1706.10271v1 [cs.LG] 30 Jun 2017

arxiv

Lifelong Learning in Costly Feature Spaces”

Maria-Florina Balcan Avrim Blum Vaishnavh Nagarajan

July 3, 2017

Abstract

An important long-term goal in machine learning systems is to build learning agents that, like hu-
mans, can learn many tasks over their lifetime, and moreover use information from these tasks to improve
their ability to do so efficiently. In this work, our goal is to provide new theoretical insights into the po-
tential of this paradigm. In particular, we propose a lifelong learning framework that adheres to a novel
notion of resource efficiency that is critical in many real-world domains where feature evaluations are
costly. That is, our learner aims to reuse information from previously learned related tasks to learn future
tasks in a feature-efficient manner. Furthermore, we consider novel combinatorial ways in which learn-
ing tasks can relate. Specifically, we design lifelong learning algorithms for two structurally different
and widely used families of target functions: decision trees/lists and monomials/polynomials. We also
provide strong feature-efficiency guarantees for these algorithms; in fact, we show that in order to learn
future targets, we need only slightly more feature evaluations per training example than what is needed
to predict on an arbitrary example using those targets. We also provide algorithms with guarantees in an
agnostic model where not all the targets are related to each other. Finally, we also provide lower bounds
on the performance of a lifelong learner in these models, which are in fact tight under some conditions.

1 Introduction

Machine learning algorithms have found widespread use in solving naturally occurring tasks in domains like
medical diagnosis, autonomous navigation and document classification. Accompanying this rapid growth,
there has been remarkable progress in theoretically understanding how machine learning can solve single
tasks in isolation. However, real-world tasks rarely occur in isolation. For example, an autonomous robot
may have to accomplish a series of control learning tasks during its life, and to do so well it should employ
methods that improve its ability to learn as it does so, needing less resources as it learns more [24, 25]. As
we scale up our goals from learning a single function to learning a stream of many functions, we need to
develop sound theoretical foundations to analyze these large-scale learning settings.

Broadly, the goal of a lifelong learner is to solve a series of many tasks over its lifetime by a) extracting
succinct and useful representations about the relations among previously learned tasks, and then b) using
these representations to learn future tasks more efficiently. In this work, we provide new insights into
this paradigm by first proposing a metric for lifelong learning that exposes an important type of resource
efficiency gain. Then we design algorithms for important and widely used classes of functions with strong
theoretical guarantees in this metric.

In particular, we consider a setting where evaluating the features of data points is costly and hence
the learner wishes to exploit task relations to improve its feature-efficiency over time. Feature-efficiency
is critical in applications such as medical diagnosis and high-dimensional data domains where evaluating
feature values of a data point might involve performing expensive or intrusive medical tests or accessing

*Authors’ addresses: {ninamf, avrim, vaishnavh}@cs.cmu.edu.

millions of values. In fact, one of the reasons decision trees (which is one of the important function classes
we study in this paper) are commonly used in medical diagnosis [21] is that once the trees are learned, one
can then make predictions on new examples by evaluating very few features—at most the depth of the tree.

We consider lifelong learning from the perspective of this feature evaluation cost, and show how we can
use commonalities among previously-learned target functions to perform much better in learning new related
targets according to this cost. Specifically, if we face a stream of m adversarially chosen related learning
tasks over the same set of IV features, each with about S training examples, we will make O (SmN) feature
evaluations if we learn each task from scratch individually. Our goal will be to leverage task relatedness
to learn very few tasks from scratch and learn the rest in a feature-efficient manner, making as few as
O (S(m + N)) feature evaluations in total.

We study two structurally different classes of target functions. In Section 3 we focus on decision trees
(and lists) which are a widely used class of target functions [26, 23, 22, 8] popular because of their naturally
interpretable structure — to make a prediction one has to simply make a sequence of feature evaluations — and
their usefulness in the context of prediction in costly feature spaces. In Section 4 we analyze monomial and
polynomial functions, an expressive family that can approximate many realistic functions (e.g., Lipschitz
functions [2]) and is relevant in common machine learning techniques like polynomial regression, curve
fitting and basis expansion [27]. Our study of polynomials also demonstrates how feature-efficient learning
is possible even when the function class is not intrinsically feature-efficient for prediction. The non-linear
structure of both of these function classes poses interesting technical challenges in modeling their relations
and proposing feature-efficient solution strategies. Indeed our algorithms will use their learned information
to determine an adaptive feature-querying strategy that significantly minimizes feature evaluations.

In Section 3, we present our results for decision trees and lists. First, we describe intuitive relations
among our targets in terms of a small unknown set of K “metafeatures” or parts of functions common to
all targets (think of K much less than V). More specifically, these metafeatures are subtrees that can be
combined sequentially to represent the target tree. We then present our feature-efficient lifelong learning
protocol which involves addressing two key challenges. First, we need a computationally-efficient strategy
that can recover useful metafeatures from previously learned targets (Algorithm 3). Interestingly, we show
that the learned metafeatures can be useful even if they do not exactly match the unknown K metafeatures,
so long as they “contain” them in an appropriate sense. Second, we need a feature-efficient strategy that
can learn new target functions using these learned metafeatures (Algorithm 2). Making use of these two
powerful routines, we present a lifelong learning protocol that learns only at most K out of m targets from
scratch and for the remaining targets examines only K d features per example (where d is the depth of the
targets), thus making O (S(N K + mKd)) feature evaluations in total (Theorem 1).

In Section 4, we study monomials and polynomials which are similarly related through K unknown
metafeatures. We adopt a natural model where the metafeatures are monomials themselves, so that the
monomial targets are simply products of metafeatures. In the case of polynomials, this defines a two-level
relation, where each polynomial is a sum of products of metafeatures. For polynomials, we present an
algorithm that learns only K of m targets from scratch and on the remaining targets, evaluate sO (K + d)
features per example (where d is the degree of the target), thus making only O (S(KN + m(K + d)))
feature evaluations over all tasks. More interestingly, in the case of large-degree monomials, our algorithm
may need fewer feature evaluations per example (K) to learn the monomial than that needed (d) to evaluate
the monomial on an input point.

Next in Section 5, we consider a relaxation of the original model, more specifically, an agnostic case
where the learner faces m + r targets, r of which are “bad” targets adversarially chosen to be unrelated
to the other m interrelated “good” targets. As a natural goal, we want the learner to minimize the feature
evaluations made on the training data of the m good targets. We show that when r is not too large, the
above lifelong learners can be easily made to work as well as they would when » = 0. To address greater
values of r, we first highlight a trade-off between allowing the learner to learn more targets from scratch and

learning the remaining targets with more feature evaluations. We then present a technique that strikes the
right balance between the two.

Finally, in Section 6 we present lower bounds on the performance of a lifelong learner for all values of
r, including r = 0 by designing randomized adversaries. Ignoring the sample size S and other problem-
specific parameters, for small » we prove a lower bound of Q (K N + mK) feature evaluations which proves
that our above approaches are in fact tight. For sufficiently large 7, we prove a bound of 2 (mN), thereby
demarcating a realm of r where lifelong learning is simply futile.

We present a summary of our results in Tables 1 and 2 below.

Problem Total number of feature evaluations
Decision trees of depth d O (S(KN +mKd))
Decision trees of depth d in semi-adversarial model 0 (S (?%KN +m(K + d)))
Decision trees of depth d with anchor variables O (S(KN +m(K +d)))
Decision lists of depth d O (S(K?N +m(K? +d)))
Monomials of degree d O (KN +m(K +d))
Polynomials of degree d, sparsity ¢ O (S(KN +m(K +td)))

Table 1: Performance of our approaches

Range of r Performance of algorithm Lower bound
0 <7< 7Thn O(S(NK + Km)) Q(NK + Km)
7 € [Fmin, max] | O(S(rKNm +Km)) | Q (max <Ni—K,1> KN+Km)
</ Hmax max(NiK,l)KN
T 2 Tmax O (SmN) Q (mN)

Table 2: Performance of our algorithms for different values vs the lower bounds for different values of 7.

; _ KN S N (N-K)’m
Here, we will define ryin = max (%, £ K) and ryax = min (mT, Tl

1.1 Related Work

Related work in multi-task or transfer learning [14, 17, 19] considers the case where tasks are drawn from an
easily learnable distribution or are presented to the learner all at once. The theoretical results in that setting
are sample complexity results that guarantee low error averaged over all tasks [6, 7]. On the other hand,
research in lifelong learning has been mostly empirical [25, 13, 9, 24]. There has been a small amount of
recent theoretical work [5, 20]. [5] consider fairly simple targets and commonalities such as linear separators
that lie in a common low-dimensional subspace. [20] consider a setting where except for a small subset of
target functions, each target can be written as a weighted majority vote over the previous ones. [5] also
consider conjunctions that share a set of conjunctive metafeatures, but assume that the metafeatures contain
a unique “anchor variable”. Though decision trees have a more elaborate combinatorial structure than
conjunctions, in this work we are able to achieve strong guarantees for lifelong learning of decision trees
(and other classes) without making such assumptions about the metafeatures. We also note that one of
main technical challenges addressed by [5] is that of controlling error propagation during lifelong learning.
However, for the problems considered in this paper, it is possible to learn targets exactly from scratch, so we
do not have to deal with error propagation.

Feature-efficiency has been considered in the single-task setting, often under the name of budgeted
learning [16, 11, 1], where one has to learn an accurate model subject to a limit on feature evaluations,
somewhat like bandit algorithms. [18, 3] consider a related problem in a multi-task setting with all tasks
present up-front, where the learner has free access to all features but uses commonalities between targets to
identify useful common features in order to be sample-efficient.

2 Preliminaries

In this section, we define our notations (later summarized in Table 3) and present a high level protocol which
will provide a framework for presenting our algorithms in the later sections. We consider a setting in which
the learner faces a sequence of m related target functions g() over the same set of N features/variables
(where both m and N are very large). The target functions arrive one after the other, each with its own set of
training data S\) with at most S examples to learn from. Also, feature evaluation (or equivalently, feature
query or feature examination) is costly: if we view our training data for g(j) asan S x N matrix, we pay a
cost of 1 for each cell probed in the matrix.

Our belief is that the targets are related to each other through an unknown set F of metafeatures that are
parts of functions. More specifically, all targets in the series can be expressed by combining metafeatures
in F using a known set of legal combination rules, such as concatenating lists or trees. Our algorithms will
learn a set of hypothesized metafeatures F that allows them to learn new targets using a small number of
feature evaluations except for a limited number of targets learned from scratch i.e., by examining all features
on all examples. We call F our learned representation. Note that we will refer to F as Jjust metafeatures if
it is clear from context that it does not refer to the true metafeatures F.

Then, our lifelong protocol is as follows. We make use of two basic subroutines: a USEREP routine
that uses F to learn new related targets, and an IMPROVEREP routine that i improves our representation F
whenever the first subroutine fails. We begin with an empty F. On task j, using F and S, we attempt
to cheaply learn target gU) with USEREP. If USEREP fails to learn the target, we evaluate all features
in SU) and learn ¢\9) from scratch. Then, we provide F and ¢\¥) as input to IMPROVEREP to update F.
For clarity, we present this generic approach, which we will call as (USEREP, IMPROVEREP)-protocol, in
Algorithm 1. In the following sections, we will present concrete approaches for these subroutines, specific
to each class of targets. We will then analyze the performance of the protocol in terms of the total number
of feature evaluations (across all samples over all the tasks) given an adversarial stream of tasks.

Our setting can be viewed as analogous to that of dictionary learning [15, 10, 4] in which the goal is to
find a small set of vectors that can express a given set of vectors via sparse linear combinations. Here, we
will be interested in broader classes of objects and richer types of combination rules.

Notation Meaning

No. of targets in sequence

No. of features/variables
True metafeature set/representation

Learned representation
No. of true metafeatures
No. of samples for each task
Training data for task j

(| | NN =| 2

[V
phy
-
s

Table 3: Important notations

Algorithm 1 (Ayg, Ajr)-protocol for lifelong learning

1: Input: A sequence of m training sets S(1), S, ... corresponding to targets (1), g(®), ... each of
which can be represented using an unknown set F of K metafeatures.
2: Let F be our current learned representation. Initialize F to be empty.
3:forj=1,2,...mdo
4: Using F and SV, attempt to cheaply learn gU) with USEREP algorithm Ayg.
5: If learning was not successful, extract all features in S\) and learn ¢(¥) from scratch; provide F and
¢\%) as input to IMPROVEREP algorithm Ag to update F.

3 Decision Trees

We first formally define decision tree metafeatures and describe our learning model. Based on this we
describe our problem concretely in Problem Setup 1. To simplify our discussion, we consider decision trees
over Boolean features, though we later present a simple extension to real values. Formally, in a decision tree
g:{0,1}" — {+, —}, each internal node corresponds to a split over one of N variables and each leaf node
corresponds to one of the two labels {4, —}. No internal node and its ancestor split on the same variable.

Now, we define a metafeature to be an incomplete decision tree, a tree where any of the leaf nodes can be
empty i.e., the labels of some leaf nodes are left unspecified. Then, there are two natural ways of combining
metafeatures to form a (complete) decision tree. Let u be one of the empty leaf nodes of a metafeature f.
We may combine f with another incomplete tree f’ using an AFFIX(f, u, f’) operation which simply affixes
the root node of f’ at u (as illustrated in Figure 1). As a result, u now becomes an internal node of a larger
incomplete tree. The variable at u and its descendants correspond to the variables in f’. Alternatively, we
may perform a LABEL(f, u,) operation which assigns a label | € {+, —} to the empty node v in f. We can
then pick an arbitrary element f € F, apply an arbitrary sequence of LABEL and AFFIX operations (affixing
only trees from F) and eventually grow f into a decision tree. In this manner, we define below what it means
to be able to represent a decision tree using a set of metafeatures /. Both LABEL and AFFIX are described
for completeness in Appendix A.

Definition 1. Ler F = {fi, f2,...} where each metafeature f; is an incomplete decision tree. We define
DT(F) to be the set of all decision trees that can be grown by using the elements of F and sequentially
applying LABEL and AFFIX operations on them. We say that a decision tree g can be expressed using F if
g € DT(F).

Figure 1: Illustration of AFFIX

A modeling challenge here is that there are no known polynomial-time algorithms to learn decision
trees, even ignoring the issue of costly features and even for trees of depth d = O(log N). On the other
hand, there are popular top-down tree-learning algorithms (like ID3 and C4.5) that work well empirically
[23, 22, 8]. Therefore, we will assume that we are given such an algorithm that indeed correctly produces
g9 from SU) if we are willing to evaluate all the features in all the examples. More specifically, these
methods are defined by a “gain function” Gain(S,) that given a set of labeled examples S and a feature

1, returns a score indicating the desirability of splitting the set S using feature <. For instance, ID3 uses
information gain as its splitting criterion,! and an elegant theoretical analysis of the use of different such
gain functions is given in [12]. The algorithm begins at the root, chooses the variable of highest gain to
put there, and then recurses on the nodes on each side. This process continues until all leaves are pure (all
positive or all negative).

Problem Setup 1. The decision tree targets gV, ... g™ and data sets SV, ..., 8™ each of at most S
examples, satisfy the following conditions:

1. There exists an unknown set F of K metafeatures (K < N) such that ¥j, g¥) € DT(F).

2. The target g\) can be learned by running top-down decision-tree learning on SY) using a given Gain
function. In other words, always choosing to recursively split on the variable of highest Gain based
on SU) produces g7,

3. We are given s,d (d < N) such that g(j) has at most s internal nodes and depth at most d. Then,
S = O (slog N) examples are sufficient to guarantee that gY) has high accuracy over the underlying
distribution over data.

A straightforward lifelong learning approach would be as follows: IMPROVEREP simply adds to F fea-
tures seen in tasks learned from scratch as metafeatures, and USEREP examines only those (meta)features in
F when learning a target. Since each metafeature in F can have at most s distinct features, this learns at most
K targets from scratch and evaluates only K's features per example on the rest i.e., O (S(KN + mKs))
feature queries overall (see Appendix A for details). However, when s = (V) this is no better than
learning all tasks individually from scratch. In this section, we will present a significantly better protocol:

Theorem 1. The (USEREP Algorithm 2, IMPROVEREP Algorithm 3)-protocol for decision trees makes
O (S(KN + mKad)) feature evaluations overall and runs in time poly(m, N, K, S, s, d).?

This is a significant improvement especially in the case of shallow bushy trees for which d < s e.g.,
when d = O (log N) but s = Q(N). To achieve this improvement, we need a computationally efficient
approach that extracts bigger decision tree substructures from previous tasks and also knows how to learn
future tasks using such a representation. We first address the latter problem: we present an USEREP
routine, Algorithm 2, that takes as input a set of hypothesized metafeatures F and a training dataset S
consistent with an unknown tree g and either outputs a consistent tree g or halts with failure. To appreciate
its guarantees, define Pref(f) to denote the set of all “prefix” trees (prunings) of some incomplete tree f.
For any set of hypothesized metafeatures F, let Pref(F) = {Pref(f) |f € F}. We show that Algorithm 2,
given F, can effectively learn a target that can be represented using not only F, but also the exponentially

larger metafeature set Pref(F). That is, our USEREP algorithm can effectively learn trees from a much

larger space DT (Pref(F)) compared to just DT (F).

We now describe Algorithm 2. Though we limit our discussion to Boolean feature values for simplicity,
we later extend it to real values. In Algorithm 2, we basically grow an incomplete decision tree g one node at
a time, by picking one of its empty leaf nodes w, and either assigning a label to u or splitting u on a particular
feature. Before doing so, we first make sure that we have not failed already (Step 4). More specifically, if u

'Tf feature i splits data set S into two sets L and R, its information gain of feature i is then Ent(S) — [%Ent(L) + %Ent(R)].

Here, Ent is the binary entropy of the label proportions in the given set; that is, if a p fraction of the labels in S’ are positive, then
Ent(S") = plogy(1/p) + (1 — p) logy(1/(1 — p)).

2 It may seem that this result can be equivalently stated in terms of the average number of features examined per example i.e.,
O (KN + mKd). However, such a performance metric is different from what we defined. Under certain independence conditions
it may be possible to learn a target simply by drawing a large number of examples and examining only a single feature per example
while still making many feature evaluations in total.

is at a depth greater than d or if g already has more than s nodes, we halt with failure because we were not
able to find a small tree consistent with the data. If not, we proceed to examine samples from the training
set that have reached u, which we will denote by S,,. If all x € S, have the same label, we make u a leaf
with that label and proceed to other nodes in g.

Otherwise, we evaluate a small set of features on S, to compute their Gain and pick the best of those
features to be the variable at u (denoted by var(u)). The way we pick this set of features at u, which we
will call Z, is based on the following intuition. Assume we have grown g identically to g so far and let u’ be
the node in g that corresponds to u. Then the correct variable to be assigned at u is var(u') which is in fact
the gain maximizing variable on S, (as assumed in the second point of Problem Setup 1). Thus, our goal is
to ensure var(u') € Z.

If indeed g € DT (Pref(F)), this variable must in fact correspond to the variable in some node in some
f € F. In other words, we should be able to ¢ ‘superimpose” some f over g with the root of f at either u
or one of its ancestors such that the variable in f that has been superimposed over w is in fact the correct
variable for u. Additionally, the variables in f should not conflict with those that have already been assigned
to the ancestors of u in §. Since we do not know which f and which superimposition of f induces the correct
variable at v, we add to Z the variable induced at u by every possible superimposition: we pick every f eF
and every node w that is either an ancestor of u or w itself, and then superimpose f over § with its root
at w. We add to Z the variable thus induced at u, provided the variables in f do not conflict with those in
the ancestors of u. In Algorithm 2, we use helper routines, INDUCE(g, w, u, f) which outputs the induced
variable and CONFLICT(g, w, u, f) which outputs false if there is no conflict (both these simple subroutines
are described for completeness in Appendix A and illustrated in Figure 2). Finally, since no variable should
repeat along any path down the root, we remove from Z any variable already assigned to an ancestor of w.
Then, we assign the gain maximizing feature from Z to u.

Observe that, at u, in total over all f we may examine O(|F|d) features on S,,. Therefore, for a particular
sample, considering all nodes along a path from the root, we may examine O(\]:“ |d?) features. However,
with a more rigorous analysis we prove a tighter bound:

Theorem 2. USEREP Algorithm 2 has the property that given F and data S, a) if the underlying target
g € DT(Pref(F)), the algorithm outputs g and b) conversely, if the algorithm outputs § without halting
on failure, then g has depth at most d, size at most s and is consistent with S, c¢) the algorithm evaluates
O(|F| + d) features per example.

Algorithm 2 USEREP - Learning a decision tree using metafeatures

1: Input: Metafeatures F, samples S consistent with unknown g, depth bound d, size bound s.
2: Initialize the tree g to be an empty leaf node. Let Z be the set of empty leaf nodes in g.
3: whiledu € Z do

4: Halt with failure if a) « is at depth > d or b) the size of g is > s.

5: LetS, be the examples that have reached u.

6: ifall z € S, have the same label [then

7 Make u a leaf with the label /.

8 else

9 Let Z be the set of features to be examined at . Initialize 7 to be empty.

10: for each f € F and each node w in the path starting from the root of g to u do
11: If CONFLICT(§, w, u, f) is false, add INDUCE(§, w, u, f) to Z.

12: Remove from Z any variable assigned to an ancestor of u.
13: Evaluate only the features Z on S,,. Assign var(u) < arg max;ez Gain(Sy,).
14: Output g.

Proof. (a) and (c) follow from Lemma 3 and Lemma 4 respectively, which we prove below. (b) follows
immediately from the algorithm, more specifically from Step 4 and 6. We need this guarantee so that when
the learner does not fail, its output is guaranteed to be correct. O

Lemma 3. If g € DT(Pref(F)), Algorithm 2 outputs § = g.

Proof. We are given that g € DT(Pref(F)). We will show by induction that § is always grown correctly
i.e., g € Pref(g). This is trivially true at the beginning. Consider the general case. Let u be the node in g
that is chosen in Step 3 to be grown. By our induction hypothesis that g is a prefix of g, there exists v/ in g
that corresponds to u and furthermore, S,, = S,,. Now to show that u will be grown identical to v/, since
g is only a prefix, the size and depth constraints will be satisfied and so we are guaranteed to not halt with
failure at this node. Next, if ' was a leaf node, since S,, = S,/, we are guaranteed to label u as a leaf and
assign it the correct label.

If «' is not a leaf node, let var(u') be the variable present in ' ie., var(u) =
arg max;c[y) Gain(Sy,i). Therefore, to show that we assign var(u') to u in Step 13, we only need
to prove that var(u') € Z i.e., we consider this feature for examination. To prove this, note that in g,
var(u’) belongs to the prefix of some metafeature f * from F that is rooted either at some v’ which is either
u' itself or at one of its ancestors (because g € DT(Pref(F))). We can show that in Step 11, when w = v
and f = f*, we end up adding var(u') to Z. First, if v is the corresponding node in g we will have that
CONFLICT(§, v, u, f*) is false. Furthermore, clearly INDUCE(§, v, u, f) = var(u'). Now since g has no
variable repeating along any root-to-leaf path, var(u') does not occur in any of the ancestor nodes of ’, and
similarly in g, it does not occur in any of the ancestor nodes of w. Thus, the conditions in Step 11 succeed,
following which var(u') is added to Z. O

Lemma 4. Algorithm 2 makes at most O(\]:_ | + d) feature queries per example.

Proof. First of all note that each example corresponds to a particular path in g. Thus, the features examined
on that example as g was grown, correspond to the different features computed from INDUCE(g, w, u, f) for
different nodes v and w on that path. These feature queries can be classified into two types depending on
whether A) w = u or B) w is an ancestor of u. For type A, since w = u, INDUCE(g, w, u, f) can only be
one of the fixed set of features that occur at the root of metafeatures in F. In total this may account for at
most | F| feature examinations.

Now consider the type B features queries corresponding to w # u. Each feature examined in this case
corresponds to a 3-tuple (w,u, f) where w is an ancestor of u. We claim that for a given f, w has to be
unique in this path. This is because var (w) must equal the root variable of f by definition of INDUCE, and
any given variable appears at most once on any path by Step 12.

Thus type B feature query effectively corresponds to a 2-tuple (u, f) instead of a 3-tuple (w,u, f)
because f corresponds to a unique w. Let w 7 denote this unique node for f . Now, let k, be the number
of type B feature queries made at u. We can divide this case further into type B(a) consisting of nodes
u, such that k, = 1 and type B(b) corresponding to &k, > 1. In total over the d nodes in g, we would
examine only d type B(a) features. Now, for type B(b), at node u, where we evaluate k, features at u, we
claim that this eliminates at least k£, — 1 different metafeatures from resulting in feature examinations of
type B further down this path. This is because each of the k,, features that we examine at u correspond to
INDUCE(g, w, u , f) for some f € F. Let this set of metafeatures be F,,, where | F,,| = k,. Now, we assign

only one feature to u that corresponds to say, f € F,. After this, when we are growing a descendant node
v, for the k,, — 1 other metafeatures f e F, and f #* f* CONFLICT(g, w W, v, f) will be true as there will

be a conflict at u. However, since CONFLICT(g, w Wi, v, f) needs to be false in Step 11 for f to result in a
feature query, we conclude that there are k£, — 1 different metafeatures that do not result in a feature query
beyond this point.

Using the above claim, we can now bound) _, . k. >1 kus Which will account for the total feature queries
of type B(b) along the path. Since k, — 1 denotes the number of eliminated metafeatures beyond u, and
since only at most || can be eliminated, we have) ., (k, — 1) < |F|. Now, since >, _;1<d, we
have that 3", _1 ky < |F| + d i.e., we make at most | F| + d type B(b) feature queries of the last kind on
this path. Thus, in summary, we examine at most O(|.7:" | + d) features on each example. U

Now, to provide a lifelong learning protocol for Problem Setup 1, the challenge is to design a computa-
tionally efficient IMPROVEREP routine®. To this end, we present Algorithm 3 that creates useful metafea-
tures by adding to F well-chosen subtrees from target functions. In particular, after learning a target g from
scratch, we identify a root-to-leaf path in g that we failed to learn using F. We add to F the subtrees rooted
at every node in that path. The intuition is that one of these subtrees makes the representation more useful.
To describe how the path is chosen, let g be the incomplete tree learned using F just before we halted with
failure. Since either the depth or the node count was exceeded in g, there must be a path from the root of g
longer than the corresponding path in g. We pick the corresponding path in g which was incorrectly learned
in g (see Figure 3).

Finally, as we see below in the proof sketch for Theorem 1, the resulting protocol evaluates only O (K d)
features per example when learning from F, besides learning K trees from scratch. Recall that this is a
significant improvement of our straightforward USEREP which evaluates O (K s) features per example. In
Appendix A, we present results for more models for decision trees.

Algorithm 3 IMPROVEREP - Decision Trees

1: Input: Old representation fold and a tree g € DT (F) learned from scratch and the (incorrect) incomplete
tree g learned using Fold-

ﬁ —]?old

Identify a path from root of g such that the corresponding path in g has fewer internal nodes.

For each node in the corresponding path in g, add the subtree rooted at that node to F.

Output F

Proof. (for Theorem 1) We will show by induction that at any point during a run of the protocol, if k
targets have been learned from scratch, then there exists a subset of k true met'ilfeatures F' C F that have
been “learned” in the sense that f € F' is the prefix of some metafeature in F, implying that DT(F") C

DT(Pref(F)). Then after learning K targets from scratch, it has to be the case that 7' = F after which

DT(F) C DT (Pref(F)) and hence from Lemma 3 it follows that the protocol can never fail while learning
from F.

The base case is when F7 is empty for which the induction hypothesis is trivially true. Now, assume
at some point we have metafeatures]:"Old and these correspond to true metafeatures féld C F such that
DT(F),,) € DT(Pref(F)) and | F/,y| = k. Now, from Theorem 2, we can conclude that any target that lies
in DT(F/ ;) will be successfully learned by USEREP Algorithm 2. Hence, when USEREP does fail on a
new target g, it means that the g contains metafeatures from F — F;;. In fact, along any path in g in which
learning failed (that is, the tree g that is output differs from g on this path), there must be a node at which
some metafeature from F — F, is rooted. If this was not true for a particular failed path, we can show

using an argument similar to Lemma 3 that this path would have been learned correctly. Therefore, when

3As a warm-up, consider a semi-adversarial scenario where each element of F has a reasonable chance of being the topmost
metafeature in any target. We can then learn the first few targets from scratch and simply add them to F so that with high probability,
each metafeature from J is guaranteed to be the prefix of some element in F. Then we can use Algorithm 2 to learn the remaining
targets using 7 as all those targets will lie in]D)'JI‘(Pref(J:")). We provide a careful analysis of this simpler case in Appendix A
Theorem 17.

we add to F all the subtrees rooted at the nodes in some failed path in g, we are sure to add a tree which has
some f € F — F. , as one of its prefixes. This means that for the updated set of metafeatures, there exists
F' = FoqU{f} of cardinality k + 1 that satisfies the induction hypothesis.

Now, each time USEREP fails, we add at most d metafeatures to F, so |F| < Kd. From Theorem 2, it
follows that we evaluate only O (K d) features when learning using F. O

CONFLICT(f, w,u, f') = false
INDUCE(f,w,u, f') = x5

Corresponding path

f Node u f

. . . , . Incomplete tree g True target g
Figure 2: Superimposing f’ over f with its

root at w Figure 3: Path chosen by IMPROVEREP Algorithm 3.

Extension to real-valued features: Our results hold also for decision trees over real-valued features, where
nodes contain binary splits such as “xy > 7. In particular, we reduce this to the Boolean case by viewing
each such split as a Boolean variable. While this reduction involves an implicitly infinite number of Boolean
variables, our bounds still apply. This is because we make only IV feature evaluations per example when
learning from scratch (and not infinitely many). Also, the feature evaluations made by our USEREP is
independent of the number of Boolean variables.

3.1 Decision Lists

While we can use the above protocol for decision lists too, it does not effectively provide any improvement
over the baseline approach because for lists, s = d. However, by making use of the structure of decision
lists, we provide a protocol, namely IMPROVEREP Algorithm 4, that learns K ? lists from scratch and on
the rest examines only O (K 24 d) features per example. The high level idea is that when we fail to learn a
target using F, we add to F only a single suffix of the target list as a new metafeature instead of adding all
d suffixes like in Algorithm 3.

More specifically, given a decision list g learned from scratch (that we could not learn from F), we
examine ¢ and the actual list § we learned from F. Then we simply ignore the first few nodes of g that we
managed to learn using F, and add the remaining part of the list to F. The intuition is that the representation
is improved by introducing a part of g that we could not learn using F. Note that here ¢ might not even be
a complete decision list as USEREP may have simply failed in finding a decision list using F that fits the
data. However, it may have still been successful in learning the first few nodes of g.

Here, we use the term suffix to denote a subtree (i.e., sublist) of a list. In other words, a suffix of a list
would be a path beginning anywhere on the list and ending at the leaf. Similarly, we use the term prefix
to denote a path beginning at the root of the list and ending anywhere on the list. In our proof, we will
use the notation u €41 f to denote that node u is present in the list f, and f’ Cq; f to denote that f’ is an
incomplete list (like an incomplete decision tree) which corresponds to a path within f, not necessarily a
prefix or a suffix. Furthermore, if g is a concatenation of other (incomplete) lists g1, go, ... we will say

9= "(91,92,--.).

10

Algorithm 4 IMPROVEREP - Decision Lists

Input: Old representation]:'Old, target g learned from scratch, g learned using]}Old.
Let g = (gp, gs) Where g, is the longest common prefix of § and g.

F < Foa U {gs}

Return F

N T

We now present an outline of our proof for the claim that employing USEREP Algorithm 2 along with
IMPROVEREP Algorithm 4 learns at most O (K 2) decision lists from scratch. A crucial fact we use is that
USEREP Algorithm 2 learns any list iff it belongs to DT(Pref(F)). Now, observe that there must exist an
f € F such that f is a part of g and furthermore, USEREP was able to learn upto a prefix f, of f after
which it failed to learn the remaining suffix of f, say fs. Our result follows if we can show that there can
only be O(K) failures of USEREP that correspond to a particular f in this manner. To prove this, we will
categorize the failures of USEREP corresponding to f based on whether f, € DT(Pref(fold)) and show
that there can be only O (K) failures for each case, for a given f.

When f, € DT(Pref(Fyq)), after running USEREP Algorithm 2, we will have that f, € DT(Pref(F))
because gs; which has the prefix fs; was added to our representation. Then, f € DT(Pref(ﬁold)), and
therefore on any new target there can not be a failure corresponding to f. Thus, there is at most one failure
corresponding to f, of this type.

The case where f, ¢ DT (Pref(F,4)) requires a more intricate argument which is based on identifying
another f’ chosen carefully from an “indirect” representation of g in terms of . In particular, on one hand
there is a direct representation of g in terms of F. At the same time, since Algorithm 2 learned g, using
.7-"01d, gp can be represented as a sequence of prefixes from .7-"01d Since each element in .7-"01(1 is also from
DT(F), we can indirectly represent this sequence of prefixes in terms of parts of metafeatures from F.
We will choose an appropriately positioned f’ from this representation and show that there can be only
two failures corresponding to a particular f and f’. Thus, there can only be O (K) failures for a particular f.

Theorem 5. The (USEREP Algorithm 2, IMPROVEREP Algorithm 4)-protocol for decision lists makes
O (S(K2N + m(K? + d))) feature evaluations overall and runs in time poly(m, N, K, S, d).

Proof. We show that the protocol learns at most O (K 2) lists from scratch. Then, from Lemma 4 our result
follows.

Now, we need to understand how adding the suffix g5 from a target ¢ on which USEREP failed, makes
the representation more useful. As a warm up, we can show that when the protocol faces the same target
g in the future, the updated representation F= Fold U {gs} will be able to learn it. A crucial fact from
which this follows is that USEREP Algorithm 2 learns any list if and only if the list can be represented as a
concatenation of prefixes of elements from F. This fact holds because Lemma 3 and the way the algorithm
works. Thus, since we were able to learn g, when we first saw g, gj, is a concatenation of prefixes from Fold
ie., g, € DT(Pref(Fya)). Then, since g = (gp, gs) € DT(Pref(Foq U {gs})), we can learn g using F.

Of course, we should show that the updated representation is more powerful than just allowing us to
learn repeated tasks in the future. To see how, note that since the target g is a concatenation of metafeatures
from F, its suffix g5 must begin with the suffix of a metafeature from F. More formally, since g € DT (F),
gs must begin with a suffix f; of an element f € F. Let f, be the corresponding prefix of f. Now, consider
a future target that contains f. If the learner is able to identify all nodes in the target upto the end of prefix
fp, the learner is also guaranteed to identify f completely in the target. This tells us a little bit more about
the power of the updated representation.

Now, to prove our lemma, we use the fact that each failure of USEREP Algorithm 2 must correspond
to a specific element f € F as seen above. That is, there must exist an f = (fp, fs) € F such that f Cq; g

11

and furthermore, USEREP was able to learn upto a prefix f,, of f after which it failed. We claim that there
can only be O(K) failures of USEREP that corresponds to a particular f in this manner. From here, our
lemma immediately follows. To prove this claim, we will categorize the failures of USEREP corresponding
to f into two different cases and bound the number of failures in each case. Throughout the following
discussion, we will simply use the term failure to denote failure of USEREP.

We will divide failures corresponding to f based on whether f, can be represented as a concatenation
of prefixes from Foua or not. If it can be, we show that it is easy to argue that in any future target there will
not be a failure corresponding to f. If not, we present a more involved argument to show that there can be
at most K failure events corresponding to a particular f. Then, the bound of O (K 2) on the total number
of failures follows.

Case 1: For the first case we assume that f, € DT(Pref(F.q4)). Then, clearly, this is true for the
new representation F i.e., f, € DT(Pref(F)). Furthermore, since there is a new element gs with fs as
its prefix, fs € Pref(F). This implies that f € DT(Pref(F)). This means that we can henceforth learn
an occurrence of f in a new target if learning has been successful until the beginning of f in that target.
In other words, there can never be another failure that corresponds to f. This case can hence occur only once.

Case 2: The second case corresponds to f, ¢ DT (Pref(Fyq)). We will now subdivide this case further
based on another metafeature f’ € F, a part of which lies in some hypothesized metafeature in Foia and was
used to learn/match a part of f in g,. We will fix f’ and argue that there can be at most two failure events
characterized by f and f’ during the lifelong learning protocol. Since there are only K different f’, then for
a fixed f, there can only be 2K failure events of this type, thus completing our proof.

We begin by informally explaining how we choose f’ to classify a given failure event. We first note
that there are two ways in which g, can be represented in terms of the true metafeatures F. The “direct”
representation corresponds to the fact that ¢ € DT(F). On the other hand, there is also an “indirect”
representation: since Algorithm 2 could learn the prefix g, using Foids gp can be represented as a sequence
of prefixes from -7:—01d- Since each element in]:'Old is a part of older targets from DT(F), we can represent
this sequence of prefixes in terms of parts of true metafeatures (that are not necessarily prefix/suffix parts).

Now, let the root variable of f be i¢. There must be a unique element in the sequence of prefixes that
contains iy. We let f’ be the metafeature in F that contributes to the last bit of this unique element in the
above-described indirect representation. Before we proceed to describe this more formally, we note that
this is all possible only because iy indeed belongs to f,,. If it did not, it means f, is an empty string, which
we have dealt with in Case 1.

We now state our choice of f’ more formally. Since we were able to learn g, using Fold We can write
gp = (Pref (fi,), Pref.(f1,),...) for fi,, fi,,... € Foa Where we use the notation Pref,(f) to denote a
particular prefix of f. Let Pref, (flr) be the unique element in the above sequence that contains ¢y (we use
the index r to denote that it contains the root). Like we stated before, since flr is also the suffix of some
old target in DT(F), f;. must be made up of parts of true metafeatures . The same holds for Pref,(f;)
too. We will focus on the true metafeature that makes up the last bit of Pref,(flr) That is, let f' € F
be the metafeature that occurs in an older target, such that a non-empty suffix of Pref, (ﬁ) comes from f’
i.e., there exists suffix Suff*(Pref*(ﬁr)) such that Suff*(Pref*(flT)) Cgq1 f'. Here, again Suff*(f) is used
to denote a particular suffix of f . Thus each failure event in this case can be characterized by a particular f
and f'.

Note that Suff, (Pref, (f;_)) need not necessarily be a suffix of f” because f;, may have stopped matching
with g somewhere in the middle of f’. It need not necessarily be a prefix of f’ either because flr is only a
suffix of some target in DT (F) and this suffix may have begun somewhere in the middle of f’ in that target.

To show that there are at most two failure events for a given f and f’, we will consider two sub-cases

12

\ Notations
fll Bl r
Ll i, e F
< | = -7 —>
9p
o] pref*(f'lr) D S Pref(]:old)
. fIQ
Zj —— | |
if/ —» t N I
I -
Y i \ i '
I » 3 suff, (Pref,(f,))
fs
gs

Suffix of an old target

v

Figure 4: (f, f')(1-type failure where i ¢aq1 Suff, (Pref, (flr)): We represent the decision list g on the left.
Each subrectangle in this corresponds to some element from F with f marked in red. In the middle column,
we represent the prefix of g, g, in terms of the elements of Pref(]:'old) each denoted by a thick subrectangle.
We can do this because we were able to learn g, from F. Now each of these thick subrectangles can in turn
be represented using parts of metafeatures from F because these are suffixes of actual targets. In particular,
we choose the thick subrectangle that matched with the root of f and show the complete metafeature from
Fola On the right. In this metafeature, the thin rectangles correspond to its representation in . Observe that
we have marked f’ in blue, and a part of it is what makes the last bit in the rectangle marked as Pref,(f;)

in gp. Also iy is marked in magenta below which ¢ is marked in green.

depending on whether i, ¢4, Suff, (Pref,(flr)) That is, when we use a part of f’ to learn g,, we see
whether we learn ¢y or not. These two cases are illustrated in Figure 4 and Figure 5. For both these
scenarios, we first analyze the structure behind the failure i.e., the locations of the different variables and
how the different metafeatures align with each other. Based on this, we show that for each type, there can
be at most one failure.

Case 2a: i ¢q) Suff,(Pref,(f,,)). Let us call this an (£, f')(")-type failure event. We first look at how
the different elements are positioned when such a failure occurs, by aligning the elements in a way that
the variables match. First, recall that by the definition of Pref,(flr), ir €aq1 Pref,(flr) Thus, if €41 flr.
Furthermore, by definition of f’, and because flr is the suffix of an older target from DT(F), either a suffix
or the whole of f/ must occur in flr- We claim that 1) it is the latter, i.e., f/ Cq1 flr and furthermore, 2)
the root of f is located below iy in flr (as illustrated in Figure 4). If only a suffix of f’ occurred in flT, it
means that f; begins with that particular suffix and therefore by definition of Suff, (Pref,(f;)) being the
last bit of Pref,(f;,) that comes from f’, Pref,(f;.) = Suff,(Pref.(f.)). Then, since i; €41 Pref,(f,),
i €41 Suff,(Pref,(f;,)) which is a contradiction. Now, if indeed f’ C4; f;, but the root of f’ was not
located below i in f;, again by definition of Suff,(Pref,(f;,)) being the last bit of Pref,(f;,) that comes
from f’, i €41 Suff,(Pref,(f,)) which is a contradiction. Note that conclusions 1) and 2) above mean that
Suff, (Pref,(f;) is a prefix of f’.

13

|
2

Notations

= [i D cF

> = >
9p
0 || D € Pref (fold)
Pref*(fl,.
1f —iml !
o D <
I -

s

" Suff,..(Pref,(f,))

Figure 5: (f, f')?)-type failure where i ; 4y Suff, (Pref,(f;,))

Given this, assume on the contrary that we do face a later target ¢’ with an (f, f’)(1)-type failure
event. Then, we can define notations similar to the first failure. Let g;) be the prefix we were able
to learn correctly using F. Then, gj’o can be similarly expressed as a sequence of prefixes from F, say
(Pref’ (f~l/1), Pref’ (flé), .- .). By definition of this failure type, f C41 ¢’. So consider the prefix that contains
if,callit Pref'*(flfrl). Furthermore, Pref;(fl;,) has a suffix Suff’*(Pref;(fl;,)) that is also a part of f’ but is
not necessarily the same as Suff’ (Pref, (f;)).

We will now show that a prefix longer than g]’D that includes f completely can be represented using

prefixes from F which contradicts the fact that the algorithm failed somewhere in between f. To do this,
we will make use of the fact that the algorithm was able to learn until 74 in the second failure, beyond
which it can learn the rest of the target until the end of f), like it did the previous time, after which we can
append f, from the representation. More specifically, observe that there is exactly one position at which 7 ¢/
in f’ can match with f and hence the failure will look similar to Figure 4 again; f’ will be contained in f'l;/

and iy will be located above i ;. Now, since we also know that f "Cq fl/ ,» We can extend/shorten the prefix
Pref (fl/,) that is used to match with g;, to another prefix Pref’(flr,) that has the same suffix as before,

Suff*(Pref*(flT)). On doing this, the rest of f, in _q; can be represented using the same prefixes from F
used to represent that part in g,. Furthermore, we can append f; to this sequence because f is a prefix
of g, that was added to the representation. Thus, we take the sequence (Pref’ (fl’l), Pref’ (flé), o)1) we
retain the first 7 — 1 elements, 2) modify the r/th element so that its suffix matches with Suff, (Pref,(f;,)),
3) append the rth, r + 1th, ... elements from the representation for g,, 4) and finally append fs. This
represents a larger prefix of g that includes f completely, using only prefixes from F. Namely, this is
(Pref;(fla), Pref;(flé), e Pref’*’(fl(l/), Pref*(flTH), Pref*(ﬁT+2), ..., fs). This contradicts the fact we
failed to learn f completely in ¢'. ,

Case 2b: i €4, Suff,(Pref,(f;,)). Let us call this an (f, f)?-type failure event. We now make a

14

similar argument. The only difference is that now Suff, (Pref,(f;.)) is not necessarily a prefix of f’ and
therefore, i/ is not necessarily present in Suff, (Pref,(f1.)) (see Figure 5. However it is guaranteed that
a suffix of f’ containing iy is present in f;,. Now let Suff,,(Pref,(f;,)) be an alternative shorter suffix of
Pref, (f;,) that begins only at i .

Now, consider a new target with a similar failure with a similar Suff, (Pref,(f,)) that begins with i .
We will again show how we can use the updated representation to represent a larger [;reﬁx of ¢, specifically
a prefix that extends until the end of f in ¢’. In particular, we make use of the fact that the algorithm was able
to learn at least before i in this target, beyond which we can learn f,, the way we did in the previous target,
and then append f; from the representation. More specifically, we first extend/shorten the prefix Pref’, (fl;/)

that is used to match with g;, to another prefix Pref](fy,) that it has the suffix Suff,, (Pref,(f;,)) (which is

only possible because i s €4, Pref)(fir,))- On doing this, we can represent the rest of f using F like in the
previous case. "

Thus, we take the sequence (Pref’ (fyl), Pref, (flé), ...) 1) we retain the first 7’ — 1 elements, 2) modify
the 7/th element, 3) append the rth, 7+ 1th, . . . elements from the representation for g,,, 4) and finally append
fs. This represents a larger prefix of g that includes f completely, using only prefixes from F.N amely, this
is (Pref,(fy), Pref,(fy), ... Pref](fl;/), Pref, (fi,,,), Prefu(fi,,s), - -, fs). This contradicts the fact that
we failed to learn f completely in ¢'.

O

4 Monomials

We consider lifelong learning of degree-d monomials under the belief that there exists a set of K mono-
mial metafeatures like {7122, 7373, ...} and each target can be expressed as a product of powers of these
metafeatures e.g., (z122)?(x223). This is similar to the lifelong Boolean monomial learning discussed in
[5] where each monomial is a conjunction of monomial metafeatures. Since that is an NP-hard problem,
they assume that the metafeatures have so-called “anchor” variables unique to each. We will however not
need this assumption.

Formally, for any input x = (21, 22, ...2x5) € R, we denote the output of a d-degree target monomial
g = (91,92, ..., 9n) by the function Pg(x) = 223> ... 2%} where g; € NU{0} and the degree), g; < d.
The unknown metafeature set 7 = {f}, f5, ... fx } consists of K monomials. To simplify notations, we also
consider F to be a matrix where column ¢ is f;. Therefore, if g can be expressed using F, then g lies in the
column space of F denoted by C(F). Then, our problem setup is as follows:

Problem Setup 2. The m d-degree targets gV, ... g™ and the training data (each of at most S examples)
drawn from unknown distributions DU ... D@ satisfy the following conditions:

1. There exists an unknown N x K matrix F (K < N) such that gl) € C(F).
2. Each DY) is a product distribution (as assumed in [5, 2]) that is not too concentrated (explained in
Appendix B).

Unlike the decision tree problem, where we only considered an abstraction of the learning routine, here
we present a particular technique for learning a monomial exactly. We show that under product distributions
that are not too concentrated, it is possible to exactly learn the power of a given feature in a target by exam-
ining only that feature on polynomially many samples (Lemma 22 in Appendix B). Naturally, we can learn
the monomial exactly from scratch as presented in Algorithm 15 in Appendix B from only polynomially
many samples. Then, in the lifelong learning model, by merely keeping a record of the features that have
been seen so far, it is fairly straightforward to learn only K targets from scratch while learning the rest by
examining O (K d) features per example (Theorem 24).

15

Step 5: Solve

100 5 2 fStep 4:
. rom
Step 3: 1 010 1 — 1 scratch
001] | ; 3
110
L _ Sﬁ/ig _ Step 8:
Metafeatures Es(tegna;te Target Verify

Figure 6: Illustration of USEREP Algorithm 6

Here, we present a significantly better protocol that learns only K targets from scratch and on the rest,
evaluates only O (K) features on all examples and d features on one example. This is an improvement
especially for cases where d is large.

The key idea is that we store a list of targets that have been learned from scratch as columns of the matrix
F. Also, we learn a new target from scratch only if g ¢ C(]:'). Therefore, after learning K targets from
scratch, we can show that we have a rank- K matrix F such that C(F) = C(F). Therefore all future targets
can be learned using F.

Now, the idea for USEREP is as follows (see Figure 6 for illustration). If we have learned k targets
from scratch, then F is of rank k. Then, we identify a set of k features Z that correspond to linearly
independent rows in F. We first learn only the powers of Z (which we will denote by g[Z]) by examining
7 on all samples. Then we learn a monomial & by using the equation § = F(F[Z])~'g[Z]. If indeed
g € C(JE), then g equals g. This is because the power of each monomial metafeature in g is recovered
through (F[Z])~'g[Z]. However, we do not know if g € C(F) and it may be that § # g. To address this,
we can show using Lemma 25 that we only need to draw a single sample x, examine d features relevant to
g and check if our prediction Pg(x) equals the true label Py (x). If this fails, we conclude that g # g and
therefore, g ¢ C(F). We learn g from scratch and add it to F. Thus, USEREP examines only at most
K features on all but one sample and d features on one final sample. In fact, after learning K targets from
scratch, we do not need to examine the d features and do the verification step because we are guaranteed

that g € C(F).

Algorithm 5 IMPROVEREP - Monomials

1: Input: O~ld rep£esentation]}md and g learned from scratch
2: Return F = [Foid, g

Theorem 6. The (USEREP Algorithm 6, IMPROVEREP Algorithin 5)-protocol for monomials makes
O (S(KN + mK) + md) feature evaluations overall and runs in time poly(m, N, K, S, d).

Proof. We show in Lemma 7 that with high probability 1 — O (%) for any given target*, if we add a
metafeature to F then this increases the rank of F. Applying Lemma 7 over at most m problems, this
then holds over the whole sequence of m problems. Assume we fail to learn from our representation on
more than K targets. This means that there will be at least K + 1 targets (the columns of F) that are
linearly independent. However, since all targets belong to C(F), there cannot be more than K targets that
are linearly independent. Thus, we achieve a contradiction. Now, since we learn only at most K targets
from scratch, applying Theorem 23 (from Appendix B) over these we get that we learn them correctly with

“It is only with high probability because the algorithm for learning the power of a particular features works correctly only with
high probability.

16

Algorithm 6 USEREP - Learning a Monomial from Metafeatures

1: Input: Metafeatures F = [f'l, ce f'k] (k < K), sample set S of size S.

2: Halt with failure if F is empty.

3: Let Z be the indices of those rows in F that are linearly independent and let F [Z] be the corresponding
k x k sub-matrix of F.

4: Examine features Z on all samples and use Lemma 22 to learn and round off estimates g; for each i € Z.

5: Solve for w z4, (g[Z]) in ﬁ[I]W]}[ﬂ (g[Z]) = g[Z]. If no solution exists, halt with failure.

6: Estimate g <]}wﬁm (g[Z)]).

7. Halt with failure if the degree of g is greater than d.

8: Draw a single sample (x, Py(x)), examine the features relevant to g. If Pg(x) # Pz(x), halt with
failure.

9: Return g.

probability 1 — O (§). Also, since F has at most K columns, from Lemma 7 we have that each time we
learn using the representation, we examine K features per example. Besides, we examine d features that are
relevant to g in Step 8.]
Lemma 7. Let F be an N x k matrix. Then, with high probability 1 — O (%), a) if g € C(F), then
Algorithm 6 correctly learns and outputs g§ = g b) if Algorithm 6 does output some g, then g = g, ¢)
Algorithm 6 examines only at most k features per sample point and at most d features on a single sample.

Proof. a. Given that F is of rank k, then if g € C(F), there exists a unique solution for wz(g) in
]}Wﬁ(g) = g. Note that this is a system of N linear equations in k. Therefore, if the Algorithm picked
any set of k linearly independent rows Z = {i1,2,...4x} from F, there must exist a unique solution to
FlIlw #z)(8[Z]) = g[Z] where the solution is w #7)(g[Z]) = W #(g). Thus, solving this system will give
us the value of w z(g) from which we can compute g correctly using Fw 7(g) = g. This however re-
quires that we determine the values of g;,, gi,, . - ., g;,, from scratch, which we can do accurately with high
probability of 1 — O (%) from Lemma 22 (from Appendix B) using polynomially many samples.

b. To prove our second claim, observe that the only event in which the learner may potentially have an
incorrect output is when g ¢ C(F) but we still do learn a w #(z) because it so happens that g[l] € C(F[Z)).

However, g = F W 7] (g[Z]) # g. If g has a degree greater than d, the algorithm halts with failure.
Otherwise, we can show using Lemma 25 (see Appendix B) that by drawing a single sample and checking
whether P5(x) = Pg(x) we can conclude whether g = g.

c. This follows directly from the design of the algorithm: we examine only K features on all samples,
and then on a single new sample we examine features relevant to g provided g has degree at most d. O

4.1 Polynomials

In this section, we study lifelong learning of real-valued polynomial targets each of which is a sum of at most
t degree-d monomials. Similar to the Boolean model in [5], our belief is that there exists a set of monomial
metafeatures such that each monomial in the polynomial can be expressed as a product of these metafeatures
like we described in the previous section. As an example, given F = {z1x2, 233, ...}, one possible target
is 3(x122)(x323) — 5(x122)(23x3). Again, we assume that each D) is a product distribution over RV,
Since polynomial learning is a hard problem, we will have to make a strong assumption that each DY)
is known, which then enables us to adopt the polynomial learning technique from [2]. Note that we can
relax this assumption when all the distributions are common (like it is assumed in [5]), so that the common

17

distribution can first be learned using O (poly(NN)) feature evaluations on unlabeled examples. However,
if the distributions were all different, learning them may need O (poly(mN)) feature evaluations, which
would be feature-inefficient.

Formally, for any input x € R, we denote the output of a t-sparse d-degree target polynomial G =
{(81,0g.), (82, ag,), - - -} (|G] < 1) by the function Pg(x) = 3, , yeg g Fg(x) where for each (g, ag) €
G, g is a monomial of degree d and co-efficient ag € R. Our belief is that there exists a set of monomial
metafeatures F, and each polynomial can be represented as a sum of monomials, each of which can be
represented using F as described in Section 4. More formally, a polynomial G can be represented using F
if for each (g, ag) € G, g € C(F). More compactly, GV) C C(F) x R. Then, our problem setup is as
follows.

Problem Setup 3 (Lifelong polynomial learning). The m d-degree t-sparse targets GY) and data SU)
(each of at most S examples) satisfy the following conditions:

1. There exists an unknown N x K matrix F (K < N) such that each Gu) € C(F) xR
2. The samples in SU) are drawn i. i.d from a known product distribution DU 3,

4.1.1 Learning a polynomial from scratch

We now briefly discuss the algorithm in [2] for learning a polynomial from scratch from a known distribu-
tion. The basic idea is to use correlations between the target and some cleverly chosen functions to detect the
presence of different monomials in G. For the sake of convenience, assume there exist correlation oracles
that when provided as input some function P’, return the exact value of the correlations (P'(x), Pg(x)),
(P'(x), PZ(x)) etc., In practice these oracles can be replaced by approximate estimates based on the sam-
ple S. We will limit our analysis to the exact scenario noting that it can be extended to the sample-based
approach in a manner similar to [2]. Our guarantees will then hold good with high probability, given suffi-
ciently many samples.

To simplify the discussion we will assume like in [2] that the distribution over each variable is identical
i.e., D = uV. Then, as a first step, given D, the learner creates an inventory of polynomials in each variable
x; such that these polynomials represent an “orthornormal bases” with respect to D. More formally, the
inventory will consist of polynomials Hy (x;) of degree d’ (identical for each i € [N]) for each 0 < d’ < d,
such that E[Hy (x;) Hgr (x;)] is zero when d’ # d” and is one when d’ = d”.

Equipped with this machinery, we then set out to perform ¢ iterations extracting one monomial from G
at a time. Assume that from the iterations performed so far, we have extracted a set of monomials and their
coefficients Q C @. Now, for the next iteration, we first find the largest power of x; that is present in G — g
by testing whether (Hog (1), (Pg — Ps)) > 0ford =d,d—1,...in that order. These tests detect the
presence of avil, x‘ffl, ... respectively. We stop when the test is posrtive for some xclll. The curious reader
can refer [2] to understand why this particular test works, but all we need to know for our discussion is that
if these tests are done in this particular order, we are guaranteed to find the highest power of xfl inG—G.
Then, we find the largest power of xy that “co- occurs” with x‘lil in some monomial, by testing whether
(Hag, (z1)Haa (x2), (Pg — Ps)) > 0ford =d,d—1,... to detect the presence of xclllxg,a:flxg L
and so on in that particular order. In this manner, the algorithm builds a monomial over N sub-iterations
which turns out to be the lexicographically largest g present in G — G. Now, to compute the co-efficient
ag we find ~<Hf\i 1(bg; Hy, (x:)), Pg) where by, is the co-efficient of 2" in Hy, (x;). The algorithm then adds
(ag, g) to G before proceeding to the next of ¢ iterations.

The above summary differs from that original algorithm presented in [2] in the precise quantity that it
extracts in each iteration. [2] consider a representation of the polynomial in the orthornormal bases such
that it is a weighted sum of terms of the form Hy, (z1)Hg,(z2) ... Hgy (xn), and in each iteration they

>This is the model considered in [2]. An upper bound on S can be found in [2].

18

extract one such term. We however use the representation in the orthonormal bases only to detect the
lexicographically largest monomial and its corresponding co-efficient and then remove the monomial itself.

4.1.2 Lifelong Polynomial Learning

As abaseline in the lifelong learning model, we can learn the targets by making O (S(K N + mKd)) feature
evaluations by simply remembering what features have been seen so far (Theorem 26 in Appendix B.3).
Below, we present an approach that makes only O (S(KN + m(K + td))) feature evaluations. This is an
improvement for sparse polynomials t < K e.g., when ¢t = O (1).

The high level idea is to maintain a metafeature set of “linearly independent monomials” picked from
previously seen targets, like we did in the previous section. When learning a target using F, we perform
t iterations to extract the monomials, but now in each iteration we find the lexicographically largest power
restricted to at most K features. These K features, say Z, correspond to linearly independent rows in
F. Given the powers of these features, say g[Z|, we can determine powers of all the features using the
representation like we did in the case of monomials. Then, as before, we extract g from the polynomial and
proceed to the next iteration. After ¢ iterations, our estimate of the polynomial is complete, so we draw a
single example to verify it. If our verification fails, we learn the polynomial from scratch and update the
representation with more linearly independent monomials from the learned polynomial.

Note that the restricted lexicographic search examines only a fixed set of K features per example. Be-
sides this, in each of the ¢ iterations, we evaluate d features relevant to the extracted monomial, accounting
for K + td feature evaluations per example.

Algorithm 7 IMPROVEREP - Polynomials

1: Input: Representation Folg and a target G learned from scratch.
2:]} — ﬁold

: forg € Gdo

4. Ifg¢ C(F),add g as acolumn to F.

5: Return F

(9%}

Theorem 8. The (USEREP Algorithm 8, IMPROVEREP Algorithm 7)-protocol for polynomials makes
O (S(KN + m(K + dt))) feature evaluations overall and runs in time poly(m, N, K, S, t).

Proof. Below in Lemma 9, we show that we increase the rank of F by at least one every time we fail to
learn using F on some target. If USEREP has failed on more than K targets it means that there are at least
K + 1 monomials from C(F) that were added as columns to F and are linearly independent. However,
since C(F) is a K -dimensional subspace in R™, this results in a contradiction, thus proving that at most &
failures of USEREP can occur. The result then follows from Lemma 9 and the fact that \]:' | contains only at
most K targets. O

Lemma 9. Let F be an N x k matrix. Then, a) if G (jz € (C(]:'),~ then Algorithm 8 correctly learns and
outputs g(ﬂ = g(ﬂ b) if Algorithm 8 does output some Q(j), then Q(j) = g(j). Also, Algorithm 8 examines
only at most k + td features per sample point.

Proof. a. Assume GU) e (C(f). The fact that in each iteration, we find the lexicographically largest value
for the features Z follows directly from the discussion in [2]. However, we do have to prove that there is a
unique g in G such that g[Z] corresponds to the above value. This follows from the proof of Lemma 7 where

19

Algorithm 8 USEREP - Learning Polynomial from Metafeatures

1: Input: Metafeatures F = [f'l, ce f'k] (k < K), distribution D

2: Halt with failure if F is empty.

Let Z be the indices of those rows in F that are linearly independent and let F [Z] be the corresponding

k x k sub-matrix of F.

Query for only the features Z on all samples.

Initialize G to be empty.

for ¢ iterations do
Let g be the lexicographically largest monomial in G — G with respect to Z. Find g[Z] using the
lexicographic search technique from [2] using the correlation oracle (in practice, estimate this using
the S).

8: Solve for wz7, (gZ]) in F[I]w F1] (g[Z]) = g[Z]. If no solution exists, halt with failure.

W

A A

9: Estimate g <]:—WJ%[I] (g[Z)).
10: Halt with failure if the degree of g is greater than d.
1 ag ¢ ([T (b, Hy,(2:)), (Pg — Py))
122 G+ GuU{g}
13: Draw a single sample (x, Pg(x)) from D, query the td features that are relevant to G. If Pg(x) # Ps(x),
halt with failure.
14: Return G.

we showed that for Z corresponding to linearly independent rows, w e (g[Z]) = wz(g) and hence given
w77/ (8[Z]) there is a unique g € C(F) defined by g = ﬁWﬁ[I] (g[Z)).

Now, we need to prove that we find a co-efficient ag for the to-be-extracted monomial, that satisfies
ag = ag. We first note that ([, H,, (x;), (Pg—Pg)) returns the co-efficient of 1Y, Hy, (x;)in (Pg —Pg),
say a/g, in the basis representation of the polynomial. Next, we claim that the co-efficient a’g in the bases
representation is contributed to purely by the co-efficient a4 in the monomial representation. If there was
any other monomial that contributed to a’g, then it had to have a lexicographically larger value than g with
respect to Z or equal to g with respect to Z. However, this contradicts the fact that g was chosen to be the
unique lexicographically largest value with respect to Z. Thus, we only need to account for the contribution
of the co-efficient of Hi\i 1 Hy, (x;) with an extra factor of by, which corresponds to the co-efficient of z¢"
within Hy, (x;).

b. This follows from the proof of Lemma 7 and Lemma 25 applied to polynomials.

c. First of all, we examine k features when we query Z on all samples. Now, note that when we execute
the algorithm using samples for the correlation oracles, we will have to compute Pg~(x) on each sample x.
This however will only require evaluation of features relevant to G. Since G consists of at most ¢ monomials
each of degree at most d, this can be only as large as td. O

Sample-based estimation: We note that when we replace the oracles by estimation using random samples,
we should be careful about approximation errors that may affect the lifelong learning protocol. For example,
if we were to infer that a monomial term exists in G, when in reality it does not, we may incorrectly add it to
our representation F when it should not be. However, if the co-efficients of each term in the polynomial were
not too small, we can overcome this problem by learning the co-efficient of the monomial, and checking
whether it is above a small threshold, before deducing that it indeed is a term in the polynomial.

20

5 The Agnostic Case

We propose a novel agnostic lifelong learning model where the learner faces m + r learning tasks of which
m tasks are guaranteed to be related through the K metafeatures in F while the other r tasks are arbitrary.
Note that this is different from the conventional sense of agnostic learning where each individual task may
involve model misspecification or noisy labels. What makes this challenging is that the r “bad” targets
can be chosen and placed adversarially in the stream of tasks. Since in the worst case there is no hope of
minimizing feature evaluations done on the bad targets, we adopt the natural goal of reducing the feature
evaluations on the training data of the m good targets.

Problem Setup 4. In the agnostic model, the learner is faced with a series of m + r targets such that:

1. m (good) targets are guaranteed to be related to each other through a set of at most K metafeatures,
while the remaining r (bad) targets can be adversarially chosen and placed.
2. the learner has to reduce the feature evaluations done on the samples for the m related targets.

We focus our discussion on learning decision trees with depth d = O (1) noting that it is straightforward
to extend it to learning more general decision trees and to other targets. In fact, in the following discussion,
it may be helpful to imagine the targets to be decision stumps over just one feature and the metafeature set
F to simply be a set of K features. Now, recall that in the original setup, F consisted of O (K) useful
metafeatures from at most K targets that were learned from scratch USEREP failed to learn them. A
problem that arises now is that F may have been updated with metafeatures from bad targets. Then, even
if F contained K metafeatures, we cannot guarantee that future good targets can be learned using F. What
should we do then?

To address this, we present two simple computationally-efficient solutions below that highlight an
interesting trade-off between the number of targets learned from scratch and the number of features
evaluated on the remaining targets. In the r-expansion technique, we allow the learner to update F on
every failure of USEREP allowing the representation to get as large as it can. In the r-restart technique, we
restrict the size of the representation but however, whenever the representation is “bad”, we erase and start
learning the representation all over again.

r-expansion technique Observe that since m targets belong to DT(F), there exists a representation
of at most O (K + r) metafeatures that is sufficient to describe all the m + r targets: a representation that is
the union of F and the r bad targets as they are. Thus, we allow the lifelong learner to update F whenever
its USEREP fails, which would result in a representation of at most O (K + r) metafeatures. USEREP
will fail on at most K good targets (and possibly on all the r bad targets which we do not care about) and
learn the rest successfully evaluating O (K + r) features per example. Note that this protocol is essentially
identical to the original protocol in Algorithm 1.

r-restart technique Alternatively, we enforce |f | < K as before but when USEREP fails on a
K + 1" target, we learn that target from scratch after which we simply erase F and effectively restart our
lifelong learning from the next task. Every time USEREP fails on a K + 1th target after the most recent
restart, we restart similarly. This technique learns more targets from scratch, O (rK) targets in particular,
but evaluates only O (K) features per example on the remaining targets. The protocol is described more
formally in Algorithm 9.

21

Algorithm 9 r-restart based (Ayr, .Air)-protocol for agnostic lifelong learning in the model of Problem
Setup 4

1: Input: A sequence of m + r training sets s .s@ corresponding to targets g(!), g, ..., mof
which can be represented using an unknown set F of K metafeatures.
Let F be our current learned representation. Initialize F to be empty.
forj=1,2,... m+rdo
Using F and SU), attempt to cheaply learn ¢(¥) with USEREP algorithm Ayg.
if learning was not successful then
Extract all features in S) and learn ¢) from scratch.
If | F| = K, assign an empty representation to F.
Provide F and ¢/) as input to IMPROVEREP algorithm Ag to update F.

When r = O (max (%, %,K)) it is easy to see that one of these two techniques makes only
O (S(KN + mkK)) feature evaluations, which is as good as the performance when » = 0. To deal with
larger values of r, we describe a combined technique that deals with the trade off carefully and does better

than both the above:

Theorem 10. In the agnostic model where we face m + r decision tree targets such that m trees belong to
DT(F), the number of feature evaluations on the training data for the m trees:
o the r-expansion technique is O (S(KN + m(K +1))).
o the r-restart technique is O (S(rKN + mK)).
e a combination of c-expansion and r/c-restart is O(S(VrKNm + Km)), for c = \/rKN/m pro-
vided r = Q (max (m/n, KN/m, K)).

Proof. In r-expansion, we allow F to have as many as O (K + r) metafeatures. Now, every bad target may
result in adding O (1) metafeatures to F while the 7 bad targets will result in adding O (K) metafeatures
to . Thus, we will be able to learn all but m good targets using F by examining only O (K + r) features
per example i.e., O (S(rK N + mK)) features overall.

In r-restart, every time USEREP fails on a K + 1th target, we learn that target from scratch and then
erase F effectively restarting our lifelong learning. Now, at least one of the K + 1 trees learned from scratch
must be a bad target. This is because if none of the K trees that were used to update F were bad, F would
have been rich enough to represent all the good targets. This means that the K + 1th target has to be a bad
target. Thus, every restart corresponds to a failure of USEREP on at least one bad target and at most K
good targets. Then, we will face at most r such restarts, learning at most r K targets from scratch during the
process and the rest from only O (K) features per example i.e., O (S(KN + m(K + r))) features overall.

Now when 7 = O (max (22X, K)) observe that r-expansion makes only O (S(KN + mK)) feature
evaluations. Similarly, when r = O (%), r-restart makes O (S(KN + mK)) feature evaluations. This is
as good as our performance when r = 0.

To deal with r = Q (max (%, %, K)), we can combine the above techniques, in particular, we com-
bine 7-restart with c-expansion. That is, between every restart we allow F to accommodate O (K + c)
metafeatures and when USEREP fails on the K + ¢ + 1th target we restart the representation. Recall that
each bad target may contribute O (1) metafeatures while all the good targets contribute to O (K) metafea-
tures. Thus, between every restart USEREP would have failed on at most K good targets and at least
¢ + 1 bad targets. Since there are only r bad targets, we then face only O (g) restarts. Since we learn only
(0] (%) - K targets from scratch and learn the rest by examining only O (K + ¢) features per example, we
evaluate O (S(XKN + m(K + c))) features overall.

The value of ¢ that optimizes the above bound is c¢* = \/% and the minimum is

(@) (S (VrKNm +mK)) But note that ¢* must take a meaningful value for this bound to hold good.

22

That is, for c-expansion to make sense, we need ¢* > 1 and for c%—restart to make sense, C% > 1. That is,

we need ¢* € [1, 7], which can be verified to hold good when r = Q (max (%, £¥ k). O

6 Lower bounds

We prove lower bounds on the performance of any lifelong learner under different ranges of in the agnostic
model. In particular, we prove tight lower bounds for sufficiently small and large values of r, ignoring other
problem-specific parameters and the sample size parameter .S (that scaled only logarithmically with N for
most of our target classes). An interesting insight here is that when r is too large, we prove that no learner is
guaranteed to succeed by making O (mN) feature queries, which means that lifelong learning is no longer
meaningful for really large values of r.

Our main idea is a randomized adversary that poses decision stumps (trees with only the root node)
or degree-1 monomials to the learner. In particular, we use Lemma 12 where we show that when the
adversary picks one feature at random from a pool of N’ features to be the decision stump/monomial, if
the learner examines only o(N') features, the learner will fail to identify the correct feature for the target
with probability 2 (1). Thus, for the learner to successfully complete the task, it must examine € (N')
features. Then to force a learner to examine O (KN + mK) features, the adversary picks K distinct features
at random from the pool of N features for the first K targets. Then it assigns these K features as the
metafeatures and picks the remaining targets at random from this chosen set of K features.

m KN), Tmax = min (T,W) In the agnostic model of

Theorem 11. Let ry, = max (5, &85
Section 5, there exists an adversary such that, on the m good trees, any lifelong learner makes:

e Q(NK + Km) feature evaluations when 0 < r < rpiy.
L)) (max (ﬁ, 1) KN + Km) feature evaluations when ryin <1 < rpax.

e O (mN) feature evaluations when ryax < 1.

Proof. In Lemma 12 we design our randomized adversary. We prove Theorem 11 in the following three
lemmas one for each range of r. First in Lemma 13 we prove a lower bound of Q (KN + mK) that holds
for any value of . Then in Lemma 14 we prove a lower bound for intermediate values of r and finally in
Lemma 15, we prove a lower bound for large values of . O

Lemma 12. (Randomized adversary) For a particular task, if the adversary picks a feature from a pool
of N features (N' < N) to pose a single-feature targetS, if the learner examines only o(N') features, the
learner will fail (i.e., pick the wrong feature) with probability € (1).

Proof. Let i* be the feature chosen by the adversary at random from a pool of N’ features Z*, and Z be the
set of features examined by the learner. The random choice of ¢* corresponds to different possible outcome
events. But observe that from the perspective of the learner the events corresponding to i* ¢ Z (the adversary
picking a feature not examined by the learner) are all indistinguishable. This crucial observation tells us that
in all such events, the learner will adopt the same strategy. Let Pr;(i) denote the probability that the learner
outputs feature i in this strategy. Let Pr,(i) denote the probability that the adversary chose feature i at
random from its pool of N’ features.

Then, the probability that the learner fails is at least the sum of probability of the event that the adversary
picks an i from 7* —Z and the learner does not pick i. We lower bound this probability » ;7. 7 Pr,(i)(1—
Pr(i)) as follows:

®Tt does not matter if the learner knows these N’ features or not.

23

)) = — — Pr(i L A (i
HZ*_IQ?@@—PW)) - N’Z-gz_z(l Pry(i) > + (II 1] ie;_IP z())
> %(N’—o(N)—l):Q(l)

The second inequality follows from the fact that) ;7. _7 Pry(i) < 1 and the number of examined features
IZ| = O (N').
O

Lemma 13. There exists an adversary such that any lifelong learning algorithm makes Q0 (KN + mK)
feature evaluations.

Proof. For the first K single-feature targets, our adversary randomly picks K distinct features which will
be the metafeatures. Each of the remaining m — K tasks are targets that correspond to one of these K
chosen features at random. Now note that for a task j where 7 < K, the adversary effectively picks a feature
at random from a pool of N — j 4 1 features (which excludes the j — 1 features already chosen). Thus,
the learner has to examine €2 (N — j + 1) features in order to not fail in this task with probability €2 (1).

Thus, over the first K tasks, the learner has to examine O (ZjK: 1N —j+ 1) = Q(KN) features over

all. Then, in each of the following m — K tasks, the learner has to examine) (K') features per task i.e.,
Q ((m — K)K) features overall, which is Q2 (mK) since m is large.

]

Now we prove a better bound for values of r greater than rn,;, = max (%, %, K) but less than
_K)? . . .

Tmax = mMin (%, %) Here, instead of precisely choosing m good targets and r targets, the

adversary will pose a set of targets and then choose K features to be the metafeatures. We then show that
© (m) of the targets are good targets and © (r) targets are bad targets that correspond to the remaining
N — K features.

Lemma 14. (Lower bound for intermediate values of r) When r < rpax, there exists an adversary such

that any lifelong learning algorithm makes € (max (ﬁ, 1) KN+ K m) feature evaluations.
Proof. When Nﬁ =z < 1, the lower bound of 2 (KN + Km) follows from Lemma 13. Hence, consider
g > 1 Letm/ = iVK . The adversary first presents m’ single-feature targets picked at random from
the pool of all N features. Then the adversary chooses K random features to be the metafeatures, hence
marking targets corresponding to these K features as good targets, and the rest as bad.

Now, we can show that there are in fact © (m) good targets and © (r) bad targets, thus ensuring that

this is a legal sequence of adversarial targets. Since m’ = "N > N, using Chernoff bounds, with high
probability 1 — O(1), we have © (m/25E) = © (r) bad targets and © (m/%) = © ((o f(K)> good targets.

Since, r < % this translates to © (W) = O (m) good targets. Thus, this is a valid sequence

of targets.

Now, from Lemma 12, we get that the learner has to evaluate €2 ((N’“_iKK) -N) features overall. In addi-
tion to this, the adversary presents a sequence of m good targets chosen at random from the K metafeatures.
Note that this is legal because we still pose only #m good targets. This accounts for 2 (mK) more feature
evaluations.

In total, the learner examines {2 (ﬁ N +mK) features. O

24

We finally show that for sufficiently large 7 i.e., ¥ > rmax and r > 7rnin, the learner has to evaluate
Q2 (mN) features.

Theorem 15. (For large v) Given r > ryax and v > Tyin, there exists an adversary such that any lifelong
learning algorithm makes 2 (mN) feature evaluations.

2
Proof. The range of values of r such that > ry,x = min (mKN , %) can be split into the interval

r > % and the interval % < rmN . We will consider these two intervals separately and provide

adversarial strategies for both.

Case 1: r > % Let m/ = m—[év The adversary poses m’ targets to the learner chosen at random from
all the NV features. Thus, the learner is forced to examine 2 (V) features on each target. Then, the adversary
chooses K features to be good features, thereby marking some of the targets as good targets. We show that,
of the m/ targets, there are © (m) good targets and only O (r) bad targets. Therefore, this is a valid sequence
of targets and furthermore, on this sequence the learner examines 2 (m - N) features.

To count the number of good targets, we observe that m’ = (%) Then from Chernoff bounds, with
high probability 1 — O(1), we have that © (m'%) i.e., © (m) targets are good targets. Since m’ < r, we
have only O (r) bad targets.

_7\2
Case2: r < %, r > % Now, we set m’ = \/”}f(m and sample m/ targets at random from the

pool of all N features. Then we pick K random features to be the metafeatures and then present m good
targets choosing randomly from the pool of K metafeatures.
To count the number of good targets in the first sequence of m’ targets, observe that m’ > N because

r> % Hence, with high probability 1 — O(1), the number of good targets is © (m’ %) =0 (M)
Since r < %, this is O(m). Similarly, with high probability 1 — O(1), the number of bad targets is
(S} (m/%) =0 <W) =0 <\f NK)) Then using the inequality r > M,
we get that the number of bad targets is O(r). Thus, this is a valid sequence of targets. Furthermore, on

S) (w / ”X,’”) good targets, the learner is forced to examine 2 (IV) features. Thus, on the first sequence

the learner examines 2 (\/ > features overall. Since r > % , this is Q (m(N — K)). On the

second sequence the learner examines O (mK) features overall. In total, this is {2 (m.V) feature evaluations.
O

7 Discussion and Open Problems

Lifelong learning is an important goal of modern machine learning systems that has largely been stud-
ied only empirically. In this work, we theoretically analyze lifelong learning from the perspective of
feature-efficiency. More specifically, we show how, when a series of tasks are related through metafeatures,
knowledge can be extracted from previously-learned tasks and stored in a succinct representation in order to
learn future tasks by examining only few relevant features on the training datapoints. To this end, we present
feature-efficient lifelong learning algorithms with guarantees for widely studied classes of targets, namely,
decision trees, decision lists and real-valued monomials and polynomials. We also present algorithms for
an agnostic scenario where some of the targets may be adversarially unrelated to the other targets. Finally,
we derive lower bounds on the feature-efficiency of a lifelong learner in this model, which show that under
some conditions, the guarantees of our algorithms are tight.

25

An open technical question is whether our lower bounds can be extended to incorporate problem-
specific parameters such as the depth of a tree/list or the degree of a monomial/polynomial. In particular,
while the feature-efficiency bound for our decision tree learning algorithm has a dependence of Kd, it
is not clear whether a bound of K + d is achievable. Another open question is whether it is possible to
characterize the hardness of recovering the metafeatures exactly in the case of decision trees and lists (even
though our algorithms work without having to recover the metafeatures exactly). Finally, we note that as a
high level direction for theoretical research in lifelong learning, it would be interesting to explore different
ways of formalizing task relations for various families of targets, and to explore the different kinds of
resource-efficiency bounds they can guarantee, while also understanding their limitations.

Acknowledgements. This work was supported in part by the National Science Foundation under grants
CCF-1535967, CCF-1525971, CCF-1422910, 1IS-1618714, a Sloan Research Fellowship, a Microsoft Fac-
ulty Fellowship, and a Google Research Award.

References

[1] International Conference on Machine Learning (ICML) Workshop on budgeted learning, 2010.

[2] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning sparse polynomial func-
tions. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
500-510, 2014.

[3] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pages 41—
48, 2006.

[4] Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete
dictionaries. In Proceedings of the Conference on Learning Theory (COLT), pages 779-806, 2014.

[5] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Efficient representations for lifelong learn-
ing and autoencoding. In Proceedings of the Conference on Learning Theory (COLT), pages 191-210,
2015.

[6] Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple task sam-
pling. Machine Learning, 28(1):7-39, 1997.

[7] Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research (JAIR),
12, 2000.

[8] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth
and Brooks, 1984.

[9] Hendrik Drachsler, Hans G. K. Hummel, and Rob Koper. Personal recommender systems for learn-
ers in lifelong learning networks: the requirements, techniques and model. International Journal of
Learning Technology (IJLT), 3(4):404-423, 2008.

[10] Michael Elad and Michal Aharon. Image denoising via learned dictionaries and sparse representation.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
895-900, 2006.

26

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]
[25]

[26]

[27]

Aloak Kapoor and Russell Greiner. Learning and classifying under hard budgets. In Machine Learning:
16th European Conference on Machine Learning (ECML), pages 170-181, 2005.

Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree learning
algorithms. In Proceedings of the Annual ACM Symposium on Theory of Computing (STOC), pages
459-468, 1996.

Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning A.. Artificial Intelligence,
155(1-2):93-146, 2004.

A. Kumar and H. Daume III. Learning task grouping and overlap in multi-task learning. In Proceedings
of the International Conference on Machine Learning (ICML) , 2012.

Michael S Lewicki and Terrence J Sejnowski. Learning overcomplete representations. Neural compu-
tation, 12(2):337-365, 2000.

Daniel J. Lizotte, Omid Madani, and Russell Greiner. Budgeted learning of naive-bayes classifiers. In
Proceedings of the Conference in Uncertainty in Artificial Intelligence (UAI), pages 378-385, 2003.

A. Maurer and M. Pontil. Excess risk bounds for multitask learning with trace norm regularization. In
Proceedings of the Annual Conference on Learning Theory (COLT), 2013.

Guillaume Obozinski and Ben Taskar. Multi-task feature selection. In Workshop of Structural Knowl-
edge Transfer for Machine Learning in the International Conference on Machine Learning (ICML),
2006.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345-1359, 2010.

A. Pentina and R. Urner. Lifelong learning with weighted majority votes. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS), 2016.

Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. Decision trees: An overview and their
use in medicine. Journal of Medical Systems, 26(5):445-463, 2002.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, March 1986.

Lior Rokach and Oded Maimon. Data Mining with Decision Trees: Theory and Applications. World
Scientific Publishing Co., Inc., 2008.

S. Thrun and L.Y. Pratt, editors. Learning To Learn. Kluwer Academic Publishers, 1997.

Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics and Autonomous Systems,
15(1-2):25-46, 1995.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J.
Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems,
14(1):1-37, 2008.

Eric R. Ziegel. The elements of statistical learning. Technometrics, 45(3):267-268, 2003.

27

A Decision Trees

We first present proofs from Section 3. Then, in Appendix A.2, we present results for more models of
decision trees.

A.1 Proofs from Section 3

Now, we present our baseline lifelong learning algorithm that simplyremembers features that have been seen
as metafeatures in its learned representation.

Theorem 16 (Naive lifelong learning of decision trees). There exists a naive lifelong learning protocol for
decision trees in the model of Problem Setup 1 evaluates O (S(KN + mKs)) features overall.

Proof. The naive approach follows from a simple observation. If we knew beforehand the set of features
that are involved in a tree ¢/), then in order to learn the tree, at any given node we require the learner to
evaluate Gain only over these features to determine the best split at that node. Thus, our protocol will
just maintain the set of features present in any tree learned from scratch so far, so that USEREP can use
these as “metafeatures” to carry out its evaluations limited to these features. Then, any target that can be
represented using metafeatures f € F that have been seen before in some other target, will be learned
using our metafeatures. In other words when USEREP fails, the target is guaranteed to contain an “unseen”
metafeature from F. Thus, we will learn targets from scratch at most || = K times. Since each metafeature
in F has at most s distinct features, we will have to evaluate only at most K s features when not learning
from scratch. O

We now present the pseudocode for the different subroutines described informally in our discussion.

Algorithm 10 AFFIX(f, u, f'): Affix f’ to f at empty leaf node u in f

1: Input: Incomplete decision trees f, f’, empty leaf node v in f
2: Assign to var(u) the root variable of f’.
3: Create descendants nodes of u and assign variables to them such that the tree rooted at is identical to

/-

Algorithm 11 LABEL(f, u,[): Assign{to uin f

1: Input: Incomplete decision tree f, empty leaf node u in f, label I € {+, —}
2: Assign to leaf node u the label .

Algorithm 12 CONFLICT(f, w,u, ') and INDUCE(f, w, u, f’)

1: Input: Incomplete decision trees f, f’, node w in f, node u that is a descendant of w or equal to w
itself.

Let V be the set of nodes in f that are ancestors of u but not of w.

Map w in f to the root node of f’.

Similarly map all descendant nodes of w from V to the nodes in the corresponding path in f”.

Output of CONFLICT(f, w,u, f'): If there are two internal nodes v € f and v" € f’ mapped to each
other but v € V, var(v) # var(v'), output true. Else output false.

6: Output of INDUCE(f, w,u, f'): Let «’ be the node from f’ mapped to u. Output var(v').

28

We now prove our result for the semi-adversarial model, where in any given target, each f € F has at
least a p.,i, probability of being the topmost metafeature.

Theorem 17 (Lifelong learning of decision trees in semi-adversarial model). There exists a lifelong
learning protocol for decision trees that evaluates O (zﬁ log % N +m(K + d)) features overall in a

semi-adversarial model where each element of F has at least a puin probability of being the topmost element

min

of any target. The protocol learns only the first O (% log %) targets from scratch, adds them to F and

then uses USEREP Algorithm 2 to learn all the subsequent targets from F.

Recall that direct application of Lemma 4 implies that we will learn the subsequent targets examining

O (ﬁ log K + d) features per example. However, a more careful analysis making use of the fact that

each element in F is in fact from DT(F) shows that we will examine only O (K + d) features per example.
Note that this is an improvement because Iﬁ log K > Klog K.

Proof. Consider the protocol from Theorem 17 that learns the first O (1% log %) targets from scratch, and

adds them all to F . Then with probability at least 1 — 4, each metafeature from F will be at the top of some
metafeature from F. That is, DT(F) C DT(Pref(F)). Then, from Theorem 2 clearly Algorithm 2 can

learn any future target from DT (F) as the target will also lie in DT (Pref(F)). Now, by a direct application
of Theorem 2 this means we evaluate O (% log % + d) features per example.

However, we can prove a tighter bound of O(K + d) by following the proof technique for Lemma 4
but using to our advantage the fact that the metafeatures in F are not arbitrary trees, but in fact members
of DT(F). First of all, observe that the number of type A costs along any path is in fact K and not |]:" |
because the metafeatures in F can have only one of at most K variables at its root. Now, for the first case
within type B, we will pay a cost of d as before. However, for the second case, observe that any variable
that is induced at u by a metafeature f € F,is in effect induced by a metafeature f € F. Thatis, when we
compute INDUCE(g, w, u, f) for some metafeature f € F, we effectively compute INDUCE(g, wy,u, f)
for some metafeature f € F. Similarly we can argue that whenever we make k,, distinct feature queries at a
particular node u during the algorithm, for all nodes beyond u in that path, we effectively eliminate queries
arising from k,, — 1 metafeatures from J (and not JF as before). This will result in a total cost of |Fl =K
for this case. O

A.2 More Lifelong Learning Models for Decision Trees
A.2.1 Decision Trees with Anchor Variables

In this section, we consider a lifelong learning model of decision trees that assumes a more structured repre-
sentation where each metafeature in F has a variable at its root that does not occur in any other metafeature.

Problem Setup 5. Besides the assumptions in Problem Setup 1, we assume that for each metafeature f; € F
there exists a unique anchor variable a; € [N| that occurs only at the root node of f; and not in any other
node of f; or any other metafeature of F.

In this setup, we again use USEREP Algorithm 2. However, for IMPROVEREP, we modify Algorithm 3
slightly. More specifically, after identifying a path in ¢ that was learned incorrectly using F, we pick exactly
one subtree from this path and add it to F (instead of all d subtrees). We show that the total number of
features evaluated reduces from a factor of Kd to K + d.

Theorem 18. In the model of Problem Setup 5, the (USEREP Algorithm 2,IMPROVEREP Algorithm 13)-
protocol for decision trees evaluates O (KN + m(K + d)) features overall.

29

Proof. Like we did in the proof for Theorem 1, we will show by induction that if k targets have been learned
from scratch, then there exists a set of k true metafeatures ' C F such that each metafeature f € F' is the
prefix of some metafeature in F. Then as we saw earlier, after learning K trees from scratch, we can show
that learning using F will never fail. To prove our induction hypothesis, we claim that in any incorrectly
learned path of g, the topmost node (say u) that conflicts with the incorrect output g has to contain an anchor
variable that is not at the root of any metafeature in F’. This would mean that when we place the subtree
rooted at u in F, we are adding a tree whose suffix is an f € F that does not belong to F’. Essentially, we
strictly increase the number of learned metafeatures by 1 for every failure of USEREP.

Now we need to prove that u, the topmost conflicting node in some path of g indeed contains an anchor
variable that is not at the root of any metafeature from F’. Let u’ be the corresponding node in g. This
means that for all ancestors of u/, we assigned the correct variable, but something went wrong in u’ and
hence var(u) # var(u').

Now, if var(u) was an anchor variable, but one that occurs already at the root of some f € F', we
will certainly assign var(u) to u’ which is a contradiction. On the other hand, consider the case in which
var(u) is anon-anchor variable. Then u corresponds to a metafeature f that occurs in g and furthermore, the
anchor variable in f is in one of u’s ancestors, say wy. In other words, CONFLICT(g, wy, u, f) is false and
INDUCE(g, w¢,u, f) = var(u). Note that by definition of w’, the corresponding node of wy in g, say w},
has been assigned the correct anchor variable Yar(Nw). Note that in the algorithm this assignment would
have corresponded to a particular metafeature f € F and a node w’f~ in g such that CONFLICT(g, w;;, w}, f)
is false and INDUCE(g, w}, wh, f) = var(wy). By the run of Algorithm 13, we have that in f, if the anchor
variable of f exists then f exists as a whole too. More formally, this translates to CONFLICT(g, w}, o, f)
being false and INDUCE(g, w’s, v, f) = var(u). This means that we will indeed assign var(u) to «’ which

is a contradiction. Thus, u can only contain an anchor variable not already the root of any elementin 7. [

Algorithm 13 IMPROVEREP - Decision Trees with anchor variables at the root

1: Input: Old representation .7:“01(1 and a tree g € DT(F) learned from scratch and the incorrect tree §
learned using Fold-

.7': — fold

Identify a path starting at the root of g such that the corresponding path in g is shorter.

Identify the topmost node in this path in g which conflicts with the corresponding node in g.

Add the subtree in g rooted at this node to F.

Return F

SANN AN S ol

A.2.2 Sparse Decision Trees with Overcomplete Representations

In this section, we consider another model wherein we assume that we have a very large metafeature set
(of cardinality greater than /N') and that each decision tree is constructed in a semi-adversarial manner. Our
model, in some sense, is intended to capture noise. In particular, consider a metafeature set that is generated
from the much smaller metafeature set from Section A.2.1 by creating many noisy duplicate copies of each
metafeature. The noisy duplicates preserve the structure and the root variable of the original metafeature but
may have different variables located in its non-root nodes. Clearly, this metafeature set affords a much larger
representation which captures slight deviations from a rigid pattern. First observe that the “anchor” variables
are no longer unique to a single metafeature, but are common to multiple metafeatures that however have
the same structure. Now, we assume that each anchor variable has at least a py,i, probability of being the
root variable in any target. Note that this is not as strong an assumption as the previous semi-adversarial

30

model because this allows for the case where some metafeatures do not occur in the top of the model at
all. Finally, we assume that our targets require only sparse representations in that along any path down the
target, at most ¢ metafeatures from F have been affixed. Below, we state our model formally.

Problem Setup 6. Besides every assumption in Problem Setup 1 except the metafeature assumption, we
assume the following:

o Metafeatures: We assume that the metafeature set F = F1 U Fy . ..U Fg, where each Fy, consists of
at most K| metafeatures of the same tree structure and the same root anchor variable ay. This root
anchor variable does not occur anywhere else in F.

e Semi-adversary: Each anchor ay has at least a pyin probability of being the root metafeature in any
target g\9).

e Sparsity: Any target g\9) can be constructed using F in a manner that uses at most t metafeatures
down any path from the root to a leaf in g(j). Typically t < Ko.

Observe that the metafeature set is of cardinality at most K7 K5. We now present a lifelong learning
protocol that learns at most K1 Ky + O (p% log %) targets from scratch, and learns the rest examining

only O (tK; + Ky + d) features per example. Thus, given a constant sparsity parameter ¢, to ensure that
we evaluate o(mN) features, we can allow dictionaries of cardinality K1 K> = o(N?). We now state our
result formally. The idea is that we first learn a few targets from scratch and identify the anchors. Then, we
partition any target that USEREP fails on into trees rooted at one of these anchors and add these trees as
metafeatures hoping that we add at least one new metafeature from JF to our representation.

Theorem 19. There exists a lifelong learning protocol for decision trees in the model of Problem Setup 6
that evaluates O ((KlKg + 0 (% log %)) N +m(Kqit + Ko + d)) features overall. The algorithm

first learns O (% log %) targets from scratch to identify the Ko anchor variables. The algorithm then

in

uses IMPROVEREP Algorithm 14 and USEREP Algorithm 2.

Proof. Let Zr be the set of K5 anchor variables. Under our assumptions, with high probability each of them
will be the root of one of the first O (ﬁ log %) targets, and since no other variable can be a root of any

target, we will identify them completely and correctly.

In any future tree that USEREP fails on, we learn the tree from scratch and partition the tree into
metafeatures based on Zr and them to F. We claim that 7 C F at any point of time and its cardinality
strictly increases with each failure of USEREP. Then with K7 K> failures of USEREP, we will have
F = F, after which we will not see any failure. Assume this is true at some point of the run. When

USEREP fails on a new target g, it means that g ¢ DT (Pref(F)). However, since g € DT(F), this implies
that g is constructed using at least one metafeature f € F — F. Now observe that we would have identified
the root and leaves of f in g correctly (because we would have identified all anchors in g correctly). Then,
we would have added f to F, thereby satisfying our induction hypothesis.

By a direct application of Lemma 4 on the representation F, we get that we examine O (K1 K2 + d)
features per example which is uninteresting. However, we can tweak the argument we had for its proof for
this case. First of all, we will have only K5 type A costs (i.e., feature examinations) and not K7 K. Then,
for type B costs, in sub-case a, we will have a cost of d as before. For sub-case b, the cost was equal to
the number of metafeatures in F , which would equal K K> in this case. However, note that these costs
correspond to INDUCE(g, w 7o Us f) for different f such that w 7 contains the anchor variable in f . In total,
we know that there are only at most ¢ anchor variables along a particular path, and hence only K¢ different
metafeatures effectively result in some feature costs of this type. Hence, by restricting our analysis to only
these metafeatures, we can show that the feature cost is proportional to K¢ and not to K K. In total, this
would amount to a cost of O (K1t + K2 + d) O

31

Algorithm 14 IMPROVEREP - Decision Trees with a Sparse but Overcomplete Representation

1: Input: Old representation Fyq, Z7 the set of anchor variables, and a tree g € DT(F) learned from
scratch.

2: .7:— — fo]d

3: Identify the locations of variables from Zr in g and partition g into trees rooted at one of these variables
each. Add each tree to F.

4: Return F

B Monomials

In Appendix B.1, we present a simple algorithm for learning monomials exactly from scratch under some
assumptions. Then in Appendix B.2, we present our baseline lifelong learning algorithm for monomials.
We also present Lemma 25 which we used to show that it is sufficient to check our prediction on a single
randomly drawn example to verify whether the monomial we learned is correct.

B.1 Learning Monomials from Scratch

Recall that for any input x = (21, x2,...2x5) € RY, we denote the output of a d-degree target monomial
g = (91,92, ..., gn) by the function Py (x) = 2{'z5* ... 2%} where g; € NU{0} and the degree }, g; < d.
We denote the unknown metafeature set 7 = { f1, fa, ...} also as a matrix where column i is f;. Therefore,
saying that g can be expressed using F is equivalent to saying g lies in the column space of F denoted by
C(F). Then for any k—rank (k < K), N x k matrix F and for any g € C(F), we define wz(g) € RFto
denote the unique vector of column weights such that Fw 7(g) =g

For each monomial target, we assumed that D) s a product distribution i.e., the features are indepen-
dent. We now state some specific assumptions about DY) In particular, we assume that the variance of each
variable x; is not too small. The rationale is that if the variance was very small (in the extreme case, imagine
z; being a constant), the factor =7 would essentially be a constant factor in the monomial target. While it
may be possible to design a more careful learning algorithm that can extract these nearly constant factors,
that is beyond the scope of our discussion.

Secondly, we assume that the probability density function is finite at every point i.e., the probability
distribution is not too concentrated at any point. We will use this assumption to apply Lemma 25 when we
draw a single sample to verify whether the monomial we have learned matches the true monomial.

Finally, we assume that the support of x; is [1,2]. While the upper bound of 2 is to simplify our
discussion, the lower bound is to avoid dealing with values of x; that are close to zero. This is essential
because as we will see later, we will deal with logarithmic values of x; in the learning process. We now state
our assumptions formally.

Assumption 1. Each DY) is a product distribution. Let DU) = ng) %o x ,u%). We assume that for all
features i:

e Minimum variance Varum (logz;) > c

e Bounded probability density Vx; € R, M(j) (z;) € R

%

e Bounded support The support of /,LZ(~j Vis [1,2].

We now present our simple poly-time technique for learning monomials from scratch with polynomially
many samples. Recall that the output of the monomial g on an input x is denoted by Pg(x). Let us denote
the logarithm of this output log | Pg| by QQg. Observe that learning g is equivalent to learning the coefficients

32

of the ‘linear’ function (). To see how this can be done, we will define a notion of correlation/inner product
of two functions h(x) and h'(x):
(h(x), b (x)) = E[h(x)I (x)].
Then, we claim that g; can be expressed as the following inner product.

Lemma 20.
(Qg(x), log(xi) — Ellog(xi)]) _
E[log? z;] — E?[log z;] N
Proof. Since x; is picked independent of the other variables, so is the random variable (log z; — E[log(z;)]).
Thus, when j # 4

Ellog z;(log z; — E[log(x;)])] = E[log x;] x Ellog z; — Ellog(z;)]] =0

)

However,
E[log z;(log z; — E[log(z;)])] = E[log2 x;) — E? [log z;]

Then, the claim follows from our definition of (g.]

Observe that using the above fact, we can calculate g; for each i € [N] exactly if we were provided the
exact values of each correlation term in the equality. However, the best we can hope for is to approximate
these terms using sufficiently many samples. Fortunately, we can actually approximate each of these corre-
lation terms to a small constant error such that these errors together imply a constant error smaller than 1/2
in estimating g;. Then we can round off our estimate to the closest natural number to find the exact value
of g;. We now summarize our simple algorithm for learning a monomial from scratch, and then prove our
polynomial sample complexity bound.

Algorithm 15 Learning a monomial from scratch

1: Input: Distribution D over RV

2: Draw S samples (x, Pg(x)) from D and query all the features on all samples.

3: fori=1,2,...N do

4 Estimate E[log? z;], E[log? x;] — E2[log 7], and (Qg(x), log(z;) — E[log(z;)]) empirically.
5

Round off
(Qg(x),log(z;) — Ellog(z;)])
E[log? z;] — E2[log 4]

to estimate g;.
6: Return g

Clearly the above algorithm has polynomial running time and sample complexity as long as S is polyno-
mial. The crucial guarantee we need now is that polynomially many samples are sufficient to estimate each
gi exactly, which we show in Theorem 23. We first begin by bounding the error in estimating the numerator
(Qg(x),log(z;) — Ellog(z;)]) in Lemma 21. Then, in Lemma 22 we show how this error and the error in
the denominator terms, add up to result in an error of at most 1/2 in estimating g;. Using these, we prove
in Theorem 23 that the algorithm estimates each power exactly. In the following notation we will use E to
denote the empirical estimate of an expected value.

Lemma 21. Using a sample set S of size O (E% log %), for a given i € [N], if |[E[log ;] — Eflog z]| < €1,
3
then we can guarantee that
Pr < de; + €3

|;| > Qe(x)(log(i) — Eflog(2:)]) — (Qg(x), log(x:) — Ellog(zy)))

xeSs

-0 ()

33

Proof. Consider the random variable Qg (x) - (log(;) — E[log(;)]). It is easy to show that Qg(x) log(z;) €
[0, d] with the extreme values attained atx = (2,2,...)andx = (1, 1,...). Then, Qg(x)E[log(z;)] € [0,d].
Thus, the random variable Qg (x)-(log(z;) —E[log(x;)]) lies in a range of size 2d. Then, by Chernoff bounds,
we can show that

|5,2Qg (log(a;) — Eflog(x:)]) — (Qg(x), log(x:) — Ellog()])

xES

< €3 20(6/)

from which the above claim follows because the absolute difference between (Qg(x),log(z;) — E[log(x;)]
and (Qg(x),log(x;) — E[log(z;)] is at most ‘maxx Qg(x) - (E[log(z;)]) — E[log(mz)}))’ < de; (because
the first term is at most d and the next is at most €1). L]

Lemma 22. Using a sample set S of size O (;l)Q log 51,> with a high probability of 1 — &' for a
1

(min(5,5.1)

given i € [N] we can learn §; such that |§; — g;| < &

Proof. Let €, and e3 be as defined in Lemma 21. Additionally let |E[log? z;] — [log a:z]| . From the
previous results and from Chernoff bounds, we have that €1, €2, €3 are all O <m1n(kL)) given the size

of §. We now have a fractional expression on the right hand side of the equation in Lemma 20 for which we
can derive the error in estimating the numerator and the denominator individually. We need to show that the

overall error in estimating the fraction is 1/2 i.e., O(1). Now, the error in estimating some fraction % using

% given that |G — G| < eg and |H — H| < ey can be upper bounded by:

Gteg G eic + Gen
H+tep H| — (H—eg)H
(max G+eg)en

<

mmH + (min H—ep) min H

In our case, we have H = E[log? ;] — E[log ;] and G = (Qg(x), log(w;) — E[log(x;)]), min H = ¢ and
max G = d. Also, e¢ = e1d + €3 and e < €3 + 2¢1 + e%. The latter inequality follows from the fact that
the error in estimating E[log? z;] is €2 and the error in estimating E2[log ;] is at most (E[log z;] + €)% —
E2[log z;] < €1(2E[log z;] + €1) < €1(2 + €1). By a simple calculation, it can be verified that this results in
a total error of O (1) in estimating g;.

O

Theorem 23. Algorithm 15 exactly learns a target g from scratch with high probability 1 — O (0) with

K
S=0 % log ACTm samples.
(min(%,%,l))

Proof. From Lemma 22 we have that each g; is accurately estimated with probability at least 1 — O (ﬁ)
By a union bound, g is accurately estimated with probability at least 1 — O (i). U

m

We note that it is easy to refine our application of union bounds to use slightly fewer samples than in the
bound of Theorem 23. In particular, it is possible bring the log N'm factor down to log N K while learning
from scratch, and to log K'm on all other targets.

34

B.2 Naive Lifelong Learning of Monomials

We present our straightforward approach for lifelong learning of monomials which merely keeps a record
of features that have been seen in earlier targets.

Theorem 24 (Naive lifelong learning of monomials). In the model of Problem Setup 2, there exists a naive
algorithm for lifelong learning of monomials that evaluates O (S(KN + mKd)) features overall.

Proof. (Sketch) We use IMPROVEREP Algorithm 5 that essentially stores the list of targets that have been
learned from scratch as the columns of the matrix F. N ow, consider the set of features that have been “seen”
so far i.e., these correspond to rows in F that have at least one non-zero entry. Then, for a new target g,
we define a USEREP algorithm that determines the powers of only these features. This can be done by
evaluating only those features on the data set using the technique in Algorithm 15. The unseen features are
assumed to have zero power.

Now, consider a new target g that is “linearly dependent” on the targets that have been learned so far
ie., g€ (C(]:"). In this case, the unseen features should have a zero exponent in g as it is zero in all earlier
targets. Thus, our USEREP technique would not fail on such targets. Now, if g was linearly independent, it
is possible that an unseen feature has a non-zero exponent in g. To verify whether this is the case, we can
draw a single sample and check whether our prediction matches the true output. If this fails, we learn the
target correctly from scratch and add it to F.

Thus, since we add only linearly independent targets to F, in a manner similar to the proof of Theorem 6,
we can show that USEREP will not fail more than K times. Our result follows from here because each of
the targets that we learn from scratch have at most d non-zero exponents. Then, in total we only have at
most K d “seen” features i.e., features with non-zero powers that we always examine. O

B.2.1 Monomial Identity Testing

We show here that it is sufficient to draw a single example and check whether our prediction matches the
true label in order to conclude whether the monomial that we learned is indeed the true monomial. Here, we
make use of the condition that the probability distribution is smooth in that the probability density function
at any value of a feature is finite.

Lemma 25. [ffor every feature i, the marginal probability density function at x; is finite for all values of x;
then we have that for any g' # g, Pr[Pg/ (x) # Pg(x)] = 1.

Proof. We will prove by induction on N’ < N and d’ < d that for any polynomial P’ of degree d’ over N’
variables Pr[P’(x) = 0] = 0. Then, we only need to plug in P’ = Py — Py to complete the proof.

For the base case assume the polynomial is only over one variable and any degree i.e., N’ = 1 and
any d’ < d. Then the event [P'(x) = 0] corresponds to picking one of at most d’ zeroes of P’ from R
(since N’ = 1), which amounts to a probability of 0 according to the assumption on the probability density
function.

Now assume for all N’ < N and d’ < d, our induction hypothesis is true. The polynomial P’ can be
expressed as a summation of terms in xy: Z?:o Pi’ "(z2,. .. xn)x"l where k is the highest degree of x; and
P! is the coefficient of z{. Then, for a fixed value of x, ...y, P’ reduces to a polynomial of degree
k < d over one variable. Then, our induction assumption implies that conditioned on some arbitrary values
of 29, ..., 2N, the polynomial in z; attains zero with probability 0 i.e., Pr[P'(x) = 0]xg,...2x] = 0.
Then it follows that Pr[P’(x) = 0] = 0. O

35

B.3 Polynomials

We now describe our straightforward lifelong learning approach for polynomials which remembers only the
features that have been seen so far.

Theorem 26 (Naive lifelong learning of polynomials). In the model of Problem Setup 3, there exists a naive
algorithm for lifelong learning of t-sparse polynomials that makes O (S(K N + mKd)) feature evaluations
in total.

Proof. (Sketch) This approach is very similar to the naive approach for lifelong learning of monomials. We
will use IMPROVEREP Algorithm 7 which, as we know already, maintains a list of linearly independent
monomial targets that have been seen in the polynomials learned from scratch so far. Now, for a new target
G, we will perform the “lexicographic search” method from [2] over only the features that have been seen
i.e., during the search we skip features that correspond to an all zero row in F. Essentially, we assume that
the unseen features do not occur in the target polynomial. We again check whether the polynomial computed
this way is correct by verifying it on a single sample.

Using this approach we are guaranteed that if G ¢ C(F) x R, USEREP does not fail because such a
target will not contain unseen features in any of its monomials. Then, we can use an argument similar to
Theorem 24 and show by contradiction that USEREP can fail at most K times, and hence evaluate only Kd
features per example. O

36

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Decision Trees
	3.1 Decision Lists

	4 Monomials
	4.1 Polynomials
	4.1.1 Learning a polynomial from scratch
	4.1.2 Lifelong Polynomial Learning

	5 The Agnostic Case
	6 Lower bounds
	7 Discussion and Open Problems
	A Decision Trees
	A.1 Proofs from Section ??
	A.2 More Lifelong Learning Models for Decision Trees
	A.2.1 Decision Trees with Anchor Variables
	A.2.2 Sparse Decision Trees with Overcomplete Representations

	B Monomials
	B.1 Learning Monomials from Scratch
	B.2 Naive Lifelong Learning of Monomials
	B.2.1 Monomial Identity Testing

	B.3 Polynomials

