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Abstract

An important long-term goal in machine learning systems is to build learning agents that, like hu-

mans, can learn many tasks over their lifetime, and moreover use information from these tasks to improve

their ability to do so efficiently. In this work, our goal is to provide new theoretical insights into the po-

tential of this paradigm. In particular, we propose a lifelong learning framework that adheres to a novel

notion of resource efficiency that is critical in many real-world domains where feature evaluations are

costly. That is, our learner aims to reuse information from previously learned related tasks to learn future

tasks in a feature-efficient manner. Furthermore, we consider novel combinatorial ways in which learn-

ing tasks can relate. Specifically, we design lifelong learning algorithms for two structurally different

and widely used families of target functions: decision trees/lists and monomials/polynomials. We also

provide strong feature-efficiency guarantees for these algorithms; in fact, we show that in order to learn

future targets, we need only slightly more feature evaluations per training example than what is needed

to predict on an arbitrary example using those targets. We also provide algorithms with guarantees in an

agnostic model where not all the targets are related to each other. Finally, we also provide lower bounds

on the performance of a lifelong learner in these models, which are in fact tight under some conditions.

1 Introduction

Machine learning algorithms have found widespread use in solving naturally occurring tasks in domains like

medical diagnosis, autonomous navigation and document classification. Accompanying this rapid growth,

there has been remarkable progress in theoretically understanding how machine learning can solve single

tasks in isolation. However, real-world tasks rarely occur in isolation. For example, an autonomous robot

may have to accomplish a series of control learning tasks during its life, and to do so well it should employ

methods that improve its ability to learn as it does so, needing less resources as it learns more [24, 25]. As

we scale up our goals from learning a single function to learning a stream of many functions, we need to

develop sound theoretical foundations to analyze these large-scale learning settings.

Broadly, the goal of a lifelong learner is to solve a series of many tasks over its lifetime by a) extracting

succinct and useful representations about the relations among previously learned tasks, and then b) using

these representations to learn future tasks more efficiently. In this work, we provide new insights into

this paradigm by first proposing a metric for lifelong learning that exposes an important type of resource

efficiency gain. Then we design algorithms for important and widely used classes of functions with strong

theoretical guarantees in this metric.

In particular, we consider a setting where evaluating the features of data points is costly and hence

the learner wishes to exploit task relations to improve its feature-efficiency over time. Feature-efficiency

is critical in applications such as medical diagnosis and high-dimensional data domains where evaluating

feature values of a data point might involve performing expensive or intrusive medical tests or accessing
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millions of values. In fact, one of the reasons decision trees (which is one of the important function classes

we study in this paper) are commonly used in medical diagnosis [21] is that once the trees are learned, one

can then make predictions on new examples by evaluating very few features—at most the depth of the tree.

We consider lifelong learning from the perspective of this feature evaluation cost, and show how we can

use commonalities among previously-learned target functions to perform much better in learning new related

targets according to this cost. Specifically, if we face a stream of m adversarially chosen related learning

tasks over the same set of N features, each with about S training examples, we will make O (SmN) feature

evaluations if we learn each task from scratch individually. Our goal will be to leverage task relatedness

to learn very few tasks from scratch and learn the rest in a feature-efficient manner, making as few as

O (S(m+N)) feature evaluations in total.

We study two structurally different classes of target functions. In Section 3 we focus on decision trees

(and lists) which are a widely used class of target functions [26, 23, 22, 8] popular because of their naturally

interpretable structure – to make a prediction one has to simply make a sequence of feature evaluations – and

their usefulness in the context of prediction in costly feature spaces. In Section 4 we analyze monomial and

polynomial functions, an expressive family that can approximate many realistic functions (e.g., Lipschitz

functions [2]) and is relevant in common machine learning techniques like polynomial regression, curve

fitting and basis expansion [27]. Our study of polynomials also demonstrates how feature-efficient learning

is possible even when the function class is not intrinsically feature-efficient for prediction. The non-linear

structure of both of these function classes poses interesting technical challenges in modeling their relations

and proposing feature-efficient solution strategies. Indeed our algorithms will use their learned information

to determine an adaptive feature-querying strategy that significantly minimizes feature evaluations.

In Section 3, we present our results for decision trees and lists. First, we describe intuitive relations

among our targets in terms of a small unknown set of K “metafeatures” or parts of functions common to

all targets (think of K much less than N ). More specifically, these metafeatures are subtrees that can be

combined sequentially to represent the target tree. We then present our feature-efficient lifelong learning

protocol which involves addressing two key challenges. First, we need a computationally-efficient strategy

that can recover useful metafeatures from previously learned targets (Algorithm 3). Interestingly, we show

that the learned metafeatures can be useful even if they do not exactly match the unknown K metafeatures,

so long as they “contain” them in an appropriate sense. Second, we need a feature-efficient strategy that

can learn new target functions using these learned metafeatures (Algorithm 2). Making use of these two

powerful routines, we present a lifelong learning protocol that learns only at most K out of m targets from

scratch and for the remaining targets examines only Kd features per example (where d is the depth of the

targets), thus making O (S(NK +mKd)) feature evaluations in total (Theorem 1).

In Section 4, we study monomials and polynomials which are similarly related through K unknown

metafeatures. We adopt a natural model where the metafeatures are monomials themselves, so that the

monomial targets are simply products of metafeatures. In the case of polynomials, this defines a two-level

relation, where each polynomial is a sum of products of metafeatures. For polynomials, we present an

algorithm that learns only K of m targets from scratch and on the remaining targets, evaluate sO (K + d)
features per example (where d is the degree of the target), thus making only O (S(KN +m(K + d)))
feature evaluations over all tasks. More interestingly, in the case of large-degree monomials, our algorithm

may need fewer feature evaluations per example (K) to learn the monomial than that needed (d) to evaluate

the monomial on an input point.

Next in Section 5, we consider a relaxation of the original model, more specifically, an agnostic case

where the learner faces m + r targets, r of which are “bad” targets adversarially chosen to be unrelated

to the other m interrelated “good” targets. As a natural goal, we want the learner to minimize the feature

evaluations made on the training data of the m good targets. We show that when r is not too large, the

above lifelong learners can be easily made to work as well as they would when r = 0. To address greater

values of r, we first highlight a trade-off between allowing the learner to learn more targets from scratch and
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learning the remaining targets with more feature evaluations. We then present a technique that strikes the

right balance between the two.

Finally, in Section 6 we present lower bounds on the performance of a lifelong learner for all values of

r, including r = 0 by designing randomized adversaries. Ignoring the sample size S and other problem-

specific parameters, for small r we prove a lower bound of Ω (KN +mK) feature evaluations which proves

that our above approaches are in fact tight. For sufficiently large r, we prove a bound of Ω (mN), thereby

demarcating a realm of r where lifelong learning is simply futile.

We present a summary of our results in Tables 1 and 2 below.

Problem Total number of feature evaluations

Decision trees of depth d O (S(KN +mKd))

Decision trees of depth d in semi-adversarial model O
(

S( logK
pmin

N +m(K + d))
)

Decision trees of depth d with anchor variables O (S(KN +m(K + d)))

Decision lists of depth d O
(
S(K2N +m(K2 + d))

)

Monomials of degree d Õ (KN +m(K + d))

Polynomials of degree d, sparsity t O (S(KN +m(K + td)))

Table 1: Performance of our approaches

Range of r Performance of algorithm Lower bound

0 ≤ r ≤ rmin O(S(NK +Km)) Ω (NK +Km)

r ∈ [rmin, rmax] O(S(
√
rKNm

︸ ︷︷ ︸

≤
√

rmax
r

max( r
N−K

,1)KN

+Km)) Ω
(

max
(

r
N−K

, 1
)

KN +Km
)

r ≥ rmax O (SmN) Ω (mN)

Table 2: Performance of our algorithms for different values vs the lower bounds for different values of r.

Here, we will define rmin = max
(
m
N
, KN

m
,K
)

and rmax = min
(
mN
K

, (N−K)2m
KN

)

1.1 Related Work

Related work in multi-task or transfer learning [14, 17, 19] considers the case where tasks are drawn from an

easily learnable distribution or are presented to the learner all at once. The theoretical results in that setting

are sample complexity results that guarantee low error averaged over all tasks [6, 7]. On the other hand,

research in lifelong learning has been mostly empirical [25, 13, 9, 24]. There has been a small amount of

recent theoretical work [5, 20]. [5] consider fairly simple targets and commonalities such as linear separators

that lie in a common low-dimensional subspace. [20] consider a setting where except for a small subset of

target functions, each target can be written as a weighted majority vote over the previous ones. [5] also

consider conjunctions that share a set of conjunctive metafeatures, but assume that the metafeatures contain

a unique “anchor variable”. Though decision trees have a more elaborate combinatorial structure than

conjunctions, in this work we are able to achieve strong guarantees for lifelong learning of decision trees

(and other classes) without making such assumptions about the metafeatures. We also note that one of

main technical challenges addressed by [5] is that of controlling error propagation during lifelong learning.

However, for the problems considered in this paper, it is possible to learn targets exactly from scratch, so we

do not have to deal with error propagation.

3



Feature-efficiency has been considered in the single-task setting, often under the name of budgeted

learning [16, 11, 1], where one has to learn an accurate model subject to a limit on feature evaluations,

somewhat like bandit algorithms. [18, 3] consider a related problem in a multi-task setting with all tasks

present up-front, where the learner has free access to all features but uses commonalities between targets to

identify useful common features in order to be sample-efficient.

2 Preliminaries

In this section, we define our notations (later summarized in Table 3) and present a high level protocol which

will provide a framework for presenting our algorithms in the later sections. We consider a setting in which

the learner faces a sequence of m related target functions g(j) over the same set of N features/variables

(where both m and N are very large). The target functions arrive one after the other, each with its own set of

training data S(j) with at most S examples to learn from. Also, feature evaluation (or equivalently, feature

query or feature examination) is costly: if we view our training data for g(j) as an S ×N matrix, we pay a

cost of 1 for each cell probed in the matrix.

Our belief is that the targets are related to each other through an unknown set F of metafeatures that are

parts of functions. More specifically, all targets in the series can be expressed by combining metafeatures

in F using a known set of legal combination rules, such as concatenating lists or trees. Our algorithms will

learn a set of hypothesized metafeatures F̃ that allows them to learn new targets using a small number of

feature evaluations except for a limited number of targets learned from scratch i.e., by examining all features

on all examples. We call F̃ our learned representation. Note that we will refer to F̃ as just metafeatures if

it is clear from context that it does not refer to the true metafeatures F .

Then, our lifelong protocol is as follows. We make use of two basic subroutines: a USEREP routine

that uses F̃ to learn new related targets, and an IMPROVEREP routine that improves our representation F̃
whenever the first subroutine fails. We begin with an empty F̃ . On task j, using F̃ and S(j), we attempt

to cheaply learn target g(j) with USEREP. If USEREP fails to learn the target, we evaluate all features

in S(j) and learn g(j) from scratch. Then, we provide F̃ and g(j) as input to IMPROVEREP to update F̃ .

For clarity, we present this generic approach, which we will call as (USEREP, IMPROVEREP)-protocol, in

Algorithm 1. In the following sections, we will present concrete approaches for these subroutines, specific

to each class of targets. We will then analyze the performance of the protocol in terms of the total number

of feature evaluations (across all samples over all the tasks) given an adversarial stream of tasks.

Our setting can be viewed as analogous to that of dictionary learning [15, 10, 4] in which the goal is to

find a small set of vectors that can express a given set of vectors via sparse linear combinations. Here, we

will be interested in broader classes of objects and richer types of combination rules.

Notation Meaning

m No. of targets in sequence

N No. of features/variables

F True metafeature set/representation

F̃ Learned representation

K No. of true metafeatures

S No. of samples for each task

S(j) Training data for task j

Table 3: Important notations
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i, returns a score indicating the desirability of splitting the set S using feature i. For instance, ID3 uses

information gain as its splitting criterion,1 and an elegant theoretical analysis of the use of different such

gain functions is given in [12]. The algorithm begins at the root, chooses the variable of highest gain to

put there, and then recurses on the nodes on each side. This process continues until all leaves are pure (all

positive or all negative).

Problem Setup 1. The decision tree targets g(1), . . . g(m) and data sets S(1), . . . ,S(m), each of at most S
examples, satisfy the following conditions:

1. There exists an unknown set F of K metafeatures (K � N ) such that ∀j, g(j) ∈ DT(F).
2. The target g(j) can be learned by running top-down decision-tree learning on S(j) using a given Gain

function. In other words, always choosing to recursively split on the variable of highest Gain based

on S(j) produces g(j).
3. We are given s, d (d � N ) such that g(j) has at most s internal nodes and depth at most d. Then,

S = O (s logN) examples are sufficient to guarantee that g(j) has high accuracy over the underlying

distribution over data.

A straightforward lifelong learning approach would be as follows: IMPROVEREP simply adds to F̃ fea-

tures seen in tasks learned from scratch as metafeatures, and USEREP examines only those (meta)features in

F̃ when learning a target. Since each metafeature inF can have at most s distinct features, this learns at most

K targets from scratch and evaluates only Ks features per example on the rest i.e., O (S(KN +mKs))
feature queries overall (see Appendix A for details). However, when s = Ω(N) this is no better than

learning all tasks individually from scratch. In this section, we will present a significantly better protocol:

Theorem 1. The (USEREP Algorithm 2, IMPROVEREP Algorithm 3)-protocol for decision trees makes

O (S(KN +mKd)) feature evaluations overall and runs in time poly(m,N,K, S, s, d).2

This is a significant improvement especially in the case of shallow bushy trees for which d � s e.g.,

when d = O (logN) but s = Ω(N). To achieve this improvement, we need a computationally efficient

approach that extracts bigger decision tree substructures from previous tasks and also knows how to learn

future tasks using such a representation. We first address the latter problem: we present an USEREP

routine, Algorithm 2, that takes as input a set of hypothesized metafeatures F̃ and a training dataset S
consistent with an unknown tree g and either outputs a consistent tree g̃ or halts with failure. To appreciate

its guarantees, define Pref(f) to denote the set of all “prefix” trees (prunings) of some incomplete tree f .

For any set of hypothesized metafeatures F̃ , let Pref(F̃) = {Pref(f̃) |f̃ ∈ F̃}. We show that Algorithm 2,

given F̃ , can effectively learn a target that can be represented using not only F̃ , but also the exponentially

larger metafeature set Pref(F̃). That is, our USEREP algorithm can effectively learn trees from a much

larger space DT(Pref(F̃)) compared to just DT(F̃).

We now describe Algorithm 2. Though we limit our discussion to Boolean feature values for simplicity,

we later extend it to real values. In Algorithm 2, we basically grow an incomplete decision tree g̃ one node at

a time, by picking one of its empty leaf nodes u, and either assigning a label to u or splitting u on a particular

feature. Before doing so, we first make sure that we have not failed already (Step 4). More specifically, if u

1If feature i splits data set S into two sets L and R, its information gain of feature i is then Ent(S)−[ |L|
|S|

Ent(L)+ |R|
|S|

Ent(R)].

Here, Ent is the binary entropy of the label proportions in the given set; that is, if a p fraction of the labels in S′ are positive, then

Ent(S′) = p log2(1/p) + (1− p) log2(1/(1− p)).
2 It may seem that this result can be equivalently stated in terms of the average number of features examined per example i.e.,

O (KN +mKd). However, such a performance metric is different from what we defined. Under certain independence conditions

it may be possible to learn a target simply by drawing a large number of examples and examining only a single feature per example

while still making many feature evaluations in total.
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is at a depth greater than d or if g̃ already has more than s nodes, we halt with failure because we were not

able to find a small tree consistent with the data. If not, we proceed to examine samples from the training

set that have reached u, which we will denote by Su. If all x ∈ Su have the same label, we make u a leaf

with that label and proceed to other nodes in g̃.

Otherwise, we evaluate a small set of features on Su to compute their Gain and pick the best of those

features to be the variable at u (denoted by var(u)). The way we pick this set of features at u, which we

will call I, is based on the following intuition. Assume we have grown g̃ identically to g so far and let u′ be

the node in g that corresponds to u. Then the correct variable to be assigned at u is var(u′) which is in fact

the gain maximizing variable on Su (as assumed in the second point of Problem Setup 1). Thus, our goal is

to ensure var(u′) ∈ I.

If indeed g ∈ DT(Pref(F̃)), this variable must in fact correspond to the variable in some node in some

f̃ ∈ F̃ . In other words, we should be able to “superimpose” some f̃ over g̃ with the root of f̃ at either u
or one of its ancestors such that the variable in f̃ that has been superimposed over u is in fact the correct

variable for u. Additionally, the variables in f̃ should not conflict with those that have already been assigned

to the ancestors of u in g̃. Since we do not know which f̃ and which superimposition of f̃ induces the correct

variable at u, we add to I the variable induced at u by every possible superimposition: we pick every f̃ ∈ F̃
and every node w that is either an ancestor of u or u itself, and then superimpose f̃ over g̃ with its root

at w. We add to I the variable thus induced at u, provided the variables in f̃ do not conflict with those in

the ancestors of u. In Algorithm 2, we use helper routines, INDUCE(g̃, w, u, f̃) which outputs the induced

variable and CONFLICT(g̃, w, u, f̃) which outputs false if there is no conflict (both these simple subroutines

are described for completeness in Appendix A and illustrated in Figure 2). Finally, since no variable should

repeat along any path down the root, we remove from I any variable already assigned to an ancestor of u.

Then, we assign the gain maximizing feature from I to u.

Observe that, at u, in total over all f̃ we may examine O(|F̃ |d) features on Su. Therefore, for a particular

sample, considering all nodes along a path from the root, we may examine O(|F̃ |d2) features. However,

with a more rigorous analysis we prove a tighter bound:

Theorem 2. USEREP Algorithm 2 has the property that given F̃ and data S , a) if the underlying target

g ∈ DT(Pref(F̃)), the algorithm outputs g and b) conversely, if the algorithm outputs g̃ without halting

on failure, then g̃ has depth at most d, size at most s and is consistent with S , c) the algorithm evaluates

O(|F̃ |+ d) features per example.

Algorithm 2 USEREP - Learning a decision tree using metafeatures

1: Input: Metafeatures F̃ , samples S consistent with unknown g, depth bound d, size bound s.

2: Initialize the tree g̃ to be an empty leaf node. Let Z be the set of empty leaf nodes in g̃.

3: while ∃ u ∈ Z do

4: Halt with failure if a) u is at depth > d or b) the size of g̃ is > s.

5: Let Su be the examples that have reached u.

6: if all x ∈ Su have the same label l then

7: Make u a leaf with the label l.
8: else

9: Let I be the set of features to be examined at u. Initialize I to be empty.

10: for each f̃ ∈ F̃ and each node w in the path starting from the root of g̃ to u do

11: If CONFLICT(g̃, w, u, f̃) is false, add INDUCE(g̃, w, u, f̃) to I.

12: Remove from I any variable assigned to an ancestor of u.

13: Evaluate only the features I on Su. Assign var(u)← argmaxi∈I Gain(Su, i).
14: Output g̃.
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Proof. (a) and (c) follow from Lemma 3 and Lemma 4 respectively, which we prove below. (b) follows

immediately from the algorithm, more specifically from Step 4 and 6. We need this guarantee so that when

the learner does not fail, its output is guaranteed to be correct.

Lemma 3. If g ∈ DT(Pref(F̃)) , Algorithm 2 outputs g̃ = g.

Proof. We are given that g ∈ DT(Pref(F̃)). We will show by induction that g̃ is always grown correctly

i.e., g̃ ∈ Pref(g). This is trivially true at the beginning. Consider the general case. Let u be the node in g̃
that is chosen in Step 3 to be grown. By our induction hypothesis that g̃ is a prefix of g, there exists u′ in g
that corresponds to u and furthermore, Su = Su′ . Now to show that u will be grown identical to u′, since

g̃ is only a prefix, the size and depth constraints will be satisfied and so we are guaranteed to not halt with

failure at this node. Next, if u′ was a leaf node, since Su = Su′ , we are guaranteed to label u as a leaf and

assign it the correct label.

If u′ is not a leaf node, let var(u′) be the variable present in u′ i.e., var(u′) =
argmaxi∈[N ] Gain(Su′ , i). Therefore, to show that we assign var(u′) to u in Step 13, we only need

to prove that var(u′) ∈ I i.e., we consider this feature for examination. To prove this, note that in g,

var(u′) belongs to the prefix of some metafeature f̃∗ from F̃ that is rooted either at some v′ which is either

u′ itself or at one of its ancestors (because g ∈ DT(Pref(F̃))). We can show that in Step 11, when w = v
and f̃ = f̃∗, we end up adding var(u′) to I. First, if v is the corresponding node in g̃ we will have that

CONFLICT(g̃, v, u, f̃∗) is false. Furthermore, clearly INDUCE(g̃, v, u, f̃) = var(u′). Now since g has no

variable repeating along any root-to-leaf path, var(u′) does not occur in any of the ancestor nodes of u′, and

similarly in g̃, it does not occur in any of the ancestor nodes of u. Thus, the conditions in Step 11 succeed,

following which var(u′) is added to I.

Lemma 4. Algorithm 2 makes at most O(|F̃ |+ d) feature queries per example.

Proof. First of all note that each example corresponds to a particular path in g̃. Thus, the features examined

on that example as g̃ was grown, correspond to the different features computed from INDUCE(g̃, w, u, f̃) for

different nodes v and u on that path. These feature queries can be classified into two types depending on

whether A) w = u or B) w is an ancestor of u. For type A, since w = u, INDUCE(g̃, w, u, f̃) can only be

one of the fixed set of features that occur at the root of metafeatures in F̃ . In total this may account for at

most |F̃ | feature examinations.

Now consider the type B features queries corresponding to w 6= u. Each feature examined in this case

corresponds to a 3-tuple (w, u, f̃) where w is an ancestor of u. We claim that for a given f̃ , w has to be

unique in this path. This is because var(w) must equal the root variable of f̃ by definition of INDUCE, and

any given variable appears at most once on any path by Step 12.

Thus type B feature query effectively corresponds to a 2-tuple (u, f̃) instead of a 3-tuple (w, u, f̃)
because f̃ corresponds to a unique w. Let wf̃ denote this unique node for f̃ . Now, let ku be the number

of type B feature queries made at u. We can divide this case further into type B(a) consisting of nodes

u, such that ku = 1 and type B(b) corresponding to ku > 1. In total over the d nodes in g̃, we would

examine only d type B(a) features. Now, for type B(b), at node u, where we evaluate ku features at u, we

claim that this eliminates at least ku − 1 different metafeatures from resulting in feature examinations of

type B further down this path. This is because each of the ku features that we examine at u correspond to

INDUCE(g̃, wf̃ , u, f̃) for some f̃ ∈ F̃ . Let this set of metafeatures be F̃u, where |F̃u| = ku. Now, we assign

only one feature to u that corresponds to say, f̃∗ ∈ F̃u. After this, when we are growing a descendant node

v, for the ku − 1 other metafeatures f̃ ∈ F̃u and f̃ 6= f̃∗, CONFLICT(g̃, wf̃ , v, f̃) will be true as there will

be a conflict at u. However, since CONFLICT(g̃, wf̃ , v, f̃) needs to be false in Step 11 for f̃ to result in a

feature query, we conclude that there are ku − 1 different metafeatures that do not result in a feature query

beyond this point.
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Using the above claim, we can now bound
∑

u:ku>1 ku, which will account for the total feature queries

of type B(b) along the path. Since ku − 1 denotes the number of eliminated metafeatures beyond u, and

since only at most |F̃ | can be eliminated, we have
∑

u:ku>1(ku − 1) ≤ |F̃|. Now, since
∑

u:ku>1 1 ≤ d, we

have that
∑

u:ku>1 ku ≤ |F̃|+ d i.e., we make at most |F̃ |+ d type B(b) feature queries of the last kind on

this path. Thus, in summary, we examine at most O(|F̃ |+ d) features on each example.

Now, to provide a lifelong learning protocol for Problem Setup 1, the challenge is to design a computa-

tionally efficient IMPROVEREP routine3. To this end, we present Algorithm 3 that creates useful metafea-

tures by adding to F̃ well-chosen subtrees from target functions. In particular, after learning a target g from

scratch, we identify a root-to-leaf path in g that we failed to learn using F̃ . We add to F̃ the subtrees rooted

at every node in that path. The intuition is that one of these subtrees makes the representation more useful.

To describe how the path is chosen, let g̃ be the incomplete tree learned using F̃ just before we halted with

failure. Since either the depth or the node count was exceeded in g̃, there must be a path from the root of g̃
longer than the corresponding path in g. We pick the corresponding path in g which was incorrectly learned

in g̃ (see Figure 3).

Finally, as we see below in the proof sketch for Theorem 1, the resulting protocol evaluates only O (Kd)
features per example when learning from F̃ , besides learning K trees from scratch. Recall that this is a

significant improvement of our straightforward USEREP which evaluates O (Ks) features per example. In

Appendix A, we present results for more models for decision trees.

Algorithm 3 IMPROVEREP - Decision Trees

1: Input: Old representation F̃old and a tree g ∈ DT(F) learned from scratch and the (incorrect) incomplete

tree g̃ learned using F̃old.

2: F̃ ← F̃old

3: Identify a path from root of g̃ such that the corresponding path in g has fewer internal nodes.

4: For each node in the corresponding path in g, add the subtree rooted at that node to F̃ .

5: Output F̃

Proof. (for Theorem 1) We will show by induction that at any point during a run of the protocol, if k
targets have been learned from scratch, then there exists a subset of k true metafeatures F ′ ⊆ F that have

been “learned” in the sense that f ∈ F ′ is the prefix of some metafeature in F̃ , implying that DT(F ′) ⊆
DT(Pref(F̃)). Then after learning K targets from scratch, it has to be the case that F ′ = F after which

DT(F) ⊆ DT(Pref(F̃)) and hence from Lemma 3 it follows that the protocol can never fail while learning

from F̃ .

The base case is when F̃ ′ is empty for which the induction hypothesis is trivially true. Now, assume

at some point we have metafeatures F̃old and these correspond to true metafeatures F ′
old ⊆ F such that

DT(F ′
old) ⊆ DT(Pref(F̃)) and |F ′

old| = k. Now, from Theorem 2, we can conclude that any target that lies

in DT(F ′
old) will be successfully learned by USEREP Algorithm 2. Hence, when USEREP does fail on a

new target g, it means that the g contains metafeatures from F − F ′
old. In fact, along any path in g in which

learning failed (that is, the tree g̃ that is output differs from g on this path), there must be a node at which

some metafeature from F − F ′
old is rooted. If this was not true for a particular failed path, we can show

using an argument similar to Lemma 3 that this path would have been learned correctly. Therefore, when

3As a warm-up, consider a semi-adversarial scenario where each element of F has a reasonable chance of being the topmost

metafeature in any target. We can then learn the first few targets from scratch and simply add them to F̃ so that with high probability,

each metafeature from F is guaranteed to be the prefix of some element in F̃ . Then we can use Algorithm 2 to learn the remaining

targets using F̃ as all those targets will lie in DT(Pref(F̃)). We provide a careful analysis of this simpler case in Appendix A

Theorem 17.
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Algorithm 4 IMPROVEREP - Decision Lists

1: Input: Old representation F̃old, target g learned from scratch, g̃ learned using F̃old.

2: Let g = (gp, gs) where gp is the longest common prefix of g̃ and g.

3: F̃ ← F̃old ∪ {gs}
4: Return F̃

We now present an outline of our proof for the claim that employing USEREP Algorithm 2 along with

IMPROVEREP Algorithm 4 learns at most O
(
K2
)

decision lists from scratch. A crucial fact we use is that

USEREP Algorithm 2 learns any list iff it belongs to DT(Pref(F̃)). Now, observe that there must exist an

f ∈ F such that f is a part of g and furthermore, USEREP was able to learn upto a prefix fp of f after

which it failed to learn the remaining suffix of f , say fs. Our result follows if we can show that there can

only be O(K) failures of USEREP that correspond to a particular f in this manner. To prove this, we will

categorize the failures of USEREP corresponding to f based on whether fp ∈ DT(Pref(F̃old)) and show

that there can be only O (K) failures for each case, for a given f .

When fp ∈ DT(Pref(F̃old)), after running USEREP Algorithm 2, we will have that fs ∈ DT(Pref(F̃))
because gs which has the prefix fs was added to our representation. Then, f ∈ DT(Pref(F̃old)), and

therefore on any new target there can not be a failure corresponding to f . Thus, there is at most one failure

corresponding to f , of this type.

The case where fp /∈ DT(Pref(F̃old)) requires a more intricate argument which is based on identifying

another f ′ chosen carefully from an “indirect” representation of g in terms of F . In particular, on one hand

there is a direct representation of g in terms of F . At the same time, since Algorithm 2 learned gp using

F̃old, gp can be represented as a sequence of prefixes from F̃old. Since each element in F̃old is also from

DT(F), we can indirectly represent this sequence of prefixes in terms of parts of metafeatures from F .

We will choose an appropriately positioned f ′ from this representation and show that there can be only

two failures corresponding to a particular f and f ′. Thus, there can only be O (K) failures for a particular f .

Theorem 5. The (USEREP Algorithm 2, IMPROVEREP Algorithm 4)-protocol for decision lists makes

O
(
S(K2N +m(K2 + d))

)
feature evaluations overall and runs in time poly(m,N,K, S, d).

Proof. We show that the protocol learns at most O
(
K2
)

lists from scratch. Then, from Lemma 4 our result

follows.

Now, we need to understand how adding the suffix gs from a target g on which USEREP failed, makes

the representation more useful. As a warm up, we can show that when the protocol faces the same target

g in the future, the updated representation F̃ = F̃old ∪ {gs} will be able to learn it. A crucial fact from

which this follows is that USEREP Algorithm 2 learns any list if and only if the list can be represented as a

concatenation of prefixes of elements from F̃ . This fact holds because Lemma 3 and the way the algorithm

works. Thus, since we were able to learn gp when we first saw g, gp is a concatenation of prefixes from F̃old

i.e., gp ∈ DT(Pref(F̃old)). Then, since g = (gp, gs) ∈ DT(Pref(F̃old ∪ {gs})), we can learn g using F̃ .

Of course, we should show that the updated representation is more powerful than just allowing us to

learn repeated tasks in the future. To see how, note that since the target g is a concatenation of metafeatures

from F , its suffix gs must begin with the suffix of a metafeature from F . More formally, since g ∈ DT(F),
gs must begin with a suffix fs of an element f ∈ F . Let fp be the corresponding prefix of f . Now, consider

a future target that contains f . If the learner is able to identify all nodes in the target upto the end of prefix

fp, the learner is also guaranteed to identify f completely in the target. This tells us a little bit more about

the power of the updated representation.

Now, to prove our lemma, we use the fact that each failure of USEREP Algorithm 2 must correspond

to a specific element f ∈ F as seen above. That is, there must exist an f = (fp, fs) ∈ F such that f ⊆dl g
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and furthermore, USEREP was able to learn upto a prefix fp of f after which it failed. We claim that there

can only be O(K) failures of USEREP that corresponds to a particular f in this manner. From here, our

lemma immediately follows. To prove this claim, we will categorize the failures of USEREP corresponding

to f into two different cases and bound the number of failures in each case. Throughout the following

discussion, we will simply use the term failure to denote failure of USEREP.

We will divide failures corresponding to f based on whether fp can be represented as a concatenation

of prefixes from F̃old or not. If it can be, we show that it is easy to argue that in any future target there will

not be a failure corresponding to f . If not, we present a more involved argument to show that there can be

at most K failure events corresponding to a particular f . Then, the bound of O
(
K2
)

on the total number

of failures follows.

Case 1: For the first case we assume that fp ∈ DT(Pref(F̃old)). Then, clearly, this is true for the

new representation F̃ i.e., fp ∈ DT(Pref(F̃)). Furthermore, since there is a new element gs with fs as

its prefix, fs ∈ Pref(F̃). This implies that f ∈ DT(Pref(F̃)). This means that we can henceforth learn

an occurrence of f in a new target if learning has been successful until the beginning of f in that target.

In other words, there can never be another failure that corresponds to f . This case can hence occur only once.

Case 2: The second case corresponds to fp /∈ DT(Pref(F̃old)). We will now subdivide this case further

based on another metafeature f ′ ∈ F , a part of which lies in some hypothesized metafeature in F̃old and was

used to learn/match a part of f in gp. We will fix f ′ and argue that there can be at most two failure events

characterized by f and f ′ during the lifelong learning protocol. Since there are only K different f ′, then for

a fixed f , there can only be 2K failure events of this type, thus completing our proof.

We begin by informally explaining how we choose f ′ to classify a given failure event. We first note

that there are two ways in which gp can be represented in terms of the true metafeatures F . The “direct”

representation corresponds to the fact that g ∈ DT(F). On the other hand, there is also an “indirect”

representation: since Algorithm 2 could learn the prefix gp using F̃old, gp can be represented as a sequence

of prefixes from F̃old. Since each element in F̃old is a part of older targets from DT(F), we can represent

this sequence of prefixes in terms of parts of true metafeatures (that are not necessarily prefix/suffix parts).

Now, let the root variable of f be if . There must be a unique element in the sequence of prefixes that

contains if . We let f ′ be the metafeature in F that contributes to the last bit of this unique element in the

above-described indirect representation. Before we proceed to describe this more formally, we note that

this is all possible only because if indeed belongs to fp. If it did not, it means fp is an empty string, which

we have dealt with in Case 1.

We now state our choice of f ′ more formally. Since we were able to learn gp using F̃old we can write

gp = (Pref?(f̃l1),Pref?(f̃l2), . . .) for f̃l1 , f̃l2 , . . . ∈ F̃old where we use the notation Pref?(f̃) to denote a

particular prefix of f̃ . Let Pref?(f̃lr) be the unique element in the above sequence that contains if (we use

the index r to denote that it contains the root). Like we stated before, since f̃lr is also the suffix of some

old target in DT(F), f̃lr must be made up of parts of true metafeatures F . The same holds for Pref?(f̃lr)
too. We will focus on the true metafeature that makes up the last bit of Pref?(f̃lr). That is, let f ′ ∈ F
be the metafeature that occurs in an older target, such that a non-empty suffix of Pref?(f̃lr) comes from f ′

i.e., there exists suffix Suff?(Pref?(f̃lr)) such that Suff?(Pref?(f̃lr))⊆dl f ′. Here, again Suff?(f̃) is used

to denote a particular suffix of f̃ . Thus each failure event in this case can be characterized by a particular f
and f ′.

Note that Suff?(Pref?(f̃lr)) need not necessarily be a suffix of f ′ because f̃lr may have stopped matching

with g somewhere in the middle of f ′. It need not necessarily be a prefix of f ′ either because f̃lr is only a

suffix of some target in DT(F) and this suffix may have begun somewhere in the middle of f ′ in that target.

To show that there are at most two failure events for a given f and f ′, we will consider two sub-cases
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similar argument. The only difference is that now Suff?(Pref?(f̃lr)) is not necessarily a prefix of f ′ and

therefore, if ′ is not necessarily present in Suff?(Pref?(f̃lr)) (see Figure 5. However it is guaranteed that

a suffix of f ′ containing if is present in f̃lr . Now let Suff??(Pref?(flr)) be an alternative shorter suffix of

Pref?(flr) that begins only at if .

Now, consider a new target with a similar failure with a similar Suff
′
??(Pref

′
?(fl′

r′
)) that begins with if .

We will again show how we can use the updated representation to represent a larger prefix of g′ , specifically

a prefix that extends until the end of f in g′. In particular, we make use of the fact that the algorithm was able

to learn at least before if in this target, beyond which we can learn fp the way we did in the previous target,

and then append fs from the representation. More specifically, we first extend/shorten the prefix Pref
′
?(fl′

r′
)

that is used to match with g′p to another prefix Pref
′′
?(fl′

r′
) that it has the suffix Suff??(Pref?(flr)) (which is

only possible because if ∈dl Pref
′′
?(fl′

r′
)). On doing this, we can represent the rest of f using F̃ like in the

previous case.

Thus, we take the sequence (Pref
′
?(f̃l′1),Pref

′
?(f̃l′2), . . .) 1) we retain the first r′− 1 elements, 2) modify

the r′th element, 3) append the rth, r+1th, . . . elements from the representation for gp, 4) and finally append

fs. This represents a larger prefix of g that includes f completely, using only prefixes from F̃ . Namely, this

is (Pref
′
?(f̃l′1),Pref

′
?(f̃l′2), . . .Pref

′′
?(f̃l′

r′
),Pref?(f̃lr+1),Pref?(f̃lr+2), . . . , fs). This contradicts the fact that

we failed to learn f completely in g′.

4 Monomials

We consider lifelong learning of degree-d monomials under the belief that there exists a set of K mono-

mial metafeatures like {x1x2, x21x3, . . .} and each target can be expressed as a product of powers of these

metafeatures e.g., (x1x2)
2(x21x3). This is similar to the lifelong Boolean monomial learning discussed in

[5] where each monomial is a conjunction of monomial metafeatures. Since that is an NP-hard problem,

they assume that the metafeatures have so-called “anchor” variables unique to each. We will however not

need this assumption.

Formally, for any input x = (x1, x2, . . . xN ) ∈ R
N , we denote the output of a d-degree target monomial

g = (g1, g2, . . . , gN ) by the function Pg(x) = xg11 xg22 . . . xgNN where gi ∈ N∪{0} and the degree
∑

i gi ≤ d.

The unknown metafeature set F = {f1, f2, . . . fK} consists of K monomials. To simplify notations, we also

consider F to be a matrix where column i is fi. Therefore, if g can be expressed using F , then g lies in the

column space of F denoted by C(F). Then, our problem setup is as follows:

Problem Setup 2. The m d-degree targets g(1), . . .g(m) and the training data (each of at most S examples)

drawn from unknown distributions D(1), . . . ,D(2) satisfy the following conditions:

1. There exists an unknown N ×K matrix F (K � N ) such that g(j) ∈ C(F).
2. Each D(j) is a product distribution (as assumed in [5, 2]) that is not too concentrated (explained in

Appendix B).

Unlike the decision tree problem, where we only considered an abstraction of the learning routine, here

we present a particular technique for learning a monomial exactly. We show that under product distributions

that are not too concentrated, it is possible to exactly learn the power of a given feature in a target by exam-

ining only that feature on polynomially many samples (Lemma 22 in Appendix B). Naturally, we can learn

the monomial exactly from scratch as presented in Algorithm 15 in Appendix B from only polynomially

many samples. Then, in the lifelong learning model, by merely keeping a record of the features that have

been seen so far, it is fairly straightforward to learn only K targets from scratch while learning the rest by

examining O (Kd) features per example (Theorem 24).
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Algorithm 6 USEREP - Learning a Monomial from Metafeatures

1: Input: Metafeatures F̃ = [f̃1, . . . , f̃k] (k ≤ K), sample set S of size S.

2: Halt with failure if F̃ is empty.

3: Let I be the indices of those rows in F̃ that are linearly independent and let F̃ [I] be the corresponding

k × k sub-matrix of F̃ .

4: Examine features I on all samples and use Lemma 22 to learn and round off estimates g̃i for each i ∈ I.

5: Solve for w
F̃ [I](g[I]) in F̃ [I]w

F̃ [I](g[I]) = g[I]. If no solution exists, halt with failure.

6: Estimate g̃← F̃w
F̃ [I](g[I]).

7: Halt with failure if the degree of g̃ is greater than d.

8: Draw a single sample (x, Pg(x)), examine the features relevant to g̃. If Pg(x) 6= Pg̃(x), halt with

failure.

9: Return g̃.

probability 1 − O (δ). Also, since F̃ has at most K columns, from Lemma 7 we have that each time we

learn using the representation, we examine K features per example. Besides, we examine d features that are

relevant to g in Step 8.

Lemma 7. Let F̃ be an N × k matrix. Then, with high probability 1 − O
(
δ
m

)
, a) if g ∈ C(F̃), then

Algorithm 6 correctly learns and outputs g̃ = g b) if Algorithm 6 does output some g̃, then g̃ = g, c)

Algorithm 6 examines only at most k features per sample point and at most d features on a single sample.

Proof. a. Given that F̃ is of rank k, then if g ∈ C(F̃), there exists a unique solution for w
F̃
(g) in

F̃w
F̃
(g) = g. Note that this is a system of N linear equations in k. Therefore, if the Algorithm picked

any set of k linearly independent rows I = {i1, i2, . . . ik} from F̃ , there must exist a unique solution to

F̃ [I]w
F̃ [I](g[I]) = g[I] where the solution is w

F̃ [I](g[I]) = w
F̃
(g). Thus, solving this system will give

us the value of w
F̃
(g) from which we can compute g correctly using F̃w

F̃
(g) = g. This however re-

quires that we determine the values of gi1 , gi2 , . . . , gik from scratch, which we can do accurately with high

probability of 1−O
(
δ
m

)
from Lemma 22 (from Appendix B) using polynomially many samples.

b. To prove our second claim, observe that the only event in which the learner may potentially have an

incorrect output is when g /∈ C(F̃) but we still do learn a w
F̃ [I] because it so happens that g[I] ∈ C(F̃ [I]).

However, g̃ = F̃w
F̃ [I](g[I]) 6= g. If g̃ has a degree greater than d, the algorithm halts with failure.

Otherwise, we can show using Lemma 25 (see Appendix B) that by drawing a single sample and checking

whether Pg̃(x) = Pg(x) we can conclude whether g = g̃.

c. This follows directly from the design of the algorithm: we examine only K features on all samples,

and then on a single new sample we examine features relevant to g̃ provided g̃ has degree at most d.

4.1 Polynomials

In this section, we study lifelong learning of real-valued polynomial targets each of which is a sum of at most

t degree-d monomials. Similar to the Boolean model in [5], our belief is that there exists a set of monomial

metafeatures such that each monomial in the polynomial can be expressed as a product of these metafeatures

like we described in the previous section. As an example, given F = {x1x2, x21x3, . . .}, one possible target

is 3(x1x2)(x
2
1x3) − 5(x1x2)

2(x21x3). Again, we assume that each D(j) is a product distribution over RN .

Since polynomial learning is a hard problem, we will have to make a strong assumption that each D(j)

is known, which then enables us to adopt the polynomial learning technique from [2]. Note that we can

relax this assumption when all the distributions are common (like it is assumed in [5]), so that the common
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distribution can first be learned using O (poly(N)) feature evaluations on unlabeled examples. However,

if the distributions were all different, learning them may need O (poly(mN)) feature evaluations, which

would be feature-inefficient.

Formally, for any input x ∈ R
N , we denote the output of a t-sparse d-degree target polynomial G =

{(g1, ag1), (g2, ag2), . . .} (|G| ≤ t) by the function PG(x) =
∑

(g,ag)∈G
agPg(x) where for each (g, ag) ∈

G, g is a monomial of degree d and co-efficient ag ∈ R. Our belief is that there exists a set of monomial

metafeatures F , and each polynomial can be represented as a sum of monomials, each of which can be

represented using F as described in Section 4. More formally, a polynomial G can be represented using F
if for each (g, ag) ∈ G, g ∈ C(F). More compactly, G(j) ⊂ C(F) × R. Then, our problem setup is as

follows.

Problem Setup 3 (Lifelong polynomial learning). The m d-degree t-sparse targets G(j) and data S(j)
(each of at most S examples) satisfy the following conditions:

1. There exists an unknown N ×K matrix F (K � N ) such that each G(j) ∈ C(F)× R.

2. The samples in S(j) are drawn i.i.d from a known product distribution D(j) 5.

4.1.1 Learning a polynomial from scratch

We now briefly discuss the algorithm in [2] for learning a polynomial from scratch from a known distribu-

tion. The basic idea is to use correlations between the target and some cleverly chosen functions to detect the

presence of different monomials in G. For the sake of convenience, assume there exist correlation oracles

that when provided as input some function P ′, return the exact value of the correlations 〈P ′(x), PG(x)〉,
〈P ′(x), P 2

G(x)〉 etc., In practice these oracles can be replaced by approximate estimates based on the sam-

ple S . We will limit our analysis to the exact scenario noting that it can be extended to the sample-based

approach in a manner similar to [2]. Our guarantees will then hold good with high probability, given suffi-

ciently many samples.

To simplify the discussion we will assume like in [2] that the distribution over each variable is identical

i.e., D = µN . Then, as a first step, given D, the learner creates an inventory of polynomials in each variable

xi such that these polynomials represent an “orthornormal bases” with respect to D. More formally, the

inventory will consist of polynomials Hd′(xi) of degree d′ (identical for each i ∈ [N ]) for each 0 ≤ d′ ≤ d,

such that E[Hd′(xi)Hd′′(xi)] is zero when d′ 6= d′′ and is one when d′ = d′′.
Equipped with this machinery, we then set out to perform t iterations extracting one monomial from G

at a time. Assume that from the iterations performed so far, we have extracted a set of monomials and their

coefficients G̃ ⊆ G. Now, for the next iteration, we first find the largest power of x1 that is present in G − G̃
by testing whether 〈H2d′(x1), (PG − P

G̃
)2〉 > 0 for d′ = d, d − 1, . . . in that order. These tests detect the

presence of xd1, xd−1
1 , . . . respectively. We stop when the test is positive for some xd11 . The curious reader

can refer [2] to understand why this particular test works, but all we need to know for our discussion is that

if these tests are done in this particular order, we are guaranteed to find the highest power of xd11 in G − G̃.

Then, we find the largest power of x2 that “co-occurs” with xd11 in some monomial, by testing whether

〈H2d1(x1)H2d′(x2), (PG − P
G̃
)2〉 > 0 for d′ = d, d − 1, . . . to detect the presence of xd11 xd2, x

d1
1 xd−1

2 , . . .
and so on in that particular order. In this manner, the algorithm builds a monomial over N sub-iterations

which turns out to be the lexicographically largest g present in G − G̃. Now, to compute the co-efficient

ag we find 〈
∏N

i=1(bgiHgi(xi)), PG〉 where bgi is the co-efficient of xgii in Hgi(xi). The algorithm then adds

(ag,g) to G̃ before proceeding to the next of t iterations.

The above summary differs from that original algorithm presented in [2] in the precise quantity that it

extracts in each iteration. [2] consider a representation of the polynomial in the orthornormal bases such

that it is a weighted sum of terms of the form Hd1(x1)Hd2(x2) . . . HdN (xN ), and in each iteration they

5This is the model considered in [2]. An upper bound on S can be found in [2].

18



extract one such term. We however use the representation in the orthonormal bases only to detect the

lexicographically largest monomial and its corresponding co-efficient and then remove the monomial itself.

4.1.2 Lifelong Polynomial Learning

As a baseline in the lifelong learning model, we can learn the targets by making O (S(KN +mKd)) feature

evaluations by simply remembering what features have been seen so far (Theorem 26 in Appendix B.3).

Below, we present an approach that makes only O (S(KN +m(K + td))) feature evaluations. This is an

improvement for sparse polynomials t < K e.g., when t = O (1).
The high level idea is to maintain a metafeature set of “linearly independent monomials” picked from

previously seen targets, like we did in the previous section. When learning a target using F̃ , we perform

t iterations to extract the monomials, but now in each iteration we find the lexicographically largest power

restricted to at most K features. These K features, say I, correspond to linearly independent rows in

F̃ . Given the powers of these features, say g[I], we can determine powers of all the features using the

representation like we did in the case of monomials. Then, as before, we extract g from the polynomial and

proceed to the next iteration. After t iterations, our estimate of the polynomial is complete, so we draw a

single example to verify it. If our verification fails, we learn the polynomial from scratch and update the

representation with more linearly independent monomials from the learned polynomial.

Note that the restricted lexicographic search examines only a fixed set of K features per example. Be-

sides this, in each of the t iterations, we evaluate d features relevant to the extracted monomial, accounting

for K + td feature evaluations per example.

Algorithm 7 IMPROVEREP - Polynomials

1: Input: Representation F̃old and a target G learned from scratch.

2: F̃ ← F̃old

3: for g ∈ G do

4: If g /∈ C(F̃), add g as a column to F̃ .

5: Return F̃

Theorem 8. The (USEREP Algorithm 8, IMPROVEREP Algorithm 7)-protocol for polynomials makes

O (S(KN +m(K + dt))) feature evaluations overall and runs in time poly(m,N,K, S, t).

Proof. Below in Lemma 9, we show that we increase the rank of F̃ by at least one every time we fail to

learn using F̃ on some target. If USEREP has failed on more than K targets it means that there are at least

K + 1 monomials from C(F) that were added as columns to F̃ and are linearly independent. However,

since C(F) is a K-dimensional subspace in R
N , this results in a contradiction, thus proving that at most K

failures of USEREP can occur. The result then follows from Lemma 9 and the fact that |F̃ | contains only at

most K targets.

Lemma 9. Let F̃ be an N × k matrix. Then, a) if G(j) ∈ C(F̃), then Algorithm 8 correctly learns and

outputs G̃(j) = G(j) b) if Algorithm 8 does output some G̃(j), then G̃(j) = G(j). Also, Algorithm 8 examines

only at most k + td features per sample point.

Proof. a. Assume G(j) ∈ C(F̃). The fact that in each iteration, we find the lexicographically largest value

for the features I follows directly from the discussion in [2]. However, we do have to prove that there is a

unique g in G such that g[I] corresponds to the above value. This follows from the proof of Lemma 7 where
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Algorithm 8 USEREP - Learning Polynomial from Metafeatures

1: Input: Metafeatures F̃ = [f̃1, . . . , f̃k] (k ≤ K), distribution D
2: Halt with failure if F̃ is empty.

3: Let I be the indices of those rows in F̃ that are linearly independent and let F̃ [I] be the corresponding

k × k sub-matrix of F̃ .

4: Query for only the features I on all samples.

5: Initialize G̃ to be empty.

6: for t iterations do

7: Let g be the lexicographically largest monomial in G − G̃ with respect to I. Find g[I] using the

lexicographic search technique from [2] using the correlation oracle (in practice, estimate this using

the S).

8: Solve for w
F̃ [I](g[I]) in F̃ [I]w

F̃ [I](g[I]) = g[I]. If no solution exists, halt with failure.

9: Estimate g̃← F̃w
F̃ [I](g[I]).

10: Halt with failure if the degree of g̃ is greater than d.

11: ag̃ ← 〈
∏N

i=1(bgiHgi(xi)), (PG − P
G̃
)〉

12: G̃ ← G̃ ∪ {g̃}
13: Draw a single sample (x, PG(x)) fromD, query the td features that are relevant to G̃. If PG(x) 6= P

G̃
(x),

halt with failure.

14: Return G̃.

we showed that for I corresponding to linearly independent rows, w
F̃ [I](g[I]) = w

F̃
(g) and hence given

w
F̃ [I](g[I]) there is a unique g ∈ C(F) defined by g = F̃w

F̃ [I](g[I]).
Now, we need to prove that we find a co-efficient ag̃ for the to-be-extracted monomial, that satisfies

ag̃ = ag. We first note that 〈∏N
i=1Hgi(xi), (PG−PG̃

)〉 returns the co-efficient of
∏N

i=1Hgi(xi) in (PG−PG̃
),

say a′
g

, in the basis representation of the polynomial. Next, we claim that the co-efficient a′
g

in the bases

representation is contributed to purely by the co-efficient ag in the monomial representation. If there was

any other monomial that contributed to a′
g

, then it had to have a lexicographically larger value than g with

respect to I or equal to g with respect to I. However, this contradicts the fact that g was chosen to be the

unique lexicographically largest value with respect to I. Thus, we only need to account for the contribution

of the co-efficient of
∏N

i=1Hgi(xi) with an extra factor of bgi which corresponds to the co-efficient of xgii
within Hgi(xi).

b. This follows from the proof of Lemma 7 and Lemma 25 applied to polynomials.

c. First of all, we examine k features when we query I on all samples. Now, note that when we execute

the algorithm using samples for the correlation oracles, we will have to compute P
G̃
(x) on each sample x.

This however will only require evaluation of features relevant to G̃. Since G consists of at most t monomials

each of degree at most d, this can be only as large as td.

Sample-based estimation: We note that when we replace the oracles by estimation using random samples,

we should be careful about approximation errors that may affect the lifelong learning protocol. For example,

if we were to infer that a monomial term exists in G, when in reality it does not, we may incorrectly add it to

our representation F̃ when it should not be. However, if the co-efficients of each term in the polynomial were

not too small, we can overcome this problem by learning the co-efficient of the monomial, and checking

whether it is above a small threshold, before deducing that it indeed is a term in the polynomial.

20



5 The Agnostic Case

We propose a novel agnostic lifelong learning model where the learner faces m+ r learning tasks of which

m tasks are guaranteed to be related through the K metafeatures in F while the other r tasks are arbitrary.

Note that this is different from the conventional sense of agnostic learning where each individual task may

involve model misspecification or noisy labels. What makes this challenging is that the r “bad” targets

can be chosen and placed adversarially in the stream of tasks. Since in the worst case there is no hope of

minimizing feature evaluations done on the bad targets, we adopt the natural goal of reducing the feature

evaluations on the training data of the m good targets.

Problem Setup 4. In the agnostic model, the learner is faced with a series of m+ r targets such that:

1. m (good) targets are guaranteed to be related to each other through a set of at most K metafeatures,

while the remaining r (bad) targets can be adversarially chosen and placed.

2. the learner has to reduce the feature evaluations done on the samples for the m related targets.

We focus our discussion on learning decision trees with depth d = O (1) noting that it is straightforward

to extend it to learning more general decision trees and to other targets. In fact, in the following discussion,

it may be helpful to imagine the targets to be decision stumps over just one feature and the metafeature set

F̃ to simply be a set of K features. Now, recall that in the original setup, F̃ consisted of O (K) useful

metafeatures from at most K targets that were learned from scratch USEREP failed to learn them. A

problem that arises now is that F̃ may have been updated with metafeatures from bad targets. Then, even

if F̃ contained K metafeatures, we cannot guarantee that future good targets can be learned using F̃ . What

should we do then?

To address this, we present two simple computationally-efficient solutions below that highlight an

interesting trade-off between the number of targets learned from scratch and the number of features

evaluated on the remaining targets. In the r-expansion technique, we allow the learner to update F̃ on

every failure of USEREP allowing the representation to get as large as it can. In the r-restart technique, we

restrict the size of the representation but however, whenever the representation is “bad”, we erase and start

learning the representation all over again.

r-expansion technique Observe that since m targets belong to DT(F), there exists a representation

of at most O (K + r) metafeatures that is sufficient to describe all the m+ r targets: a representation that is

the union of F̃ and the r bad targets as they are. Thus, we allow the lifelong learner to update F̃ whenever

its USEREP fails, which would result in a representation of at most O (K + r) metafeatures. USEREP

will fail on at most K good targets (and possibly on all the r bad targets which we do not care about) and

learn the rest successfully evaluating O (K + r) features per example. Note that this protocol is essentially

identical to the original protocol in Algorithm 1.

r-restart technique Alternatively, we enforce |F̃ | ≤ K as before but when USEREP fails on a

K + 1th target, we learn that target from scratch after which we simply erase F̃ and effectively restart our

lifelong learning from the next task. Every time USEREP fails on a K + 1th target after the most recent

restart, we restart similarly. This technique learns more targets from scratch, O (rK) targets in particular,

but evaluates only O (K) features per example on the remaining targets. The protocol is described more

formally in Algorithm 9.
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Algorithm 9 r-restart based (AUR,AIR)-protocol for agnostic lifelong learning in the model of Problem

Setup 4

1: Input: A sequence of m + r training sets S(1),S(2), . . . , corresponding to targets g(1), g(2), . . ., m of

which can be represented using an unknown set F of K metafeatures.

2: Let F̃ be our current learned representation. Initialize F̃ to be empty.

3: for j = 1, 2, . . .m+ r do

4: Using F̃ and S(j), attempt to cheaply learn g(j) with USEREP algorithm AUR.

5: if learning was not successful then

6: Extract all features in S(j) and learn g(j) from scratch.

7: If |F̃ | = K, assign an empty representation to F̃ .

8: Provide F̃ and g(j) as input to IMPROVEREP algorithm AIR to update F̃ .

When r = O
(
max

(
m
N
, KN

m
,K
))

, it is easy to see that one of these two techniques makes only

O (S(KN +mK)) feature evaluations, which is as good as the performance when r = 0. To deal with

larger values of r, we describe a combined technique that deals with the trade off carefully and does better

than both the above:

Theorem 10. In the agnostic model where we face m+ r decision tree targets such that m trees belong to

DT(F), the number of feature evaluations on the training data for the m trees:

• the r-expansion technique is O (S(KN +m(K + r))).
• the r-restart technique is O (S(rKN +mK)).
• a combination of c-expansion and r/c-restart is O(S(

√
rKNm + Km)), for c =

√

rKN/m pro-

vided r = Ω(max (m/n,KN/m,K)).

Proof. In r-expansion, we allow F̃ to have as many as O (K + r) metafeatures. Now, every bad target may

result in adding O (1) metafeatures to F̃ while the m bad targets will result in adding O (K) metafeatures

to F̃ . Thus, we will be able to learn all but m good targets using F̃ by examining only O (K + r) features

per example i.e., O (S(rKN +mK)) features overall.

In r-restart, every time USEREP fails on a K + 1th target, we learn that target from scratch and then

erase F̃ effectively restarting our lifelong learning. Now, at least one of the K+1 trees learned from scratch

must be a bad target. This is because if none of the K trees that were used to update F̃ were bad, F̃ would

have been rich enough to represent all the good targets. This means that the K + 1th target has to be a bad

target. Thus, every restart corresponds to a failure of USEREP on at least one bad target and at most K
good targets. Then, we will face at most r such restarts, learning at most rK targets from scratch during the

process and the rest from only O (K) features per example i.e., O (S(KN +m(K + r))) features overall.

Now when r = O
(
max

(
KN
m

,K
))

observe that r-expansion makes only O (S(KN +mK)) feature

evaluations. Similarly, when r = O
(
m
N

)
, r-restart makes O (S(KN +mK)) feature evaluations. This is

as good as our performance when r = 0.

To deal with r = Ω
(
max

(
m
N
, KN

m
,K
))

, we can combine the above techniques, in particular, we com-

bine r
c
-restart with c-expansion. That is, between every restart we allow F̃ to accommodate O (K + c)

metafeatures and when USEREP fails on the K + c + 1th target we restart the representation. Recall that

each bad target may contribute O (1) metafeatures while all the good targets contribute to O (K) metafea-

tures. Thus, between every restart USEREP would have failed on at most K good targets and at least

c + 1 bad targets. Since there are only r bad targets, we then face only O
(
r
c

)
restarts. Since we learn only

O
(
r
c

)
· K targets from scratch and learn the rest by examining only O (K + c) features per example, we

evaluate O
(
S( r

c
KN +m(K + c)

)
) features overall.

The value of c that optimizes the above bound is c∗ =
√

rKN
m

and the minimum is

O
(

S(
√
rKNm+mK)

)

. But note that c∗ must take a meaningful value for this bound to hold good.

22



That is, for c-expansion to make sense, we need c∗ ≥ 1 and for r
c∗

-restart to make sense, r
c∗
≥ 1. That is,

we need c∗ ∈ [1, r], which can be verified to hold good when r = Ω
(
max

(
m
N
, KN

m
,K
))

.

6 Lower bounds

We prove lower bounds on the performance of any lifelong learner under different ranges of r in the agnostic

model. In particular, we prove tight lower bounds for sufficiently small and large values of r, ignoring other

problem-specific parameters and the sample size parameter S (that scaled only logarithmically with N for

most of our target classes). An interesting insight here is that when r is too large, we prove that no learner is

guaranteed to succeed by making O (mN) feature queries, which means that lifelong learning is no longer

meaningful for really large values of r.

Our main idea is a randomized adversary that poses decision stumps (trees with only the root node)

or degree-1 monomials to the learner. In particular, we use Lemma 12 where we show that when the

adversary picks one feature at random from a pool of N ′ features to be the decision stump/monomial, if

the learner examines only o(N ′) features, the learner will fail to identify the correct feature for the target

with probability Ω (1). Thus, for the learner to successfully complete the task, it must examine Ω (N ′)
features. Then to force a learner to examine O (KN +mK) features, the adversary picks K distinct features

at random from the pool of N features for the first K targets. Then it assigns these K features as the

metafeatures and picks the remaining targets at random from this chosen set of K features.

Theorem 11. Let rmin = max
(
m
N
, KN

m
,K
)
, rmax = min

(
mN
K

, (N−K)2m
KN

)

. In the agnostic model of

Section 5, there exists an adversary such that, on the m good trees, any lifelong learner makes:

• Ω (NK +Km) feature evaluations when 0 ≤ r ≤ rmin.

• Ω
(

max
(

r
N−K

, 1
)

KN +Km
)

feature evaluations when rmin ≤ r ≤ rmax.

• Ω (mN) feature evaluations when rmax ≤ r.

Proof. In Lemma 12 we design our randomized adversary. We prove Theorem 11 in the following three

lemmas one for each range of r. First in Lemma 13 we prove a lower bound of Ω (KN +mK) that holds

for any value of r. Then in Lemma 14 we prove a lower bound for intermediate values of r and finally in

Lemma 15, we prove a lower bound for large values of r.

Lemma 12. (Randomized adversary) For a particular task, if the adversary picks a feature from a pool

of N ′ features (N ′ ≤ N ) to pose a single-feature target6, if the learner examines only o(N ′) features, the

learner will fail (i.e., pick the wrong feature) with probability Ω (1).

Proof. Let i∗ be the feature chosen by the adversary at random from a pool of N ′ features I∗, and I be the

set of features examined by the learner. The random choice of i∗ corresponds to different possible outcome

events. But observe that from the perspective of the learner the events corresponding to i∗ /∈ I (the adversary

picking a feature not examined by the learner) are all indistinguishable. This crucial observation tells us that

in all such events, the learner will adopt the same strategy. Let Prl(i) denote the probability that the learner

outputs feature i in this strategy. Let Pra(i) denote the probability that the adversary chose feature i at

random from its pool of N ′ features.

Then, the probability that the learner fails is at least the sum of probability of the event that the adversary

picks an i from I∗−I and the learner does not pick i. We lower bound this probability
∑

i∈I∗−I Pra(i)(1−
Prl(i)) as follows:

6It does not matter if the learner knows these N ′ features or not.
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∑

i∈I∗−I

Pra(i)
︸ ︷︷ ︸

1
N′

(1− Prl(i)) =
1

N ′

∑

i∈I∗−I

(1− Prl(i)) ≥
1

N ′

(

|I∗ − I| −
∑

i∈I∗−I

Prl(i)

)

≥ 1

N ′

(
N ′ − o(N)− 1

)
= Ω(1)

The second inequality follows from the fact that
∑

i∈I∗−I Prl(i) ≤ 1 and the number of examined features

|I| = O (N ′).

Lemma 13. There exists an adversary such that any lifelong learning algorithm makes Ω (KN +mK)
feature evaluations.

Proof. For the first K single-feature targets, our adversary randomly picks K distinct features which will

be the metafeatures. Each of the remaining m − K tasks are targets that correspond to one of these K
chosen features at random. Now note that for a task j where j ≤ K, the adversary effectively picks a feature

at random from a pool of N − j + 1 features (which excludes the j − 1 features already chosen). Thus,

the learner has to examine Ω (N − j + 1) features in order to not fail in this task with probability Ω (1).

Thus, over the first K tasks, the learner has to examine O
(
∑K

j=1N − j + 1
)

= Ω(KN) features over

all. Then, in each of the following m − K tasks, the learner has to examine Ω (K) features per task i.e.,

Ω ((m−K)K) features overall, which is Ω (mK) since m is large.

Now we prove a better bound for values of r greater than rmin = max
(
m
N
, KN

m
,K
)

but less than

rmax = min
(
mN
K

, (N−K)2m
KN

)

. Here, instead of precisely choosing m good targets and r targets, the

adversary will pose a set of targets and then choose K features to be the metafeatures. We then show that

Θ(m) of the targets are good targets and Θ(r) targets are bad targets that correspond to the remaining

N −K features.

Lemma 14. (Lower bound for intermediate values of r) When r ≤ rmax, there exists an adversary such

that any lifelong learning algorithm makes Ω
(

max
(

r
N−K

, 1
)

KN +Km
)

feature evaluations.

Proof. When r
N−K

≤ 1, the lower bound of Ω (KN +Km) follows from Lemma 13. Hence, consider
r

N−K
> 1. Let m′ = rN

(N−K) . The adversary first presents m′ single-feature targets picked at random from

the pool of all N features. Then the adversary chooses K random features to be the metafeatures, hence

marking targets corresponding to these K features as good targets, and the rest as bad.

Now, we can show that there are in fact Θ(m) good targets and Θ(r) bad targets, thus ensuring that

this is a legal sequence of adversarial targets. Since m′ = r
N−K

N ≥ N , using Chernoff bounds, with high

probability 1−O(1), we have Θ
(
m′N−K

N

)
= Θ(r) bad targets and Θ

(
m′K

N

)
= Θ

(
rK

(N−K)

)

good targets.

Since, r ≤ (N−K)2m
KN

, this translates to Θ
(
(N−K)m

N

)

= O (m) good targets. Thus, this is a valid sequence

of targets.

Now, from Lemma 12, we get that the learner has to evaluate Ω
(

rK
(N−K) ·N

)

features overall. In addi-

tion to this, the adversary presents a sequence of m good targets chosen at random from the K metafeatures.

Note that this is legal because we still pose only θm good targets. This accounts for Ω (mK) more feature

evaluations.

In total, the learner examines Ω
(

rK
(N−K) ·N +mK

)

features.
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We finally show that for sufficiently large r i.e., r ≥ rmax and r ≥ rmin, the learner has to evaluate

Ω (mN) features.

Theorem 15. (For large r) Given r ≥ rmax and r ≥ rmin, there exists an adversary such that any lifelong

learning algorithm makes Ω (mN) feature evaluations.

Proof. The range of values of r such that r ≥ rmax = min
(
mN
K

, (N−K)2m
KN

)

can be split into the interval

r ≥ mN
K

and the interval
(N−K)2m

KN
≤ rmN

K
. We will consider these two intervals separately and provide

adversarial strategies for both.

Case 1: r ≥ mN
K

. Let m′ = mN
K

. The adversary poses m′ targets to the learner chosen at random from

all the N features. Thus, the learner is forced to examine Ω (N) features on each target. Then, the adversary

chooses K features to be good features, thereby marking some of the targets as good targets. We show that,

of the m′ targets, there are Θ(m) good targets and only O (r) bad targets. Therefore, this is a valid sequence

of targets and furthermore, on this sequence the learner examines Ω (m ·N) features.

To count the number of good targets, we observe that m′ = Ω
(
N
K

)
. Then from Chernoff bounds, with

high probability 1 − O(1), we have that Θ
(
m′K

N

)
i.e., Θ(m) targets are good targets. Since m′ ≤ r, we

have only O (r) bad targets.

Case 2: r < mN
K

, r ≥ (N−K)2m
KN

. Now, we set m′ =
√

rNm
K

and sample m′ targets at random from the

pool of all N features. Then we pick K random features to be the metafeatures and then present m good

targets choosing randomly from the pool of K metafeatures.

To count the number of good targets in the first sequence of m′ targets, observe that m′ ≥ N because

r ≥ KN
m

. Hence, with high probability 1−O(1), the number of good targets is Θ
(
m′K

N

)
= Θ

(√
rKm
N

)

.

Since r ≤ mN
K

, this is O(m). Similarly, with high probability 1 − O(1), the number of bad targets is

Θ
(
m′N−K

N

)
= Θ

(√
rNm
K
· N−K

N

)

= Θ

(√
r ·
√

(N−K)2m
KN

)

. Then using the inequality r ≥ (N−K)2m
KN

,

we get that the number of bad targets is O(r). Thus, this is a valid sequence of targets. Furthermore, on

Θ

(√
rKm
N

)

good targets, the learner is forced to examine Ω (N) features. Thus, on the first sequence

the learner examines Ω
(√

rKmN
)

features overall. Since r ≥ (N−K)2m
KN

, this is Ω (m(N −K)). On the

second sequence the learner examines O (mK) features overall. In total, this is Ω (mN) feature evaluations.

7 Discussion and Open Problems

Lifelong learning is an important goal of modern machine learning systems that has largely been stud-

ied only empirically. In this work, we theoretically analyze lifelong learning from the perspective of

feature-efficiency. More specifically, we show how, when a series of tasks are related through metafeatures,

knowledge can be extracted from previously-learned tasks and stored in a succinct representation in order to

learn future tasks by examining only few relevant features on the training datapoints. To this end, we present

feature-efficient lifelong learning algorithms with guarantees for widely studied classes of targets, namely,

decision trees, decision lists and real-valued monomials and polynomials. We also present algorithms for

an agnostic scenario where some of the targets may be adversarially unrelated to the other targets. Finally,

we derive lower bounds on the feature-efficiency of a lifelong learner in this model, which show that under

some conditions, the guarantees of our algorithms are tight.
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An open technical question is whether our lower bounds can be extended to incorporate problem-

specific parameters such as the depth of a tree/list or the degree of a monomial/polynomial. In particular,

while the feature-efficiency bound for our decision tree learning algorithm has a dependence of Kd, it

is not clear whether a bound of K + d is achievable. Another open question is whether it is possible to

characterize the hardness of recovering the metafeatures exactly in the case of decision trees and lists (even

though our algorithms work without having to recover the metafeatures exactly). Finally, we note that as a

high level direction for theoretical research in lifelong learning, it would be interesting to explore different

ways of formalizing task relations for various families of targets, and to explore the different kinds of

resource-efficiency bounds they can guarantee, while also understanding their limitations.
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A Decision Trees

We first present proofs from Section 3. Then, in Appendix A.2, we present results for more models of

decision trees.

A.1 Proofs from Section 3

Now, we present our baseline lifelong learning algorithm that simplyremembers features that have been seen

as metafeatures in its learned representation.

Theorem 16 (Naive lifelong learning of decision trees). There exists a naive lifelong learning protocol for

decision trees in the model of Problem Setup 1 evaluates O (S(KN +mKs)) features overall.

Proof. The naive approach follows from a simple observation. If we knew beforehand the set of features

that are involved in a tree g(j), then in order to learn the tree, at any given node we require the learner to

evaluate Gain only over these features to determine the best split at that node. Thus, our protocol will

just maintain the set of features present in any tree learned from scratch so far, so that USEREP can use

these as “metafeatures” to carry out its evaluations limited to these features. Then, any target that can be

represented using metafeatures f ∈ F that have been seen before in some other target, will be learned

using our metafeatures. In other words when USEREP fails, the target is guaranteed to contain an “unseen”

metafeature fromF . Thus, we will learn targets from scratch at most |F| = K times. Since each metafeature

in F has at most s distinct features, we will have to evaluate only at most Ks features when not learning

from scratch.

We now present the pseudocode for the different subroutines described informally in our discussion.

Algorithm 10 AFFIX(f, u, f ′): Affix f ′ to f at empty leaf node u in f

1: Input: Incomplete decision trees f, f ′, empty leaf node u in f
2: Assign to var(u) the root variable of f ′.

3: Create descendants nodes of u and assign variables to them such that the tree rooted at u is identical to

f ′.

Algorithm 11 LABEL(f, u, l): Assign l to u in f

1: Input: Incomplete decision tree f , empty leaf node u in f , label l ∈ {+,−}
2: Assign to leaf node u the label l.

Algorithm 12 CONFLICT(f, w, u, f ′) and INDUCE(f, w, u, f ′)

1: Input: Incomplete decision trees f, f ′, node w in f , node u that is a descendant of w or equal to w
itself.

2: Let V be the set of nodes in f that are ancestors of u but not of w.

3: Map w in f to the root node of f ′.

4: Similarly map all descendant nodes of w from V to the nodes in the corresponding path in f ′.

5: Output of CONFLICT(f, w, u, f ′): If there are two internal nodes v ∈ f and v′ ∈ f ′ mapped to each

other but v ∈ V , var(v) 6= var(v′), output true. Else output false.

6: Output of INDUCE(f, w, u, f ′): Let u′ be the node from f ′ mapped to u. Output var(v′).
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We now prove our result for the semi-adversarial model, where in any given target, each f ∈ F has at

least a pmin probability of being the topmost metafeature.

Theorem 17 (Lifelong learning of decision trees in semi-adversarial model). There exists a lifelong

learning protocol for decision trees that evaluates O
(

1
pmin

log K
δ
·N +m(K + d)

)

features overall in a

semi-adversarial model where each element ofF has at least a pmin probability of being the topmost element

of any target. The protocol learns only the first O
(

1
pmin

log K
δ

)

targets from scratch, adds them to F̃ and

then uses USEREP Algorithm 2 to learn all the subsequent targets from F̃ .

Recall that direct application of Lemma 4 implies that we will learn the subsequent targets examining

O
(

1
pmin

logK + d
)

features per example. However, a more careful analysis making use of the fact that

each element in F̃ is in fact from DT(F) shows that we will examine only O (K + d) features per example.

Note that this is an improvement because 1
pmin

logK ≥ K logK.

Proof. Consider the protocol from Theorem 17 that learns the first O
(

1
pmin

log K
δ

)

targets from scratch, and

adds them all to F̃ . Then with probability at least 1− δ, each metafeature from F will be at the top of some

metafeature from F̃ . That is, DT(F) ⊆ DT(Pref(F̃)). Then, from Theorem 2 clearly Algorithm 2 can

learn any future target from DT(F) as the target will also lie in DT(Pref(F̃)). Now, by a direct application

of Theorem 2 this means we evaluate O
(

1
pmin

log K
δ
+ d
)

features per example.

However, we can prove a tighter bound of O(K + d) by following the proof technique for Lemma 4

but using to our advantage the fact that the metafeatures in F̃ are not arbitrary trees, but in fact members

of DT(F). First of all, observe that the number of type A costs along any path is in fact K and not |F̃ |
because the metafeatures in F̃ can have only one of at most K variables at its root. Now, for the first case

within type B, we will pay a cost of d as before. However, for the second case, observe that any variable

that is induced at u by a metafeature f̃ ∈ F̃ , is in effect induced by a metafeature f ∈ F . That is, when we

compute INDUCE(g̃, wf̃ , u, f̃) for some metafeature f̃ ∈ F̃ , we effectively compute INDUCE(g̃, wf , u, f)
for some metafeature f ∈ F . Similarly we can argue that whenever we make ku distinct feature queries at a

particular node u during the algorithm, for all nodes beyond u in that path, we effectively eliminate queries

arising from ku − 1 metafeatures from F (and not F̃ as before). This will result in a total cost of |F| = K
for this case.

A.2 More Lifelong Learning Models for Decision Trees

A.2.1 Decision Trees with Anchor Variables

In this section, we consider a lifelong learning model of decision trees that assumes a more structured repre-

sentation where each metafeature in F̃ has a variable at its root that does not occur in any other metafeature.

Problem Setup 5. Besides the assumptions in Problem Setup 1, we assume that for each metafeature fi ∈ F
there exists a unique anchor variable ai ∈ [N ] that occurs only at the root node of fi and not in any other

node of fi or any other metafeature of F .

In this setup, we again use USEREP Algorithm 2. However, for IMPROVEREP, we modify Algorithm 3

slightly. More specifically, after identifying a path in g that was learned incorrectly using F̃ , we pick exactly

one subtree from this path and add it to F̃ (instead of all d subtrees). We show that the total number of

features evaluated reduces from a factor of Kd to K + d.

Theorem 18. In the model of Problem Setup 5, the (USEREP Algorithm 2,IMPROVEREP Algorithm 13)-

protocol for decision trees evaluates O (KN +m(K + d)) features overall.
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Proof. Like we did in the proof for Theorem 1, we will show by induction that if k targets have been learned

from scratch, then there exists a set of k true metafeatures F ′ ⊆ F such that each metafeature f ∈ F ′ is the

prefix of some metafeature in F̃ . Then as we saw earlier, after learning K trees from scratch, we can show

that learning using F̃ will never fail. To prove our induction hypothesis, we claim that in any incorrectly

learned path of g, the topmost node (say u) that conflicts with the incorrect output g̃ has to contain an anchor

variable that is not at the root of any metafeature in F ′. This would mean that when we place the subtree

rooted at u in F̃ , we are adding a tree whose suffix is an f ∈ F that does not belong to F ′. Essentially, we

strictly increase the number of learned metafeatures by 1 for every failure of USEREP.

Now we need to prove that u, the topmost conflicting node in some path of g indeed contains an anchor

variable that is not at the root of any metafeature from F ′. Let u′ be the corresponding node in g̃. This

means that for all ancestors of u′, we assigned the correct variable, but something went wrong in u′ and

hence var(u) 6= var(u′).
Now, if var(u) was an anchor variable, but one that occurs already at the root of some f ∈ F ′, we

will certainly assign var(u) to u′ which is a contradiction. On the other hand, consider the case in which

var(u) is a non-anchor variable. Then u corresponds to a metafeature f that occurs in g and furthermore, the

anchor variable in f is in one of u’s ancestors, say wf . In other words, CONFLICT(g, wf , u, f) is false and

INDUCE(g, wf , u, f) = var(u). Note that by definition of w′, the corresponding node of wf in g̃, say w′
f ,

has been assigned the correct anchor variable var(wf ). Note that in the algorithm this assignment would

have corresponded to a particular metafeature f̃ ∈ F̃ and a node w′

f̃
in g̃ such that CONFLICT(g̃, w′

f̃
, w′

f , f̃)

is false and INDUCE(g̃, w′

f̃
, w′

f , f̃) = var(wf ). By the run of Algorithm 13, we have that in f̃ , if the anchor

variable of f exists then f exists as a whole too. More formally, this translates to CONFLICT(g̃, w′

f̃
, u′, f̃)

being false and INDUCE(g̃, w′

f̃
, u′, f̃) = var(u). This means that we will indeed assign var(u) to u′ which

is a contradiction. Thus, u can only contain an anchor variable not already the root of any element inF ′.

Algorithm 13 IMPROVEREP - Decision Trees with anchor variables at the root

1: Input: Old representation F̃old and a tree g ∈ DT(F) learned from scratch and the incorrect tree g̃
learned using F̃old.

2: F̃ ← F̃old

3: Identify a path starting at the root of g̃ such that the corresponding path in g is shorter.

4: Identify the topmost node in this path in g which conflicts with the corresponding node in g̃.

5: Add the subtree in g rooted at this node to F̃ .

6: Return F̃

A.2.2 Sparse Decision Trees with Overcomplete Representations

In this section, we consider another model wherein we assume that we have a very large metafeature set

(of cardinality greater than N ) and that each decision tree is constructed in a semi-adversarial manner. Our

model, in some sense, is intended to capture noise. In particular, consider a metafeature set that is generated

from the much smaller metafeature set from Section A.2.1 by creating many noisy duplicate copies of each

metafeature. The noisy duplicates preserve the structure and the root variable of the original metafeature but

may have different variables located in its non-root nodes. Clearly, this metafeature set affords a much larger

representation which captures slight deviations from a rigid pattern. First observe that the “anchor” variables

are no longer unique to a single metafeature, but are common to multiple metafeatures that however have

the same structure. Now, we assume that each anchor variable has at least a pmin probability of being the

root variable in any target. Note that this is not as strong an assumption as the previous semi-adversarial
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model because this allows for the case where some metafeatures do not occur in the top of the model at

all. Finally, we assume that our targets require only sparse representations in that along any path down the

target, at most t metafeatures from F have been affixed. Below, we state our model formally.

Problem Setup 6. Besides every assumption in Problem Setup 1 except the metafeature assumption, we

assume the following:

• Metafeatures: We assume that the metafeature set F = F1 ∪F2 . . .∪FK2 where each Fk consists of

at most K1 metafeatures of the same tree structure and the same root anchor variable ak. This root

anchor variable does not occur anywhere else in F .

• Semi-adversary: Each anchor ak has at least a pmin probability of being the root metafeature in any

target g(j).
• Sparsity: Any target g(j) can be constructed using F in a manner that uses at most t metafeatures

down any path from the root to a leaf in g(j). Typically t� K2.

Observe that the metafeature set is of cardinality at most K1K2. We now present a lifelong learning

protocol that learns at most K1K2 + O
(

1
pmin

log K2
δ

)

targets from scratch, and learns the rest examining

only O (tK1 +K2 + d) features per example. Thus, given a constant sparsity parameter t, to ensure that

we evaluate o(mN) features, we can allow dictionaries of cardinality K1K2 = o(N2). We now state our

result formally. The idea is that we first learn a few targets from scratch and identify the anchors. Then, we

partition any target that USEREP fails on into trees rooted at one of these anchors and add these trees as

metafeatures hoping that we add at least one new metafeature from F to our representation.

Theorem 19. There exists a lifelong learning protocol for decision trees in the model of Problem Setup 6

that evaluates O
((

K1K2 +O
(

1
pmin

log K2
δ

))

N +m(K1t+K2 + d)
)

features overall. The algorithm

first learns O
(

1
pmin

log K2
δ

)

targets from scratch to identify the K2 anchor variables. The algorithm then

uses IMPROVEREP Algorithm 14 and USEREP Algorithm 2.

Proof. Let IF be the set of K2 anchor variables. Under our assumptions, with high probability each of them

will be the root of one of the first O
(

1
pmin

log K2
δ

)

targets, and since no other variable can be a root of any

target, we will identify them completely and correctly.

In any future tree that USEREP fails on, we learn the tree from scratch and partition the tree into

metafeatures based on IF and them to F̃ . We claim that F̃ ⊆ F at any point of time and its cardinality

strictly increases with each failure of USEREP. Then with K1K2 failures of USEREP, we will have

F̃ = F , after which we will not see any failure. Assume this is true at some point of the run. When

USEREP fails on a new target g, it means that g /∈ DT(Pref(F̃)). However, since g ∈ DT(F), this implies

that g is constructed using at least one metafeature f ∈ F − F̃ . Now observe that we would have identified

the root and leaves of f in g correctly (because we would have identified all anchors in g correctly). Then,

we would have added f to F̃ , thereby satisfying our induction hypothesis.

By a direct application of Lemma 4 on the representation F̃ , we get that we examine O (K1K2 + d)
features per example which is uninteresting. However, we can tweak the argument we had for its proof for

this case. First of all, we will have only K2 type A costs (i.e., feature examinations) and not K1K2. Then,

for type B costs, in sub-case a, we will have a cost of d as before. For sub-case b, the cost was equal to

the number of metafeatures in F̃ , which would equal K1K2 in this case. However, note that these costs

correspond to INDUCE(g̃, wf̃ , u, f̃) for different f̃ such that wf̃ contains the anchor variable in f̃ . In total,

we know that there are only at most t anchor variables along a particular path, and hence only K1t different

metafeatures effectively result in some feature costs of this type. Hence, by restricting our analysis to only

these metafeatures, we can show that the feature cost is proportional to K1t and not to K1K2. In total, this

would amount to a cost of O (K1t+K2 + d)
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Algorithm 14 IMPROVEREP - Decision Trees with a Sparse but Overcomplete Representation

1: Input: Old representation F̃old, IF the set of anchor variables, and a tree g ∈ DT(F) learned from

scratch.

2: F̃ ← F̃old

3: Identify the locations of variables from IF in g and partition g into trees rooted at one of these variables

each. Add each tree to F̃ .

4: Return F̃

B Monomials

In Appendix B.1, we present a simple algorithm for learning monomials exactly from scratch under some

assumptions. Then in Appendix B.2, we present our baseline lifelong learning algorithm for monomials.

We also present Lemma 25 which we used to show that it is sufficient to check our prediction on a single

randomly drawn example to verify whether the monomial we learned is correct.

B.1 Learning Monomials from Scratch

Recall that for any input x = (x1, x2, . . . xN ) ∈ R
N , we denote the output of a d-degree target monomial

g = (g1, g2, . . . , gN ) by the function Pg(x) = xg11 xg22 . . . xgNN where gi ∈ N∪{0} and the degree
∑

i gi ≤ d.

We denote the unknown metafeature set F = {f1, f2, . . .} also as a matrix where column i is fi. Therefore,

saying that g can be expressed using F is equivalent to saying g lies in the column space of F denoted by

C(F). Then for any k−rank (k ≤ K), N × k matrix F̃ and for any g ∈ C(F̃), we define w
F̃
(g) ∈ R

k to

denote the unique vector of column weights such that F̃w
F̃
(g) = g.

For each monomial target, we assumed that D(j) is a product distribution i.e., the features are indepen-

dent. We now state some specific assumptions aboutD(j). In particular, we assume that the variance of each

variable xi is not too small. The rationale is that if the variance was very small (in the extreme case, imagine

xi being a constant), the factor xgii would essentially be a constant factor in the monomial target. While it

may be possible to design a more careful learning algorithm that can extract these nearly constant factors,

that is beyond the scope of our discussion.

Secondly, we assume that the probability density function is finite at every point i.e., the probability

distribution is not too concentrated at any point. We will use this assumption to apply Lemma 25 when we

draw a single sample to verify whether the monomial we have learned matches the true monomial.

Finally, we assume that the support of xi is [1, 2]. While the upper bound of 2 is to simplify our

discussion, the lower bound is to avoid dealing with values of xi that are close to zero. This is essential

because as we will see later, we will deal with logarithmic values of xi in the learning process. We now state

our assumptions formally.

Assumption 1. Each D(j) is a product distribution. Let D(j) = µ
(j)
1 × · · · × µ

(j)
N . We assume that for all

features i:

• Minimum variance V ar
µ
(j)
i

(log xi) ≥ c.

• Bounded probability density ∀xi ∈ R, µ
(j)
i (xi) ∈ R.

• Bounded support The support of µ
(j)
i is [1, 2].

We now present our simple poly-time technique for learning monomials from scratch with polynomially

many samples. Recall that the output of the monomial g on an input x is denoted by Pg(x). Let us denote

the logarithm of this output log |Pg| by Qg. Observe that learning g is equivalent to learning the coefficients
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of the ‘linear’ function Qg. To see how this can be done, we will define a notion of correlation/inner product

of two functions h(x) and h′(x):
〈h(x), h′(x)〉 , E[h(x)h′(x)].

Then, we claim that gi can be expressed as the following inner product.

Lemma 20.
〈Qg(x), log(xi)− E[log(xi)]〉

E[log2 xi]− E2[log xi]
= gi

Proof. Since xi is picked independent of the other variables, so is the random variable (log xi−E[log(xi)]).
Thus, when j 6= i

E[log xj(log xi − E[log(xi)])] = E[log xj ]× E[log xi − E[log(xi)]] = 0

However,

E[log xi(log xi − E[log(xi)])] = E[log2 xi]− E
2[log xi]

Then, the claim follows from our definition of Qg.

Observe that using the above fact, we can calculate gi for each i ∈ [N ] exactly if we were provided the

exact values of each correlation term in the equality. However, the best we can hope for is to approximate

these terms using sufficiently many samples. Fortunately, we can actually approximate each of these corre-

lation terms to a small constant error such that these errors together imply a constant error smaller than 1/2
in estimating gi. Then we can round off our estimate to the closest natural number to find the exact value

of gi. We now summarize our simple algorithm for learning a monomial from scratch, and then prove our

polynomial sample complexity bound.

Algorithm 15 Learning a monomial from scratch

1: Input: Distribution D over RN

2: Draw S samples (x, Pg(x)) from D and query all the features on all samples.

3: for i = 1, 2, . . . N do

4: Estimate E[log2 xi], E[log
2 xi]− E

2[log xi], and 〈Qg(x), log(xi)− E[log(xi)]〉 empirically.

5: Round off
〈Qg(x), log(xi)− E[log(xi)]〉

E[log2 xi]− E2[log xi]

to estimate gi.
6: Return g̃

Clearly the above algorithm has polynomial running time and sample complexity as long as S is polyno-

mial. The crucial guarantee we need now is that polynomially many samples are sufficient to estimate each

gi exactly, which we show in Theorem 23. We first begin by bounding the error in estimating the numerator

〈Qg(x), log(xi)− E[log(xi)]〉 in Lemma 21. Then, in Lemma 22 we show how this error and the error in

the denominator terms, add up to result in an error of at most 1/2 in estimating gi. Using these, we prove

in Theorem 23 that the algorithm estimates each power exactly. In the following notation we will use Ẽ to

denote the empirical estimate of an expected value.

Lemma 21. Using a sample set S of size O
(

d
ε23
log 1

δ′

)

, for a given i ∈ [N ], if |Ẽ[log xi]−E[log xi]| ≤ ε1,

then we can guarantee that

Pr

[∣
∣
∣
∣
∣

1

|S|
∑

x∈S

Qg(x)(log(xi)− Ẽ[log(xi)])− 〈Qg(x), log(xi)− E[log(xi)]〉
∣
∣
∣
∣
∣
≤ dε1 + ε3

]

= O
(
δ′
)

.
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Proof. Consider the random variable Qg(x) ·(log(xi)−Ẽ[log(xi)]). It is easy to show that Qg(x) log(xi) ∈
[0, d] with the extreme values attained at x = (2, 2, . . .) and x = (1, 1, . . .). Then, Qg(x)E[log(xi)] ∈ [0, d].
Thus, the random variable Qg(x)·(log(xi)−Ẽ[log(xi)]) lies in a range of size 2d. Then, by Chernoff bounds,

we can show that

Pr

[∣
∣
∣
∣
∣

1

|S|
∑

x∈S

Qg(x)(log(xi)− Ẽ[log(xi)])− 〈Qg(x), log(xi)− Ẽ[log(xi)]〉
∣
∣
∣
∣
∣
≤ ε3

]

= O
(
δ′
)

from which the above claim follows because the absolute difference between 〈Qg(x), log(xi)− E[log(xi)]

and 〈Qg(x), log(xi) − Ẽ[log(xi)] is at most

∣
∣
∣maxxQg(x) · (E[log(xi)])− Ẽ[log(xi)]))

∣
∣
∣ ≤ dε1 (because

the first term is at most d and the next is at most ε1).

Lemma 22. Using a sample set S of size O

(

d
(

min( c
2

d
, c
d
,1)

)2 log
1
δ′

)

with a high probability of 1− δ′ for a

given i ∈ [N ] we can learn g̃i such that |g̃i − gi| ≤ 1
2 .

Proof. Let ε1 and ε3 be as defined in Lemma 21. Additionally let |Ẽ[log2 xi] − E[log2 xi]| ≤ ε2. From the

previous results and from Chernoff bounds, we have that ε1, ε2, ε3 are all O
(

min( c
2

d
, c
d
, 1)
)

given the size

of S . We now have a fractional expression on the right hand side of the equation in Lemma 20 for which we

can derive the error in estimating the numerator and the denominator individually. We need to show that the

overall error in estimating the fraction is 1/2 i.e., O(1). Now, the error in estimating some fraction G
H

using
G̃

H̃
given that |G− G̃| ≤ εG and |H − H̃| ≤ εH can be upper bounded by:

∣
∣
∣
G±εG
H±εH

− G
H

∣
∣
∣ =

∣
∣
∣
εG
H
± GεH

(H−εH)H

∣
∣
∣

≤ εG
minH

+ (maxG+εG)εH
(minH−εH)minH

In our case, we have H = E[log2 xi]− E
2[log xi] and G = 〈Qg(x), log(xi)− E[log(xi)]〉, minH = c and

maxG = d. Also, εG = ε1d + ε3 and εH ≤ ε2 + 2ε1 + ε21. The latter inequality follows from the fact that

the error in estimating E[log2 xi] is ε2 and the error in estimating E
2[log xi] is at most (E[log xi] + ε1)

2 −
E
2[log xi] ≤ ε1(2E[log xi] + ε1) ≤ ε1(2 + ε1). By a simple calculation, it can be verified that this results in

a total error of O (1) in estimating gi.

Theorem 23. Algorithm 15 exactly learns a target g from scratch with high probability 1 − O
(

δ
K

)
with

S = O

(

d
(

min( c
2

d
, c
d
,1)

)2 log
Nm
δ

)

samples.

Proof. From Lemma 22 we have that each gi is accurately estimated with probability at least 1−O
(

δ
Nm

)
.

By a union bound, g is accurately estimated with probability at least 1−O
(
δ
m

)
.

We note that it is easy to refine our application of union bounds to use slightly fewer samples than in the

bound of Theorem 23. In particular, it is possible bring the logNm factor down to logNK while learning

from scratch, and to logKm on all other targets.
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B.2 Naive Lifelong Learning of Monomials

We present our straightforward approach for lifelong learning of monomials which merely keeps a record

of features that have been seen in earlier targets.

Theorem 24 (Naive lifelong learning of monomials). In the model of Problem Setup 2, there exists a naive

algorithm for lifelong learning of monomials that evaluates O (S(KN +mKd)) features overall.

Proof. (Sketch) We use IMPROVEREP Algorithm 5 that essentially stores the list of targets that have been

learned from scratch as the columns of the matrix F̃ . Now, consider the set of features that have been “seen”

so far i.e., these correspond to rows in F̃ that have at least one non-zero entry. Then, for a new target g,

we define a USEREP algorithm that determines the powers of only these features. This can be done by

evaluating only those features on the data set using the technique in Algorithm 15. The unseen features are

assumed to have zero power.

Now, consider a new target g that is “linearly dependent” on the targets that have been learned so far

i.e., g ∈ C(F̃). In this case, the unseen features should have a zero exponent in g as it is zero in all earlier

targets. Thus, our USEREP technique would not fail on such targets. Now, if g was linearly independent, it

is possible that an unseen feature has a non-zero exponent in g. To verify whether this is the case, we can

draw a single sample and check whether our prediction matches the true output. If this fails, we learn the

target correctly from scratch and add it to F̃ .

Thus, since we add only linearly independent targets to F̃ , in a manner similar to the proof of Theorem 6,

we can show that USEREP will not fail more than K times. Our result follows from here because each of

the targets that we learn from scratch have at most d non-zero exponents. Then, in total we only have at

most Kd “seen” features i.e., features with non-zero powers that we always examine.

B.2.1 Monomial Identity Testing

We show here that it is sufficient to draw a single example and check whether our prediction matches the

true label in order to conclude whether the monomial that we learned is indeed the true monomial. Here, we

make use of the condition that the probability distribution is smooth in that the probability density function

at any value of a feature is finite.

Lemma 25. If for every feature i, the marginal probability density function at xi is finite for all values of xi
then we have that for any g′ 6= g, Pr[Pg′(x) 6= Pg(x)] = 1.

Proof. We will prove by induction on N ′ ≤ N and d′ ≤ d that for any polynomial P ′ of degree d′ over N ′

variables Pr[P ′(x) = 0] = 0. Then, we only need to plug in P ′ = Pg − Pg′ to complete the proof.

For the base case assume the polynomial is only over one variable and any degree i.e., N ′ = 1 and

any d′ ≤ d. Then the event [P ′(x) = 0] corresponds to picking one of at most d′ zeroes of P ′ from R

(since N ′ = 1), which amounts to a probability of 0 according to the assumption on the probability density

function.

Now assume for all N ′ < N and d′ ≤ d, our induction hypothesis is true. The polynomial P ′ can be

expressed as a summation of terms in x1:
∑k

i=0 P
′′
i (x2, . . . xn)x

i
1 where k is the highest degree of x1 and

P ′′
i is the coefficient of xi1. Then, for a fixed value of x2, . . . xN , P ′ reduces to a polynomial of degree

k ≤ d over one variable. Then, our induction assumption implies that conditioned on some arbitrary values

of x2, . . . , xN , the polynomial in x1 attains zero with probability 0 i.e., Pr[P ′(x) = 0 |x2, . . . xN ] = 0.

Then it follows that Pr[P ′(x) = 0] = 0.
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B.3 Polynomials

We now describe our straightforward lifelong learning approach for polynomials which remembers only the

features that have been seen so far.

Theorem 26 (Naive lifelong learning of polynomials). In the model of Problem Setup 3, there exists a naive

algorithm for lifelong learning of t-sparse polynomials that makes O (S(KN +mKd)) feature evaluations

in total.

Proof. (Sketch) This approach is very similar to the naive approach for lifelong learning of monomials. We

will use IMPROVEREP Algorithm 7 which, as we know already, maintains a list of linearly independent

monomial targets that have been seen in the polynomials learned from scratch so far. Now, for a new target

G, we will perform the “lexicographic search” method from [2] over only the features that have been seen

i.e., during the search we skip features that correspond to an all zero row in F̃ . Essentially, we assume that

the unseen features do not occur in the target polynomial. We again check whether the polynomial computed

this way is correct by verifying it on a single sample.

Using this approach we are guaranteed that if G ⊂ C(F̃) × R, USEREP does not fail because such a

target will not contain unseen features in any of its monomials. Then, we can use an argument similar to

Theorem 24 and show by contradiction that USEREP can fail at most K times, and hence evaluate only Kd
features per example.
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