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Dedicated to Guy Métivier on the occasion of his 65th birthday.

Abstract We describe recent analytical and numerical results on stability and
behavior of viscous and inviscid detonation waves obtained by dynamical sys-
tems/Evans function techniques like those used to study shock and reaction diffusion
waves. In the first part, we give a broad description of viscous and inviscid results
for 1D perturbations; in the second, we focus on inviscid high-frequency stability in
multi-D and associated questions in turning point theory/WKB expansion.

In these notes, we describe some recent work on stability and behavior of detonation
waves, carried out from a point of view evolving from the study of viscous and
inviscid shock and boundary layers in, e.g., [11, 27, 29, 30, 33-36, 57, 68, 91-93].
This material was originally presented as a pair of 90-min lectures at the INDAM
conference Nonlinear Optics and Fluid Mechanics, given in Rome, September 14—
18, 2015 in honor of the 65th birthday of Guy Métivier, and our treatment follows
closely to the spirit and format of the lectures.

The topic was chosen for interest of the honoree as almost the unique one studied
by the author on which he has not explicitly collaborated with Métivier; nonetheless,
many of the ideas may be seen to be related to ideas and tools developed by and with
Guy in other contexts. The material presented here was developed in joint work with
Blake Barker, Jeff Humperys, Olivier Lafitte, Greg Lyng, Reza Raoofi, Ben Texier,
and Mark Williams. We mention also the foundational work of Kris Jenssen together
with Lyng and Williams [40], of which we make frequent use.
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274 K. Zumbrun
1 Stability of Viscous and Inviscid Detonation Waves

In this first part, we survey a collection of theoretical and numerical results on /D
stability of detonations obtained over the past 10—15 years via Evans function-
based techniques like those used to study shock and reaction diffusion waves.
These include stability in the small heat-release and high-overdrive limits, rigorous
characterization of 1D instability as “galloping” type Hopf bifurcation, description
of the inviscid (ZND) limit, and numerical computation of viscous (rNS) spectra
revealing a new phenomenon of “viscous hyperstabilization.”
Two underlying questions we have in mind in this section are:

* What is the (physical or mathematical) role of viscosity in the theory?

* What is our role in the theory? That is, what can we usefully contribute to the
(physical or mathematical) study of detonations by the introduction of Evans
function-based techniques?

1.1 Viscous and Inviscid Detonation Waves

Consider a general abstract combustion model with one-step reaction, expressed in
1D Lagrangian coordinates [53-55, 82, 91]:

Uy +f(v)x = g(B(U)Ux)x + kCI¢(U)Zs

1
7z = &(C(v,2)z)x — ko (v)z, W
v,f,q € R Be R, z,C, ¢,k ¢ € R', and k, ¢ > 0. Here, v comprises
gas-dynamical variables, z = mass fraction of reactant, ¢(v) = “ignition function”,
q = heat release, k = reaction rate, and ¢ (typically small) scales coefficients of
viscosity/heat conduction/species diffusion.
A right-going detonation solution consists of a traveling wave

W, z2)(x, 1) = (V,2)(x — s1), 1i$ W, 2)(x) = (v+,z+),
X—>I00
s > 0, withz_ = 0 and z+ = 1, moving to the right into the totally unburned region

toward x — +o00 and leaving behind the totally burned region toward x — —oo.
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Example 1.1 A standard example is the reactive Navier—Stokes/Euler system

0,7 — dyu =0,
o+ 0yp = 8X(Ur_laxu),
@
E + 0c(pu) = BX(Kr_laxT + vr_luﬁxu) + gk¢(T)z,
0z = d(dt20,2) — kp(T)z,
where t > 0 denotes specific volume, u velocity, E = e + %uz specific gas-

dynamical energy, e > 0 specific internal energy, and 0 < z < 1 mass fraction of
the reactant, with ideal gas equation of state, single-species reaction, and Arrhenius-
type ignition function,

p=—. T=cle ¢ =c7. 3)
where I' = y — 1 > 0 is the Gruneisen constant, y > 1 is the adiabatic index, c is
specific heat, and £ is activation energy for the gas [5, 8, 25].

For v,k,d > 0, this represents the “viscous” (mixed hyperbolic—parabolic)
reactive Navier—Stokes (rNS) equations [8, 17], for v,k,d = 0, the “inviscid”
(hyperbolic) reactive Euler, or Zel’dovich—-von Neumann—Doring (ZND) equations
[18, 83, 84, 87]. These represent successive refinements of the earlier Chapman—
Jouget (CJ) theory [14, 38, 39], in which both transport (diffusion) and reaction
processes are taken to occur instantaneously, across an ideal shock-like discontinu-

ity.
1.1.1 Inviscid (ZND) Profiles

(Following [90]) In case v,x,d = 0, r = 1, we may explicitly solve the profile
equation associated with (1), (2), and (3). By the invariances of (2) and (3), we may

take without loss of generality + = 1, u4+ = 0,5 = 1,and 0 < e4 < 1“(1“;4—1)’
. I+1)%(Ceq +1)>—T(T+2)(14+2(0+1 S 1
withl' > 0, > 0,0 <q < qgc; = ()" (Teq )2F(F(+2) JA+2(TC+ Dey) yielding
(substituting 9, — 9, and integrating the conservative (t, u, E) equations)
_ _ _ T(ler+1-—-1
u=1-r, e:¥, “4)

(T + D(Tey + 1) — /2I(T + 2)(qcs — gz — 1))
r+2 '

T =

The Z component can then be solved viaZ = k¢ (ce(z))z on x < 0 (reaction zone).
A nonreactive “Neumann shock” at x = 0 connects the ignited state at x = 0~
to a quiescent state at x = 0T (for both of which z = 1), and the profile remains



276 K. Zumbrun

p— —u
1 PPt e 1 e
s --z --z
osf [ -y 0.8 -y
! tau tau
06} 0.6
04} | 0.4
02f & \ 0.2
0 — 0
(a) 0 5 0 5 10 (b) 5 10

Fig. 1 Sample profiles illustrating diffusive effects. (a) v =d =k = 0.0l. (b)v =d =« =
0.3. In both cases the reaction zone structure is clearly visible, but in (b) the shock width is of
a similar order as the reaction zone width For both plots, e = 6.23 X 1072, k = 1.53 x 10%,
g=623x10",£=6T=02,¢c, =1

constant thereafter, i.e., for all x > 0. This corresponds to the physical picture of a
gas-dynamical shock moving into an unburned, quiescent gas at x — 400, which,
its temperature being raised by compression of the shock, ignites and burns steadily,
leaving a “reaction spike” in its wake, with completely burned gas at x — —oo.

1.1.2 Viscous (rNS) Profiles

Likewise, parametrized by (e+,q,&,T,v,k,d) € compact domain (i.e., with
nonphysical value e = 0 adjoined), NS profiles are exponentially convergent
to their endstates except at the degenerate “Chapman—Jouget” value ¢ = q¢y
[53, 88, 90], for which they decay algebraically. Existence of rNS profiles for
small viscosity/heat conduction/species diffusion has been shown, for example, in
[28, 86], by singular perturbation of the ZND case. When diffusion coefficients
are not small, profiles must be found in general numerically [5]. Numerically
determined profiles for different values of diffusion coefficients are displayed in

Fig. 1.

1.1.3 Issues and Objectives

Unlike nonreactive shocks, which are typically quite stable, detonations frequently
exhibit instabilities of different types. See Fig.2 depicting results of shock tube
experiments carried out by John H.S. Lee (reprinted from [50] with permission of
the author), which indicates the variety of possible behaviors as physical parameters
are varied, from a nonreactive shock-like coherent planar detonation layer, to
apparent bifurcation to cellular or pulsating patterns, to what appears to be chaotic

flow.
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Fig. 2 Detonation instability in a duct (John H.S Lee, McGill University)
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The first mathematical model of detonation, the Chapman—Jouget model
(~1890s; e.g., [14, 38, 39]) treated detonations as a shock modified by instantaneous
reaction. This is sufficient to predict possible endstates and speeds of planar
discontinuities, but not to determine realizability by a connecting longitudinal
reaction/dissipation structure. Moreover, it does not capture the complicated
instability/bifurcation phenomena described above; indeed, for the one-step
polytropic model of Example 1.1, Chapman-Jouget detonations are universally
stable [40, 60].

The modern theory of detonation stability dates from the post-world war II
period, with the introduction of the ZND mdel [18, 83, 84, 87] and the pioneering
stability/behavior studies of J.J. Erpenbeck and others. The ZND model has
successfully modeled a wide range of experimentally observed phenomena in
stability/behavior. Indeed, there is by now a comparatively long history (~1960s;
e.g., [19]), and extensive numerical and analytical literature in the context of ZND;
see, for example, [10, 12, 17, 19, 25, 41, 49], and references therein. By contrast,
until recently (~1990s; e.g. [53]), there was relatively little investigation of the more
complicated rNS model.

Issues: 1. Experimental stability transitions/bifurcation to time-periodic pulsat-
ing/cellular wave patterns are well modeled by ZND. But, there is no corre-
sponding nonlinear stability or bifurcation theory, and little regularity (or even
well-posedness) for the (hyperbolic) equations. 2. The rNS equations on the other
hand feature better regularity/well-posedness, but are significantly more compli-
cated; till recently, there was neither linear data nor nonlinear theory. Practical
effects/importance of added transport (viscosity/heat conduction/diffusion) terms is
not clear.

Objectives: 1. Review and rigorous (analytical) verification of physical conclusions
plus systematic (numerical/analytical) exploration of parameter space; justification
(and improvement) of numerics, for both (ZND) and (rNS). 2. Systematic compari-
son between and synthesis of (rNS) and (ZND).

1.2 Stability Framework: Normal Modes Analysis for ZND

(Following [40]) Shifting to coordinates X = x — st moving with the background
Neumann shock, write the ZND version ¢ = 0 of (1) as

W, + F(W), = R(W),

where

—(u — (fu) —su [ akzgp(u)
A e I e}
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1.2.1 Fixed-Boundary Formulation

Defining the Neumann shock location as X(7), we reduce to a fixed-boundary
problem by the change of variables x — x — X(¢). In the new coordinates,

Wi+ (F(W) = X' (W), = R(W), x#0,
with jump condition
X' 0[W] - [F(W)] = 0,

[A(x,1)] := k(0T £) — (0™, t) denoting the jump at x = O of a function .

1.2.2 Linearized Equations
Linearizing about (W, 0), we obtain the linearized equations

(W = X' (W) () + (AW), = EW, (5)

X' (H[W°] —[AW] =0, x=0,
where A = A(x) := (3/0W)F(W°(x)), E = E(x) := (3/dW)R(W°(x)). (Here and
below, E is a matrix-valued function, not to be confused with specific energy density
in Example 1.1.)
1.2.3 Reduction to Homogeneous Form
To eliminate the front from the interior equation, reverse the original transformation
to linear order by the change of dependent variables W — W — X(7) (W% (x), moti-
vated by W(x — X (1), 1) — W(x, 1) ~ =X ()W, (x, 1) ~ —X(£)(W°)’(x) approximating
to linear order the original, nonlinear transformation. (As noted in [40], this can be
viewed as a simplified version of the “good unknown” of Alinhac [3, proof of Prop.
3.1].) Substituting using (A(W) (W) (x)), = E(W°)(W?)/(x) gives
W, + (AW), = EW (6)

with modified jump condition X'(1)[W°] — [A(W + X (£)(W°)')] = 0.
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1.2.4 Generalized Eigenvalue Equation

Seeking normal mode solutions W(x,7) = eMW(x), X(1) = X yields the
generalized eigenvalue equations (AW)" = (=AI + E)W, x # 0, XA[WO] —
[A(W°)']) — [AW] = 0, where “/” denotes d/dx, or, setting Z := AW, to

Z =GZ, x#0, 7
XAWI—[AW)]) —[Z] =0, x=0. )]

where G := (=AMl + E)A™".

1.2.5 Stability Determinant
We define the Evans—Lopatinski determinant

Dznp(A) := det (Z7 (A,0), -+, Z7(A,0), A[W°] — [A(W°)'])
= det (Z;(2,0), --+, Z; (X, 0), A[W°] + A(W°)'(07)) .

where Z~ (A,x) are a basis of solutions of the interior equations (7) decaying as
x — —o0. By A(W°) = dF(W°)(W°) = R(W?) plus duality, we can rewrite this
in the simpler form

Davo(2) = Z; (1,0 - (A[W'] + R(W)(0")) ©)

useful for numerics [11, 34] and also analysis [90, 91], where Zn_ is a (unique up to
constant multiple) solution of the dual equation 7 =-G*Z decaying as x — —o0.
The function Dzyp is exactly the stability function derived in a different form by
Erpenbeck [6, 19].

e Evidently, A is a generalized eigenvalue iff Dzyp(A) = 0.

Definition 1.2 A ZND profile is spectrally stable if there are no zeros of the
associated Lopatinski determinant in {A : RA > 0} \ {0} [19]. (By translation-
invariance, there is always a zero at A = 0.)
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1.3 Normal Modes Analysis for rNS

Taking without loss of generality s = 0 (i.e., working in co-moving coordinates),
write the (rNS) version ¢ = 1 of (1) as

W, + F(W)x = (B(W)Wx)x + R(W)a

so that the background detonation wave is an equilibrium W(x, ) = W°(x).
The linearized eigenvalue equations take the form

AW = LW := —(A@)W), + e(Bx)Wy)x + EW,

with appropriate A, B, E, where E = (3/0W)R(W°(x)) as in (5). These may be
written as a first-order system

Z'= Ax, M) Z,
where Z — ( Y) _ (AW—eBWX
2 W
Define the Evans function

) is an augmented “flux” variable [90].

Dyns(A) i=det(Z7, ..., 20, 25 W) =0 (10)
where {Z",..., 2 }(A,x) and {Z,:Ll, ..., Zn}(A, x) are bases of solutions decay-
ing as x — oo and x — +-00.

e Evidently, A is an eigenvalue iff D,ys(A) = 0.

Definition 1.3 An rNS profile is spectrally stable if there are no zeros of the
associated Evans function in {A : 9A > 0} \ {0} [53, 55, 82]. (As for ZND,
there is always a zero at A = 0.)

1.4 Abstract Viscous Stability Results

Let {W®} be a one-parameter family of viscous strong detonation waves for rNS
with polytropic equation of state (3), with associated parameters ¢°, etc.

1.4.1 Spectral Stability Transitions

(Following [53])

Lemm_a 1.4 (Stability in the small-heat release limit [53]) If¢° — Oase — O,
then {W*} is spectrally stable for ¢ sufficiently small.
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Lemma 1.5 (Absence of steady bifurcations [53]) Forall ¢, the associated Evans
function has a zero of multiplicity one at A = 0 : D(g,0) = 0, and D'(s,0) # 0,
hence stability transitions if they occur involve passage of nonzero conjugate zeros
across the imaginary axis. More generally, this holds for any equation of state for
which the associated CJ profiles are stable

Lemma 1.4 is an immediate consequence of the construction of an Evans
function, done similarly as in [2, 27], using the resulting continuity with respect
to parameters together with decoupling at ¢ = 0 of gas-dynamical («) and reaction
(z) equations. Lemma 1.5 follows by a “stability index” computation like those of
[27, 66, 93], quantifying the intuition that low-frequency behavior of rNS should
“not see” reaction and transport scales, so should reduce to that of CJ. See [40] for
a far-reaching extension of this principle including also ZND and multi-D.
Takeaways: 1. Stable waves exist. 2. Stability transitions should they occur are of
(spectral) Hopf, i.e., “pulsating” type, as seen in experiment- and, indeed, they are
seen numerically to occur, as displayed, for instance, in Fig. 7 below. (Link between
behavior and equations.)

1.4.2 Nonlinear Stability/Difurcation Criteria

(Following [82])

Theorem 1.6 (Spectral = nonlinear stability [82]) Forall ¢, WeisL'NL? — [P
linearly orbitally stable if and only if the only zero of D(g,-) in RA > 0 is a simple
zero at the origin, in which case W¢ is L' N H® — L' 0 H? linearly and nonlinearly
orbitally stable, with

W (1) = W = @)l = CIWg = Wy (14072075,
for nearby solutions We, where
- _ . ~ - 1
16()] = CIWG = Welpiags, 18] = CIWG — W Lings (1 4+ 172,

Theorem 1.7 (Spectral = nonlinear bifurcation [82]) Assume that W¢ under-
goes transition from linear stability to linear instability at ¢ = 0, via passage of
a single complex conjugate pair of eigenvalues A+ (g) = y (&) + it(e) through the
imaginary axis:

y(0) =0, t(0)#0, dy/de0)# 0. n
Then, given exponential weight w > 0, for 0 < r K< 1, C > 1, there are C!

functions r — &(r), T(r), with €(0) = 0, T(0) = 27/7(0), and a C! family of time-
periodic solutions U (x, t) € H2 of (rNS) with e = &(r), of period T(r), with C™'r <
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||f]’ — Ug”Hf, < Cr, where |[f||H3J = |of |2 and Hf) is the space determined by
| - gz Up to translation in x, 1, these are locally unique in || - || 2.

Theorem 1.6 is established by detailed pointwise Green bounds obtained from
stationary phase type estimates on the inverse Laplace transform representation of
the linearized solution operator, together with a nonlinear shock tracking argument,
in the spirit of [61, 89, 92]. Theorem 1.7 is established by a novel “reverse temporal
dynamics” argument using inverse Laplace transform estimates similar to those for
stability. See also [73, 80, 81] for related studies in the shock wave case. For a
nonlinear stability analysis of the bifurcating time-periodic solutions, see [9].
Takeaways: 1. Rigorous characterization (with Lemma 1.5) of 1d instability as Hopf
bifurcation. 2. Spectral information as in Lemmas 1.4 and 1.5 translates to full
nonlinear results.

1.4.3 Closing the Philosophical Loop: The rNS—ZND Limit

(Following [90]) At this point, the situation as regards the two theories (rNS and
ZND) is that we have for ZND decades of spectral stability data, numerics, and for-
mal asymptotics, but no nonlinear theory; for NS, we have essentially the reverse.
A way to repair this situation, combining the strengths of the two theories, is to link
them via the vanishing viscosity, INS—ZND limit. The limiting profile structure
problem has been studied in [28, 86], etc., with definitive results. However, until
recently, the only analytical result regarding stability was the study by Roquejoffre—
Vila [72] for Majda’s model [58], a simplified qualitative model of detonations. A
generalization to the full rN'S system is as follows; here, W* represents an e-profile,
with &€ measuring size of transport (viscosity/heat conduction/diffusion) coefficients.

Theorem 1.8 (rNS spectrum in the ZND limit [90]) Spectral stability of W*
for ¢ > 0 sufficiently small is equivalent to spectral stability of the limiting
ZND detonation W° together with spectral stability of the viscous version of the
associated Neumann shock. Moreover, (i) For C < |A| < C/e, C sufficiently large,
on RA > —n for n, ¢ > 0 sufficiently small, s times the set of zeros of DSy
converges to the set of zeros ofD%(k) on NA > 0. (ii) For |A| < Cy, Cy arbitrary, on
RA > —n < 0, the zeros of D¢ converge in location/multiplicity as ¢ — 0 to the
zeros of Dznp.

The proof of Theorem 1.8 is by detailed multi-scale analysis as in stability of
strong shocks and other asymptotic limits [36, 68], together with an e-variational
argument like that used in [27] and [93] to study the related low-frequency (small-1)
limit. The detailed asymptotics provided on the profile by the analyses of [28, 86] are
used in an important way. It is known that nonreactive viscous shocks of a polytropic
gas are universally stable [33, 35], hence the theorem reduces spectral stability for
rNS in the small-viscosity limit to spectral stability of ZND.
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Takeaways: 1. Verifies NS stability/bifurcation for small & through extensive
existing numerical studies for ZND. 2. Gives rigorous nonlinear sense to (spectral)
ZND results.

This gives one answer to the question “what is the role of viscosity?”” (namely, an
element in logical development/foundations, with little effect on phenomena). We’ll
explore a possible different answer below, in Sect. 1.7.

1.5 Abstract Inviscid Stability Results

(First rigorous stability results for ZND) Let {W*} be a one-parameter family of
strong detonation waves for ZND with polytropic equation of state (3).

To explain our next results, we first recall that the parametrization given in
Sect. 1.1.1 is not the standard one given in the literature, but our own improved
version [90]. In the classical parametrization given e.g. in [21], e rather than speed
s is held fixed, and the detonation parametrized rather by the overdrive 1 < f < oo,
defined as the square of the ratio of relative speed of the detonation (with respect
to the ambient gas) and the minimum, Chapman—Jouget, detonation speed among
all possible strong detonations [10, 21, 26, 49]. In this classical scaling, two rules
of thumb observed numerically are that detonations are more stable the smaller the
heat release ¢ and the higher the overdrive f. The former was proved by Erpenbeck
for finite frequencies, but his treatment of high frequencies was incomplete [91].

Lemma 1.9 (Stability in the small-heat_ release limit [91]) In the scaling of
Sect. 1.1.1, if ¢ — 0 as ¢ — 0, then {W¢®} is spectrally stable for ¢ sufficiently
small.

Corollary 1.10 (Stability in the high-overdrive limit [91]) [In the scaling of
Erpenbeck [21], ZND detonations of (3) are spectrally stable in the fixed-activation
energy, fixed-heat release, high-overdrive limit f — oo.

The first result includes but is not restricted to the observation of Erpenbeck that,
in the scaling of [21], ZND detonations are stable in the fixed-activation energy,
fixed-overdrive, small-heat release limit, which in our scaling corresponds to fixed-
activation energy, fixed-e4 or shock strength, and small-g or heat release. The
second result, corresponding in our scaling to stability in the simultaneous zero-
heat release, zero-activation energy &, and strong-shock (zero-e) limits, resolves
an open problem from [21]. Our favorable coordinatization (s = 1 held fixed,
e+ — 0), suggested by similar scalings used to study the strong-shock limit for
gas dynamics [35, 36], plays an important role in the analysis. For, this keeps all
quantities bounded for bounded frequencies, independent of parameters, allowing
uniform treatment of the strong-shock limit. By contrast, internal energy e and
temperature 7 blow up for the classical scaling in the strong-shock limit. In the
course of the proof, specifically in treating the complementary regime of frequencies
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going to infinity, we establish also 1D high-frequency stability, along with new
asymptotic ODE techniques.

Takeaways: 1. Analytical signposts guiding delicate/computationally intensive
numerics [19, 49]. 2. 1D high-frequency stability, validating the necessary
truncation of computational (i.e., frequency) domain in carrying out numerical
stability studies. (See Sect. 2 for further discussion.)

Remark 1.11 The 1-D high-frequency stability analysis foreshadows issues
addressed in Sect.2.1 for multi-D. Notably, the 1D analysis requires only C?
regularity on coefficients/equation of state.

1.6 Numerical Results for ZND
1.6.1 Natural Coordinatization

The novel scaling introduced in Sect. 1.1.1 is helpful not only for rigorous analysis,
as seen in Sect. 1.5, but also at the level of numerics/modeling. In Fig. 3, we display
in the classical scaling of Erpenbeck [21] results for a standard benchmark problem
of Fickett and Woods [21, 26, 49], holding overdrive f fixed and varying activation
energy & and heat release Qp, with I' = 1.2. The solid curves depicted are the
neutral stability curves across which detonations change from stable (below) to
unstable (above) as & is increased. In this figure, we see the stabilizing effect

220
200 -
180 |
160 [
140
120

100 [

60 [
40

20

Fig. 3 T = 0.2, constant overdrive f, & vs. log Qg
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plot of E vs q for y=0.1 in our coordinates

Fig. 4 £ = &yey vs. ¢ = Qoe; polynomial fit, average relative error 1%

of increasing f and the destabilizing effect of increasing &; however, there is an
apparent hysteresis effect as Qo is increased, with detonations first destabilizing,
then restabilizing for large Qp. Moreover, there is a singularity at the right of the
diagram with &, Qg — oo.

In Fig.4, we depict the analogous neutral stability curves for the same gas
constant I' = 1.2 in our scaling (the one of Sect. 1.1.1), with e; held fixed and
E = &eqr and g = Qe varying. In these coordinates, both hysteresis and
singularity are removed. The latter allows us to verify numerically stability in the
zero-activation energy limit: £ = 0 = ZND stability for any ¢, e

Moreover, the neutral stability curves follow a simple and regular pattern, as may
be seen most dramatically in the log-log plot of Fig. 5. Indeed, a naive polynomial
fit with 20 stored coefficients is sufficient to recover the entire diagram in seconds
with 2% minimum/1% average accuracy, a considerable compression of data for a
diagram that requires hours to compute (see data below).

1.6.2 Computational Improvements

Besides the improvement in parametrization described above, we have by adapting
to detonation theory numerical Evans function algorithms developed for the study
of viscous shock stability [4], improved computation speed by a factor of 1-2 orders
of magnitude compared to the current state of the art as described, e.g., in [49, 78];
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see [6, 37]. With these improvements, combined with vastly improved hardware
capability, what took 5h on a supercomputer in 1990 to compute a single fixed-
overdrive curve today takes Sh on a Mac Quad Duo to compute the full Fig. 3.
Indeed, this can be carried out perfectly well on a laptop.

We are now able to not only compute neutral stability curves, but to accurately
describe all unstable eigenvalues even for large activation energies; see for example
the eigenvalue configuration displayed in Fig.7(left) for the same benchmark
problem studied in Figs. 3 and 4 at activation energy ~7.1, for which we accurately
resolve a pattern of ~ 50 unstable roots using code supported in the MATLAB-
based openware package STABLAB [4].

1.7 Numerical Results for rNS

Improvements in computations/power have made possible for the first time numeri-
cal Evans investigations for rNS, a substantially more intensive problem than ZND.
These investigations, though just beginning, have already yielded surprising results.
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1.7.1 ““Viscous Hyperstabilization”/Hysteresis

(Following [5]) For the benchmark problem discussed in Sect. 1.6, Romick et al
[70, 71] have carried out numerical time-evolution studies indicating a significant
delay in transition to instability as activation energy is increased for the viscous
(rNS) problem as compared to the inviscid (ZND) one: as much as 10% for values
of viscosity in the high range of physically relevant scales. Our numerical Evans
investigations both confirm and extend these observations, indicating not only the
expected delay but also a new type of hysteresis in which viscous detonations
eventually restabilize as activation energy is increased still further [5]. This striking
phenomenon is depicted in Fig. 6(left); see Fig.6(right) for a graph of viscous
delay vs. viscosity. We call this phenomenon viscous hyperstabilization; we have
conjectured [5] that it occurs for any nonzero viscosity, no matter how small.

Note the slow, apparently logarithmic, growth, in the upper stability boundary
of Fig. 6(left) as viscosity goes to zero, suggesting that hyperstablization might
play a relevant physical role even for quite small values of viscosity. Another
notable feature of Fig. 6(left) is the “nose” to the right of the neutral stability curve,
where upper and lower boundaries meet. This indicates that there is no instability,
regardless of the value of &, for sufficiently large viscosity. For reference, the
viscosity values considered in [70, 71] correspond to v = 0.1 in the scaling of
Fig. 6; see [5, §3.5]. As discussed in [5, 70, 71], this appears to be roughly an order
of magnitude higher than in typical physical situations. A more realistic value would
be v = .01.
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Fig. 6 Left: Neutral Stability Boundaries in the £-v plane. The best-fit curve (dashed line, v <
0.27) for the upper boundary is £t (v) = 5.67 — 6.16v — 0.804In(v). The red dot denotes the
ZND (inviscid) stability boundary (lower boundary only!). Right: Viscous delay (cf. [70, 71]): We
plot AE/Ex = (€7 (v) — £x)/Ex against v, where & is the approximation to the ZND neutral
boundary. Here,v =d =k, I’ =0.2,e4 = 6.23 X 1072, and q = 6.23 x 10~! are held fixed
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1.7.2 Associated Eigenvalue Distributions

The restabilization phenomenon just described is the more remarkable given the
details of the unstable eigenvalue distribution. In the inviscid case, it is more or less
a universal principle that increasing & increases instability [21, 25, 49]; indeed, as £
increases, more and more unstable eigenvalues cross the imaginary axis from stable
to unstable complex half-plane never to return, in a cascade of Hopf bifurcations.
In Fig.7(left) we display the eigenvalue distribution at £ ~ 7.1, for which
there are 48 unstable roots together with the translational eigenvalue at A = 0;
further increases in & lead to further unstable eigenvalues. In Fig. 7(right) we display
for contrast the behavior of rNS eigenvalues for the value of viscosity v = 0.1
considered in [70, 71], tracking the unstable eigenvalues as & is varied through the
stability transition region. For this viscous case, we find that there are just two pairs
of unstable eigenvalues in total, which after crossing the imaginary axis to the right
turn back and rather quickly restabilize by crossing back into the stable half-plane;
meanwhile, the nearby inviscid eigenvalues plotted in the same figure may be seen to
continue to the right. At the value £ & 7.1 corresponding to the display of unstable
inviscid eigenvalues in Fig. 7(left), there are no remaining unstable eigenvalues for
the viscous case with v = 0.1.
Takeaways: 1. Another possible answer to the question “what is the role of
viscosity” in stability of strong detonations (namely, as a mediator in physical
phenomena, and not only an element in mathematical theory). 2. A potentially
important physical effect, meriting further study.
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Fig. 7 Left: 48 unstable eigenvalues for ZND, £ = 7.1; none for INS! Right: The movement of
unstable roots in the complex plane as £ increases. Circles mark rNS roots, open squares ZND
roots. The smaller modulus rNS roots enter for £ ~ 2.75 and the larger modulus roots for £ ~
3.65. The large modulus roots have a turning point at about £ & 5.2, and the small modulus roots
at £ ~ 5.5. The large modulus roots leave at £ &~ 6.55 and the small modulus roots at £ ~ 6.85
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1.8 Discussion and Open Problems

Investigation of detonation stability has proceeded by a blend of rigorous analysis,
formal asymptotics, and intensive numerical computation; however, the delicacy
of these analyses/computations has made definite conclusions elusive. One of
the few definitive rules of thumb is that increasing activation energy destabilizes
detonations, while increasing overdrive or decreasing heat release stabilizes them.
However, this has been difficult to confirm globally due to difficulty/expense of
computing for sufficiently large activation energies. We hope that the selection
of 1D results we have described indicates a clear role for the type of dynamical
systems/Evans function techniques used to study viscous shock wave, both in con-
firming known rules of thumb/computational results and suggesting new possible
directions of investigation— at the same time suggesting roles for viscous theory in
providing both rigor and new phenomena.

At the inviscid level, an unexpected bonus has been the discovery of the useful
coordinatization of Sect. 1.2, which appears to offer useful guidance/organization of
information at the level of applications. It is to be hoped that further analysis (see
open problem 3 just below) will identify similar “master coordinates” in the context
of rNS, removing the hysteresis of Fig. 6.

Open problems:

» Effects of viscosity on detonation behavior.

e 1D instability of ZND detonations in the high-activation energy limit.

* Viscous stabilization of tNS detonations in the high-activation energy limit.

» Stability of NS detonations with multistep reactions.

» Stability of weak detonations/deflagrations for rNS (discussed further below).

Regarding the first problem, see the interesting recent discussion by Powers and
Paolucci [69] on complicated-chemistry reactions, pointing out that viscous length
scales neglected in ZND may be on the same order as reaction scales important
for stability. Regarding the second, it has been addressed formally in suggestive
fashion by Buckmaster—Neeves, Short, Clavin—He, etc. [13, 15, 75], but up to now
(a) not rigorously verified, and (b) as pointed out by Erpenbeck, Lee—Stewart, Short,
etc. [19, 49, 75, 76], exhibiting puzzling differences with observed numerics. Both
this and the third, hyperstabilization, problem appear to reduce to semiclassical
limit/turning-point problems similar to those treated in Sect.2, with governing
parameter 1/€ — 0. See also the related [24] for reduced models accurately
capturing behavior.

The fourth and fifth problems concern topics omitted in these notes, but in
principle treatable by similar techniques. The addition of more physically realistic
reaction chemistry complicates but does not essentially change the mathematics;
however, as noted by Lee—Stewart and others [49] for ZND, it can significantly
affect physical behavior/phenomena. Stability of weak detonation and deflagration
waves (alternative types of combustion waves not discussed here [17, 28]) has been
studied for simplified “Majda”-type models in [32, 52, 54, 58, 79] and for artificial
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viscosity systems in [55]; for a discussion in the context of the full NS equations,
see [82].

2 High-Frequency Stability of ZND Detonations and C* vs.
C* Stationary Phase

In this second part, we focus now on a specific topic in multidimensional stability
analysis for ZND. A delicate aspect of numerical stability investigations for ZND
(inviscid) detonations is truncation of the computational domain by high-frequency
asymptotics, a semiclassical limit problem for ODE. In this part, we focus on
this issue in the most delicate multi-D case, revisiting and completing/somewhat
extending the important investigations of this topic by Erpenbeck [22, 23] in the
1960s. This leads to interesting questions related to WKB expansion, turning points,
and block-diagonalization/separation of modes. In particular, as we shall describe,
it highlights the difference between spectral gap and “spectral separation,” revealing
essential differences between C°°-coefficient and analytic-coefficient theory. These
differences are in turn related to oscillatory integrals and differences in stationary
phase estimates for C°° vs. analytic symbols.
Questions we have in mind in this section are:

* Can we complete/make rigorous the turning-point investigations of Erpenbeck?
* What is the meaning, finally, of such inviscid high-frequency results?

2.1 Multi-d Stability of ZND Detonations

The multi-D reactive Euler, or Zel’dovich—von Neumann—D6éring (ZND) equations,
in Eulerian coordinates, are

9o+ Vi (pu) =0,

ou+ V- (pu®u)+V,p =0,
0E 4+ V, - (puE + up) = gk (T)z,
0z + V- (puz) = —k¢(T)z,

12)

where p > 0 is density, u velocity, E = e + %lul2 specific gas-dynamical energy,
e > 0 specific internal energy, and 0 < z < 1 mass fraction of the reactant, typically
with polytropic equation of state and Arrhenius-type ignition function,

F —
p= Te T=cle. ¢(I)=eT. (13)
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Velocity profile of left-facing ZND
detonation

u=velocity
e

x=0 A

2.1.1 Planar ZND Detonation Waves

A (without loss of generality) standing, “left-facing,” planar detonation front is a
solution

(oo B o)y = | Pt B D <0
(pv"t’E’Z)(xl)v X1 203

of (12) with (p, i, E,z)(x1) — (py,us,E4,0) as x; — +oo. This consists of a

nonreactive “Neumann” shock at x; = 0, Z(Oi) = 1, pressurizing reactant-laden

gas moving from left to right and igniting the reaction. As depicted in Fig. 2.1.1, the

profile is constant on x; < 0 and has a reaction tail on x; > 0, with burned state

z=0atx; = +oo.

2.1.2 Spectral Stability Analysis

Consider the abstract formulation of the equations

Wi+ ) 0, Fi(W) = R(W). (14)
J

Similarly as in the 1D case, Sect.1.2.4, a normal modes analysis leads to the
linearized eigenvalue problem [21, 40, 59] AA['Z + Z/ ijél i§AAT'Z = EAT'Z)
denoting d,, where Z := A\ W, A; = A;(x) 1= (d/dW)F (W(x)), and E = E(x) :=
(d/dW)R(W(x)), W the background wave:, or interior equation (written without loss
of generality for simplicity in dimension d = 2):

7 =GZ:=—(A+ £A, + E)AT'Z, x>0",

plus a (modified Rankine-Hugoniot) jump condition at x = 0. Here and in what
follows, we drop the subscript for x in the eigenvalue ODE, writing x; as simply x.



Recent Results on Stability of Planar Detonations 293

2.1.3 Evans-Lopatinski Condition (Erpenbeck’s Stability Function)

Normal modes /e’ W(x1), RA > 0 correspond to zeros of the Evans—Lopatinski
determinant

Dao(§.2) = Z (1.0) - (AIW] + i[F2(W)] + R(W)(0T) ). (1)

where [-] denotes jump across x = 0 and Ziisa (unique up to constant multiplier)
solution of the dual equations

7' =—-G'Z=@AD"' A +EA +E)Z (16)

decaying as x — +4-oo. (This neat formulation, again, due to Jenssen-Lyng-Williams
[401.)

Note that (15) reduces for £& = 0 to the 1D Lopatinski formula (9), the only
difference being that we have chosen in this section to analyze left-going detonations
and in Sect.2 to analyze right-doing detonations, to match the respective source
documents [90] and [40]. This has the effect of reversing the order of characteristic
modes, so that Zn in (9) becomes Zl in (15).

2.1.4 Comparison to Shock Wave Case

For later, we note that the Evans—Lopatinski determinant described in (15) and
(16) is quite similar to that described for the shock wave case in [89, 93], with
the differences that here G is variable-coefficient rather than constant-coefficient
and E, R # 0. In practice, (15) is computed numerically by approximation of (16)
[6,7, 19,21, 37].

2.2 High-Frequency Stability and the Semiclassical Limit

(Following [44, 45]) We now come to our main topic. The numerics typically used
to evaluate (15) are sensitive and computationally intensive, particularly at high
frequencies [6, 7, 21, 49]; thus, an important step in obtaining reliable results is to
truncate the frequency domain by a separate, high-frequency analysis. Even the few
analytically deducible results (stability in ¢ — O or high overdrive limit) require
high-frequency truncation as a crucial (and somewhat delicate) step; see Sect. 1.
Our purpose here is to: 1. Describe two recent results of Lafitte-Williams-Zumbrun
on high-frequency stability [44, 45]: one instability and one stability theorem,
building on the pioneering ideas of Erpenbeck’s 1960s Los Alamos Technical
Report [22, 23]. 2. Discuss related block-diagonalization of semiclassical ODE [46].
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2.2.1 Formulation as Semiclassical Limit

Setting (§,4) = h~'(1,¢), for |§] >> 1, interior equation (16) becomes the
semiclassical limit problem

hZ' = (Go + hG))Z, (17)

where Gy = —[({ + iAz)Al_l]* involves only nonreactive gas-dynamical quantities,
so is identical to the symbol appearing in (nonreacting) shock stability analysis,
G uniformly bounded, & = |£|~! — 0. Likewise, the boundary vector (A[W] +

i€[F2(W)] + R(W)(0T)) appearing in (15) rewrites as
h_l(Zo—f—th), (18)

where £y = ¢ [W] + i[F2(W)] is as in the nonreactive gas-dynamical case, and
R(W?)(07) is bounded. The difference in principal parts from the nonreactive case
is just that Gy is now varying in x.

2.2.2 Symbolic Analysis

From the study of nonreactive gas dynamics [20, 59, 74, 89], we know that the
eigenvalues of the principal symbol Gy are

w1 = —k(kS+s)/nui, po = —k(KE—=s)/nui, ps =4 = ps =C¢/uy, (19)

where k = uy/co,n =1— u%/c%, co = sound speed,

s:,/§2+c5—u2, (20)

and, from the profile existence theory (specifically, the Lax characteristic condition
[47, 48, 77] on the component Neumann shock),
cg—u > 0; Q1
here, 1 and w; are acoustic, and 3, 4, 5 entropic and vorticity modes.
Thus, on the domain ¢ > 0 relevant to the eigenvalue/stability problem, there is
a single decaying mode p; for ¢ > 0, which extends continuously to the boundary
¢ = it. For reference, we will call this the “decaying” mode even at points on the
imaginary boundary where it becomes purely oscillatory (as does happen for values
of { = it such that > > ¢j — u?). Evidently, the decaying mode 4| remains
separated from all other modes p; except at glancing points for which p; = s, or

s = 0: equivalently, { = %i,/ cé - u%, a property depending on both x and €.
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Glancing points play a central role in the study of multi-D nonlinear stability of
(nonreactive) viscous and inviscid shock and boundary layers [29, 30,43, 57, 59, 62—
64, 88], presenting the chief technical difficulty in obtaining sharp linear resolvent
bounds needed to close a nonlinear analysis. There, the issue is to obtain bounds
on a constant-coefficient symbol as frequencies &, A are varied in the neighborhood
of a glancing point. In the present context, the problem is essentially dual: for fixed
frequencies { to understand the flow of ODE (17) as the spatial coordinate x is
varied, a nice twist for experts in shock theory. This leads us naturally to WKB
expansion/turning point theory, where glancing points represent nontrivial turning
points.

2.2.3 Analysis of (17) by WKB Expansion/Approximate
Block-Diagonalization

The situation of ODE (17), where solutions vary on a much faster scale ~ A1 vs.
~1 than coefficients, is precisely suited for approximation by WKB expansion. As
discussed in [46, Section 1.1.1], WKB expansion is closely related to the method
of repeated diagonalization [16, 51], both methods consisting of constructing
approximate solutions from diagonal modes of a sufficiently high-order decoupled
system.

Primitive version: We illustrate the approach by a treatment of the simplest
(nonglancing) case, when p; and p, remain separated for all x > 0. This occurs,
for example, on the strictly unstable set ¢ > 0. Then, the decaying mode
remains separated from the remaining eigenvalues p», . . . , it5 of Go(x). By standard
matrix perturbation theory [42], it follows that there exists a change of coordinates

T, depending smoothly on Gy, such that T~'GoT = (’% ! 181) . Making the change

of coordinates Z(x) = T(x)W(x), we convert (17) to an ODE

W' = (‘3‘ 1?4) W—hT'T'W + K’T'G, TW, (22)
that, to order O(h) of the commutator term hAT~'T’, is block-diagonal with a
decoupled i1 block.

Next, observe that an O(h) perturbation of a block-diagonal matrix with spec-
trally separated blocks may be block-diagonalized by a coordinate change 7, =
Id + O(h) that is a smooth O(h) perturbation of the identity [42]; applying such a
coordinate change, and observing that the associated commutator term hT; ' T) =
hT5;'(O(h))’ = O(h*), we can thus reduce to an equation that is block-diagonal to
O(h?). Repeating this process, we may obtain an equation that is block-diagonal up
to arbitrarily high order error O(h?), so long as the coefficients of the original
equation (17) possess sufficient regularity that derivatives in commutator terms
remain O(1).
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Untangling coordinate changes, this suggests that the unique solution Z; decay-
ing as x — 400 “tracks” to O(h) the R; eigendirection associated with i,
satisfying the WKB-like approximation

Zi(x) = P .f(f(m+0(h))(y)dy(Rl(x) + o(h)),

with in particular Z;(0) = R; 4+ O(h), where R, is an eigenvector of the decaying
mode of —G(07).

Recall [20, 59, 93] that the Lopatinski determinant for the component Neumann
shock is

Dy =4y Ry, (23)

where £ is the principal part of boundary vector (18). Thus, assuming that the above
approximate diagonalization procedure with formal error O(W’) may be converted
to an exact block-diagonalization with rigorous convergence error O(h’) (as will be
shown in Sect. 2.4 for any p), at least for p = 1, we may conclude that

Dzyp(§.4) = Dy(§. M) (1 + O(R)). (24)

where Dy is the Lopatinski determinant for the stability problem associated with the
Neumann shock at x = 0, hence ZND detonation is high-frequency stable for such
choices of ¢ (which include always the strictly unstable set ¢ > 0) if and only if
its component Neumann shock is stable.

The glancing case. In the glancing case, s(x«, {x) = 0 for some x, > 0, and there
is a nontrivial turning point at x = x,. In this case, for ¢ and x local to Cx, x«, there
is no uniform separation between p; and w,, and the above-described complete
diagonalization procedure no longer works. However, observing that @ and u,
together remain spectrally separated from pus, ..., s, we can still approximately

block-diagonalize to a system with coefficient (I(; 1(\)]), where P is a 2 x 2 block

corresponding to the total eigenspace of Gy associated with () and p;, in particular
having eigenvalues p; and u,. It is shown by a normal form analysis in [45] that
any such 2 x 2 block, under a nondegeneracy condition on the variation of its
eigenvalues with respect to x at x,, can be reduced further to an arbitrarily high-
order perturbation O(/h”) in h of Airy’s equation, written as a 2 x 2 system, where in
this case the nondegeneracy condition is just

(s2) (x4) # 0. (25)

This comes from the perturbation expansion

0 1 )
(c(x _x) 0) + O((x — x%)*) + O(h) 26)
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of the associated Jordan block, where the nondegeneracy condition (25) corresponds
to ¢ # 0. Assuming as before that the above approximate diagonalization procedure
be converted to an exact block-diagonalization with rigorous convergence error,
(Sect.2.4), at least for p = 1, and that approximate Airy block (26) may be
converted to an exact Airy block (shown in [45] but not treated here), we may thus
hope to analyze this case by reference to the known (see, e.g., [1]) behavior of the
Airy equation.

2.3 The Erpenbeck High-Frequency Stability Theorems

We are now ready to state our main theorems regarding profiles of the abstract
system (14). We make the following assumptions:

Assumption 2.1 The associated nonreactive system W, + Z,’ 0, Fi(W), = 0is
hyperbolic for all value of W lying on the detonation profile W(x).

Assumption 2.2 The component Neumann shock for profile W is Lopatinski stable
(see discussion below (24)).

Assumption 2.3 The coefficients of system (14) are real analytic.

Definition 2.4 A detonation is type [ (resp. D) if cé - u% is increasing (resp.

decreasing).

Remark 2.5 Erpenbeck classifies a number of materials/detonations as class I or D.
More general cases may in principle be treated by elaboration of the techniques used
to treat classes I and D.

Theorem 2.6 (LWZ2012) Under Assumptions 2.1, 2.2, and 2.3, plus an addi-
tional (frequently satisfied) ratio condition,' type I detonations exhibit Lopatinski
instabilities of arbitrarily high frequency.

Sketch of Proof (case of turning point) By the block-diagonalization procedure
described above, first reduce to a 2 x 2 block involving only the growth modes
M1 and w,. For type I, growth rates w; and pu, correspond to exponentially
growing/decaying modes for x > x, oscillatory modes for x < x4, the connections
between these solutions across the value x = x. being determined by behavior of
the Airy equation. The question is whether the Airy equation takes the pure decay
mode to the corresponding pure oscillatory mode (the “decaying” mode at x = 01).
It does not— rather to the average of the two decaying modes [1], giving a solution
composed of oscillating comparable-size parts, which, under the ratio condition,

!Condition [44, (5.13)] comparing relative sizes of oscillatory modes in the first-order expansion
of decaying solution Z, depending on the geometry of background profile W; see [44, Prop. 5.1]
and discussion just below.
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cancel for a lattice of A = h~'it + v with %iv > 0. (Otherwise they cancel for
frequencies v < 0 not giving instability.)

Theorem 2.7 (LWZ2015) Under Assumptions Al-A3, type D detonations are
Lopatinski stable for sufficiently high frequencies.

Sketch of Proof (case of turning point) As in case I, the problem reduces to a 2 x 2
block, and the study of connections across the turning point x = x, determined
by behavior of the Airy equation. For type D, the reverse happens, By reflection
symmetry of the Airy equation, there holds in case D essentially the reverse
situation to that of case I, featuring oscillatory modes for x > x, and exponentially
growing/decaying modes for x < x, connected by a reverse Airy flow. So, again
we see that the pure “decay” (now actually oscillating) mode at 4+-co does not
connect to the pure growth mode at x = x_, but contains at least some component
of the (actual) “decay” mode for x < xx. It follows by order ¢?®/") exponential
growth in the backward direction of this decaying mode, together with order ¢?(—*/"
exponential decay in the backward direction of the complementary growing mode,
that the solution at x = 0 is dominated by the decay-mode component Thus, Z(0+)
lies to exponentially small order in the R; direction, R as in (23), giving the (stable)
shock Lopatinski determinant in the limit, as in the simplest (nonglancing) case.

Technical issues: 1. Exact vs. approximate block-diagonalization. 2. Block-
diagonalization at 4+occ. 3. Turning points at xs = 0, 400, and exact vs. approximate
conjugation to Airy/Bessel (daunting). Issues 1 and 2 are resolved below; issue 3
(not treated here) is resolved in [45].

Remark 2.8 1. Theorems 2.6 and 2.7 give rigorous justification of numerical multi-
d stability stability computations for ZND, several aspects of which were previously
unclear [78].

2. The arguments streamline/modernize the analysis of [22, 23] (carried out
originally by WKB expansion in all 5 modes!). But also new analysis at degenerate
frequencies is needed for the complete stability result.>

3. The proofs are still hard work! (Amazing achievement of Erpenbeck in the
1960s.)

4. We have suppressed discussion of conjugations to Airy/Bessel equations
(difficult! the latter new), and related huge contributions of Olver and others in
asymptotics of special functions [1, 65].

2 As discussed in [45], Erpenbeck treated turning points/glancing modes at points x bounded away
from 0 and co; however, these cases necessarily occur at certain boundary frequencies, so must be
considered in a complete stability analysis, as must be issues not treated in [22] of uniformity for
frequencies near but not at a glancing point.
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2.4 Exact Block-Diagonalization and C* vs. C® Stationary
Phase

(Following [46]) Consider an approximately block-diagonal equation

hW' = AW + WP O,

D
A= An 0 , ® = error, and seek T = [ Ao such that W = TZ gives
0 A22 hpOlzl 1

an exact conjugation to hZ' = DZ, with D diagonal, accuracy p = 1 being sufficient
for our stability arguments. Equating first diagonal, then off-diagonal blocks in
(hT' 4+ TD)Z = (A + W ©)TZ, yields Ricatti equations

/ 2
hoy, = Aoy — oAy + O — hPap®s100 — PO 001,

hoty, = Apaay — anAry + O — W a1 O a1y — W Oxnasy, @n

or, viewed as a block vector equation in o« = (¢, 021):
hoe' = A(0)a + (A(z) — A0)a + Q(a, ©, h). (28)
Observation Sylvester equation, hence o(Aj;) N 0(Ap) = @ implies 0 &

o (A(0)).

2.4.1 Lyapunov-Perron Formulation (Standard)

From ha’ = A(0)a + (A(z) — A(0))a + QO(a, ®, h), we obtain by Duhamel’s
principle the integral fixed-point equation

o) = Ta() = i~ / " A0 I (AG) — AO)ay) + 00)) dy

Zx

e / ' T AOCI T ((A) — A0)a(y) + 00)) dy,

(29)
on diamond D := {x : |arg ((x —z«)/7)l, |arg ((z* —x)/y)| < &}, where y € C,
|y| = 1is chosen so that A(0)y has spectral gap, and Iy, ITg denote stable/unstable
projectors of A(0)y; see Fig. 8. Mapping 7 is contractive by O(e~"* /") decay of
propagators, plus smallness of the source.

Remark 2.9 Here, we have used analyticity to escape the real axis and recover a
spectral gap. This is essentially a finite-regularity version of a theorem of Wasow
[85] in the h-analytic case [46].
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Fig. 8 Block diagonalization Djagonalization at a finite point. (Blue encloses
at a finite point

domain, green denotes contour.)

2.4.2 Block Diagonalization at Infinity

In many problems (e.g., detonation), we must treat unbounded intervals, diago-
nalization at infinity. A bit of thought shows that the finite-domain fixed-point
construction of (29), depicted in Fig. 8, does not work:on the infinite domain, for the
reason that points z*, z« would have to run out to infinity in £y directions in order
to accomodate x on an interval (M, o) on the real axis, hence the domain D would
become a half-space and the integrals of (29) no longer necessarily converge (nor
even b: defined, since ODE coefficients would not necessarily extend). We treat this
case instead by the following modifications of the argument for the finite-turning
point case [46]. Briefly, we:

* Require analyticity on a wedge about infinity, not just a neighborhood of the
real axis, with exponential decay as iz — oo (and verify that this is indeed
guaranteed by stable manifold construction for an analytic coefficient profile
equation).

» Use three contour directions to recover a spectral gap, while restricting the fixed-
point domain D to the wedge of analyticity of coefficients (with convergence of
integrals coming partly from exponential decay of (A(y) — A(c0)), replacing
smallness |y| << 1 i: the finite case); see Fig. 9.

2.5 Counterexamples and C* vs. C® Stationary Phase

Our treatment of multi-D high-frequency behavior has a different flavor from the
analyses of 1-D stability in part one: in particular, we have used analyticity of
coefficients and moved away from the real line.
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Fig. 9 Block diagonalization Exact diagonalization at infinity. Blue wedge is domain,
at infinity: contour

. green lines are the three contours.
configuration

A natural question: Is this necessary? In particular, could we by some other method
perform block-diagonalization for C*° (or just C" as in the 1-D case) coefficients?

Rephrasing: 1. Is a spectral gap between blocks (as in classical ODE techniques
[50]) needed for exact C*° diagonalization, or just spectral separation? (Here, we
define spectral gap between eigenvalues as nonzero real part and spectral separation
as nonzero modulus of their difference.) And, 2. (Wasow, 1980s [85]) Can analytic
block-diagonalization be performed globally under appropriate global assumptions?

2.5.1 Counterexamples: Reduction to Oscillatory Integral

The answers to the above questions are “yes” (spectral gap is needed) and “no” [46],
as we now describe. Consider the 2 x 2 triangular system

A (x) BP0 (x)

hW’=A(x,h)W:=( 0 Ay

)W, WeC? p>1, (30)

6 uniformly bounded, with globally separated eigenvalues A1(x) = x + i, A, =
—(x+9).
Lemma 2.10 ([46]) There exists T(x,h) on [-L,L] C R, 0 < h < hy, T, T~

uniformly bounded in C', for which W = TZ converts (30) to a diagonal system
hZ' = D(x,h)Z, if and only if

/ e I=205/0 (y)dy < he ™! for all x| < L. 31)

—X

P
Sketch of proof 1t is sufficient to seek a triangular diagonalizer T = ((1) h 1“), in

which case Ricatti equation (27) reduces to a scalar, linear ODE in «:

he! = (hy — Aa)at + 6. (32)
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By Duhamel’s principle/variation of constants, existence of a uniformly bounded T
thus implies uniform boundedness of

a(e.h) =h"! / T g () gy o ORI 0, )
0
— P +2i)/h (h—l /X e—(y2+2iy)/h9(y)dy — (0, h)).
0

The direction (<) then follows by e 2*a(x) — e2a(—x) = e /" [* ¢=0*+20)/h
0(y)dy.

The direction (=) follows by direct computation, choosing «(0,h) =
B! foL e~ O F20/hG (y) dy.

2.5.2 Failure of Global Conjugators

Lemma 2.11 ([46]) For a # 0 analytic on [-L,L] x [—i, i], and h — 0T,

~ h("H)/ze_%, l<cp<x<L,

—X

x _2
/ 2 )y g < he 7, 0O<x<L<l, .

where j = order of first nonvanishing derivative of a at 7 = i.

Proof The general case follows by complex-analytic stationary phase estimates (see
[56, 67]). The simplest case @ = 1 (enough for a counterexample), follows from
fjozo e h=2iy/hgy — ¢=1/h which follows from the fact that the Fourier transform

of a Gaussian is Gaussian.

Consequence: Lemma 2.11 implies that there is no bounded block-diagonalizing
conjugator of (30) on [—x,x] for |x| > 1, resolving a 30-year open question of
Wasow [85].

2.5.3 Failure of Local Conjugators for C*° Coefficients

Lemma 2.12 ([46]) For 0 < co < x and a(y) := ¢ """ fory > 0 and 0 for
y=0,

X e 1—1/s 2(1—1/s)
Y _ ) c(s)+d(s)h +ow )
/ e /h 21y/ha(y)dy ~ hl 1/238 W5 ,

—X

1 <s<o0o, ash— 0%, forany x > 0, where c(s) > 0, and Rd(s) < 0 for s < 2.
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_ir!(l—l/s)

Proof (Sketch of proof) Defininga = 1—1/s€ (0,1),8 =e¢~— 2z, deform con-
ip(—20—1—0 +ipn%2)

tour [0, +o00] to z = h*Bt, t € (0, +00), to obtain I(h) ~ h* fooo e = dt,
then apply a standard stationary phase estimate about the nondegenerate maximum
of the phase at 1y = 2~1=1/9) 4 O(h).

Consequence: Lemma 2.12 implies that there is no bounded block-diagonalizing
conjugator of (30) on [—x,x] for |x|] > O, resolving question 1 of Sect.2.5
(Taking 6(y) to be the symbol a(y) of Lemma 2.12 gives ffx e /h=2iy/ hO(y)dy ~

W=V s he=/h for anyx >0, s> 1.)

Moral: Results may vary for C*° coefficients!

Related phenomena: 1. Different qualitative nature of diffraction by C*° vs. analytic
boundary in R® G. Lebeau, Private communication. 2. Instability of analytic-
coefficient spectra under C* perturbations: probability one of a Weyl distribution
(“cloud”) for asymptotic spectrum of a random C*-perturbation of an analytic-
coefficient operator with asymptotic spectra initially confined to a curve [31].

2.5.4 Coda: Gevrey-Regularity Stationary Phase

For Gevrey norm |lallsr := sup;|d,al(j!)*/T’, define the Gevrey class G*' of
functions with bounded Gevrey norm. Here, s = 1 corresponds to analyticity on
a strip of width T about the real axis R, while s — oo corresponds to absence of
regularity, with Gevrey-class functions interpolating between. The following result
gives an upper bound corresponding to the lower bound of Lemma 2.12.

Proposition 2.13 ([46]) Fora € G*™ on [-L,L], Ty, T > 1, |x| < L, and some
c=c(T,T,s) >0,

X
/ e =20l () dy < 12 alg g (34)
—X

Proposition 2.13 interpolates between the algebraic O(h") van der Korput bounds
for C" symbols (roughly, s = oc) and the exponential O(h'/2¢~'/") bounds for
analytic symbols a obtained by the saddlepoint method/analytic stationary phase.
Lemma 2.12 shows that (34) is sharp.

(Proof by Fourier cutoff/standard complex-analytic stationary phase.)

2.6 Discussion and Open Problems

Our turning-point analyses in the first part of this section completes and somewhat
simplifies the high-frequency stability program laid out by Erpenbeck in the 1960s,
in his tour de force analyses [22, 23]. This in turn solidifies the foundation of the
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many (and delicate) numerical multi-D stability studies for ZND, by rigorously
truncating the computational frequency domain. On the other hand, our analysis
in the second part of this section on sensitivity of block-diagonalization/WKB
expansion with respect to C*° (indeed, Gevrey-class) perturbations raises interesting
philosophical questions about the physical meaning of our multi-D high-frequency
stability results, as intuitively we think of physical coefficients as inexactly known.
Recall that the 1-D high-frequency stability results of [91] used a different,
C" diagonalization method, so this issue does not arise in 1-D. Likewise, smooth
dependence on coefficients with respect to C" perturbation of the Evans-Lopatinski
determinant Dzyp (€, A) restricted to compact frequency domains [68] implies that
the strict instabilities asserted for analytic coefficients in Theorem 2.6 persist under
C" perturbations of the coefficients, so there is no issue for our instability results.
That is, the Evans function is itself robust, independent of the methods that we used
to estimate it. Even in the stable case, we obtain from this point of view robust
stability estimates on any bounded domain, no matter how large, in particular for
domains far out of practical computation range. Thus, the results of Theorem 2.7
have practical relevance in this restricted sense independent of questions regarding
analyticity of coefficients. The philosophical resolution of the remaining issue for
ultra-high frequencies, may perhaps, similarly as other issues touched on in Sect. 1,
lie in the inclusion of transport (viscosity/heat conduction/diffusion) effects, which
stabilize spectrum for frequencies on the order of one over the size of associated
coefficients.
Open problems:

e ZND limit for multi-d (interaction of viscosity, turning points).

e Multi-d numerics for rNS (no apparent obstacle, but computationally intensive).

* Rigorous analysis of 1-d viscous hyperstabilization (again, apparent interaction
of turning points vs. viscous effects).

Acknowledgements Special thanks to the anonymous and extraordinarily attentive referee, whose
many thoughtful suggestions and comments greatly improved the exposition.
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