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OPTIMAL POINT SETS DETERMINING FEW DISTINCT TRIANGLES

ALYSSA EPSTEIN, ADAM LOTT, STEVEN J. MILLER, AND EYVINDUR A. PALSSON

ABSTRACT. We generalize work of Erd6s and Fishburn to study the structure of finite
point sets that determine few distinct triangles. Specifically, we ask for a given ¢, what
is the maximum number of points that can be placed in the plane to determine exactly ¢
distinct triangles? Denoting this quantity by F'(t), we show that F'(1) = 4, F/(2) = 5,
and we completely characterize the optimal configurations for ¢ = 1, 2. We also discuss
the general structure of optimal configurations and conjecture that regular polygons are
always optimal. This differs from the structure of optimal configurations for distances,
where it is conjectured that optimal configurations always exist in the triangular lattice.
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l. INTRODUCTION

Finite point configurations are a central object of study in discrete geometry. Perhaps
the most well-known problem is the Erdds distinct distances conjecture, which states
that any set of n points in the plane determines at least §2(n/+/log n) distinct distances
between points. This problem, first proposed by Erdds in 1946 [Er], was essentially re-
solved by Guth and Katz who proved that n points determined at least (n/ logn) dis-
tinct distances [GK]. Higher dimensional analogs still remain open. A closely related
question is: given a fixed positive integer /&, what is the maximum number of points that
can be placed in the plane to determine exactly & distances? Furthermore, can the op-
timal configurations be completely characterized? Erdds and Fishburn [EF] introduced
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this question in 1996 and characterized the optimal configurations for 1 < £ < 4. Shi-
nohara [Sh] and Wei [We] have characterized the optimal configurations for & = 5 and
k = 6, respectively. Erd6s also conjectured that an optimal configuration always exists
in the triangular lattice given k large enough (see Figure 1) and this conjecture remains
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FIGURE 1. Maximal configurations determining exactly & distances, for
2 < k < 6 [BMP]. For each k£ > 2, there is an example from the
triangular lattice; it is conjectured that this is always the case for k large
enough.

As a distance is just a pair of points, distances can be phrased as the set of 2-point
configurations determined by a set. Analogously, we can study the set of 3-point config-
urations (i.e., triangles) determined by a set. The analogue of the Erdés distinct distance
problem would ask for the minimum number of distinct triangles determined by n points
in the plane. It follows from Guth and Katz’s result on the number of distinct distances
that a set of n points in the plane determines at least {)(n?) distinct triangles (see, for
example, [Ru]). It is also known that this bound is best possible up to the implicit con-
stant. We study the following analogue of Erdés and Fishburn’s question: given a fixed
t, what is the maximum number of points that can be placed in the plane to determine
exactly t distinct triangles? Our main result is the following.

Theorem 1.1. Let F(t) denote the maximum number of points that can be placed in the
plane to determine exactly t distinct triangles. Then

(1) F(1) = 4 and the only configuration that achieves this is a rectangle, and
(2) F(2) = 5 and the only configurations that achieve this are a square with its
center and a regular pentagon.

We also make two conjectures: first, that F'(3) = 6, with a regular hexagon being a
representative optimal configuration, and second, that a regular polygon always mini-
mizes the number of distinct triangles in an n-point set. If true, this second conjecture
determines the true leading constant for Guth and Katz’s asymptotic of at least 2(n?)
distinct triangles for a set of n points: 1/12.

We prove Theorem 1.1 by classifying all potential arrangements of 4-point sets in the
plane and sorting them by the minimum number of distinct triangles they create. To
show part 1, we look at the 4-point sets that do not trivially determine more than one
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triangle. Through elementary geometry, we eliminate all non-trivial cases that have at
least two distinct triangles except the rectangle. This immediately implies that F/(1) =
4, and the rectangle uniquely satisfies this equation. Proving part 2, we take the 4-point
sets that determine fewer than three distinct triangles, and we examine all possible ways
to add a fifth point to the set. After removing all cases where the fifth point causes at
least three distinct triangles, the only remaining configurations are the square with a
point at its center and the regular pentagon. Thus, F/(2) = 5.

2. CONJECTURES

In this section, we present some conjectures and investigate their consequences.

Conjecture 2.1. Any set of seven points in the plane determines at least four distinct
triangles; thus F(3) = 6.

In Figure 2 we see that the vertices of a regular hexagon determine exactly three
distinct triangles, so we know F'(3) > 6.

FIGURE 2. A regular hexagon determines three distinct triangles.

Another interesting question to ask concerns the general structure of the optimal con-
figurations. For example, are regular polygons always optimal? What about regular
polygons with their centers? As we discussed in the introduction, Erdés and Fishburn
conjectured in [EF] that optimal configurations for distinct distances always exist in
the triangular lattice. For triangles, we make an analogous but qualitatively different
conjecture.

Conjecture 2.2. The regular n-gon minimizes (not necessarily uniquely) the number
of distinct triangles determined by an n-point set.

If true, Conjecture 2.2 establishes the following best-possible result on the number
of distinct triangles which we prove in Section 6.

Theorem 2.3. Unconditionally, the vertices of a regular n-gon determine [n*/12] dis-
tinct triangles, where |y| denotes the nearest integer to y. Assuming Conjecture 2.2, this
implies that [n? /12] is the minimum number of distinct triangles that can be determined
by a set of n points in the plane.
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Remark 2.4. [r is known from the work of Guth and Katz that a set of n points in the
plane determines at least Q(n?) distinct triangles, and that this bound is best possible.
If true, Conjecture 2.2 establishes the true leading constant, namely 1/12.

3. DEFINITIONS AND SETUP
We make precise the notion of distinct triangles.

Definition 3.1. Given a finite point set P C R?, we say two triples (a.b,c), (a',b.) €
P3 are equivalent if there is an isometry mapping one to the other, and we denote this
as (a,b,c) ~ (a',V,c).

Definition 3.2. Given a finite point set P C R?, we denote by P,

triples (a,b,c) € P3.

the set of noncollinear

Definition 3.3. Given a finite point set P C R?, we define the set of distinct triangles
determined by P as

PP =P (3.1

ne

We prove Theorem 1.1 by enumerating cases and disposing of them one by one via
elementary geometry. We then conclude with a conjecture analogous to that of Erdés
concerning the structure of optimal configurations in general.

In the proof of Theorem 1.1, we also use the following lemma, which we prove in
Section 7.

Lemma 3.4. For a set of four noncollinear points in the plane, exactly one of the fol-
lowing holds.

(1) The four points are not in convex position.
(2) The four points are in convex position.
(a) Three of the points are collinear.
(b) The determined quadrilateral has four distinct side lengths.
(¢) The determined quadrilateral has exactly one pair of congruent sides.
(1) The congruent sides are adjacent.
(i1) The congruent sides are opposite.
(d) The determined quadrilateral has two distinct pairs of congruent sides.
(i) The congruent sides are adjacent to each other (a kite).
(i1) The congruent sides are opposite each other (a parallelogram).
(e) Three sides are congruent and the fourth is distinct.
() All four sides are congruent (a rhombus).

Cases 2b, 2(c)i, 2(c)ii, and 2(d)i determine at least three distinct triangles. Cases 1, 2a,
and 2e determine at least two distinct triangles.

4. CLASSIFYING OPTIMAL |-TRIANGLE SETS

In this section, we prove part (1) of Theorem 1.1. We show that the only four-
point configuration that determines exactly one triangle is a rectangle. This proves
that F'(1) = 4 because there is no five-point configuration such that every four-point
subconfiguration is a rectangle.
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By Lemma 3.4, we only need to consider the cases 2(d)ii and 2f because all of the
other cases trivially lead to at least two triangles. We consider first the case 2(d)ii, when
there are two pairs of congruent sides opposite each other.

Proof of case 2(d)ii: two pairs of opposite congruent sides. Since two pairs of opposite
sides are congruent, the quadrilateral must be a parallelogram (Figure 3). We claim
AABC and ABCD are congruent if and only if ABCD is a rectangle. They share
side BC' and AB = CD, so AABC = ABCD if and only if BD = AC, which
happens if and only if ABC D is a rectangle. O

B C

D

FIGURE 3. A quadrilateral with two pairs of opposite congruent sides.
If ABCD is a rectangle, then it determines only one triangle, but if
ABCD is not a rectangle, then AABC and ABC D are distinct.

Proof of case 2f: four congruent sides. Any quadrilateral with four sides congruent is
a rhombus, and a rhombus is a parallelogram. So, by the argument in case 2(d)ii, a
rhombus determines two distinct triangles if and only if it is not a square. Thus, we have
shown that the only four-point configuration that determines one triangle is a rectangle.
This completes the proof of part (1) of Theorem 1.1. 0

5. CLASSIFYING OPTIMAL 2-TRIANGLE SETS

In this section, we prove part (2) of Theorem 1.1. As in the proof of part (1), we
show that the only possible configurations determining exactly two triangles are the
square with its center and the regular pentagon. We consider the possible four-point
configurations enumerated in Lemma 3.4, and we show that the addition of a fifth point
to any of them (unless it creates one of the two claimed configurations) necessarily
determines a third triangle. Moreover, adding a sixth point to either of the demonstrated
optimal configurations also must determine a third triangle. By Lemma 3.4, the only
cases we need to consider are I, 2a, 2(d)ii, 2e, and 2f because the other four point
configurations already contain more than two distinct triangles.

Proof of case 1: not in convex position. Using the notation of Figure 4, if AABC is not
equilateral, or if AABC is equilateral but D is not the center of AABC, then there are
already three distinct triangles, so no more work is needed.

If AABC'is equilateral and D is its center, we show that the addition of a fifth point
anywhere necessarily determines a new triangle. When we add a fifth point E, it will
necessarily determine a triangle with AB (Figure 4). If AFAB is not congruent to
ANABC or AABD, we're done, so assume it’s congruent to one of those. Either way,
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AFECB will be distinct from the other two, so we have three distinct triangles, so this
case is done. 0

FIGURE 4. Possibilities for adding a fifth point to a non-convex set.

Proof of case 2a: three collinear points. With the notation of Figure 5, if ) does not
lie on the perpendicular bisector of AB, then AACD, ABCD, and AABD are all
distinct, so no more work is needed. Also note that if a fifth point E is added to the
interior of AABD, it creates a non-convex four-point subconfiguration, so the previous
case applies to show that there are at least 3 distinct triangles. Thus we assume the fifth
point E is added outside AABD.

If D lies on the perpendicular bisector of AB but DC' # AB, the addition of a fifth
point E will create a triangle with AC'. Triangle AEAC can’t be congruent to AABD
because AC' is shorter than any side of AABD, so to avoid a third triangle we must
have AEAC = AACD. There are three choices for E that satisfy this (Figure 5), but
either way, AFAC, AEAB, and AEDB are all distinct.

If D lies on the perpendicular bisector of AB and DC = AB, then the same argument
from above still applies; however, in this case, choosing £ to form the square ADBE
leaves us with only two triangles, but the other two choices for £ give us three (see
Figure 5), so this case is done. ]

Proof of case 2(d)ii: two pairs of opposite congruent sides. This case has two subcases.

Subcase A: non-rectangle: Using the notation of Figure 6, if we add a fifth point £ on
line AB, then we have five points with three collinear, so we have 3 distinct triangles by
case 5. So assume E does not lie on line AB. Then AEAB will be created. If AEFAB
is distinct from both AABC and AABD, then we also have three distinct triangles,
so assume otherwise. The only ways this can happen are enumerated in Figure 6. In
Figure 6a, point E creates three collinear points (EAD), point E’ creates a non-convex
subconfiguration (AC'BE"), and point E” creates three collinear points (C'DE”). Thus
in any case there will be three distinct triangles. In Figure 6b, point £’ creates three
collinear points (C' BE") and point E” also creates three collinear points (D E”C). Point
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FIGURE 5. Addition of a fifth point when three points are collinear. If
DC # AC, then any choice of FE forces a third triangle. If, on the other
hand, DC' = AC, then choosing E creates a square with its center but
E’ and E” still generate a third triangles.

FE creates akite ADBE if AD # DB, and if AD = DB, then C BE must be collinear,
so in this case also, we have three distinct triangles no matter what.

Subcase B: non-square rectangle: 1f the fifth point is added inside the rectangle, then
we get either a non-convex configuration or a configuration with three collinear points
(Figure 7a). So assume that the fifth point is added outside the rectangle. Using the
notation of Figure 7b, to add a fifth point I without creating three distinct triangles
there are three potential possibilities.

(1) AEAB = AABC. In this case, we get three collinear points, so we have three
triangles.

(2) AE'AD = AABC. Here, DCE are collinear, so we have three triangles.

(3) AE'"DC =2 AE"CB % AABC. In this case, E” DAB will form a kite, so we
have three triangles.

(B) Possibilities for E so that
AFAB = AABD. Here also,
any choice creates a bad 4-point
subconfiguration.

(A) Possibilities for E so that
AFEAB = AABC. Any one of these
choices creates a 4-point subconfigu-
ration determining at least 3 distinct
triangles.

FIGURE 6. Possible additions of a fifth point when two pairs of opposite
sides are congruent.
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B C

(B) Any way to place a fifth point out-
side a rectangle also results in at least
3 distinct triangles.

(A) Any way to place a fifth point in-
side a rectangle results in at least 3 dis-
tinct triangles.

FIGURE 7. Any way to add a fifth point to a rectangle results in at least
3 distinct triangles.

So we see both subcases yield at least three triangles, so the proof of case 2(d)ii is
complete. O

Proof of case 2e: three congruent sides. Using the notation of Figure 8, if the quadri-
lateral ABC'D is not a trapezoid, then in particular AC' # BD. Then we claim AABD,
ABDC, and AABC are all distinct. Triangle AABC % AABD because AC' # BD.
If AABC =2 ABDC, then AB = BD and CD = AC, but this is impossible because
then there would be two isoceles triangles based on AD.

So we can assume ABC'D is a trapezoid. When we add a fifth point £, AEAD is
created (Figure 8). As in case 2(d)ii, we must have AEAD = AABD or AEFAD =
NACD. Suppose AEAD = AABD (Figure 8a). In the figure, point £ creates a
non-convex configuration EABD and point E’ creates three collinear points E'DC'.
For point E”, if E”C is a new distance then we obviously have a new triangle. If
E"C = DC, then E"DC is a new triangle. If E”C = AC, then E”DAC is a kite, so
we have three triangles. If E”’C' = BC, then ABC'E"D is a regular pentagon, and this
is one of our claimed optimal configurations.

Now suppose that AEAD = AACD (Figure 8b). Point £ in the figure makes
EAC' D either a kite, a non-convex congfiguration, or a configuration with three collinear
points, depending on the length of DC. In any case, we have at least three triangles.
Point E’ makes three collinear points £'AB. For point E”, if E”C' is a new distance,
we have a new triangle. If E”C' = AD, then ADE”( is a non-rhombus parallelogram,
so we have three triangles. If E”C' = AC, then DE"C is a new triangle. Finally, if
E"C = DC, then DE"(C is also a new triangle. This shows that the only way to add a
fifth point to a trapezoid configuration without generating a third triangle is to create a
regular pentagon, which concludes the proof of case 2e. (|

Proof of case 2f: four congruent sides. There are two subcases: the four points either
form a non-square rhombus or a square.
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(A) Options for adding a fifth point £
sothat AFAD = ANABD. Adding £
or E’ will create a third triangle, and
adding E” will create a third triangle
if and only if DC # AC. If DC =

(B) Options for adding a fifth point £
sothat \EAD = ANACD. E and E’
both generate a third triangle, and E”
generates a third triangle if D # AC.
If DC = AC, then E” and C are the

AC, E" is the fifth vertex of a regular same point.
pentagon.

FIGURE 8. Possible additions of a fifth point when three sides are congruent.

If the four points form a non-square rhombus, then the argument presented in case
2(d)ii for a non-rectangle parallelogram also applies to show that the addition of a fifth
point anywhere generates a third triangle (see Figure 6).

If the four points form a square, we must show that the addition of a fifth point
anywhere but the center results in a configuration determining at least three triangles.
If the fifth point is on the interior of the square but not in the center, then it creates a
non-convex configuration (Figure 9a).

If the fifth point E is added outside the square, to avoid three distinct triangles, we
must place it so that either AEBC = ABCD or AEBC = AEBA (see Figure 9b).
If AEBC = ABCD, then ECD are collinear, so there are at least three triangles. If
AEBC = AFEBA, then we have a non-convex configuration, so there are at least three
distinct triangles in this case also.

This shows that the addition of a fifth point to a square anywhere but the center
generates at least three distinct triangles, and this completes the proof of case 2f. O

6. PROOF OF THEOREM 2.3

Proof. We show that the vertices of a regular n-gon determine [n?/12] distinct triangles.
Conditional on Conjecture 2.2, this completes the proof. Label the vertices of a regular
n-gon {Fy,..., P,_1}. By the symmetry of the configuration, every congruence class
of a triangle has a member with I, as a vertex, so when counting triangles we can
just count triangles incident on F,. To form a triangle, we just have to pick two other
vertices, PP, and P, and we can assume a < b. By symmetry, AF, P, P, will be distinct
from APy P,/ Py ifand only if {a — 0,6 —a,n—b} and {a'— 0,0’ —a’, n— 0} are not the
same set (see Figure 10). Thus there is a bijection between distinct triangles determined
by the regular n-gon and ways to write n as a sum of three positive integers. Using a
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D G

A B

(A) Addition of a fifth point inside the
square but not at the center. ABCFE is
a non-convex configuration, so we get
three distinct triangles.

D C E

(B) Options for adding a fifth point to
E to the outside of a square. Either op-
tion generates three distinct triangles.

FIGURE 9. Options for adding a fifth point to a square. Any choice
except for the center of the square will result in a configuration with at

least three distinct triangles.

result from the theory of integer partitions (see [Ho]), this quantity is equal to [n?/12],
so this completes the proof. A self-contained proof that this quantity is asymptotic to

n?/12 is also given in Appendix A.

PO

FIGURE  10. Illustrating

proof of Theorem 2.3 with n

APUP4P7 and APDP3P5

£l

({4-0,7-4,9-7}={3-0,5-3,9-5}=1{4,3,2}). Thus
they are congruent; however, /A Fs; Ps represents a different partition
({6 =0, 8 —6, 9—8} = {6,2,1}), so it is a different triangle.

a
bijection  described in  the
9. Note that triangles
the same partition of 9
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7. PROOF OF LEMMA 3.4

Proof of case 1: not in convex position. In this case, the four points form a triangle with
one point in the interior (Figure 11). Triangle AABD is contained in AABC, so they
must be distinct. O

s

FIGURE 11. Four points not in convex position; AABC and AABD
are distinct.

Proof of case 2a: three collinear points. Say point C'lies on AB and D does not (Fig-
ure 12). Then AACD is contained in AABD, so they are distinct. O

D
B

A

FIGURE 12. Four points containting three collinear points; AAC D and
AABD are distinct.

Proof of case 2b: no congruent sides. Say the four points form quadrilateral ABCD
(Figure 13). We have AABD 2 ACBD because AB, AD, BC, and CD are all
distinct. We claim AABC is distinct from both of these. Triangle AABC shares AB
with AABD, and BC' # AD, so if they are congruent then we must have BC' = BD
and AC = AD. This is impossible because then ACBD and ACAD would both be
isoceles triangles with C'D as base, which is impossible unless one contains the other,
which is not the case here. Thus AABC 2 ABD. A similar argument shows that
AABC % ACBD, so we have three distinct triangles. O

A

D

3 i
I C

FIGURE 13. A quadrilateral with all distinct side lengths; AABC,
ANABD, and ACBD are all distinct.
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Proof of case 2(c)i: one pair of adjacent congruent sides. Let the points form quadri-
lateral ABCD and suppose AB = AD (Figure 14). Triangle AABD 2% ABCD
because AABD is isoceles but ABC D is not. Also, by the same argument as in part
2b, we see that AABC is distinct from both of these, so there are at least three distinct
triangles. O

3]

A B

FIGURE 14. Quadrilateral with one pair of adjacent congruent sides
(shown in bold); AABD, ABCD, and AABC are all distinct.

Proof of case 2(c)ii: one pair of opposite congruent sides. Suppose AB = CD (Fig-
ure 15). Triangle AABC 2 ADBC because they have two sides congruent to each
other and the third is not. We now claim that AACD is distinct from both of these.
Triangle AACD 2 ABCD by the same isoceles triangle argument from parts 2b and
2(cn. If AACD = AABC, then BC must equal AD. But that would force AB to be
parallel to C'D, which would force AC' = BD, a contradiction. Thus there are at least
three distinct triangles. U

D

A B

FIGURE 15. Quadrilateral with one pair of opposite congruent sides;
NACD, ABCD, and AABC are all distinct.

Proof of case 2(d)i: two pairs of adjacent congruent sides. Say AB = AD and BC =
C'D and assume without loss of generality that AC > BD (Figure 16). Triangle
NABD % ABCD because AB # BC. We claim that there is another triangle distinct
from both of these. First note that it is impossible to have both AC' = CD = BC and
BD = AD = AB. Because of this, the triangles AABD, ABCD, and AACD are
necessarily distinct, so there are at least three distinct triangles. O

Proof of case 2e: three congruent sides. Say AD = AB = BC (Figure 17). Triangle
ANABC % AADC because they have two sides congruent with each other and one side
not congruent, thus there are at least two distinct triangles. 0
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A

C

FIGURE 16. Quadrilateral with two pairs of adjacent congruent sides.
Independently of the lengths of AC and BD, the triangles AABD,
ABCD, and AACD are all distinct.

A B

FIGURE 17. Quadrilateral with three congruent sides; AABC and
AADC are distinct.

APPENDIX A. NUMBER OF DISTINCT TRIANGLES DETERMINED BY A REGULAR
1n-GON

We give a self-contained proof that the number of distinct triangles determined by a
regular n-gon is asymptotic to n”/12. In the proof of Theorem 2.3, we establish that this
is equal to the number of ways to write n as a sum of three positive integers. Denote
this quantity by p(n,3). Since the order of a partition doesn’t matter, we view this
quantity as the number of ways to pick two elements & < [ from {1,...,n} such that
k > 11—k > n—1> 0. Note that k can be any of the elements [n/3],...,n — 2. Once

k is chosen, [ can be any of the elements k& + [(n — k)/2],..., min(2k, n — 1). Note
2k is the minimum when k& < |[n/2], and n — 1 is the minimum otherwise. Thus the
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number of choices is given by

Ln/JJ n—2
COE S SEETED VD SN
=[n/3} I=k+[(n—k)/2] k=|n/2|+1 I=k+[(n—k)/2]
n/2
S OB VRETED S S P
k=n/3 l=k+(n—-k)/2 k=(n+42)/2 I=k+(n—k)/
n/2 n—2
= Y (Bk/2-n/2+1)+ (n/2 — k/2) + O(n)
k=n/3 k=(n+2)/2
3/at n? w @ 1f ., =
—Z(E—E)—E—FI—Z(’R—I)+O(I?)
-
= T2 + O(n), (A.1)
and this completes the proof. O
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