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Abstract We describe recent analytical and numerical results on stability and

behavior of viscous and inviscid detonation waves obtained by dynamical sys-

tems/Evans function techniques like those used to study shock and reaction diffusion

waves. In the first part, we give a broad description of viscous and inviscid results

for 1D perturbations; in the second, we focus on inviscid high-frequency stability in

multi-D and associated questions in turning point theory/WKB expansion.

In these notes, we describe some recent work on stability and behavior of detonation

waves, carried out from a point of view evolving from the study of viscous and

inviscid shock and boundary layers in, e.g., [11, 27, 29, 30, 33–36, 57, 68, 91–93].

This material was originally presented as a pair of 90-min lectures at the INDAM

conference Nonlinear Optics and Fluid Mechanics, given in Rome, September 14–

18, 2015 in honor of the 65th birthday of Guy Métivier, and our treatment follows

closely to the spirit and format of the lectures.

The topic was chosen for interest of the honoree as almost the unique one studied

by the author on which he has not explicitly collaborated with Métivier; nonetheless,

many of the ideas may be seen to be related to ideas and tools developed by and with

Guy in other contexts. The material presented here was developed in joint work with

Blake Barker, Jeff Humperys, Olivier Lafitte, Greg Lyng, Reza Raoofi, Ben Texier,

and Mark Williams. We mention also the foundational work of Kris Jenssen together

with Lyng and Williams [40], of which we make frequent use.
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1 Stability of Viscous and Inviscid Detonation Waves

In this first part, we survey a collection of theoretical and numerical results on 1D
stability of detonations obtained over the past 10–15 years via Evans function-

based techniques like those used to study shock and reaction diffusion waves.

These include stability in the small heat-release and high-overdrive limits, rigorous

characterization of 1D instability as “galloping” type Hopf bifurcation, description

of the inviscid (ZND) limit, and numerical computation of viscous (rNS) spectra

revealing a new phenomenon of “viscous hyperstabilization.”

Two underlying questions we have in mind in this section are:

• What is the (physical or mathematical) role of viscosity in the theory?
• What is our role in the theory? That is, what can we usefully contribute to the

(physical or mathematical) study of detonations by the introduction of Evans

function-based techniques?

1.1 Viscous and Inviscid Detonation Waves

Consider a general abstract combustion model with one-step reaction, expressed in

1D Lagrangian coordinates [53–55, 82, 91]:

vt C f .v/x D ".B.v/vx/x C kq�.v/z;

zt D ".C.v; z/zx/x � k�.v/z;
(1)

v, f , q 2 Rn, B 2 Rn�n, z, C, �, k, " 2 R1, and k; " > 0. Here, v comprises

gas-dynamical variables, z D mass fraction of reactant, �.v/ D “ignition function”,

q D heat release, k D reaction rate, and " (typically small) scales coefficients of

viscosity/heat conduction/species diffusion.

A right-going detonation solution consists of a traveling wave

.v; z/.x; t/ D . Nv; Nz/.x � st/; lim
x!˙1

.v; z/.x/ D .v˙; z˙/;

s > 0, with z� D 0 and zC D 1, moving to the right into the totally unburned region

toward x ! C1 and leaving behind the totally burned region toward x ! �1.
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Example 1.1 A standard example is the reactive Navier–Stokes/Euler system

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t� � @xu D 0;

@tu C @xp D @x.���1@xu/;

@tE C @x.pu/ D @x

�

���1@xT C ���1u@xu
�

C qk�.T/z;

@tz D @x.d��2@xz/ � k�.T/z;

(2)

where � > 0 denotes specific volume, u velocity, E D e C 1
2
u2 specific gas-

dynamical energy, e > 0 specific internal energy, and 0 � z � 1 mass fraction of

the reactant, with ideal gas equation of state, single-species reaction, and Arrhenius-

type ignition function,

p D
�e

�
; T D c�1e; �.T/ D e

�E

T ; (3)

where � D � � 1 > 0 is the Gruneisen constant, � > 1 is the adiabatic index, c is

specific heat, and E is activation energy for the gas [5, 8, 25].

For �; �; d > 0, this represents the “viscous” (mixed hyperbolic–parabolic)

reactive Navier–Stokes (rNS) equations [8, 17], for �; �; d D 0, the “inviscid”

(hyperbolic) reactive Euler, or Zel’dovich–von Neumann–Döring (ZND) equations

[18, 83, 84, 87]. These represent successive refinements of the earlier Chapman–
Jouget (CJ) theory [14, 38, 39], in which both transport (diffusion) and reaction

processes are taken to occur instantaneously, across an ideal shock-like discontinu-

ity.

1.1.1 Inviscid (ZND) Profiles

(Following [90]) In case �; �; d D 0, r D 1, we may explicitly solve the profile

equation associated with (1), (2), and (3). By the invariances of (2) and (3), we may

take without loss of generality �C D 1, uC D 0, s D 1, and 0 � eC � 1
�.�C1/

,

with � > 0, E > 0, 0 � q � qCJ D
.�C1/2.�eCC1/2��.�C2/.1C2.�C1/eC/

2�.�C2/
, yielding

(substituting @t ! @x and integrating the conservative .�; u; E/ equations)

Nu D 1 � N�; Ne D
N�.�eC C 1 � N�/

�
; (4)

N� D
.� C 1/.�eC C 1/ �

p

2�.� C 2/.qCJ � q.Nz � 1//

� C 2
:

The Nz component can then be solved via Nz0 D k�.cNe.Nz//z on x < 0 (reaction zone).

A nonreactive “Neumann shock” at x D 0 connects the ignited state at x D 0�

to a quiescent state at x D 0C (for both of which z D 1), and the profile remains
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Fig. 1 Sample profiles illustrating diffusive effects. (a) � D d D � D 0:01. (b) � D d D � D
0:3. In both cases the reaction zone structure is clearly visible, but in (b) the shock width is of

a similar order as the reaction zone width For both plots, eC D 6:23 � 10�2, k D 1:53 � 104,

q D 6:23 � 10�1 , E D 6, � D 0:2, cv D 1

constant thereafter, i.e., for all x � 0C. This corresponds to the physical picture of a

gas-dynamical shock moving into an unburned, quiescent gas at x ! C1, which,

its temperature being raised by compression of the shock, ignites and burns steadily,

leaving a “reaction spike” in its wake, with completely burned gas at x ! �1.

1.1.2 Viscous (rNS) Profiles

Likewise, parametrized by .eC; q; E ; �; �; �; d/ 2 compact domain (i.e., with

nonphysical value eC D 0 adjoined), rNS profiles are exponentially convergent

to their endstates except at the degenerate “Chapman–Jouget” value q D qCJ

[53, 88, 90], for which they decay algebraically. Existence of rNS profiles for

small viscosity/heat conduction/species diffusion has been shown, for example, in

[28, 86], by singular perturbation of the ZND case. When diffusion coefficients

are not small, profiles must be found in general numerically [5]. Numerically

determined profiles for different values of diffusion coefficients are displayed in

Fig. 1.

1.1.3 Issues and Objectives

Unlike nonreactive shocks, which are typically quite stable, detonations frequently

exhibit instabilities of different types. See Fig. 2 depicting results of shock tube

experiments carried out by John H.S. Lee (reprinted from [50] with permission of

the author), which indicates the variety of possible behaviors as physical parameters

are varied, from a nonreactive shock-like coherent planar detonation layer, to

apparent bifurcation to cellular or pulsating patterns, to what appears to be chaotic

flow.
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Fig. 2 Detonation instability in a duct (John H.S Lee, McGill University)
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The first mathematical model of detonation, the Chapman–Jouget model

(�1890s; e.g., [14, 38, 39]) treated detonations as a shock modified by instantaneous

reaction. This is sufficient to predict possible endstates and speeds of planar

discontinuities, but not to determine realizability by a connecting longitudinal

reaction/dissipation structure. Moreover, it does not capture the complicated

instability/bifurcation phenomena described above; indeed, for the one-step

polytropic model of Example 1.1, Chapman-Jouget detonations are universally
stable [40, 60].

The modern theory of detonation stability dates from the post-world war II

period, with the introduction of the ZND mdel [18, 83, 84, 87] and the pioneering

stability/behavior studies of J.J. Erpenbeck and others. The ZND model has

successfully modeled a wide range of experimentally observed phenomena in

stability/behavior. Indeed, there is by now a comparatively long history (�1960s;

e.g., [19]), and extensive numerical and analytical literature in the context of ZND;

see, for example, [10, 12, 17, 19, 25, 41, 49], and references therein. By contrast,

until recently (�1990s; e.g. [53]), there was relatively little investigation of the more

complicated rNS model.

Issues: 1. Experimental stability transitions/bifurcation to time-periodic pulsat-

ing/cellular wave patterns are well modeled by ZND. But, there is no corre-

sponding nonlinear stability or bifurcation theory, and little regularity (or even

well-posedness) for the (hyperbolic) equations. 2. The rNS equations on the other

hand feature better regularity/well-posedness, but are significantly more compli-

cated; till recently, there was neither linear data nor nonlinear theory. Practical

effects/importance of added transport (viscosity/heat conduction/diffusion) terms is

not clear.

Objectives: 1. Review and rigorous (analytical) verification of physical conclusions

plus systematic (numerical/analytical) exploration of parameter space; justification

(and improvement) of numerics, for both (ZND) and (rNS). 2. Systematic compari-

son between and synthesis of (rNS) and (ZND).

1.2 Stability Framework: Normal Modes Analysis for ZND

(Following [40]) Shifting to coordinates Qx D x � st moving with the background

Neumann shock, write the ZND version " D 0 of (1) as

Wt C F.W/x D R.W/;

where

W WD

�

u

z

�

; F WD

�

f .u/ � su

�sz

�

; R WD

�

qkz�.u/

�kz�.u/

�

:
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1.2.1 Fixed-Boundary Formulation

Defining the Neumann shock location as X.t/, we reduce to a fixed-boundary

problem by the change of variables x ! x � X.t/. In the new coordinates,

Wt C .F.W/ � X0.t/W/x D R.W/; x ¤ 0;

with jump condition

X0.t/ŒW� � ŒF.W/� D 0;

Œh.x; t/� WD h.0C; t/ � h.0�; t/ denoting the jump at x D 0 of a function h.

1.2.2 Linearized Equations

Linearizing about . NW0; 0/, we obtain the linearized equations

.Wt � X0.t/. NW0/0.x// C .AW/x D EW; (5)

X0.t/Œ NW0� � ŒAW� D 0; x D 0;

where A D A.x/ WD .@=@W/F. NW0.x//, E D E.x/ WD .@=@W/R. NW0.x//. (Here and

below, E is a matrix-valued function, not to be confused with specific energy density

in Example 1.1.)

1.2.3 Reduction to Homogeneous Form

To eliminate the front from the interior equation, reverse the original transformation

to linear order by the change of dependent variables W ! W � X.t/. NW0/0.x/; moti-

vated by W.x � X.t/; t/ � W.x; t/ � �X.t/Wx.x; t/ � �X.t/. NW0/0.x/ approximating

to linear order the original, nonlinear transformation. (As noted in [40], this can be

viewed as a simplified version of the “good unknown” of Alinhac [3, proof of Prop.

3.1].) Substituting using .A. NW0/. NW0/0.x//x D E. NW0/. NW0/0.x/ gives

Wt C .AW/x D EW (6)

with modified jump condition X0.t/Œ NW0� � ŒA
�

W C X.t/. NW0/0
�

� D 0:
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1.2.4 Generalized Eigenvalue Equation

Seeking normal mode solutions W.x; t/ D e	tW.x/, X.t/ D e	tX yields the

generalized eigenvalue equations .AW/0 D .�	I C E/W; x ¤ 0, X.	Œ NW0� �

ŒA. NW0/0�/ � ŒAW� D 0, where “0” denotes d=dx, or, setting Z WD AW, to

Z0 D GZ; x ¤ 0; (7)

X.	Œ NW0� � ŒA. NW0/0�/ � ŒZ� D 0; x D 0; (8)

where G WD .�	I C E/A�1:

1.2.5 Stability Determinant

We define the Evans–Lopatinski determinant

DZND.	/ WD det
�

Z�
1 .	; 0/; � � � ; Z�

n .	; 0/; 	Œ NW0� � ŒA. NW0/0�
�

D det
�

Z�
1 .	; 0/; � � � ; Z�

n .	; 0/; 	Œ NW0� C A. NW0/0.0�/
�

;

where Z�
j .	; x/ are a basis of solutions of the interior equations (7) decaying as

x ! �1. By A. NW0/0 D dF. NW0/. NW0/0 D R. NW0/ plus duality, we can rewrite this

in the simpler form

DZND.	/ D QZ�
n .	; 0/ �

�

	Œ NW0� C R. NW0/.0�/
�

(9)

useful for numerics [11, 34] and also analysis [90, 91], where QZ�
n is a (unique up to

constant multiple) solution of the dual equation QZ0 D �G� QZ decaying as x ! �1.

The function DZND is exactly the stability function derived in a different form by

Erpenbeck [6, 19].

• Evidently, 	 is a generalized eigenvalue iff DZND.	/ D 0.

Definition 1.2 A ZND profile is spectrally stable if there are no zeros of the

associated Lopatinski determinant in f	 W <	 � 0g n f0g [19]. (By translation-

invariance, there is always a zero at 	 D 0.)
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1.3 Normal Modes Analysis for rNS

Taking without loss of generality s D 0 (i.e., working in co-moving coordinates),

write the (rNS) version " D 1 of (1) as

Wt C F.W/x D .B.W/Wx/x C R.W/;

so that the background detonation wave is an equilibrium W.x; t/ � NW0.x/.

The linearized eigenvalue equations take the form

	W D LW WD �.A.x/W/x C ".B.x/Wx/x C EW;

with appropriate A, B, E, where E D .@=@W/R. NW0.x// as in (5). These may be

written as a first-order system

Z
0 D A.x; 	/Z;

where Z D

�

Y

W2

�

D

�

AW � "BWx

W2

�

is an augmented “flux” variable [90].

Define the Evans function

DrNS.	/ WD det.Z�
1 ; : : : ;Z�

k ;ZC
kC1; : : : ;WN /jxD0 (10)

where fZ�
1 ; : : : ;Z�

k g.	; x/ and fZC
kC1; : : : ;ZNg.	; x/ are bases of solutions decay-

ing as x ! 1 and x ! C1.

• Evidently, 	 is an eigenvalue iff DrNS.	/ D 0.

Definition 1.3 An rNS profile is spectrally stable if there are no zeros of the

associated Evans function in f	 W <	 � 0g n f0g [53, 55, 82]. (As for ZND,

there is always a zero at 	 D 0.)

1.4 Abstract Viscous Stability Results

Let f NW"g be a one-parameter family of viscous strong detonation waves for rNS

with polytropic equation of state (3), with associated parameters q", etc.

1.4.1 Spectral Stability Transitions

(Following [53])

Lemma 1.4 (Stability in the small-heat release limit [53]) If q" ! 0 as " ! 0,
then f NW"g is spectrally stable for " sufficiently small.
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Lemma 1.5 (Absence of steady bifurcations [53]) For all "; the associated Evans
function has a zero of multiplicity one at 	 D 0 W D."; 0/ D 0, and D0."; 0/ ¤ 0,
hence stability transitions if they occur involve passage of nonzero conjugate zeros
across the imaginary axis. More generally, this holds for any equation of state for
which the associated CJ profiles are stable

Lemma 1.4 is an immediate consequence of the construction of an Evans

function, done similarly as in [2, 27], using the resulting continuity with respect

to parameters together with decoupling at q D 0 of gas-dynamical (u) and reaction

(z) equations. Lemma 1.5 follows by a “stability index” computation like those of

[27, 66, 93], quantifying the intuition that low-frequency behavior of rNS should

“not see” reaction and transport scales, so should reduce to that of CJ. See [40] for

a far-reaching extension of this principle including also ZND and multi-D.

Takeaways: 1. Stable waves exist. 2. Stability transitions should they occur are of

(spectral) Hopf, i.e., “pulsating” type, as seen in experiment- and, indeed, they are

seen numerically to occur, as displayed, for instance, in Fig. 7 below. (Link between

behavior and equations.)

1.4.2 Nonlinear Stability/Difurcation Criteria

(Following [82])

Theorem 1.6 (Spectral ) nonlinear stability [82]) For all "; NW" is L1 \Lp ! Lp

linearly orbitally stable if and only if the only zero of D."; �/ in <	 � 0 is a simple
zero at the origin, in which case NW" is L1 \ H3 ! L1 \ H3 linearly and nonlinearly
orbitally stable, with

j QW".�; t/ � NW".� � ı.t//jLp � Cj QW"
0 � NW"jL1\H3.1 C t/� 1

2 .1� 1
p /

;

for nearby solutions QW", where

jı.t/j � Cj QW"
0 � NW"jL1\H3 ; j Pı.t/j � Cj QW"

0 � NW"jL1\H3.1 C t/� 1
2 :

Theorem 1.7 (Spectral ) nonlinear bifurcation [82]) Assume that NW" under-
goes transition from linear stability to linear instability at " D 0; via passage of
a single complex conjugate pair of eigenvalues 	˙."/ D �."/ C i�."/ through the
imaginary axis:

�.0/ D 0; �.0/ ¤ 0; d�=d".0/ ¤ 0: (11)

Then, given exponential weight ! > 0, for 0 � r � 1, C 	 1, there are C1

functions r ! ".r/; T.r/; with ".0/ D 0, T.0/ D 2
=�.0/; and a C1 family of time-
periodic solutions QUr.x; t/ 2 H2

! of (rNS) with " D ".r/, of period T.r/, with C�1r �
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k QUr � NU"kH2
!

� Cr; where kf kH2
!

WD k!f kH2 and H2
! is the space determined by

k � kH2
!
. Up to translation in x, t, these are locally unique in k � kH2

!
.

Theorem 1.6 is established by detailed pointwise Green bounds obtained from

stationary phase type estimates on the inverse Laplace transform representation of

the linearized solution operator, together with a nonlinear shock tracking argument,

in the spirit of [61, 89, 92]. Theorem 1.7 is established by a novel “reverse temporal

dynamics” argument using inverse Laplace transform estimates similar to those for

stability. See also [73, 80, 81] for related studies in the shock wave case. For a

nonlinear stability analysis of the bifurcating time-periodic solutions, see [9].

Takeaways: 1. Rigorous characterization (with Lemma 1.5) of 1d instability as Hopf

bifurcation. 2. Spectral information as in Lemmas 1.4 and 1.5 translates to full

nonlinear results.

1.4.3 Closing the Philosophical Loop: The rNS!ZND Limit

(Following [90]) At this point, the situation as regards the two theories (rNS and

ZND) is that we have for ZND decades of spectral stability data, numerics, and for-

mal asymptotics, but no nonlinear theory; for rNS, we have essentially the reverse.

A way to repair this situation, combining the strengths of the two theories, is to link

them via the vanishing viscosity, rNS!ZND limit. The limiting profile structure

problem has been studied in [28, 86], etc., with definitive results. However, until

recently, the only analytical result regarding stability was the study by Roquejoffre–

Vila [72] for Majda’s model [58], a simplified qualitative model of detonations. A

generalization to the full rNS system is as follows; here, NW" represents an "-profile,

with " measuring size of transport (viscosity/heat conduction/diffusion) coefficients.

Theorem 1.8 (rNS spectrum in the ZND limit [90]) Spectral stability of NW"

for " > 0 sufficiently small is equivalent to spectral stability of the limiting
ZND detonation NW0 together with spectral stability of the viscous version of the
associated Neumann shock. Moreover, (i) For C � j	j � C=", C sufficiently large,
on <	 > �� for �, " > 0 sufficiently small, " times the set of zeros of D"

rNS

converges to the set of zeros of DNS.	/

	
on <	 � 0. (ii) For j	j � C0, C0 arbitrary, on

<	 � �� < 0, the zeros of D"
rNS converge in location/multiplicity as " ! 0 to the

zeros of DZND.

The proof of Theorem 1.8 is by detailed multi-scale analysis as in stability of

strong shocks and other asymptotic limits [36, 68], together with an "-variational

argument like that used in [27] and [93] to study the related low-frequency (small-	)

limit. The detailed asymptotics provided on the profile by the analyses of [28, 86] are

used in an important way. It is known that nonreactive viscous shocks of a polytropic

gas are universally stable [33, 35], hence the theorem reduces spectral stability for
rNS in the small-viscosity limit to spectral stability of ZND.
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Takeaways: 1. Verifies NS stability/bifurcation for small " through extensive

existing numerical studies for ZND. 2. Gives rigorous nonlinear sense to (spectral)

ZND results.

This gives one answer to the question “what is the role of viscosity?” (namely, an

element in logical development/foundations, with little effect on phenomena). We’ll

explore a possible different answer below, in Sect. 1.7.

1.5 Abstract Inviscid Stability Results

(First rigorous stability results for ZND) Let f NW"g be a one-parameter family of

strong detonation waves for ZND with polytropic equation of state (3).

To explain our next results, we first recall that the parametrization given in

Sect. 1.1.1 is not the standard one given in the literature, but our own improved

version [90]. In the classical parametrization given e.g. in [21], eC rather than speed

s is held fixed, and the detonation parametrized rather by the overdrive 1 < f < 1,

defined as the square of the ratio of relative speed of the detonation (with respect

to the ambient gas) and the minimum, Chapman–Jouget, detonation speed among

all possible strong detonations [10, 21, 26, 49]. In this classical scaling, two rules

of thumb observed numerically are that detonations are more stable the smaller the

heat release q and the higher the overdrive f . The former was proved by Erpenbeck

for finite frequencies, but his treatment of high frequencies was incomplete [91].

Lemma 1.9 (Stability in the small-heat release limit [91]) In the scaling of
Sect. 1.1.1, if q" ! 0 as " ! 0, then f NW"g is spectrally stable for " sufficiently
small.

Corollary 1.10 (Stability in the high-overdrive limit [91]) In the scaling of
Erpenbeck [21], ZND detonations of (3) are spectrally stable in the fixed-activation
energy, fixed-heat release, high-overdrive limit f ! 1.

The first result includes but is not restricted to the observation of Erpenbeck that,

in the scaling of [21], ZND detonations are stable in the fixed-activation energy,

fixed-overdrive, small-heat release limit, which in our scaling corresponds to fixed-

activation energy, fixed-eC or shock strength, and small-q or heat release. The

second result, corresponding in our scaling to stability in the simultaneous zero-
heat release, zero-activation energy E , and strong-shock (zero-eC) limits, resolves

an open problem from [21]. Our favorable coordinatization (s D 1 held fixed,

eC ! 0), suggested by similar scalings used to study the strong-shock limit for

gas dynamics [35, 36], plays an important role in the analysis. For, this keeps all

quantities bounded for bounded frequencies, independent of parameters, allowing

uniform treatment of the strong-shock limit. By contrast, internal energy e and

temperature T blow up for the classical scaling in the strong-shock limit. In the

course of the proof, specifically in treating the complementary regime of frequencies
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going to infinity, we establish also 1D high-frequency stability, along with new

asymptotic ODE techniques.

Takeaways: 1. Analytical signposts guiding delicate/computationally intensive

numerics [19, 49]. 2. 1D high-frequency stability, validating the necessary

truncation of computational (i.e., frequency) domain in carrying out numerical

stability studies. (See Sect. 2 for further discussion.)

Remark 1.11 The 1-D high-frequency stability analysis foreshadows issues

addressed in Sect. 2.1 for multi-D. Notably, the 1D analysis requires only C2

regularity on coefficients/equation of state.

1.6 Numerical Results for ZND

1.6.1 Natural Coordinatization

The novel scaling introduced in Sect. 1.1.1 is helpful not only for rigorous analysis,

as seen in Sect. 1.5, but also at the level of numerics/modeling. In Fig. 3, we display

in the classical scaling of Erpenbeck [21] results for a standard benchmark problem

of Fickett and Woods [21, 26, 49], holding overdrive f fixed and varying activation

energy E0 and heat release Q0, with � D 1:2. The solid curves depicted are the

neutral stability curves across which detonations change from stable (below) to

unstable (above) as E0 is increased. In this figure, we see the stabilizing effect

Fig. 3 � D 0:2, constant overdrive f , E0 vs. log Q0
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Fig. 4 E D E0eC vs. q D Q0eC; polynomial fit, average relative error 1%

of increasing f and the destabilizing effect of increasing E0; however, there is an

apparent hysteresis effect as Q0 is increased, with detonations first destabilizing,

then restabilizing for large Q0. Moreover, there is a singularity at the right of the

diagram with E0; Q0 ! 1.

In Fig. 4, we depict the analogous neutral stability curves for the same gas

constant � D 1:2 in our scaling (the one of Sect. 1.1.1), with eC held fixed and

E D E0eC and q D Q0eC varying. In these coordinates, both hysteresis and

singularity are removed. The latter allows us to verify numerically stability in the
zero-activation energy limit: E D 0 ) ZND stability for any q, eC.

Moreover, the neutral stability curves follow a simple and regular pattern, as may

be seen most dramatically in the log-log plot of Fig. 5. Indeed, a naive polynomial

fit with 20 stored coefficients is sufficient to recover the entire diagram in seconds

with 2% minimum/1% average accuracy, a considerable compression of data for a

diagram that requires hours to compute (see data below).

1.6.2 Computational Improvements

Besides the improvement in parametrization described above, we have by adapting

to detonation theory numerical Evans function algorithms developed for the study

of viscous shock stability [4], improved computation speed by a factor of 1–2 orders

of magnitude compared to the current state of the art as described, e.g., in [49, 78];
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see [6, 37]. With these improvements, combined with vastly improved hardware

capability, what took 5 h on a supercomputer in 1990 to compute a single fixed-

overdrive curve today takes 5 h on a Mac Quad Duo to compute the full Fig. 3.

Indeed, this can be carried out perfectly well on a laptop.

We are now able to not only compute neutral stability curves, but to accurately

describe all unstable eigenvalues even for large activation energies; see for example

the eigenvalue configuration displayed in Fig. 7(left) for the same benchmark

problem studied in Figs. 3 and 4 at activation energy 
7:1, for which we accurately

resolve a pattern of 
 50 unstable roots using code supported in the MATLAB-

based openware package STABLAB [4].

1.7 Numerical Results for rNS

Improvements in computations/power have made possible for the first time numeri-

cal Evans investigations for rNS, a substantially more intensive problem than ZND.

These investigations, though just beginning, have already yielded surprising results.
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1.7.1 “Viscous Hyperstabilization”/Hysteresis

(Following [5]) For the benchmark problem discussed in Sect. 1.6, Romick et al

[70, 71] have carried out numerical time-evolution studies indicating a significant

delay in transition to instability as activation energy is increased for the viscous

(rNS) problem as compared to the inviscid (ZND) one: as much as 10% for values

of viscosity in the high range of physically relevant scales. Our numerical Evans

investigations both confirm and extend these observations, indicating not only the

expected delay but also a new type of hysteresis in which viscous detonations

eventually restabilize as activation energy is increased still further [5]. This striking

phenomenon is depicted in Fig. 6(left); see Fig. 6(right) for a graph of viscous

delay vs. viscosity. We call this phenomenon viscous hyperstabilization; we have

conjectured [5] that it occurs for any nonzero viscosity, no matter how small.

Note the slow, apparently logarithmic, growth, in the upper stability boundary

of Fig. 6(left) as viscosity goes to zero, suggesting that hyperstablization might

play a relevant physical role even for quite small values of viscosity. Another

notable feature of Fig. 6(left) is the “nose” to the right of the neutral stability curve,

where upper and lower boundaries meet. This indicates that there is no instability,

regardless of the value of E , for sufficiently large viscosity. For reference, the

viscosity values considered in [70, 71] correspond to � D 0:1 in the scaling of

Fig. 6; see [5, §3.5]. As discussed in [5, 70, 71], this appears to be roughly an order

of magnitude higher than in typical physical situations. A more realistic value would

be � D :01.
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Fig. 6 Left: Neutral Stability Boundaries in the E-� plane. The best-fit curve (dashed line, � <

0:27) for the upper boundary is E
C.�/ D 5:67 � 6:16� � 0:804 ln.�/. The red dot denotes the

ZND (inviscid) stability boundary (lower boundary only!). Right: Viscous delay (cf. [70, 71]): We

plot �E=E� D .E�.�/ � E�/=E� against �, where E� is the approximation to the ZND neutral

boundary. Here, � D d D �, � D 0:2, eC D 6:23 � 10�2, and q D 6:23 � 10�1 are held fixed
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1.7.2 Associated Eigenvalue Distributions

The restabilization phenomenon just described is the more remarkable given the

details of the unstable eigenvalue distribution. In the inviscid case, it is more or less

a universal principle that increasing E increases instability [21, 25, 49]; indeed, as E

increases, more and more unstable eigenvalues cross the imaginary axis from stable

to unstable complex half-plane never to return, in a cascade of Hopf bifurcations.

In Fig. 7(left) we display the eigenvalue distribution at E 
 7:1, for which

there are 48 unstable roots together with the translational eigenvalue at 	 D 0;

further increases in E lead to further unstable eigenvalues. In Fig. 7(right) we display

for contrast the behavior of rNS eigenvalues for the value of viscosity � D 0:1

considered in [70, 71], tracking the unstable eigenvalues as E is varied through the

stability transition region. For this viscous case, we find that there are just two pairs

of unstable eigenvalues in total, which after crossing the imaginary axis to the right

turn back and rather quickly restabilize by crossing back into the stable half-plane;

meanwhile, the nearby inviscid eigenvalues plotted in the same figure may be seen to

continue to the right. At the value E 
 7:1 corresponding to the display of unstable

inviscid eigenvalues in Fig. 7(left), there are no remaining unstable eigenvalues for

the viscous case with � D 0:1.

Takeaways: 1. Another possible answer to the question “what is the role of

viscosity” in stability of strong detonations (namely, as a mediator in physical

phenomena, and not only an element in mathematical theory). 2. A potentially

important physical effect, meriting further study.
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Fig. 7 Left: 48 unstable eigenvalues for ZND, E D 7:1; none for rNS! Right: The movement of

unstable roots in the complex plane as E increases. Circles mark rNS roots, open squares ZND

roots. The smaller modulus rNS roots enter for E � 2:75 and the larger modulus roots for E �
3:65. The large modulus roots have a turning point at about E � 5:2, and the small modulus roots

at E � 5:5. The large modulus roots leave at E � 6:55 and the small modulus roots at E � 6:85
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1.8 Discussion and Open Problems

Investigation of detonation stability has proceeded by a blend of rigorous analysis,

formal asymptotics, and intensive numerical computation; however, the delicacy

of these analyses/computations has made definite conclusions elusive. One of

the few definitive rules of thumb is that increasing activation energy destabilizes

detonations, while increasing overdrive or decreasing heat release stabilizes them.

However, this has been difficult to confirm globally due to difficulty/expense of

computing for sufficiently large activation energies. We hope that the selection

of 1D results we have described indicates a clear role for the type of dynamical

systems/Evans function techniques used to study viscous shock wave, both in con-

firming known rules of thumb/computational results and suggesting new possible

directions of investigation– at the same time suggesting roles for viscous theory in

providing both rigor and new phenomena.

At the inviscid level, an unexpected bonus has been the discovery of the useful

coordinatization of Sect. 1.2, which appears to offer useful guidance/organization of

information at the level of applications. It is to be hoped that further analysis (see

open problem 3 just below) will identify similar “master coordinates” in the context

of rNS, removing the hysteresis of Fig. 6.

Open problems:

• Effects of viscosity on detonation behavior.

• 1D instability of ZND detonations in the high-activation energy limit.

• Viscous stabilization of rNS detonations in the high-activation energy limit.

• Stability of rNS detonations with multistep reactions.

• Stability of weak detonations/deflagrations for rNS (discussed further below).

Regarding the first problem, see the interesting recent discussion by Powers and

Paolucci [69] on complicated-chemistry reactions, pointing out that viscous length

scales neglected in ZND may be on the same order as reaction scales important

for stability. Regarding the second, it has been addressed formally in suggestive

fashion by Buckmaster–Neeves, Short, Clavin–He, etc. [13, 15, 75], but up to now

(a) not rigorously verified, and (b) as pointed out by Erpenbeck, Lee–Stewart, Short,

etc. [19, 49, 75, 76], exhibiting puzzling differences with observed numerics. Both

this and the third, hyperstabilization, problem appear to reduce to semiclassical

limit/turning-point problems similar to those treated in Sect. 2, with governing

parameter 1=E ! 0. See also the related [24] for reduced models accurately

capturing behavior.

The fourth and fifth problems concern topics omitted in these notes, but in

principle treatable by similar techniques. The addition of more physically realistic

reaction chemistry complicates but does not essentially change the mathematics;

however, as noted by Lee–Stewart and others [49] for ZND, it can significantly

affect physical behavior/phenomena. Stability of weak detonation and deflagration

waves (alternative types of combustion waves not discussed here [17, 28]) has been

studied for simplified “Majda”-type models in [32, 52, 54, 58, 79] and for artificial
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viscosity systems in [55]; for a discussion in the context of the full rNS equations,

see [82].

2 High-Frequency Stability of ZND Detonations and C1 vs.

C! Stationary Phase

In this second part, we focus now on a specific topic in multidimensional stability

analysis for ZND. A delicate aspect of numerical stability investigations for ZND

(inviscid) detonations is truncation of the computational domain by high-frequency

asymptotics, a semiclassical limit problem for ODE. In this part, we focus on

this issue in the most delicate multi-D case, revisiting and completing/somewhat

extending the important investigations of this topic by Erpenbeck [22, 23] in the

1960s. This leads to interesting questions related to WKB expansion, turning points,

and block-diagonalization/separation of modes. In particular, as we shall describe,

it highlights the difference between spectral gap and “spectral separation,” revealing

essential differences between C1-coefficient and analytic-coefficient theory. These

differences are in turn related to oscillatory integrals and differences in stationary

phase estimates for C1 vs. analytic symbols.

Questions we have in mind in this section are:

• Can we complete/make rigorous the turning-point investigations of Erpenbeck?

• What is the meaning, finally, of such inviscid high-frequency results?

2.1 Multi-d Stability of ZND Detonations

The multi-D reactive Euler, or Zel’dovich–von Neumann–Döring (ZND) equations,

in Eulerian coordinates, are

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t
 C rx � .
u/ D 0;

@tu C rx � .
u ˝ u/ C rxp D 0;

@tE C rx � .
uE C up/ D qk�.T/z;

@tz C rx � .
uz/ D �k�.T/z;

(12)

where 
 > 0 is density, u velocity, E D e C 1
2
juj2 specific gas-dynamical energy,

e > 0 specific internal energy, and 0 � z � 1 mass fraction of the reactant, typically

with polytropic equation of state and Arrhenius-type ignition function,

p D
�e

�
; T D c�1e; �.T/ D e

�E

T : (13)
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2.1.1 Planar ZND Detonation Waves

A (without loss of generality) standing, “left-facing,” planar detonation front is a

solution

.
; u; E; z/.x; t/ D

(

.
�; u�; E�; 1/; x1 < 0;

. N
; Nu; NE; Nz/.x1/; x1 � 0;

of (12) with . N
; Nu; NE; Nz/.x1/ ! .
C; uC; EC; 0/ as x1 ! C1. This consists of a

nonreactive “Neumann” shock at x1 D 0, z.0˙/ D 1, pressurizing reactant-laden

gas moving from left to right and igniting the reaction. As depicted in Fig. 2.1.1, the

profile is constant on x1 � 0 and has a reaction tail on x1 � 0, with burned state

z D 0 at x1 D C1.

2.1.2 Spectral Stability Analysis

Consider the abstract formulation of the equations

Wt C
X

j

@xj Fj.W/ D R.W/: (14)

Similarly as in the 1D case, Sect. 1.2.4, a normal modes analysis leads to the

linearized eigenvalue problem [21, 40, 59] 	A�1
1 Z C Z0

P

j¤1 i�jAjA
�1
1 Z D EA�1

1 Z;0

denoting @x, where Z WD A1W, Aj D Aj.x/ WD .d=dW/Fj. NW.x//, and E D E.x/ WD

.d=dW/R. NW.x//, NW the background wave:, or interior equation (written without loss

of generality for simplicity in dimension d D 2):

Z0 D GZ WD �.	 C �A2 C E/A�1
1 Z; x � 0C;

plus a (modified Rankine-Hugoniot) jump condition at x D 0. Here and in what

follows, we drop the subscript for x in the eigenvalue ODE, writing x1 as simply x.
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2.1.3 Evans–Lopatinski Condition (Erpenbeck’s Stability Function)

Normal modes e	tei�x2W.x1/, <	 � 0 correspond to zeros of the Evans–Lopatinski

determinant

DZND.�; 	/ D QZ�
1 .	; 0/ �

�

	Œ NW� C i�ŒF2. NW/� C R. NW/.0C/
�

; (15)

where Œ�� denotes jump across x D 0 and QZ1 is a (unique up to constant multiplier)

solution of the dual equations

QZ0 D �G� QZ D .A�
1 /�1.	 C �A2 C E/� QZ (16)

decaying as x ! C1. (This neat formulation, again, due to Jenssen-Lyng-Williams

[40].)

Note that (15) reduces for � D 0 to the 1D Lopatinski formula (9), the only

difference being that we have chosen in this section to analyze left-going detonations

and in Sect. 2 to analyze right-doing detonations, to match the respective source

documents [90] and [40]. This has the effect of reversing the order of characteristic

modes, so that QZn in (9) becomes QZ1 in (15).

2.1.4 Comparison to Shock Wave Case

For later, we note that the Evans–Lopatinski determinant described in (15) and

(16) is quite similar to that described for the shock wave case in [89, 93], with

the differences that here G is variable-coefficient rather than constant-coefficient

and E; R 6� 0. In practice, (15) is computed numerically by approximation of (16)

[6, 7, 19, 21, 37].

2.2 High-Frequency Stability and the Semiclassical Limit

(Following [44, 45]) We now come to our main topic. The numerics typically used

to evaluate (15) are sensitive and computationally intensive, particularly at high

frequencies [6, 7, 21, 49]; thus, an important step in obtaining reliable results is to

truncate the frequency domain by a separate, high-frequency analysis. Even the few

analytically deducible results (stability in q ! 0 or high overdrive limit) require

high-frequency truncation as a crucial (and somewhat delicate) step; see Sect. 1.

Our purpose here is to: 1. Describe two recent results of Lafitte-Williams-Zumbrun

on high-frequency stability [44, 45]: one instability and one stability theorem,

building on the pioneering ideas of Erpenbeck’s 1960s Los Alamos Technical

Report [22, 23]. 2. Discuss related block-diagonalization of semiclassical ODE [46].
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2.2.1 Formulation as Semiclassical Limit

Setting .�; 	/ D h�1.1; �/, for j�j >> 1, interior equation (16) becomes the

semiclassical limit problem

h QZ0 D .G0 C hG1/ QZ; (17)

where G0 D �Œ.� C iA2/A�1
1 �� involves only nonreactive gas-dynamical quantities,

so is identical to the symbol appearing in (nonreacting) shock stability analysis,

G1 uniformly bounded, h D j�j�1 ! 0. Likewise, the boundary vector
�

	Œ NW� C

i�ŒF2. NW/� C R. NW/.0C/
�

appearing in (15) rewrites as

h�1
�

`0 C h`1

�

; (18)

where `0 D �Œ NW� C iŒF2. NW/� is as in the nonreactive gas-dynamical case, and

R. NW0/.0C/ is bounded. The difference in principal parts from the nonreactive case

is just that G0 is now varying in x.

2.2.2 Symbolic Analysis

From the study of nonreactive gas dynamics [20, 59, 74, 89], we know that the

eigenvalues of the principal symbol G0 are

�1 D ��.��Cs/=�u1; �2 D ��.���s/=�u1; �3 D �4 D �5 D �=u1; (19)

where � D u1=c0, � D 1 � u2
1=c2

0, c0 D sound speed,

s D

q

�2 C c2
0 � u2

1; (20)

and, from the profile existence theory (specifically, the Lax characteristic condition
[47, 48, 77] on the component Neumann shock),

c2
0 � u2

1 > 0I (21)

here, �1 and �2 are acoustic, and �3; �4; �5 entropic and vorticity modes.

Thus, on the domain <� � 0 relevant to the eigenvalue/stability problem, there is

a single decaying mode �1 for <� > 0, which extends continuously to the boundary

� D i� . For reference, we will call this the “decaying” mode even at points on the

imaginary boundary where it becomes purely oscillatory (as does happen for values

of � D i� such that �2 � c2
0 � u2

1). Evidently, the decaying mode �1 remains

separated from all other modes �j except at glancing points for which �1 D �2, or

s D 0: equivalently, � D ˙i
q

c2
0 � u2

1, a property depending on both x and �.
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Glancing points play a central role in the study of multi-D nonlinear stability of

(nonreactive) viscous and inviscid shock and boundary layers [29, 30, 43, 57, 59, 62–

64, 88], presenting the chief technical difficulty in obtaining sharp linear resolvent

bounds needed to close a nonlinear analysis. There, the issue is to obtain bounds

on a constant-coefficient symbol as frequencies �; 	 are varied in the neighborhood

of a glancing point. In the present context, the problem is essentially dual: for fixed
frequencies � to understand the flow of ODE (17) as the spatial coordinate x is
varied, a nice twist for experts in shock theory. This leads us naturally to WKB

expansion/turning point theory, where glancing points represent nontrivial turning
points.

2.2.3 Analysis of (17) by WKB Expansion/Approximate

Block-Diagonalization

The situation of ODE (17), where solutions vary on a much faster scale � h�1 vs.

�1 than coefficients, is precisely suited for approximation by WKB expansion. As

discussed in [46, Section 1.1.1], WKB expansion is closely related to the method
of repeated diagonalization [16, 51], both methods consisting of constructing

approximate solutions from diagonal modes of a sufficiently high-order decoupled

system.

Primitive version: We illustrate the approach by a treatment of the simplest

(nonglancing) case, when �1 and �2 remain separated for all x � 0. This occurs,

for example, on the strictly unstable set <� > 0. Then, the decaying mode �1

remains separated from the remaining eigenvalues �2; : : : ; �5 of G0.x/. By standard

matrix perturbation theory [42], it follows that there exists a change of coordinates

T, depending smoothly on G0, such that T�1G0T D

�

�1 0

0 M

�

: Making the change

of coordinates QZ.x/ D T.x/ QW.x/, we convert (17) to an ODE

h QW 0 D

�

�1 0

0 M

�

QW � hT�1T 0 QW C h2T�1G1T QW; (22)

that, to order O.h/ of the commutator term hT�1T 0, is block-diagonal with a
decoupled �1 block.

Next, observe that an O.h/ perturbation of a block-diagonal matrix with spec-

trally separated blocks may be block-diagonalized by a coordinate change T2 D

Id C O.h/ that is a smooth O.h/ perturbation of the identity [42]; applying such a

coordinate change, and observing that the associated commutator term hT�1
2 T 0

2 D

hT�1
2 .O.h//0 D O.h2/, we can thus reduce to an equation that is block-diagonal to

O.h2/. Repeating this process, we may obtain an equation that is block-diagonal up
to arbitrarily high order error O.hp/, so long as the coefficients of the original

equation (17) possess sufficient regularity that derivatives in commutator terms

remain O.1/.
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Untangling coordinate changes, this suggests that the unique solution QZ1 decay-

ing as x ! C1 “tracks” to O.h/ the R1 eigendirection associated with �1,

satisfying the WKB-like approximation

QZ1.x/ D eh�1
R x

0 .�1CO.h//.y/dy.R1.x/ C O.h//;

with in particular QZ1.0/ D R1 C O.h/, where R1 is an eigenvector of the decaying

mode of �G�
0 .0C/.

Recall [20, 59, 93] that the Lopatinski determinant for the component Neumann

shock is

DN D `0 � R1; (23)

where `0 is the principal part of boundary vector (18). Thus, assuming that the above
approximate diagonalization procedure with formal error O.hp/ may be converted
to an exact block-diagonalization with rigorous convergence error O.hp/ (as will be

shown in Sect. 2.4 for any p), at least for p D 1, we may conclude that

DZND.�; 	/ D DN.�; 	/.1 C O.h//; (24)

where DN is the Lopatinski determinant for the stability problem associated with the

Neumann shock at x D 0, hence ZND detonation is high-frequency stable for such
choices of � (which include always the strictly unstable set <� > 0) if and only if
its component Neumann shock is stable.
The glancing case. In the glancing case, s.x�; ��/ D 0 for some x� � 0, and there

is a nontrivial turning point at x D x�. In this case, for � and x local to ��; x�, there

is no uniform separation between �1 and �2, and the above-described complete

diagonalization procedure no longer works. However, observing that �1 and �2

together remain spectrally separated from �3; : : : ; �5, we can still approximately

block-diagonalize to a system with coefficient

�

P 0

0 N

�

, where P is a 2 � 2 block

corresponding to the total eigenspace of G0 associated with �1 and �2, in particular

having eigenvalues �1 and �2. It is shown by a normal form analysis in [45] that

any such 2 � 2 block, under a nondegeneracy condition on the variation of its

eigenvalues with respect to x at x�, can be reduced further to an arbitrarily high-

order perturbation O.hp/ in h of Airy’s equation, written as a 2 � 2 system, where in

this case the nondegeneracy condition is just

.s2/0.x�/ ¤ 0: (25)

This comes from the perturbation expansion

�

0 1

c.x � x�/ 0

�

C O..x � x�/2/ C O.h/ (26)
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of the associated Jordan block, where the nondegeneracy condition (25) corresponds

to c ¤ 0. Assuming as before that the above approximate diagonalization procedure
be converted to an exact block-diagonalization with rigorous convergence error,
(Sect. 2.4), at least for p D 1, and that approximate Airy block (26) may be
converted to an exact Airy block (shown in [45] but not treated here), we may thus

hope to analyze this case by reference to the known (see, e.g., [1]) behavior of the

Airy equation.

2.3 The Erpenbeck High-Frequency Stability Theorems

We are now ready to state our main theorems regarding profiles of the abstract

system (14). We make the following assumptions:

Assumption 2.1 The associated nonreactive system Wt C
P

j @xj Fj.W/x D 0 is

hyperbolic for all value of W lying on the detonation profile NW.x/.

Assumption 2.2 The component Neumann shock for profile NW is Lopatinski stable

(see discussion below (24)).

Assumption 2.3 The coefficients of system (14) are real analytic.

Definition 2.4 A detonation is type I (resp. D) if c2
0 � u2

1 is increasing (resp.

decreasing).

Remark 2.5 Erpenbeck classifies a number of materials/detonations as class I or D.

More general cases may in principle be treated by elaboration of the techniques used

to treat classes I and D.

Theorem 2.6 (LWZ2012) Under Assumptions 2.1, 2.2, and 2.3, plus an addi-
tional (frequently satisfied) ratio condition,1 type I detonations exhibit Lopatinski
instabilities of arbitrarily high frequency.

Sketch of Proof (case of turning point) By the block-diagonalization procedure

described above, first reduce to a 2 � 2 block involving only the growth modes

�1 and �2. For type I, growth rates �1 and �2 correspond to exponentially

growing/decaying modes for x > x�, oscillatory modes for x < x�, the connections

between these solutions across the value x D x� being determined by behavior of

the Airy equation. The question is whether the Airy equation takes the pure decay

mode to the corresponding pure oscillatory mode (the “decaying” mode at x D 0C).

It does not– rather to the average of the two decaying modes [1], giving a solution

composed of oscillating comparable-size parts, which, under the ratio condition,

1Condition [44, (5.13)] comparing relative sizes of oscillatory modes in the first-order expansion

of decaying solution QZ, depending on the geometry of background profile NW; see [44, Prop. 5.1]

and discussion just below.
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cancel for a lattice of 	 D h�1i� C � with <� > 0. (Otherwise they cancel for

frequencies <� < 0 not giving instability.)

Theorem 2.7 (LWZ2015) Under Assumptions A1-A3, type D detonations are
Lopatinski stable for sufficiently high frequencies.

Sketch of Proof (case of turning point) As in case I, the problem reduces to a 2 � 2

block, and the study of connections across the turning point x D x� determined

by behavior of the Airy equation. For type D, the reverse happens, By reflection

symmetry of the Airy equation, there holds in case D essentially the reverse

situation to that of case I, featuring oscillatory modes for x > x� and exponentially

growing/decaying modes for x < x�, connected by a reverse Airy flow. So, again

we see that the pure “decay” (now actually oscillating) mode at C1 does not

connect to the pure growth mode at x D x�
� , but contains at least some component

of the (actual) “decay” mode for x < x�. It follows by order eO.x=h/ exponential

growth in the backward direction of this decaying mode, together with order eO.�x=h/

exponential decay in the backward direction of the complementary growing mode,

that the solution at x D 0 is dominated by the decay-mode component Thus, QZ.0C/

lies to exponentially small order in the R1 direction, R1 as in (23), giving the (stable)

shock Lopatinski determinant in the limit, as in the simplest (nonglancing) case.

Technical issues: 1. Exact vs. approximate block-diagonalization. 2. Block-

diagonalization at C1. 3. Turning points at x� D 0; C1, and exact vs. approximate

conjugation to Airy/Bessel (daunting). Issues 1 and 2 are resolved below; issue 3

(not treated here) is resolved in [45].

Remark 2.8 1. Theorems 2.6 and 2.7 give rigorous justification of numerical multi-

d stability stability computations for ZND, several aspects of which were previously

unclear [78].

2. The arguments streamline/modernize the analysis of [22, 23] (carried out

originally by WKB expansion in all 5 modes!). But also new analysis at degenerate

frequencies is needed for the complete stability result.2

3. The proofs are still hard work! (Amazing achievement of Erpenbeck in the

1960s.)

4. We have suppressed discussion of conjugations to Airy/Bessel equations

(difficult! the latter new), and related huge contributions of Olver and others in

asymptotics of special functions [1, 65].

2 As discussed in [45], Erpenbeck treated turning points/glancing modes at points x� bounded away

from 0 and 1; however, these cases necessarily occur at certain boundary frequencies, so must be

considered in a complete stability analysis, as must be issues not treated in [22] of uniformity for

frequencies near but not at a glancing point.
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2.4 Exact Block-Diagonalization and C1 vs. C! Stationary

Phase

(Following [46]) Consider an approximately block-diagonal equation

hW 0 D AW C hp‚;

A D

�

A11 0

0 A22

�

, ‚ D error, and seek T D

�

I hp˛12

hp˛21 I

�

such that W D TZ gives

an exact conjugation to hZ0 D DZ, with D diagonal, accuracy p D 1 being sufficient

for our stability arguments. Equating first diagonal, then off-diagonal blocks in

.hT 0 C TD/Z D .A C hp‚/TZ; yields Ricatti equations

h˛0
12 D A11˛12 � ˛12A22 C ‚12 � h2p˛12‚21˛21 � hp‚11˛21;

h˛0
21 D A22˛21 � ˛21A11 C ‚21 � h2p˛21‚12˛12 � hp‚22˛21;

(27)

or, viewed as a block vector equation in ˛ D .˛12; ˛21/:

h˛0 D A.0/˛ C .A.z/ � A.0//˛ C Q.˛; ‚; h/: (28)

Observation Sylvester equation, hence �.A11/ \ �.A22/ D ; implies 0 62

�.A.0//.

2.4.1 Lyapunov-Perron Formulation (Standard)

From h˛0 D A.0/˛ C .A.z/ � A.0//˛ C Q.˛; ‚; h/, we obtain by Duhamel’s

principle the integral fixed-point equation

˛.x/ D T ˛.x/ WD h�1

Z x

z�

eh�1A.0/.x�y/…S

�

.A.y/ � A.0//˛.y/ C Q.y/
�

dy

C h�1

Z x

z�

eh�1A.0/.x�y/…U

�

.A.y/ � A.0//˛.y/ C Q.y/
�

dy;

(29)

on diamond D WD fx W j arg
�

.x � z�/=�
�

j; j arg
�

.z� � x/=�
�

j � "g, where � 2 C,

j� j D 1 is chosen so that A.0/� has spectral gap, and …U, …S denote stable/unstable

projectors of A.0/� ; see Fig. 8. Mapping T is contractive by O.e��jx�yj=h/ decay of

propagators, plus smallness of the source.

Remark 2.9 Here, we have used analyticity to escape the real axis and recover a

spectral gap. This is essentially a finite-regularity version of a theorem of Wasow

[85] in the h-analytic case [46].
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Fig. 8 Block diagonalization

at a finite point

2.4.2 Block Diagonalization at Infinity

In many problems (e.g., detonation), we must treat unbounded intervals, diago-

nalization at infinity. A bit of thought shows that the finite-domain fixed-point

construction of (29), depicted in Fig. 8, does not work:on the infinite domain, for the

reason that points z�, z� would have to run out to infinity in ˙� directions in order

to accomodate x on an interval .M; 1/ on the real axis, hence the domain D would

become a half-space and the integrals of (29) no longer necessarily converge (nor

even b: defined, since ODE coefficients would not necessarily extend). We treat this

case instead by the following modifications of the argument for the finite-turning

point case [46]. Briefly, we:

• Require analyticity on a wedge about infinity, not just a neighborhood of the

real axis, with exponential decay as <z ! 1 (and verify that this is indeed

guaranteed by stable manifold construction for an analytic coefficient profile

equation).

• Use three contour directions to recover a spectral gap, while restricting the fixed-

point domain D to the wedge of analyticity of coefficients (with convergence of

integrals coming partly from exponential decay of
�

A.y/ � A.1/
�

, replacing

smallness jyj << 1 i: the finite case); see Fig. 9.

2.5 Counterexamples and C1 vs. C! Stationary Phase

Our treatment of multi-D high-frequency behavior has a different flavor from the

analyses of 1-D stability in part one: in particular, we have used analyticity of

coefficients and moved away from the real line.
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Fig. 9 Block diagonalization

at infinity: contour

configuration

A natural question: Is this necessary? In particular, could we by some other method

perform block-diagonalization for C1 (or just Cr as in the 1-D case) coefficients?

Rephrasing: 1. Is a spectral gap between blocks (as in classical ODE techniques

[50]) needed for exact C1 diagonalization, or just spectral separation? (Here, we

define spectral gap between eigenvalues as nonzero real part and spectral separation

as nonzero modulus of their difference.) And, 2. (Wasow, 1980s [85]) Can analytic

block-diagonalization be performed globally under appropriate global assumptions?

2.5.1 Counterexamples: Reduction to Oscillatory Integral

The answers to the above questions are “yes” (spectral gap is needed) and “no” [46],

as we now describe. Consider the 2 � 2 triangular system

hW 0 D A.x; h/W WD

�

	1.x/ hp�.x/

0 	2.x/

�

W; W 2 C
2; p � 1; (30)

� uniformly bounded, with globally separated eigenvalues 	1.x/ D x C i, 	2 D

�.x C i/.

Lemma 2.10 ([46]) There exists T.x; h/ on Œ�L; L� � R, 0 � h � h0, T; T�1

uniformly bounded in C1, for which W D TZ converts (30) to a diagonal system
hZ0 D D.x; h/Z, if and only if

Z x

�x

e�y2=h�2iy=h�.y/dy . he�x2=h for all jxj � L: (31)

Sketch of proof It is sufficient to seek a triangular diagonalizer T D

�

1 hp˛

0 1

�

, in

which case Ricatti equation (27) reduces to a scalar, linear ODE in ˛:

h˛0 D .	1 � 	2/˛ C �: (32)
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By Duhamel’s principle/variation of constants, existence of a uniformly bounded T
thus implies uniform boundedness of

˛.x; h/ D h�1

Z x

0

eh�1
R x

y .	1�	2/.z/dz�.y/dy � eh�1
R x

0 .	1�	2/.z/dz˛.0; h/

D e.x2C2ix/=h
�

h�1

Z x

0

e�.y2C2iy/=h�.y/dy � ˛.0; h/
�

:

The direction (() then follows by e�2ix˛.x/ � e2ix˛.�x/ D ex2=h
R x

�x e�.y2C2iy/=h

�.y/dy:

The direction ()) follows by direct computation, choosing ˛.0; h/ D

h�1
R L

0
e�.y2C2iy/=h�.y/dy.

2.5.2 Failure of Global Conjugators

Lemma 2.11 ([46]) For a 6� 0 analytic on Œ�L; L� � Œ�i; i�, and h ! 0C,

Z x

�x
e�y2=h�2iy=ha.y/dy

(

. he� x2

h ; 0 < x � L < 1;

� h.jC1/=2e� 1
h ; 1 < c0 � x � L;

(33)

where j D order of first nonvanishing derivative of a at z D i.

Proof The general case follows by complex-analytic stationary phase estimates (see

[56, 67]). The simplest case a � 1 (enough for a counterexample), follows from
R C1

�1
e�y2=h�2iy=hdy D e�1=h, which follows from the fact that the Fourier transform

of a Gaussian is Gaussian.

Consequence: Lemma 2.11 implies that there is no bounded block-diagonalizing

conjugator of (30) on Œ�x; x� for jxj > 1, resolving a 30-year open question of

Wasow [85].

2.5.3 Failure of Local Conjugators for C1 Coefficients

Lemma 2.12 ([46]) For 0 < c0 � x and a.y/ WD e�y�1=.s�1/
for y > 0 and 0 for

y � 0,

Z x

�x
e�y2=h�2iy=ha.y/dy � h1�1=2se

�c.s/Cd.s/h1�1=sCO.h2.1�1=s//

h1=s ;

1 < s < 1, as h ! 0C, for any x > 0, where c.s/ > 0, and <d.s/ < 0 for s < 2.
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Proof (Sketch of proof) Defining ˛ D 1 � 1=s 2 .0; 1/, ˇ D e�
i
.1�1=s/

2 , deform con-

tour Œ0; C1� to z D h˛ˇt, t 2 .0; C1/, to obtain I.h/ � h˛
R 1

0
e

iˇ.�2t�t�� Ciˇh˛ t2/

h1�˛ dt;
then apply a standard stationary phase estimate about the nondegenerate maximum

of the phase at t0 D 2�.1�1=s/ C O.h/.

Consequence: Lemma 2.12 implies that there is no bounded block-diagonalizing

conjugator of (30) on Œ�x; x� for jxj > 0, resolving question 1 of Sect. 2.5

(Taking �.y/ to be the symbol a.y/ of Lemma 2.12 gives
R x

�x e�y2=h�2iy=h�.y/dy �

h1�1=2se
�c.s/

h1=s 	 he�x2=h for any x > 0, s > 1.)

Moral: Results may vary for C1 coefficients!

Related phenomena: 1. Different qualitative nature of diffraction by C1 vs. analytic

boundary in R3 G. Lebeau, Private communication. 2. Instability of analytic-

coefficient spectra under C1 perturbations: probability one of a Weyl distribution

(“cloud”) for asymptotic spectrum of a random C1-perturbation of an analytic-

coefficient operator with asymptotic spectra initially confined to a curve [31].

2.5.4 Coda: Gevrey-Regularity Stationary Phase

For Gevrey norm kaks;T WD supj j@j
xaj.jŠ/s=T j, define the Gevrey class Gs;T of

functions with bounded Gevrey norm. Here, s D 1 corresponds to analyticity on

a strip of width T about the real axis R, while s ! 1 corresponds to absence of

regularity, with Gevrey-class functions interpolating between. The following result

gives an upper bound corresponding to the lower bound of Lemma 2.12.

Proposition 2.13 ([46]) For a 2 Gs;T0 on Œ�L; L�, T0; T > 1, jxj � L, and some
c D c.T1; T; s/ > 0,

Z x

�x
e�y2=h�2iy=ha.y/dy . h1=2kakT;se

�c=h1=s
: (34)

Proposition 2.13 interpolates between the algebraic O.hr/ van der Korput bounds

for Cr symbols (roughly, s D 1) and the exponential O.h1=2e�1=h/ bounds for

analytic symbols a obtained by the saddlepoint method/analytic stationary phase.

Lemma 2.12 shows that (34) is sharp.

(Proof by Fourier cutoff/standard complex-analytic stationary phase.)

2.6 Discussion and Open Problems

Our turning-point analyses in the first part of this section completes and somewhat

simplifies the high-frequency stability program laid out by Erpenbeck in the 1960s,

in his tour de force analyses [22, 23]. This in turn solidifies the foundation of the
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many (and delicate) numerical multi-D stability studies for ZND, by rigorously

truncating the computational frequency domain. On the other hand, our analysis

in the second part of this section on sensitivity of block-diagonalization/WKB

expansion with respect to C1 (indeed, Gevrey-class) perturbations raises interesting

philosophical questions about the physical meaning of our multi-D high-frequency

stability results, as intuitively we think of physical coefficients as inexactly known.

Recall that the 1-D high-frequency stability results of [91] used a different,

Cr diagonalization method, so this issue does not arise in 1-D. Likewise, smooth

dependence on coefficients with respect to Cr perturbation of the Evans-Lopatinski

determinant DZND.�; 	/ restricted to compact frequency domains [68] implies that

the strict instabilities asserted for analytic coefficients in Theorem 2.6 persist under

Cr perturbations of the coefficients, so there is no issue for our instability results.

That is, the Evans function is itself robust, independent of the methods that we used

to estimate it. Even in the stable case, we obtain from this point of view robust

stability estimates on any bounded domain, no matter how large, in particular for

domains far out of practical computation range. Thus, the results of Theorem 2.7

have practical relevance in this restricted sense independent of questions regarding

analyticity of coefficients. The philosophical resolution of the remaining issue for

ultra-high frequencies, may perhaps, similarly as other issues touched on in Sect. 1,

lie in the inclusion of transport (viscosity/heat conduction/diffusion) effects, which

stabilize spectrum for frequencies on the order of one over the size of associated

coefficients.

Open problems:

• ZND limit for multi-d (interaction of viscosity, turning points).

• Multi-d numerics for rNS (no apparent obstacle, but computationally intensive).

• Rigorous analysis of 1-d viscous hyperstabilization (again, apparent interaction

of turning points vs. viscous effects).

Acknowledgements Special thanks to the anonymous and extraordinarily attentive referee, whose

many thoughtful suggestions and comments greatly improved the exposition.
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