are186

uniformly spaced in time, with a frequency that is sub-linearly proportional to187

the magnitude of its input current [61].188

3.2. Convolutional feature extraction189

The convolution layer of our network uses a priori determined fixed weights190

for the different feature maps and serves to detect the key features of the image.191
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The filter kernels are continuous curves as shown in Fig. 2(left), and incorporate192

both excitatory and inhibitory connections. Our kernels are only 3 × 3 pixels193

and were inspired by biological studies that suggest that the first few layers of194

the visual cortex consist of small-sized visual receptive fields [2].195

0

5

10

15

20

Figure 2: (left) Convolution filters used in our SNN are of size 3 × 3 pixels. The blue pixels

are the excitatory weights, while white pixels are inhibitory values. The magnitude of the

excitatory weight is 1.6 times that of the inhibitory weight. (right) The twelve spike count

feature maps corresponding to these filters obtained when an exemplary image of digit ‘9’ was

presented to the network. The color intensities in the 2D map depict the number of spikes

generated by the neurons of the hidden layer when the input was presented for T = 100 ms.

The filter kernels are spatially convolved with 28 × 28 spike trains arriving196

from the input layer neurons, over a simulation period T , with a stride of 1,197

resulting in feature maps of size 26 × 26. The weight kernels have an overall198

net higher inhibition than excitation, as it helped to better suppress the spikes199

from unwanted edges of the input digit image in the corresponding feature map.200

Fixed weights based on Gabor filters have been used before as the first layer201

in a deep convolution neural network, and have shown an improvement in the202

accuracy for the MNIST dataset compared to the original LeNet-5 network203

[3, 62]. We use relatively simpler edge detection filters in the hidden layer of204

our network.205

The spikes from the input layer neurons pass through these synaptic weight206

kernels to generate currents to the hidden layer neurons. The magnitude of the207

current entering the hidden layer neurons is scaled such that on an average their208

output spike rate is limited to 10 Hz. Fig. 2(right) shows the 2D feature maps209

depicting the number of spikes generated by the neurons in the hidden layer210
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when an exemplary image of digit 9 from the MNIST data-set is presented to211

the network for T = 100 ms. The different kernels are able to effectively encode212

the edges and features of the input image in spike domain.213

3.3. Learning layer214

The synaptic weights connecting the hidden layer to the output classifier215

layer are trained using the NormAD algorithm [55]. The weights are initialized216

to zero at the beginning of training. Weights of all the 8112 × 10 synapses in217

this fully-connected layer of the network are updated at the end of presentation218

of each image, which lasts for the interval T , as:219

w(n+ 1) = w(n) + ∆w. (5)220

The weight update, ∆w is calculated only when there is a discrepancy be-221

tween the spike times in the desired (Sd(t)) and observed (So(t)) spike trains,222

e(t) = Sd(t)−So(t). As described in [55], this is achieved by defining a cost func-223

tion in terms of the error between the desired (Vdes(t)) and observed (V (w, t))224

neuron membrane potentials as:225

J(w) =
1

2

∫ T

0

|e(t)|(Vdes(t)− V (w, t))2dt (6)226

Using gradient descent on the instantaneous cost J(w, t) obtained by restricting227

the limits of integral in equation 6 to an infinitesimally small interval around228

time t, the instantaneous weight update term can be written as:229

∆w(t) = η(t)∇wJ(w, t) (7)230

with231

∇wJ(w, t) = |e(t)|(Vdes(t)− V (w, t))∇wV (w, t) (8)232

η(t) is a time dependent proportionality constant in equation 7. By normalizing233

and approximating the dependence of membrane potential on the weights, it is234

possible to obtain a closed form relationship for the weight update as:235

∆w = r

∫ T

0

e(t)
d̂(t)

‖d̂(t)‖
dt (9)236
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where,237

d̂(t) = c(t) ∗ ĥ(t),with ĥ(t) = exp(−t/τL)u(t). (10)238

Here, c(t) is the synaptic kernel as described in equation 2 and u(t) is the239

Heaviside step function. The constant τL = 1 ms represents the approximation240

for the neuronal time constant, during training phase. Normalization helps in241

eliminating the dependency on Vdes(t), which is an unknown term. The weight242

update depends only on the output spike error e(t) and the incoming spike243

trains, captured in d̂(t). The constant r, having the dimensions of synaptic244

conductance, is a function of the number of input neurons, and is set to 200 pS245

for our network with 8112 incoming synapses per output neuron.246

In our network, the desired signal Sd(t) for the label neuron is a uniform247

spike train with a frequency of 285 Hz, corresponding to a spike every 3.5 ms,248

which is slightly higher than the LIF refractory period of 3 ms. There are no249

spikes in the Sd(t) for all the other neurons.250

3.4. Lateral inhibition at the output layer251

In addition to the feed-forward inputs from the convolution layer neurons,252

each output layer neuron also receives lateral inhibitory inputs from the remain-253

ing 9 output neurons, implement winner-take-all (WTA) dynamics, similar to254

[56]. When a neuron spikes, its outgoing WTA synapses inject a negative current255

to other neurons, thereby suppressing their spikes, as illustrated in Fig. 3.256

3.5. Training methodology257

During training, each image is presented to the network for a duration T and258

all the output layer weights are updated after every image, similar to a stochastic259

gradient descent (SGD) rule. We divide the MNIST training set into two parts:260

50, 000 for training and remaining 10, 000 for validation. In each training epoch,261

all the 50, 000 images are presented once to the network. All the neurons’262

membrane potentials are initialized to their resting value of EL = −70 mV and263

the synaptic current variables are cleared at the beginning of each simulation.264
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Figure 3: Membrane potential of two output layer neurons ‘3’ and ‘5’, when an input image

of digit ‘5’ was presented to the network. (left) Membrane potential without lateral inhibition

and (right) with lateral inhibition. It can be seen that lateral inhibition has suppressed the

incorrect neuron ‘3’ from issuing a spike.

The dynamics of the SNN is evaluated by numerical integration with a time-265

step of ∆t = 0.1 ms which is 10 times smaller than the learning time constant,266

τL = 1 ms used in the NormAD algorithm (see section 3.3). The validation set267

is used to tune the hyper-parameters of the network such as the variation in268

the learning rate, optimal number of convolution kernels and the presentation269

duration as discussed in the following subsections. The network accuracy was270

determined on the MNIST test set consisting of 10, 000 images. The details of271

the GPU implementation of the algorithm are available in the supplementary272

material.273

4. Results274

We now discuss the results of various experiments that we conducted in our275

study to optimize the performance of our network. We start with the baseline276

experiments that were conducted to analyze network performance, and then277

discuss the sensitivity of the network to signal encoding parameters such as278

image presentation duration, learning rate schedules and the network size.279
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4.1. Accuracy metrics in spike domain280

We primarily used two metrics to measure the accuracy of our network –281

the first based on the spike count and the second based on the correlation C, of282

the observed spike trains with respect to a reference spike train. In the count283

metric, the network’s output is decided based on the neuron having the highest284

spike count. The spike correlation measure [63] between the output spike train285

Soi (t) for each neuron i in the output layer and a reference spike train Sr(t) is286

defined as:287

Ci =
〈L[Soi (t)], L[Sr(t)]〉
‖L[Soi (t)]‖ ‖L[Sr(t)]‖

(11)288

where289

L[S(t)] = S(t) ∗ exp(−t/τ )u(t). (12)290

Here 〈x,y〉 represents the dot product of vectors x and y. The training signal291

with a frequency fout = 285 Hz is also used as the reference signal during in-292

ference. The neuron with the highest value of C is declared the winner of the293

classification.294
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Figure 4: (left) The 3-layer SNN error on the MNIST test data-set based on the count,

correlation and first-spike-time metrics. It can be seen that the network classification error in

terms of first neuron to spike (in gray) during the presentation interval T , is worse by almost

1% compared to either count (blue) or the correlation metric (magenta). (right) For a 2-layer

SNN without the hidden layer, the error saturates to about 8%, even at 40 epochs of training,

illustrating the importance of the hidden layer.

The SNN is trained on the MNIST training set for 20 epochs. It can be seen295

from Fig. 4 (left) that precise timing of spikes measured using the correlation296
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metric gives a slightly higher accuracy for classification, though the spike count297

metric is a simpler metric to evaluate. The classification accuracy of the network298

is reported using the correlation metric for the succeeding sections in this paper,299

with explicit mention of the count metric whenever it is used. We also considered300

the classification accuracy based on the output neuron that spiked first during301

the input presentation. However, the accuracy based on this metric at the302

end of 20 epochs was only about 97.34%. While there is a significant drop in303

accuracy compared to the correlation and spike count metrics, the prediction304

can be made within 20 ms of image presentation in 99% of input samples using305

the first-to-spike metric. This trade-off between latency and accuracy may be306

especially attractive for low-power approximate computing applications.307

We also note the crucial role the convolutional hidden layer plays in improv-308

ing the network accuracy – in a 2-layer network with the 784 input neurons309

connected directly to the 10 output layers, the network’s error saturates around310

8% (Fig. 4(right)).311

4.2. Learning rate schedule optimization312

As discussed in [55], the optimal learning rate for the NormAD algorithm313

depends on the number of input neurons, Ninp and scales according to a N
−1/2
inp314

rule. We studied several protocols (learning rate schedules) to decrease the315

learning rate during training (Table 1), which resulted in lowering the network316

error by nearly 0.5% (Fig. 5).317

Epoch dependent learning rate schedules have shown accuracy improvement318

in previous works for ANN training [3, 64, 56]; in our study, we experimented319

with these and several other schedules, shown in the Table 1. We use sched-320

ule 5 which gave the best validation error after convergence, for the rest of321

experiments in the paper.322

4.3. Network parameter optimization323

We also optimized the design parameters of the network such as the number324

of the convolution kernels used in the hidden layer and the time period T used325
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Table 1: Learning rate schedules

Scheme Learning rate (pS)

Schedule 1 r0 = 200, constant over all epochs, n

Schedule 2 (1/n) decrease: r(n) = r0
(1+k×n)

Schedule 3 Exponential decrease: r(n) = r0 exp(−k × n)

Schedule 4 Step decrease by half every 5 epochs

Schedule 5 Step decrease by half every 3 epochs
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3.0

3.5
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ro
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%
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Figure 5: Network error on the validation set for five different rate schedules listed in Table 1.

for presenting each input image to the network. Increasing T results in longer326

integration time to learn the features of each image, as more spikes (or error327

points) are produced, resulting in a larger magnitude for the weight update.328

However, from the perspective of improving the throughput for network perfor-329

mance and preventing over-fitting, smaller values of T are more desirable. Fig. 6330

shows the network performance as a function of the number of convolution ker-331

nels and the presentation duration T for the images. The network accuracy is332

optimized with 12 kernels and a presentation duration of T = 100 ms. We used333

a constant inhibitory WTA synaptic strength of 1 nS for all connections in the334

output layer.335
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Figure 6: (left) Classification accuracy on the MNIST test set as a function of the number of

convolutional kernels; (right) the presentation duration, T . The network accuracy is optimized

with 12 kernels and a presentation duration of T = 100 ms.

4.4. MNIST accuracy results336
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Figure 7: Comparison of the MNIST error for the 3-layer SNN and an equivalent ANN with

the same network structure during 20 epochs of training. The SNN performance (0.18% error

for training set and 1.83% error for test set at convergence) is slightly better than that of the

ANN (0.28% error for training set and 2.0% for test set at convergence).

Having optimized the network hyper-parameters, we trained our SNN with337

the complete MNIST dataset (60, 000 images) for 20 epochs. The SNN achieved338

an accuracy of 99.82% on the MNIST training set and 98.17% on the test set.339

We also trained an equivalent ANN with the same architecture, i.e., the340
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same number of neurons and connectivity patterns (but without the lateral341

WTA connection) as the SNN in Fig. 1. We used the rectified linear unit342

(ReLU) as the activation function of the neurons in this network. The weights343

of the fully-connected layer were adjusted by the standard gradient descent344

rule by back-propagating the network error. After fine-tuning the learning rate345

schedule, this ANN achieved an accuracy of 98.0% on the MNIST test set, which346

is close to the best case accuracy of around 98.50% reported on an equivalently347

sized three-layered ANN [65]. The performance for training and test sets for348

the SNN and ANN networks for 20 epochs of training is shown in Fig. 7. This349

comparison shows that SNNs trained using the NormAD algorithm can obtain350

performance similar to equivalent ANNs in benchmark classification problems.351
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Figure 8: The average of the trained weights (in pS) from the 12 kernels in the hidden layer

to the 10 neurons in the output layer is the effective internal representation of the digits

learned by the network. (Top) The average weights in the output layer of the SNN after 100

images presented once for training (when the test set accuracy was only 65.8%) and; (Bottom)

average weights after training (i.e., with 98.17% accuracy).

Fig. 8 shows the average of the trained weights of the synapses from the 12352

feature maps to each of the 10 output neurons of SNN. When the network is353

trained on the first 100 images, the weight maps closely resemble the images354

of the training set digits, though the test set accuracy using these weights was355

only about 65.8%. When the network is trained with all the 60, 000 images in356

the training set, the test set accuracy rises to 98.17%, thanks to a more complex357

representation of the images that are captured by the synaptic weights in the358
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network.359

Table 2: MNIST classification accuracy comparison - our network architecture achieves over

98% accuracy with atleast four times fewer parameters than the state-of-the-art networks.

Network and learning algorithm Number of Test set

(BP stands for back-propagation) learning synapses Accuracy

ANN (LeNet-5) [3] 331, 984 99.05%

GCNN (LeNet-5 + Gabor filters) [62] 331, 984 99.32%

MCDNN (Multi-column Deep NN) [4] 1, 574, 600 99.77%

DNN with DropConnect [66] 2, 508, 470 99.79%

SNN, with STDP [40] 5, 017, 600 95.0%

Deep SNN with STDP [38] 5, 875, 456 98.40%

Fully connected SNN, with BP [56] 328, 984 98.77%

Convolution SNN with BP[56] 581, 520 99.31%

Spiking ConvNet [49] 1, 422, 848 99.11%

SNN, with NormAD (this work) 81, 120 98.17%

ANN, with BP (this work) 81, 120 98.0%

To benchmark the classification performance of our network, we compare the360

accuracy and number of learning synapses in other state-of-the-art approaches361

for MNIST handwritten digit classification (Table 2). We note that while the362

accuracy of our approach is about 1.6% worse than the best in class approach,363

our network achieves this accuracy with four to twenty times fewer number of364

trainable synaptic weights.365

Table 3 presents the confusion matrix for the SNN based classification of the366

MNIST test data-sets into 10 classes. It can be seen that for all the digits, the367

true positive rate is 97% and above, demonstrating the high selectivity of the368

classifier layer, even though this is not easily discernible from the weight maps369

(Fig. 8). Only five images failed to elicit any spikes in the output neurons.370
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Table 3: Confusion matrix for the SNN’s predicted output shows high selectivity of the Nor-

mAD trained classifier layer for each digit.

Actual

Predicted

0 1 2 3 4 5 6 7 8 9

0 973 0 3 0 2 2 9 1 4 4

1 0 1126 1 0 0 0 2 4 0 4

2 2 3 1015 4 1 1 0 9 1 1

3 0 2 0 996 0 7 1 1 6 4

4 0 1 2 0 964 0 1 1 5 7

5 0 1 0 6 0 876 3 0 1 3

6 2 1 1 0 5 3 940 0 1 0

7 1 1 6 2 0 1 0 1005 3 7

8 1 0 1 1 1 2 1 3 947 3

9 0 0 2 1 9 0 0 3 6 975

No spike 1 0 1 0 0 0 1 1 0 1

Total 980 1135 1032 1010 982 892 958 1028 974 1009

5. Network optimization371

We now discuss the network optimization studies to translate the software372

design for energy and memory constrained hardware platforms.373

5.1. Low precision weight encoding374

The ability of a network to maintain its accuracy even when the precision375

for storing the network parameters is limited, is crucial for efficient hardware376

implementations. It has been observed that accuracy degrades significantly377

when low-precision weights are used for network emulation. For instance, a 5%378

drop in accuracy (with the MNIST data-set) was observed even with 5-bits of379

fixed-point precision for the synaptic weights in [67].380

We test the ability of our SNN and ANN for inference as a function of the381

precision of trained weights. We train the weights of both these networks in382

double-precision and then measure the inference accuracy by quantizing these383

weights, similar to the approach taken in [68] for designing a scalable hardware384

solution. The histograms of the weights of our SNN and ANN after training with385

NormAD and gradient descent, respectively, are observed to be log-normally dis-386

tributed. Our quantization studies showed that dividing the range of weights387
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into linear bins, rather than log-linear bins gives lesser degradation in perfor-388

mance. Fig. 9 shows the drop in accuracy for our networks as the number of389

levels for representing the trained weights are reduced. It can be seen that390

even at 3-bit quantization, the degradation in SNN accuracy is within 1.0% for391

T = 100 ms compared to the floating point baseline. Further, across all quan-392

tization values, the degradation in accuracy of the ANN is slightly worse than393

that of the spiking network. It is also worth pointing out that compared to394

previous reports such as [67], where the input spike rate was as high as 1500 Hz,395

the firing rate in our SNN is in the range of 10 to 300 Hz, which is closer to the396

observed biological spike rates. These results hence demonstrate the robustness397

of the SNN architecture and its suitability for memory constrained hardware398

platforms.399
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Figure 9: Test accuracy as a function of the precision of the trained weights in the SNN and

ANN. Even at 2-bit precision, the SNN accuracy is only about 1% worse than the floating

point baseline. Further, the SNN accuracy is better than the corresponding ANN especially

at low bit-precision.

5.2. Approximating neuronal dynamics400

We also study the SNN’s performance when the dynamics of the neurons is401

evaluated with lower precision. As mentioned in the section 3.5, the time step402
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Figure 10: MNIST test accuracy (count metric) as a function of bit-precision of weights and

the presentation time T , when the neuronal dynamics is approximated with a larger integration

time step of 1 ms. Even at 3-bits of precision and with T = 50 ms, the drop in accuracy is

within 1% of the baseline.

for numerical integration was chosen to be 0.1 ms for learning. Even though403

there will be some error in the precise time of spike issue, a larger time step can404

be used when the network is used for inference.405

With ∆t = 1 ms, the neuronal response can be calculated 10× faster; Fig. 10406

shows the test accuracy as a function of bit-precision and presentation times for407

the 3-layer SNN. Here, we used the count metric to determine the test accu-408

racy to simplify the computation further. At a bit-precision of 3-bits, the digit409

identification can be completed in just 50 ms or with 50 points of neuronal inte-410

gration with an accuracy of 97.31%. Hence, close to base-line accuracies can be411

maintained in approximate network evaluation that permits higher throughput412

for classification.413

6. Conclusion and Future Work414

We presented a highly compact and efficient 3-layer spiking neural network415

for identifying handwritten digits, that achieved an accuracy of 98.17% on the416

MNIST data set using the NormAD learning algorithm. All information in the417
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network is encoded and processed in the spike domain at sparse biological spike418

rates. Our studies show that using the precise time of spike issue for classifica-419

tion gives slightly better accuracy compared to the simpler rate coding method.420

We have also presented two techniques to co-optimize the network for hardware421

implementation, by reducing the bit-precision of weights and approximating the422

neuronal dynamics with higher integration time-step size.423

The best convolution networks in both spiking and non-spiking versions that424

have achieved over 99% accuracy on the MNIST database use at least over425

300, 000 adjustable synapses. The NormAD-trained SNN, on the other hand,426

has 4× fewer learning parameters, making it amenable for implementation on427

custom neuromorphic hardware with on-chip learning. Our studies also show428

that as low as 3-bits of weight precision is sufficient to maintain close to baseline429

accuracies in the SNN when used for inference. Compared to an equivalent ANN430

with similar network architecture, the spike based training approach also shows431

better accuracy, especially at lower precision for synaptic weight storage.432

The NormAD weight update rule as used in this study can be applied only433

for tuning the strength of synapses connected to the output layer of a network.434

However, the methodology used to derive this rule can be extended to adjust the435

weights of networks with hidden layers in a spike-triggered manner, based on the436

chain rule of derivatives. Such weight update rules could be then used to pre-437

train autoencoders which could be stacked and trained to develop deep spiking438

networks, following the approaches used in deep learning today [5]. Quantifying439

the performance of such deep spiking networks and determining their accuracy-440

efficiency trade-offs for large benchmark classification problems is identified as441

a topic for future exploration.442
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