
Stochastic Deep Learning in Memristive Networks
Anakha V. Babu and Bipin Rajendran

Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 07102, USA

Email: {av442, bipin}@njit.edu

Abstract—We study the performance of stochastically trained
deep neural networks (DNNs) whose synaptic weights are imple-
mented using emerging memristive devices that exhibit limited
dynamic range, resolution, and variability in their programming
characteristics. We show that a key device parameter to optimize
the learning efficiency of DNNs is the variability in its program-
ming characteristics. DNNs with such memristive synapses, even
with dynamic range as low as 15 and only 32 discrete levels, when
trained based on stochastic updates suffer less than 3% loss in
accuracy compared to floating point software baseline. We also
study the performance of stochastic memristive DNNs when used
as inference engines with noise corrupted data and find that if
the device variability can be minimized, the relative degradation
in performance for the Stochastic DNN is better than that of the
software baseline. Hence, our study presents a new optimization
corner for memristive devices for building large noise-immune
deep learning systems.

I. INTRODUCTION

Inspired by the computational efficiency of human brain
in processing unstructured data, neural networks have been
explored since 1940s for a wide variety of data analytics
applications. The latest generation of Deep Neural networks
(DNNs) have achieved impressive successes rivaling typical
human performance, thanks to their ability to capture hidden
features from unstructured data using multiple layers of neu-
rons [1]. However, as the number of layers (depth) of the
networks increase, DNN training becomes computationally
intense and time consuming due to the physically separated
execution and memory units in conventional von Neumann
machines. This has motivated the exploration of non-von
Neumann architectures with closely integrated processing units
and local memory elements in dense cross bar arrays with
memristive devices [2].

It has been recently proposed that DNNs can be imple-
mented by 2D cross bar arrays of resistive processing units
(RPUs) that can store multiple analog states and adjust its
conductivity with simple voltage pulses [3]. These RPU de-
vices when implemented in a cross bar array can accelerate
DNN training if all the weights in the array can be updated
in parallel. In this scheme, vector cross product operations of
O(N2) complexity, required for the back-propagation algo-
rithm for network training, can be implemented with simple
AND operation of stochastic bit streams representing the
neuronal signals with a complexity of O(1). However, in order
to maintain high accuracies, a stringent set of specifications
have to be satisfied by memristive RPU devices, one of which
is a resolution of 1000 conductance levels within a dynamic
range of 10.

Several memristive devices have been explored for realizing
cross bar arrays for neuromorphic systems [2]–[5]. Recently,
Phase Change Memory (PCM) arrays have been used to
store synaptic weights of a 3-layer neural network for hand-
written digit classification achieving an accuracy of 82.9%
in the MNIST database [6]. Numerical simulation studies
based on experimentally observed programming characteristics
of Pr1−xCaxMnO3 (PCMO) synapses suggest that MNIST
recognition accuracies exceeding 90% is achievable [7]. Linear
and symmetric conductance response are observed to improve
accuracy; hence, several strategies have been proposed to
compensate for the non linear and asymmetric conductance
response of typical memristive devices [8]–[10]. It has been
projected that NVM based DNNs can provide 25× speed-
up and up to 3000× improvement in power compared to
GPU based implementations [11]. Therefore, highly efficient
neuromorphic systems can be developed if memristive device
characteristics can be improved and algorithms co-optimized
to account for their non-ideal limitations.

Here, we first use stochastic weight updates to train a 4-layer
deep network with double precision floating-point weights. We
then study the performance of an equivalent network which
uses a cross bar architecture with typical memristive devices
with limited dynamic range, resolution, and conductance vari-
ability [12]. To the best of our knowledge, this paper presents
the first study of noise resilience for inference using stochastic
learning of DNNs with non-ideal memristive devices. The
main insight from this study is that the key device parameter to
optimize the learning efficiency of DNNs is the variability in
its programming characteristics. DNNs with such memristive
synapses, even with dynamic range as low as 15 and resolution
of 32 levels, when trained based on stochastic updates can
achieve close to the floating point base-line accuracies (within
3%) in the benchmark hand-written digit recognition task.
Furthermore, the degradation in performance of stochastic
memristive DNNs when used as inference engines with noise
corrupted data is better than that of the software baseline.

This paper is organized as follows: We first discuss the
fundamental basics of DNN training and methods to accelerate
training using stochastic weight updates. We then describe
the network used for stochastic learning for handwritten digit
classification and the memristive model for crossbar compat-
ible implementation. Finally, we compare the performance of
stochastic learning for this network with the software baseline
and demonstrate the superior noise-tolerance characteristics of
stochastic DNN based inference engines.

II. DNN TRAINING AND ACCELERATION

DNN training involves two steps - forward pass to calculate
the activation functions and backward pass for calculating the
weight update required for all the synapses in the network.
During forward pass, the input y to neuron j in layer (k+1) is
determined based on the outputs of the neurons in the previous
layer and the strength of synapses between the two layers,
according to the relation:

y
(k+1)
j = f

(
N∑
i=1

w
(k)
ij x

(k)
i

)
(1)

where f(x) is a non-linear transformation function such as
sinh(x), tanh(x) or ReLU(x) = xH(x), with H(x) denoting
the Heaviside step function. During back propagation, the error
δ at layer (k + 1) is fed back to determine the error in the
previous layer and determine the weight update as

δ
(k+1)
j ∝

N∑
l=1

w
(k+1)
jl δ

(k+2)
l , w

(k)
ij ← w

(k)
ij ± ηx

(k)
i δ

(k+1)
j

(2)

All these steps are of O(N 2) complexity, and network train-
ing becomes highly time consuming when implemented on
von Neumann machines with physically separated memory and
computational units. DNN training can be accelerated using
a cross bar array with memristive devices at the cross point
representing the synaptic weights and neuronal computational
circuits at the periphery [3].

Operations in equations 1 and 2 can also be parallelized
by leveraging the fact that programming pulses applied at the
periphery can be used to read and program all the cells of
the array in parallel, if the currents involved are sufficiently
small. While the forward and backward pass is implemented
as a parallel read operation, the weight update operation can be
implemented using the idea that coincidence detection (AND
operation) of stochastic streams representing real numbers is
equivalent to the multiplication operation.

In the stochastic computing framework [13], [14], a number
x ∈ [0,1] can be represented as a Bernoulli sequence X =
[x 1, x 2, x 3, . . . , xN] such that the binary random variable xi
has a probability P(xi = 1) = x , and N is the length of the
Bernoulli sequence [15]. If a, b are real numbers that lie in
the range [0, 1], their product c = a × b can be obtained by
finding the average of the binary sequence C which represent
the bitwise logical AND operation of the Bernoulli sequences
A and B of variables a and b.

c =
1

N

N∑
i=1

Ci =⇒ E(c) = ab , V ar(c) =
ab(1− ab)

N
(3)

As the length of the Bernoulli sequence increases, the error
in the estimated average decreases. Thus, multiplication oper-
ation can be implemented efficiently using simple logic gates
or coincidence detection operation.

In the resistive processing units (RPUs) based implemen-
tation of DNNs [3], parallel weight update is achieved by
applying programming pulses with amplitude ±Vs/2 on the
cross-bar wires, where Vs is the minimum amplitude necessary

to alter the state of the RPU. To determine the product of xi
and δj in equation 2, their equivalent stochastic bit streams
are fed through the row and column in the cross bar; the
RPU conductance will change depending on the coincidence
of these two stochastic pulse streams. The stochastic weight
update can be represented as

w
(k)
ij = w

(k)
ij +B

(
BL∑
n=1

x
(k)
i,n ∧ δ

(k+1)
j,n

)
(4)

Here, BL refers to the bit length of the Bernoulli sequence
and B is the minimum conductance resolution as a result
of one pulse pair overlap. High-level design studies in [3]
suggest that in order to maintain network accuracies that are
close to the ideal software performance, these devices should
have a resolution of at least 1000 programmable levels within
a dynamic range of 10, which is a stringent requirement to
realize in nanoscale devices.

In this study, we study the performance characteristics
of DNNs implemented using models of memristive devices
that are more representative of experimental devices today
[12]. Some of these non-idealities include limited dynamic
range, resolution, and variability in conductance levels attained
during programming. We study the performance characteristics
of DNNs trained using stochastic methods, and compare
their performance when used as inference engines for noise-
corrupted data. Our studies reveal that the stochastic learning
method helps to mitigate some of the non-ideal effects of the
variability that is inherent to nanoscale devices.

III. NETWORK ARCHITECTURE

783

784 256

128

10

1

2

3 Digit 0

Digit 9

Layer 1 Layer 2

Layer 3

Layer 4

Fig. 1: 4 layer deep neural network with 784-256-128-10
neurons in each layer used for hand written digit classification
(Simulated using MATLAB).

A 4−layer network with 784 − 256 − 128 − 10 fully
connected neurons is used in our study for hand written digit
classification (Fig. 1). Images from the MNIST database is
used for training and testing the networks. The input images
are pre-processed by mean normalization, and the network is
trained by minimizing the multi-class cross-entropy objective
function with sigmoid activation function for the hidden layers

and softmax function for the output layer. The weights are
updated after every image (batch size of one) and a variable
learning rate scheme is employed for learning. We refer to the
network which uses stochastic pulses for forward pass, back
propagation and weight update as ‘stochastic DNN’.

Deterministic analog unipolar Memristor – 2 PCM synapse?

xi

dj

Each set pulse results in +wmin

Duty cycle of Vs/2 pulse stream is based on xi
and dj and is generated at periphery

When dj is positive, apply reverse pulse on
+g line, otherwise, apply reverse pulse on –g
line

Both +and – can be obtained in parallel

Pros: Mature technology with large
FET+PCM arrays, 1000 analog levels maybe
possible, low switching time and energy

Cons: periodic RESET pulse

+ ‐

G+ G‐

+ ‐

Gmin

Gmax

G)=1.5(G)

Gi Gf

Gi Gf

Ba)

b)

Fig. 2: Left: Unidirectional weight update scheme with 2
memristive devices per synapse in the cross bar. The synaptic
weight is Geff = G+ − G− and devices are selectively
programmed to increase or decrease Geff ; Right: Illustration
of the memristive programming - starting from initial con-
ductance Gi, the final state Gf is determined by the pulse
overlap (2 here), and a zero mean gaussian noise with standard
deviation σ representing programming noise. In (a), the final
state under-estimates the required conductance change, while
(b) illustrates an over-estimate. The ratio σ/B determines the
impact of programming noise; B denotes the resolution of the
conductance levels.

In order to represent both positive and negative synaptic
weights, two devices are used for each synapse [16]. The
effective synaptic weight is the difference of the two device
conductances, Geff = G+ − G− as shown in Fig 2. Most
memristive devices exhibit incremental programming only
in one direction; hence we assume a unidirectional device
programming scheme, where the conductance of the device
always increments in the positive direction. To increase (de-
crease) Geff , G+ (G−) device is selectively programmed [17].
Due to the limited conductance resolution and on-off ratio,
the device can saturate at its maximum conductance state,
preventing further weight updates and learning. In order to
avoid this and facilitate continuous learning, the devices are
periodically reset after every 15 image is presented to the
network. In our implementation, the memristive conductance
response is assumed to be linear with an on-off ratio of 15 and
have a resolution of 32 conductance states. First, we study the
performance of stochastic DNN for handwritten digit classi-
fication as a function of the programming variability of the
memristive device. We show that close to base-line accuracies
can be maintained, even if the standard deviation (σ) in the
programmed distribution is one-third of the separation in the
levels (B) of the device. We then analyze the noise resilience
characteristics of stochastic inference engines with devices
which have close to ideal conductance variability.

IV. RESULTS

The base line network response of the deep learning network
with floating-point synaptic weight resolution is shown in Fig.
3. Each epoch of training consists of presentation of all the
60, 000 images in the MNIST training set. For the stochastic
DNN, the training error is a function of the number of bits
(BL) in the stochastic code. After 30 epochs, the maximum test
accuracy of the baseline-floating point DNN is 98.04% while
that of the stochastic DNN with BL = 100 bits is 98.07%. The
stochastic DNN test accuracy drops to 97.48% if BL = 10
is used. In the following sections, BL = 10 bits is used for
simulations involving stochastic DNN due to its comparable
accuracy with deterministic DNN, but 10× improvement in
throughput and learning acceleration.

0 5 10 15 20 25 30
Epochs

10-2

10-1

100

101

102

Tr
ai

ni
ng

Er
ro

r(
%

)
BL = 2 bits
10 bits
50 bits
100 bits
Floating point

Test Acc. = 94.84%

98.07%

97.98%

97.48%

98.04%

Fig. 3: Comparison of training error for stochastic DNN with
BL = 2, 10, 50, 100 bits and a deterministic DNN, with
floating point accuracy for synaptic weights. The accuracy on
the test set after training is also shown. The network trained
with BL = 10 bits is used for stochastic DNNs in the rest of
the paper.

We then performed numerical simulations incorporating the
characteristics of the memristor devices for stochastic updates.
Using memristive synapses with minimum programming vari-
ability (σ = 0.1B), the stochastic DNN test accuracy is
95.31%, which is 2.7% lesser than the baseline. The maximum
test accuracy for stochastic DNNs as a function of the pro-
gramming variability of memristive devices is shown in Fig.
4. There is negligible drop in test accuracy even at σ = 0.3B,
though the performance falls quickly as the programming
variability increases further.

We now study the performance of stochastic DNNs that
use close to ideal memristive synaptic weights with σ = 0.1B
when used as inference engines with noise corrupted test data.
The network is trained using BL = 10, but we study the
inference accuracy for BL = 10 and BL = 100. Zero mean
Gaussian noise with variances of σ2

i = 0.01, 0.1, and 0.2 is
added to the normalized MNIST test set (noise added values
are kept in the range [0,1]). The test accuracy of the network
for noise-corrupted data is shown in Fig. 5. Compared to their

0 0.2 0.4 0.6 0.8 1
/B

90

92

94

96
M

ax
. T

es
t A

cc
ur

ac
y

(%
)

Fig. 4: The maximum generalization accuracy of stochastic
DNN (BL = 10) when trained with memristive devices with
increasing programming variability. Here σ/B is the ratio of
the standard deviation of the conductance variability to the
bin-width of the conductance states.

respective non-noise test accuracy, the stochastic network with
BL = 10 has higher noise-resilience as its accuracy drops
by 12.23% while that of the baseline floating point network
drops by 14.35%. The stochastic network’s degradation can be
minimized further if more bits are used for stochastic encoding
during inference, even though the learning was performed with
BL = 10. With BL = 100, the stochastic network accuracy
drops only by 9.2%. Hence, stochastic weight updates can
compensate for noise in the input set as well as the variability
introduced by nanoscale devices.

Fig. 5: Test accuracy for stochastic DNNs and the baseline
floating point network when used as inference engine on
noise-corrupted test set. The average inference response of
20 stochastic experiments is shown here. At σ2

i = 0.2, the
stochastic DNN with BL = 100 out-performs the baseline.
The inset shows the noise corrupted input image ‘7’ corre-
sponding to σ2

i = 0.01, 0.1, and 0.2.

V. CONCLUSION

We demonstrate highly noise-resilient deep neural net-
works with memristive devices at the synapse, trained using
stochastic updates. Even with significant device variability,
limited on-off ratio and dynamic range, the performance of
the memristive network is within 3% to that of the base-
line floating point simulation. For efficient implementation of
on-chip machine learning, algorithms that could circumvent
the non-ideal characteristics of memristive devices have to be
designed. The detrimental impact due to the non-linearities of
nanoscale devices can be minimized when used in DNNs that
use stochastic codes for data encoding and signal transmission
in inference engines, especially for noisy inputs.

ACKNOWLEDGMENT

This research was supported in part by the National Science
Foundation grant 1710009 and CISCO Systems Inc.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015. Insight.

[2] G. W. Burr et al., “Neuromorphic computing using non-volatile mem-
ory,” Advances in Physics: X, vol. 2, no. 1, pp. 89–124, 2017.

[3] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training
with resistive cross-point devices: Design considerations,” Frontiers in
Neuroscience, vol. 10, p. 333, 2016.

[4] B. L. Jackson et al., “Nanoscale electronic synapses using phase change
devices,” J. Emerg. Technol. Comput. Syst., vol. 9, May 2013.

[5] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and
T. Prodromakis, “Integration of nanoscale memristor synapses in neu-
romorphic computing architectures,” Nanotechnology, vol. 24, no. 38,
p. 384010, 2013.

[6] G. Burr et al., “Experimental demonstration and tolerancing of a large-
scale neural network (165,000 synapses), using phase-change memory
as the synaptic weight element,” in Electron Devices Meeting (IEDM),
2014 IEEE International, pp. 29.5.1–29.5.4, Dec 2014.

[7] J. W. Jang, S. Park, G. W. Burr, H. Hwang, and Y. H. Jeong, “Optimiza-
tion of conductance change in Pr1−xCaxMnO3-based synaptic devices
for neuromorphic systems,” IEEE Electron Device Letters, vol. 36,
pp. 457–459, May 2015.

[8] P. Y. Chen et al., “Mitigating effects of non-ideal synaptic device
characteristics for on-chip learning,” in 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2015.

[9] A. Fumarola et al., “Accelerating machine learning with non-volatile
memory: Exploring device and circuit tradeoffs,” in 2016 IEEE Interna-
tional Conference on Rebooting Computing (ICRC), pp. 1–8, Oct 2016.

[10] S. Sidler et al., “Large-scale neural networks implemented with non-
volatile memory as the synaptic weight element: Impact of conductance
response,” in 2016 46th European Solid-State Device Research Confer-
ence (ESSDERC), pp. 440–443, Sept 2016.

[11] G. W. Burr et al., “Large-scale neural networks implemented with
non-volatile memory as the synaptic weight element: Comparative
performance analysis (accuracy, speed, and power),” in 2015 IEEE
International Electron Devices Meeting (IEDM), Dec 2015.

[12] N. Panwar, B. Rajendran, and U. Ganguly, “Arbitrary spike time depen-
dent plasticity (stdp) in memristor by analog waveform engineering,”
IEEE Electron Device Letters, vol. 38, pp. 740–743, June 2017.

[13] W. J. Poppelbaum, C. Afuso, and J. W. Esch, “Stochastic computing
elements and systems,” in Proc. of the November 14-16, 1967, Fall Joint
Computer Conference, AFIPS ’67 (Fall), pp. 635–644, ACM, 1967.

[14] B. R. Gaines, Stochastic Computing Systems. Springer US, 1969.
[15] S. Gupta, V. Sindhwani, and K. Gopalakrishnan, “Learning machines

implemented on non-deterministic hardware,” CoRR, 2014.
[16] O. Bichler et al., “Visual pattern extraction using energy-efficient 2-

pcm synapse neuromorphic architecture,” IEEE Transactions on Electron
Devices, vol. 59, pp. 2206–2214, Aug 2012.

[17] S. Lim et al., “Adaptive Learning Rule for Hardware-based Deep Neural
Networks Using Electronic Synapse Devices,” ArXiv e-prints, July 2017.

