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Abstract

We consider a collaborative PAC learning model, in which k players attempt to
learn the same underlying concept. We ask how much more information is re-
quired to learn an accurate classifier for all players simultaneously. We refer to
the ratio between the sample complexity of collaborative PAC learning and its
non-collaborative (single-player) counterpart as the overhead. We design learning

algorithms with O(ln(k)) and O(ln2(k)) overhead in the personalized and central-
ized variants our model. This gives an exponential improvement upon the naïve
algorithm that does not share information among players. We complement our
upper bounds with an Ω(ln(k)) overhead lower bound, showing that our results are
tight up to a logarithmic factor.

1 Introduction

According to Wikipedia, collaborative learning is a “situation in which two or more people learn ...
something together,” e.g., by “capitalizing on one another’s resources” and “asking one another for
information.” Indeed, it seems self-evident that collaboration, and the sharing of information, can
make learning more efficient. Our goal is to formalize this intuition and study its implications.

As an example, suppose k branches of a department store, which have sales data for different items in
different locations, wish to collaborate on learning which items should be sold at each location. In
this case, we would like to use the sales information across different branches to learn a good policy
for each branch. Another example is given by k hospitals with different patient demographics, e.g.,
in terms of racial or socio-economic factors, which want to predict occurrence of a disease in patients.
In addition to requiring a classifier that performs well on the population served by each hospital, it is
natural to assume that all hospitals deploy a common classifier.

Motivated by these examples, we consider a model of collaborative PAC learning, in which k players
attempt to learn the same underlying concept. We then ask how much information is needed for all
players to simultaneously succeed in learning a desirable classifier. Specifically, we focus on the
classic probably approximately correct (PAC) setting of Valiant [14], where there is an unknown target
function f∗ ∈ F . We consider k players with distributions D1, . . . , Dk that are labeled according to
f∗. Our goal is to learn f∗ up to an error of ε on each and every player distribution while requiring
only a small number of samples overall.
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A natural but naïve algorithm that forgoes collaboration between players can achieve our objective
by taking, from each player distribution, a number of samples that is sufficient for learning the
individual task, and then training a classifier over all samples. Such an algorithm uses k times as
many samples as needed for learning an individual task — we say that this algorithm incurs O(k)
overhead in sample complexity. By contrast, we are interested in algorithms that take advantage
of the collaborative environment, learn k tasks by sharing information, and incur o(k) overhead in
sample complexity.

We study two variants of the aforementioned model: personalized and centralized. In the personalized
setting (as in the department store example), we allow the learning algorithm to return different
functions for different players. That is, our goal is to return classifiers f1, . . . , fk that have error of at
most ε on player distributions D1, . . . , Dk, respectively. In the centralized setting (as in the hospital
example), the learning algorithm is required to return a single classifier f that has an error of at most
ε on all player distributions D1, . . . , Dk. Our results provide upper and lower bounds on the sample
complexity overhead required for learning in both settings.

1.1 Overview of Results

In Section 3, we provide algorithms for personalized and centralized collaborative learning that obtain
exponential improvements over the sample complexity of the naïve approach. In Theorem 3.1, we
introduce an algorithm for the personalized setting that has O(ln(k)) overhead in sample complexity.

For the centralized setting, in Theorem 3.2, we develop an algorithm that has O(ln2(k)) overhead in
sample complexity. At a high level, the latter algorithm first learns a series of functions on adaptively
chosen mixtures of player distributions. These mixtures are chosen such that for any player a large
majority of the functions perform well. This allows us to combine all functions into one classifier
that performs well on every player distribution. Our algorithm is an improper learning algorithm, as
the combination of these functions may not belong to F .

In Section 4, we present lower bounds on the sample complexity of collaborative PAC learning for
the personalized and centralized variants. In particular, in Theorem 4.1 we show that any algorithm
that learns in the collaborative setting requires Ω(ln(k)) overhead in sample complexity. This shows
that our upper bound for the personalized setting, as stated in Theorem 3.1, is tight. Furthermore, in
Theorem 4.5, we show that obtaining uniform convergence across F over all k player distributions
requires Ω(k) overhead in sample complexity. Interestingly, our centralized algorithm (Theorem 3.2)
bypasses this lower bound by using arguments that do not depend on uniform convergence. Indeed,
this can be seen from the fact that it is an improper learning algorithm.

In Appendix D, we discuss the extension of our results to the non-realizable setting. Specifically, we
consider a setting where there is a “good” but not “perfect” target function f∗ ∈ F that has a small
error with respect to every player distribution, and prove that our upper bounds carry over.

1.2 Related Work

Related work in computational and statistical learning has examined some aspects of the general
problem of learning multiple related tasks simultaneously. Below we discuss papers on multi-task
learning [4, 3, 7, 5, 10, 13], domain adaptation [11, 12, 6], and distributed learning [2, 8, 15], which
are most closely related.

Multi-task learning considers the problem of learning multiple tasks in series or in parallel. In this
space, Baxter [4] studied the problem of model selection for learning multiple related tasks. In their
work, each learning task is itself randomly drawn from a distribution over related tasks, and the
learner’s goal is to find a hypothesis space that is appropriate for learning all tasks. Ben-David and
Schuller [5] also studied the sample complexity of learning multiple related tasks. However, in their
work similarity between two tasks is represented by existence of “transfer” functions though which
underlying distributions are related.

Mansour et al. [11, 12] consider a multi-source domain adaptation problem, where the learner is given
k distributions and k corresponding predictors that have error at most ε on individual distributions.
The goal of the learner is to combine these predictors to obtain error of kε on any unknown mixture of
player distributions. Our work is incomparable to this line of work, as our goal is to learn classifiers,
rather than combining existing ones, and our benchmark is to obtain error ε on each individual
distribution. Indeed, in our setting one can learn a hypothesis that has error kε on any mixture of
players with no overhead in sample complexity.
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Distributed learning [2, 8, 15] also considers the problem of learning from k different distributions
simultaneously. However, the main objective in this space is to learn with limited communication
between the players, rather than with low sample complexity.

2 Model

Let X be an instance space and Y = {0, 1} be the set of labels. A hypothesis is a function
f : X → Y that maps any instance x ∈ X to a label y ∈ Y . We consider a hypothesis class F
with VC dimension d. Given a distribution D over X × Y , the error of a hypothesis f is defined as
errD(f) = Pr(x,y)∼D [f(x) 6= y].

In the collaborative learning setting, we consider k players with distributions D1, . . . , Dk over
X × Y . We focus on the realizable setting, where all players’ distributions are labeled according to
a common target function f∗ ∈ F , i.e., errDi

(f∗) = 0 for all i ∈ [k] (but see Appendix D for an
extension to the non-realizable setting). We represent an instance of the collaborative PAC learning
setting with the 3-tuple (F , f∗, {D}i∈[k]).

Our goal is to learn a good classifier with respect to every player distribution. We call this (ε, δ)-
learning in the collaborative PAC setting, and study two variants: the personalized setting, and the
centralized setting. In the personalized setting, our goal is to learn functions f1, . . . , fk, such that
with probability 1 − δ, errDi

(fi) ≤ ε for all i ∈ [k]. In the centralized setting, we require all the
output functions to be identical. Put another way, our goal is to return a single f , such that with
probability 1 − δ, errDi

(f) ≤ ε for all i ∈ [k]. In both settings, we allow our algorithm to be
improper, that is, the learned functions need not belong to F .

We compare the sample complexity of our algorithms to their PAC counterparts in the realizable
setting. In the traditional realizable PAC setting, mε,δ denotes the number of samples needed for
(ε, δ)-learning F . That is, mε,δ is the total number of samples drawn from a realizable distribution D,
such that, with probability 1− δ, any classifier f ∈ F that is consistent with the sample set satisfies
errD(f) ≤ ε. We denote by OF (·) the function that, for any set S of labeled samples, returns a
function f ∈ F that is consistent with S if such a function exists (and outputs “none” otherwise). It is
well-known that sampling a set S of size mε,δ = O

(
1
ε

(
d ln

(
1
ε

)
+ ln

(
1
δ

)))
, and applyingOF (S), is

sufficient for (ε, δ)-learning a hypothesis class F of VC dimension d [1]. We refer to the ratio of the
sample complexity of an algorithm in the collaborative PAC setting to that of the (non-collaborative)
realizable PAC setting as the overhead. For ease of exposition, we only consider the dependence of
the overhead on parameters k, d, and ε.

3 Sample Complexity Upper Bounds

In this section, we prove upper bounds on the sample complexity of (ε, δ)-learning in the collaborative
PAC setting. We begin by providing a simple algorithm with O(ln(k)) overhead (in terms of sample
complexity, see Section 2) for the personalized setting. We then design and analyze an algorithm for

the centralized setting with O(ln2(k)) overhead, following a discussion of additional challenges that
arise in this setting.

3.1 Personalized Setting

The idea underlying the algorithm for the personalized setting is quite intuitive: If we were to learn a
classifier that is on average good for the players, then we have learned a classifier that is good for a
large fraction of the players. Therefore, a large fraction of the players can be simultaneously satisfied
by a single good global classifier. This process can be repeated until each player receives a good
classifier.

In more detail, let us consider an algorithm that pools together a sample set of total size mε/4,δ from

the uniform mixture D = 1
k

∑
i∈[k] Di over individual player distributions, and finds f ∈ F that

is consistent with this set. Clearly, with probability 1 − δ, f has a small error of ε/4 with respect
to distribution D. However, we would like to understand how well f performs on each individual
player’s distribution.

Since errD(f) ≤ ε/4 is also the average error of f on player distributions, with probability 1− δ, f
must have error of at most ε/2 on at least half of the players. Indeed, one can identify such players

by taking additional Õ( 1ε ) samples from each player and asking whether the empirical error of f
on these sample sets is at most 3ε/4. Using a variant of the VC theorem, it is not hard to see that
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for any player i such that errDi
(f) ≤ ε/2, the empirical error of f is at most 3ε/4, and no player

with empirical error at most 3ε/4 has true error that is worst than ε. Once players with empirical
error 3ε/4 are identified, one can output fi = f for any such player, and repeat the procedure for
the remaining players. After log(k) rounds, this process terminates with all players having received
functions with error of at most ε on their respective distributions, with probability 1− log(k)δ.

We formalize the above discussion via Algorithm 1 and Theorem 3.1. For completeness, a more
rigorous proof of the theorem is given in Appendix A.

Algorithm 1 PERSONALIZED LEARNING

N1 ← [k]; δ′ ← δ/2 log(k);
for r = 1, . . . , dlog(k)e do

D̃r ←
1

|Nr|

∑
i∈Nr

Di;

Let S be a sample of size mε/4,δ′ drawn from D̃r, and f (r) ← OF (S);

Let Gr ← TEST(f (r), Nr, ε, δ
′);

Nr+1 ← Nr \Gr;

for i ∈ Gr do fi ← f (r);

end
return f1, . . . , fk
TEST(f,N, ε, δ):

for i ∈ N do take sample set Ti of size O
(

1
ε ln

(
|N |
εδ

))
from Di ;

return {i | errTi
(f) ≤ 3

4ε}

Theorem 3.1. For any ε, δ > 0, and hypothesis class F of VC dimension d, Algorithm 1 (ε, δ)-learns
F in the personalized collaborative PAC setting using m samples, where

m = O

(
ln(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
k

δ

)))
.

Note that Algorithm 1 has O(ln(k)) overhead when k = O(d).

3.2 Centralized Setting

We next present a learning algorithm with O(ln2(k)) overhead in the centralized setting. Recall that
our goal is to learn a single function f that has an error of ε on every player distribution, as opposed
to the personalized setting where players can receive different functions.

A natural first attempt at learning in the centralized setting is to combine the classifiers f1, . . . , fk
that we learned in the personalized setting (Algorithm 1), say, through a weighted majority vote.
One challenge with this approach is that, in general, it is possible that many of the functions fj
perform poorly on the distribution of a different player i. The reason is that when Algorithm 1 finds a

suitable f (r) for players in Gr, it completely removes them from consideration for future rounds;
subsequent functions may perform poorly with respect to the distributions associated with those
players. Therefore, this approach may lead to a global classifier with large error on some player
distributions.

To overcome this problem, we instead design an algorithm that continues to take additional samples
from players for whom we have already found suitable classifiers. The key idea behind the centralized
learning algorithm is to group the players at every round based on how many functions learned so
far have large error rates on those players’ distributions, and to learn from data sampled from all
the groups simultaneously. This ensures that the function learned in each round performs well on a
large fraction of the players in each group, thereby reducing the likelihood that in later stages of this
process a player appears in a group for which a large fraction of the functions perform poorly.

In more detail, our algorithm learns t = Θ(ln(k)) classifiers f (1), f (2), . . . , f (t), such that for any
player i ∈ [k], at least 0.6t functions among them achieve an error below ε′ = ε/6 on Di. The

algorithm then returns the classifier maj({f (r)}tr=1), where, for a set of hypotheses F , maj(F )
denotes the classifier that, given x ∈ X , returns the label that the majority of hypotheses in F assign
to x. Note that any instance that is mislabeled by this classifier must be mislabeled by at least 0.1t
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functions among the 0.6t good functions, i.e., 1/6 of the good functions. Hence, maj({f (r)}tr=1)
has an error of at most 6ε′ = ε on each distribution Di.

Throughout the algorithm, we keep track of counters α
(r)
i for any round r ∈ [t] and player i ∈ [k],

which, roughly speaking, record the number of classifiers among f (1), f (2), . . . , f (r) that have an

error of more than ε′ on distribution Di. To learn f (r+1), we first group distributions D1, . . . , Dk

based on the values of α
(r)
i , draw about mε′,δ samples from the mixture of the distributions in each

group, and return a function f (r+1) that is consistent with all of the samples. Similarly to Section 3.1,

one can show that f (r+1) achieves O(ε′) error with respect to a large fraction of player distributions

in each group. Consequently, the counters are increased, i.e., α
(r+1)
i > α

(r)
i , only for a small fraction

of players. Finally, we show that with high probability, α
(t)
i ≤ 0.4t for any player i ∈ [k], i.e., on

each distribution Di, at least 0.6t functions achieve error of at most ε′.

The algorithm is formally described in Algorithm 2. The next theorem states our sample complexity
upper bound for the centralized setting.

Algorithm 2 CENTRALIZED LEARNING

α
(0)
i ← 0 for each i ∈ [k];

t←
⌈
5
2 log8/7(k)

⌉
; ε′ ← ε/6;

N
(0)
0 ← [k]; N

(0)
c ← ∅ for each c ∈ [t];

for r = 1, 2, . . . , t do
for c = 0, 1, . . . , t− 1 do

if N
(r−1)
c 6= ∅ then

Draw a sample set S
(r)
c of size mε′/16,δ/(2t2) from D̃

(r−1)
c = 1

|N
(r−1)
c |

∑
i∈N

(r−1)
c

Di;

else S
(r)
c ← ∅ ;

end

f (r) ← OF

(⋃t−1
c=0 S

(r)
c

)
;

Gr ← TEST(f (r), [k], ε′, δ/(2t));

for i = 1, . . . , k do α
(r)
i ← α

(r−1)
i + I [i /∈ Gr];

for c = 0, . . . , t do N
(r)
c ← {i ∈ [k] : α

(r)
i = c};

end

return maj({f (r)}tr=1);

Theorem 3.2. For any ε, δ > 0, and hypothesis class F of VC dimension d, Algorithm 2 (ε, δ)-learns
F in the centralized collaborative PAC setting using m samples, where

m = O

(
ln2(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
1

δ

)))
.

In particular, Algorithm 2 has O(ln2(k)) overhead when k = O(d).

Turning to the theorem’s proof, note that in Algorithm 2, N
(r−1)
c represents the set of players for

whom c out of the r− 1 functions learned so far have a large error, and D̃
(r−1)
c represents the mixture

of distribution of players in N
(r−1)
c . Moreover, Gr is the set of players for whom f (r) has a small

error. The following lemma, whose proof appears in Appendix B.1, shows that with high probability

each function f (r) has a small error on D̃
(r−1)
c for all c. Here and in the following, t stands for⌈

5
2 log8/7(k)

⌉
as in Algorithm 2.

Lemma 3.3. With probability 1− δ, the following two properties hold for all r ∈ [t]:

1. For any c ∈ {0, . . . , t− 1} such that N
(r−1)
c is non-empty, err

D̃
(r−1)
c

(f (r)) ≤ ε′/16.

2. For any i ∈ Gr, errDi
(f (r)) ≤ ε′, and for any i /∈ Gr, errDi

(f (r)) > ε′/2.
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The next lemma gives an upper bound on |N
(r)
c |— the number of players for whom c out of the r

learned functions have a large error.

Lemma 3.4. With probability 1− δ, for any r, c ∈ {0, . . . , t}, we have |N
(r)
c | ≤

(
r
c

)
· k
8c .

Proof. Let nr,c = |N
(r)
c | = |{i ∈ [k] : α

(r)
i = c}| be the number of players for whom c functions in

f (1), . . . , f (r) do not have a small error. We note that n0,0 = k and n0,c = 0 for c ∈ {1, . . . , t}. The
next technical claim, whose proof appears in Appendix B.2, asserts that to prove this lemma, it is
sufficient to show that for any r ∈ {1, . . . , t} and c ∈ {0, . . . , t}, nr,c ≤ nr−1,c +

1
8nr−1,c−1. Here

we assume that nr−1,−1 = 0.

Claim 3.5. Suppose that n0,0 = k, n0,c = 0 for c ∈ {1, . . . , t}, and nr,c ≤ nr−1,c +
1
8nr−1,c−1

holds for any r ∈ {1, . . . , t} and c ∈ {0, . . . , t}. Then for any r, c ∈ {0, . . . , t}, nr,c ≤
(
r
c

)
· k
8c .

By definition of α
(r)
c , N

(r)
c , and nr,c, we have

nr,c =
∣∣∣{i ∈ [k] : α

(r)
i = c}

∣∣∣ ≤
∣∣∣{i ∈ [k] : α

(r−1)
i = c}

∣∣∣+
∣∣∣{i ∈ [k] : α

(r−1)
i = c− 1 ∧ i /∈ Gr}

∣∣∣

=nr−1,c +
∣∣∣N (r−1)

c−1 \Gr

∣∣∣ .

It remains to show that |N
(r−1)
c−1 \ Gr| ≤

1
8nr−1,c−1. Recall that D̃

(r−1)
c−1 is the mixture of all

distributions in N
(r−1)
c−1 . By Lemma 3.3, with probability 1− δ, err

D̃
(r−1)
c−1

(f (r)) < ε′/16. Put another

way,
∑

i∈N
(r−1)
c−1

errDi
(f (r)) < ε′

16 · |N
(r−1)
c−1 |. Thus, at most 1

8 |N
(r−1)
c−1 | players i ∈ N

(r−1)
c−1 can have

errDi
(f (r)) > ε′/2. Moreover, by Lemma 3.3, for any i /∈ Gr, we have that errDi

(f (r)) > ε′/2.
Therefore,

∣∣∣N (r−1)
c−1 \Gr

∣∣∣ ≤
∣∣∣{i ∈ N

(r−1)
c−1 : errDi

(f (r)) > ε′/2}
∣∣∣ ≤

1

8

∣∣∣N (r−1)
c−1

∣∣∣ =
1

8
nr−1,c−1.

This completes the proof.

We now prove Theorem 3.2 using Lemma 3.4.

Proof of Theorem 3.2. We first show that, with high probability, for any i ∈ [k], at most 0.4t functions

among f (1), . . . , f (t) have error greater than ε′, i.e., α
(t)
i < 0.4t for all i ∈ [k]. Note that by our

choice of t =
⌈
5
2 log8/7(k)

⌉
, we have (8/7)0.4t ≥ k. By Lemma 3.4 and an upper bound on binomial

coefficients, with probability 1− δ, for any integer c ∈ [0.4t, t],

|N (t)
c | ≤

(
t

c

)
·
k

8c
<

(
et

c

)c

·
k

8c
<

k

(8/7)c
≤ 1,

which implies that N
(t)
c = ∅. Therefore, with probability 1− δ, α

(t)
i < 0.4t for all i ∈ [k].

Next, we prove that f = maj({f (r)}tr=1) has error at most ε on every player distribution. Consider

distribution Di of player i. By definition, t − α
(t)
i functions have error at most ε′ on Di. We

refer to these functions as “good” functions. Note that for any instance x that is mislabeled by

f , at least 0.5t − α
(t)
i good functions must make a wrong prediction. Therefore, (t − α

(t)
i )ε′ ≥

(0.5t− α
(t)
i ) · errDi

(f). Moreover, with probability 1− δ, α
(t)
i < 0.4t for all i ∈ [k]. Hence,

errDi
(f) ≤

t− α
(t)
i

0.5t− α
(t)
i

ε′ ≤
0.6t

0.1t
ε′ ≤ ε,

with probability 1− δ. This proves that Algorithm 2 (ε, δ)-learns F in the centralized collaborative
PAC setting.
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Finally, we bound the sample complexity of Algorithm 2. Recall that t = Θ(ln(k)) and ε′ = ε/6. At
each iteration of Algorithm 2, we draw total of t ·mε′/16,δ/(4t2) samples from t mixtures. Therefore,
over t time steps, we draw a total of

t2 ·mε′/16,δ/(4t2) = O

(
ln2(k)

ε
·

(
d ln

(
1

ε

)
+ ln

(
1

δ

)
+ ln ln(k)

))

samples for learning f (1), . . . , f (t). Moreover, the total number samples requested for subroutine

TEST(f (r), [k], ε′, δ/(4t)) for r = 1 . . . , t is

O

(
tk

ε
· ln

(
k

εδ

))
= O

(
ln(k)

ε
·

(
k ln

(
1

ε

)
+ k ln

(
1

δ

))
+

ln2(k)

ε
k

)
.

We conclude that the total sample complexity is

O

(
ln2(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
1

δ

)))
.

We remark that Algorithm 2 is inspired by the classic boosting scheme. Indeed, an algorithm that
is directly adapted from boosting attains a similar performance guarantee as in Theorem 3.2. The
algorithm assigns a uniform weight to each player, and learns a classifier with O(ε) error on the
mixture distribution. Then, depending on whether the function achieves an O(ε) error on each
distribution, the algorithm updates the players’ weights, and learns the next classifier from the
weighted mixture of all distributions. An analysis similar to that of AdaBoost [9] shows that the
majority vote of all the classifiers learned over Θ(ln(k)) iterations of the above procedure achieves

a small error on every distribution. Similar to Algorithm 2, this algorithm achieves an O(ln2(k))
overhead for the centralized setting.

4 Sample Complexity Lower Bounds

In this section, we present lower bounds on the sample complexity of collaborative PAC learning. In
Section 4.1, we show that any learning algorithm for the collaborative PAC setting incurs Ω(log(k))
overhead in terms of sample complexity. In Section 4.2, we consider the sample complexity required
for obtaining uniform convergence across F in the collaborative PAC setting. We show that Ω(k)
overhead is necessary to obtain such results.

4.1 Tight Lower Bound for the Personalized Setting

We now turn to establishing the Ω(log(k)) lower bound mentioned above. This lower bound implies
the tightness of the O(log(k)) overhead upper bound obtained by Theorem 3.1 in the personalized

setting. Moreover, the O(log2(k)) overhead obtained by Theorem 3.2 in the centralized setting is
nearly tight, up to a log(k) multiplicative factor. Formally, we prove the following theorem.

Theorem 4.1. For any k ∈ N, ε, δ ∈ (0, 0.1), and (ε, δ)-learning algorithm A in the collaborative
PAC setting, there exist an instance with k players, and a hypothesis class of VC-dimension k, on
which A requires at least 3k ln[9k/(10δ)]/(20ε) samples in expectation.

Hard instance distribution. We show that for any k ∈ N and ε, δ ∈ (0, 0.1), there is a distribution
Dk,ε of “hard” instances, each with k players and a hypothesis class with VC-dimension k, such that
any (ε, δ)-learning algorithm A requires Ω(k log(k)/ε) samples in expectation on a random instance
drawn from the distribution, even in the personalized setting. This directly implies Theorem 4.1,
since A must take Ω(k log(k)/ε) samples on some instance in the support of Dk,ε. We define Dk,ε

as follows:

• Instance space: Xk = {1, 2, . . . , k,⊥}.
• Hypothesis class: Fk is the collection of all binary functions on Xk that map ⊥ to 0.
• Target function: f∗ is chosen from Fk uniformly at random.
• Players’ distributions: The distribution Di of player i is either a degenerate distribution that assigns

probability 1 to ⊥, or a Bernoulli distribution on {i,⊥} with Di(i) = 2ε and Di(⊥) = 1 − 2ε.
Di is chosen from these two distributions independently and uniformly at random.
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Note that the VC-dimension of Fk is k. Moreover, on any instance in the support of Dk,ε, learning
in the personalized setting is equivalent to learning in the centralized setting. This is due to the fact
that given functions f1, f2, . . . , fk for the personalized setting, where fi is the function assigned to
player i, we can combine these functions into a single function f ∈ Fk for the centralized setting
by defining f(⊥) = 0 and f(i) = fi(i) for all i ∈ [k]. Then, errDi

(f) ≤ errDi
(fi) for all i ∈ [k].1

Therefore, without loss of generality we focus below on the centralized setting.

Lower bound for k = 1. As a building block in our proof of Theorem 4.1, we establish a lower
bound for the special case of k = 1. For brevity, let Dε denote the instance distribution D1,ε. We say
that A is an (ε, δ)-learning algorithm for the instance distribution Dε if and only if on any instance
in the support of Dε, with probability at least 1 − δ, A outputs a function f with error below ε.
The following lemma, proved in Appendix C, states that any (ε, δ)-learning algorithm for Dε takes
Ω(log(1/δ)/ε) samples on a random instance drawn from Dε.

2

Lemma 4.2. For any ε, δ ∈ (0, 0.1) and (ε, δ)-learning algorithm A for Dε, A takes at least
ln(1/δ)/(6ε) samples in expectation on a random instance drawn from Dε. Here the expecta-
tion is taken over both the randomness in the samples and the randomness in drawing the instance
from Dε.

Now we prove Theorem 4.1 by Lemma 4.2 and a reduction from a random instance sampled from Dε

to instances sampled from Dk,ε. Intuitively, a random instance drawn from Dk,ε is equivalent to k
independent instances from Dε. We show that any learning algorithm A that simultaneously solves k
tasks (i.e., an instance from Dk,ε) with probability 1− δ can be transformed into an algorithmA′ that
solves a single task (i.e., an instance from Dε) with probability 1−O(δ/k). Moreover, the expected
sample complexity of A′ is only an O(1/k) fraction of the complexity of A. This transformation,
together with Lemma 4.2, gives a lower bound on the sample complexity of A.

Proof Sketch of Theorem 4.1. We construct an algorithm A′ for the instance distribution Dε from an
algorithm A that (ε, δ)-learns in the centralized setting. Recall that on an instance drawn from Dε,
A′ has access to a distribution D, i.e., the single player’s distribution.

• A′ generates an instance (Fk, f
∗, {Di}i∈[k]) from the distribution Dk,ε (specifically, A′ knows

the target function f∗ and the distributions), and then chooses l ∈ [k] uniformly at random.
• A′ simulates A on instance (Fk, f

∗, {Di}i∈[k]), with Dl replaced by the distribution D. Specif-

ically, every time A draws a sample from Dj for some j 6= l, A′ samples Dj and forwards the
sample to A. When A asks for a sample from Dl, A

′ samples the distribution D instead and
replies to A accordingly, i.e., A′ returns l, together with the label, if the sample is 1 (recall that
X1 = {1,⊥}), and returns ⊥ otherwise.
• Finally, when A terminates and returns a function f on Xk, A′ checks whether errDj

(f) < ε
for every j 6= l. If so, A′ returns the function f ′ defined as f ′(1) = f(l) and f ′(⊥) = f(⊥).
Otherwise, A′ repeats the simulation process on a new instance drawn from Dk,ε.

Let mi be the expected number of samples drawn from the i-th distribution whenA runs on an instance
drawn from Dk,ε. We have the following two claims, whose proofs are relegated to Appendix C.

Claim 4.3. A′ is an (ε, 10δ/(9k))-learning algorithm for Dε.

Claim 4.4. A′ takes at most 10/(9k)
∑k

i=1 mi samples in expectation.

Applying Lemma 4.2 to A′ gives
∑k

i=1 mi ≥
3k ln[9k/(10δ)]

20ε , which proves Theorem 4.1.

4.2 Lower Bound for Uniform Convergence

We next examine the sample complexity required for obtaining uniform convergence across the
hypothesis class F in the centralized collaborative PAC setting, and establish an overhead lower

bound of Ω(k). Interestingly, our centralized learning algorithm (Algorithm 2) achieves O(log2(k))
overhead — it circumvents the lower bound by not relying on uniform convergence.

1In fact, when fi ∈ Fk, errDi
(f) = errDi

(fi) for all i ∈ [k].
2 Here we only assume that A is correct for instances in the support of Dε, rather than being correct on every

instance.
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To be more formal, we first need to define uniform convergence in the cooperative PAC learning
setting. We say that a hypothesis class F has the uniform convergence property with sample size

m
(k)
ε,δ if for any k distributions D1, . . . , Dk, there exist integers m1, . . . ,mk that sum up to m

(k)
ε,δ ,

such that when mi samples are drawn from Di for each i ∈ [k], with probability 1− δ, any function

in F that is consistent with all the m
(k)
ε,δ samples achieves error at most ε on every distribution Di.

Note that the foregoing definition is a relatively weak adaptation of uniform convergence to the
cooperative setting, as the integers mi are allowed to depend on the distributions Di. But this
observation only strengthens our lower bound, which holds despite the weak requirement.

Theorem 4.5. For any k, d ∈ N and (ε, δ) ∈ (0, 0.1), there exists a hypothesis class F of VC-

dimension d, such that m
(k)
ε,δ ≥ dk(1− δ)/(4ε).

Proof Sketch of Theorem 4.5. Fix k, d ∈ N and ε, δ ∈ (0, 0.1). We define instance (F , f∗, {Di}
k
i=1)

as follows. The instance space isX = ([k]×[d])∪{⊥}, and the hypothesis classF contains all binary
functions on X that map ⊥ to 0 and take value 1 on at most d points. The target function f∗ maps
every element in X to 0. Finally, the distribution of each player i ∈ [k] is given by Di((i, j)) = 2ε/d
for any j ∈ [d] and Di(⊥) = 1− 2ε.

Note that if a sample set contains strictly less than d/2 elements in {(i∗, 1), (i∗, 2), . . . , (i∗, d)} for
some i∗, there is a consistent function in F with error strictly greater than ε on Di∗ , namely, the
function that maps (i, j) to 1 if and only if i = i∗ and (i∗, j) is not in the sample set.

Therefore, to achieve uniform convergence, at least d/2 elements from X \ {⊥} must be drawn from
each distribution. Since the probability that each sample is different from ⊥ is 2ε, drawing d/2 such
samples from k distribution requires Ω(dk/ε) samples.

A complete proof of Theorem 4.5 appears in Appendix C.
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