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Abstract—We describe a novel spiking neural network (SNN)
for automated, real-time handwritten digit classification and its
implementation on a GP-GPU platform. Information processing
within the network, from feature extraction to classification is
implemented by mimicking the basic aspects of neuronal spike
initiation and propagation in the brain. The feature extraction
layer of the SNN uses fixed synaptic weight maps to extract
the key features of the image and the classifier layer uses the
recently developed NormAD approximate gradient descent based
supervised learning algorithm for spiking neural networks for
training. On the standard MNIST database images of handwrit-
ten digits, our network achieves an accuracy of 99.80% on the
training set and 98.06% on the test set, with nearly 7× fewer
parameters compared to the state-of-the-art spiking networks.
We further use this network in a GPU based user-interface system
demonstrating real-time SNN simulation to infer digits written
by different users. On a test set of 500 such images, this real-
time platform achieves an accuracy exceeding 97% while making
a prediction within an SNN emulation time of less than 100ms.

Index Terms—Spiking neural networks, classification, super-
vised learning, GPU based acceleration, real-time processing

I. INTRODUCTION

The human brain is a computational marvel compared to
man-made systems, both in its ability to learn to execute highly
complex cognitive tasks, as well as in its energy efficiency. The
computational efficiency of the brain stems from its use of
sparsely issued binary signals or spikes to encode and process
information. Inspired by this, spiking neural networks (SNNs)
have been proposed as a computational framework for learning
and inference [1]. General purpose graphical processing units
(GP-GPUs) have become an ideal platform for accelerated
implementation of large scale machine learning algorithms [2].
There have been multiple GPU based implementations for
simulating large SNNs [3]–[8], with most of these targeting the
forward communication of spikes through large networks of
spiking neurons and/or local weight update based on spike tim-
ing difference. In contrast, we demonstrate a highly optimized
implementation scheme for parallel global weight update and
spike based supervised learning on GPU platforms and use the
framework for real time inference on digits captured through
a touch-screen interface by users.

Previous efforts to develop deep convolutional spiking net-
works started by using second generation artificial neural
networks (ANNs) with back-propagation of errors to train the
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network and thereafter converting it into spiking versions [9]–
[12]. There have been several supervised learning algorithms
proposed to train the SNNs, by explicitly using the time
of spikes of neurons to encode information, and to derive
the appropriate weight update rules to minimize the distance
between desired spike times and observed spike times in
a network [13]–[17]. We use the Normalized Approximate
Descent (NormAD) algorithm to design a system to identify
handwritten digits. The NormAD algorithm has shown supe-
rior convergence speed compared to other methods such as the
Remote Supervised Method (ReSuMe) [13].

Our SNN is trained on the MNIST database consisting of
60, 000 training images and 10, 000 test images [18]. The
highest accuracy SNN for the MNIST was reported in [16],
where a two-stage convolution neural network achieved an
accuracy of 99.31% on the test set. Our network, in contrast,
has just three layers, with about 82, 000 learning synapses (7×
fewer parameters compared to [16]) and achieves an accuracy
of 98.06% on the MNIST test dataset.

The paper is organized as follows. The computational units
of the SNN and the network architecture is described in section
II. Section III details how the network simulation is divided
among different CUDA kernels. The user-interface system and
the image pre-processing steps are explained in Section IV.
We present the results of our network simulation and speed
related optimizations in Section V. Section VI concludes our
GPU based system implementation study.

II. SPIKING NEURAL NETWORK

The basic units of an SNN are spiking neurons and synapses
interconnecting them. For computational tractability, we use
the leaky integrate and fire (LIF) model of spiking neurons,
where the evolution of the membrane potential, Vm(t) is
described by:

C
dVm(t)

dt
= −gL(Vm(t)− EL) + I(t) (1)

Here I(t) is the total input current, EL is the resting po-
tential, and C (300 pF) and gL (30 nS) model the membrane
capacitance and leak conductance, respectively [13]. Once the
membrane potential crosses a threshold (Vm(t) ≥ VT ), it is
reset to its resting value EL and remains at that value till the
neuron comes out of its refractory period (tref = 3 ms).

The synapse, with weight wk,l connecting input neuron k
to output neuron l, transforms the incoming spikes (arriving



at times t1k, t
2
k, . . .) into a post-synaptic current (Ik,l), based

on the following transformation,

ck(t) =
∑
i

δ(t− tik) ∗
(
e−t/τ1 − e−t/τ2

)
(2)

Ik,l(t) = wk,l × ck(t) (3)

Here, the summed δ function represents the incoming spike
train and the double decaying exponentials with τ1 = 5ms
and τ2 = 1.25ms represent the synaptic kernel.

A. Network architecture & spike encoding

We use a three-layered network where hidden layer per-
forms feature extraction and the output layer performs clas-
sification (see Fig. 1). The network is designed to take input
from 28×28 pixel MNIST digit image. We translate this pixel
value into a set of spike streams, by passing the pixels as
currents to a layer of 28×28 neurons (first layer). The current
i(k) applied to a neuron corresponding to pixel value k, in the
range [0, 255] is obtained by the following linear relation:

i(k) = I0 + k × Ip (4)

where Ip = 101.2 pA is a scaling factor, and I0 = 2700 pA is
the minimum current above which an LIF neuron can generate
a spike (for the parameters chosen in equation 1). These
spike streams are then weighted with twelve 3 × 3 synaptic
weight maps (or filters) to generate equivalent current streams
using equations 2 and 3. These 12 spatial filter maps are
chosen to detect various edges and corners in the image. Thus,
these weight kernels and receptive fields implement spatial
convolution (with a stride of one pixel) akin to convolutional
neural networks, albeit with a priori chosen fixed weights.
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Fig. 1: The 28×28 pixel images from the MNIST database are
converted to spike trains of duration T , weighted with twelve
3×3 synaptic weight maps (below) resulting in twelve 26×26
current streams and then feed to the corresponding feature
map neurons. There are 10 output neurons corresponding to
each digit. The weights of the fully-connected feed-forward
synapses to the output layer neurons (8112× 10) are adjusted
using the NormAD learning rule [13].

The output layer consists of 10 neurons, one for each of the
ten digits. We train the network so that the correct neuron in
the output layer generates a spike train with a frequency close

to 285Hz and the other output neurons issue no spikes during
the training interval, T (set to 100ms in baseline experiments).
This layer also has lateral inhibitory connections that helps
to prevent the non-label neurons from spiking for a given
input. The output neuron with the highest number of spikes is
declared the winner of the classification.

B. Learning layer

The 8112×10 synapses connecting the hidden layer neurons
to the 10 output layer neurons are modified during the course
of training. The NormAD [13] supervised learning algorithm
is used to calculate the weight update:

∆w = r

∫ T

0

e(t)
d̂(t)

‖d̂(t)‖
dt, d̂(t) = c(t) ∗ ĥ(t) (5)

where ĥ(t) = (1/C) exp(−t/τL) with τL = 1ms, and r is the
learning rate [13]. The magnitude of weight update depends
on the normalized value of d̂(t), and is evaluated only when
there is a difference between the desired and output spikes
(i.e., e(t) = Sd(t)− So(t) is non-zero).

III. CUDA IMPLEMENTATION

We realize our SNN on a GPU platform using the CUDA-
C programming framework. A GPU is divided into streaming
multiprocessors (SM), each of which consists of stream pro-
cessors (SP) that are optimized to execute math operations.
The CUDA-C programming framework exploits the hardware
parallelism of GPUs and launches jobs on the GPU in a grid of
blocks each mapped to an SM. The blocks are further divided
into multiple threads, each of which is scheduled to run on an
SP, also called a CUDA core. Since memory transfer between
CPU and GPU local memory is one of the main bottlenecks,
all network variables (i.e., neuron membrane potentials and
synaptic currents) are declared in the global GPU memory
in our implementation. The simulation equations (1,2,3) are
solved numerically in an iterative manner at each time step.
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Fig. 2: Diagram showing the different variables of the network
being computed each time step and how the signals flow across
different layers. The dimensions within the brackets are the
sizes of those variables and their respective CUDA kernels.

Fig. 2 shows the forward pass and backward pass for weight
update during the training phase. Image pixels read into the
GPU memory are passed as currents to layer one neurons
(grid size of 28 × 28) for a period T . The filtering process
involves 2D convolution of the incoming spike kernels and the



weight matrix (3× 3). The computation is parallelized across
12 CUDA kernels, each with a grid size of 26 × 26 threads.
Each thread computes the current to the hidden layer neurons,
indexed as a 2D-array i, j, {0 ≤ i, j,≤ 25} at a time-step n,
based on the following spatial convolution relation:

Iin(i, j, n) =
2∑
a=0

2∑
b=0

wconv(a, b)× c(i+ a, j + b, n) (6)

where c represents the synaptic kernel (as in equation 2)
calculated from the spike trains of the 28 × 28 pixels and
wconv(a, b) represents each of the weights from the 3 × 3
filter matrix.

The membrane potential of an array of k LIF neurons, for
applied current I(n) (as described in equation 1) is evaluated
using the second order Runge-Kutta method as:

k1 = [−gL(Vm(n)− EL) + I(n)]/C (7)
k2 = [−gL(Vm(n) + k1∆t− EL) + I(n)]/C (8)
Vm(n+ 1) = Vm(n) + [(k1 + k2)∆t/2] (9)

Each thread k independently checks if the membrane potential
has exceeded the threshold to artificially reset it.

If V km(n+ 1) ≥ VT ⇒ V km(n+ 1) = EL (10)

Refractory period is implemented by storing the latest spike
issue time, nlastk of each neuron in a vector R; the membrane
potential of a neuron is updated only when the current time
step n > nlastk + (tref/∆t).

The synaptic current from neuron k in hidden layer to
neuron l in output layer as given in equation 3 can be re-written
to be evaluated in an iterative manner, thereby avoiding the
evaluation of expensive exponential of the difference between
the current time n and previous spike times nik. The synaptic
current computation, at time step n, for each of the (k, l)
synapse is spawned in CUDA across 8112× 10 kernels as:

ak(n) = ak(n− 1)× exp(−∆t/τ1) + δ(n− nik) (11)

bk(n) = bk(n− 1)× exp(−∆t/τ2) + δ(n− nik) (12)
ck(n) = ak(n)− bk(n) (13)
Ik,l = wk,l × ck(n) (14)

where ak(n) and bk(n) represent the rising and falling regions
of the double exponential synaptic kernel. The strength of the
synapses between the hidden and output layers is initialized
to zero during training. At every time step, we calculate
the error function for each output neuron, based on the
difference between the observed and desired spikes. Next, d̂k
(see equation 5) for the spikes originating from neuron k is
computed as:

d̂k(n) = d̂k(n− 1)e−∆t/τL + (ck(n)∆t)/C (15)

Once d̂k(n) is evaluated, we compute its norm across all
k neurons and determine the instantaneous ∆wk,l(n) for all
the 81, 120 synapses in parallel, if there is a spike error. At
the end of presentation, the accumulated ∆wk,l is used to
update the synaptic weights in parallel. The evaluation of the
total synaptic current and the norm is performed using parallel
reduction in CUDA [19]. During the inference or testing phase,

we calculate the synaptic currents and membrane potentials of
neurons in both layers to determine spike times, but do not
evaluate the d̂ term and the weight update.

IV. REAL-TIME INFERENCE ON USER DATA

We used the CUDA based SNN described in the previous
section, to design a user interface that can capture and identify
the images of digits written by users in real-time from a
touch-screen interface. The drawing application to capture the
digit drawn by the user is built using OpenCV, an image
processing library. The captured image from the touch screen
is pre-processed using standard methods similar to that used
to generate the MNIST dataset images [18]. We use OpenCV
to convert user drawn images to the required format which
is a grayscale image of size 28 × 28 pixels. The network is
implemented on the NVIDIA GTX 860M GPU which has 640
CUDA cores. The preprocessing phase takes about 25 ms, and
this image is then passed to the trained SNN. The CUDA
process takes about 300 ms to initialize the network in the GPU
memory, after which the network simulation time depends on
the presentation time T and the time step interval ∆t.

a) b)

c)Fig. 3: (a) Outline of the preprocessing steps used to convert
the user input to a 28 × 28 image that is fed to the network,
(b) Examples of user input (left) and the pre-processed 28x28
pixel images fed to the SNN (right).

A. Image Preprocessing

Fig. 3(a) shows the simple preprocessing steps used to create
the input signal to the SNN from the captured image and
Fig. 3(b) shows some sample pre-processed images. We first
apply an elastic distortion to vertically align the digit, and then
resize it maintaining its aspect ratio. The digit is placed by its
center of mass, and a border is applied to ensure that the final
image is of size 28× 28 pixels.

V. RESULTS

We trained the network on the MNIST training data-set
consisting of 60, 000 images, for 20 epochs. Our network
achieves an error of 0.2% on the training set and and 1.94%
on the test set. This is with a time step interval of ∆t = 0.1 ms
when the network is simulated for T = 100 ms. Table I
lists the state-of-the-art networks (ANN and SNN) for the
MNIST classification problem. It can be seen that though these
networks have classification accuracies exceeding 99%, they
use more than 7× the number of parameters compared to our
network, which is designed to simplify the computational load
in developing real-time system.

If the integration time step interval used during inference is
1 ms instead of 0.1 ms, the MNIST test error increases only



TABLE I: Comparison of our SNN with state-of-the-art
Network and learning algorithm Learning synapses Accuracy
Deep Learning [20] 2, 508, 470 99.79%
ANN converted to SNN [9] 1, 422, 848 99.12%
4-layer convolution SNN [16] 581, 520 99.31%
SNN, with NormAD (this work) 81, 120 98.06%

by about 0.4%, but there is a 10× reduction in the processing
time. For instance, when each digit is presented for a period of
T = 75ms, the network can be simulated in an average wall
clock time of 65ms (compared to 650ms with ∆t = 0.1ms),
making real-time processing possible (see Fig. 4(a)). We tested
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Fig. 4: (a) Various stages of classifying a user’s input: the
image pre-processing takes 25ms and the 75ms SNN em-
ulation is completed in real-time. (b) Accuracy results as a
function of presentation time, with the integration time steps
of ∆t = 1ms. The accuracy trend for the images captured
from the touch-screen interface is comparable to the MNIST
test data-set.

the network’s accuracy, with ∆t = 1ms configuration on a
sample set of 500 handwritten digits collected from various
users through our user-interface system. Fig. 4(b) shows the
accuracy variation as a function of presentation time. At T =
75ms, we measure an accuracy of 97.4% on our set of 500
captured images, while on the MNIST test-set it was 97.68%.
The slight loss in performance compared to the MNIST dataset
is attributed to the deviations from the statistical characteristics
of the captured images through our interface with respect to
the MNIST dataset.

VI. CONCLUSION

We have made two novel contributions in this work. First,
we developed a simple three-layer spiking neural network,
that performs spike transformation, feature extraction and
classification. All information processing and learning within
the network is performed entirely in the spike domain. With
approximately 7 times lesser number of synaptic weight pa-
rameters compared to the state of the art spiking networks,
we show that our approach achieves classification accuracy
exceeding 99% on the training set of the MNIST database and
98.06% on its test set. The trained network implemented on the
CUDA parallel computing platform is also able to successfully
identify digits written by users in real-time, demonstrating its
true generalization capability.

We have also demonstrated a general framework for imple-
menting spike based neural networks and supervised learning
with non-local weight update rules on a GPU platform. At each

time step, the neuronal spike transmission, synaptic current
computation and weight update calculation for the network
are all executed in parallel in this framework. Using this
GPU implementation, we demonstrated a touch-screen based
platform for real-time classification of user-generated images.
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