
Proceedings of Machine Learning Research vol 65:1–17, 2017

Efficient Co-Training of Linear Separators under Weak Dependence

Avrim Blum AVRIM@CS.CMU.EDU

Carnegie Mellon University, Computer Science Department

Yishay Mansour MANSOUR@TAU.AC.IL

Tel Aviv University, Blavatnik School of Computer Science

Abstract

We develop the first polynomial-time algorithm for co-training of homogeneous linear separators

under weak dependence, a relaxation of the condition of independence given the label. Our algo-

rithm learns from purely unlabeled data, except for a single labeled example to break symmetry of

the two classes, and works for any data distribution having an inverse-polynomial margin and with

center of mass at the origin.

Keywords: co-training, unsupervised learning, linear classifier.

1. Introduction

Co-training, also known as multi-view learning, is an approach to learning from primarily unlabeled

data when examples x can be partitioned into two “views” x1, x2 that each separately are sufficient

to determine the example’s classification. The high-level idea is that rather than directly trying to

maximize the agreement of one’s hypothesis h with the target function f , one instead aims to learn

two hypothesis h1 and h2, one over each view, and then to maximize agreement of the hypotheses

with each other. The key point is that this can be done over unlabeled data. Under appropriate

conditions (Blum and Mitchell, 1998; Abney, 2002; Balcan and Blum, 2010), and with a small

amount of labeled data to “break symmetry” and provide a small amount of signal, maximizing

agreement between views will also maximize agreement with the target function. That is, any pair

of hypotheses that closely agree with each other, and satisfy other simple conditions such as being

roughly balanced in their predictions and agreeing with a small labeled sample, will also closely

agree with the target function. There has been substantial work, both theoretical and applied, on

algorithms and analysis of multi-view learning for a wide range of settings (e.g., Blum and Mitchell

(1998); Dasgupta et al. (2001); Abney (2002); Levin et al. (2003); Wan (2009); Chaudhuri et al.

(2009); Balcan and Blum (2010); Kumar and Daumé (2011); Kiritchenko and Matwin (2011); Liu

et al. (2014); Do Thi et al. (2016)).

One challenge with this approach to semi-supervised learning, however, is that the optimization

problem is often computationally intractable even when the analogous optimization problem for the

fully supervised case would be easy. For example and most notably, while finding a linear separator

consistent with a set of labeled examples is easy when one exists, finding two linear separators, one

over each view, that agree with each other over unlabeled examples and agree with the target over a

small labeled sample is NP-hard. On the other hand, polynomial-time algorithms for learning linear

separators in the multi-view setting have been developed under the assumption that data satisfies

the condition of independence given the label (Blum and Mitchell, 1998; Balcan and Blum, 2010).

This means that each example can be thought of as consisting of two independently drawn positive

c© 2017 A. Blum & Y. Mansour.

BLUM MANSOUR

sub-examples (x1 and x2) or two independently drawn negative sub-examples, from their respective

domains X1 and X2. Essentially, this assumption allows one to convert a weak-predictor over one

view into a labeler corrupted by random classification noise for the other view. However, it has been

a challenge to relax this condition while maintaining computational efficiency.

In this work, we develop the first polynomial-time algorithm for co-training of linear separa-

tors under a relaxation of the independence condition known as weak dependence (Abney, 2002).

Under weak dependence, an example (x1, x2) is produced in the following manner. First, x1 is

drawn at random according to some fixed but unknown distribution over its domain X1. Then, with

some probability λ, x2 is drawn independently from x1 given the label; however, with probability

1 − λ, x2 is drawn from X2 in an arbitrarily-correlated way, though still subject to having the

same label as x1. Thus, the selection of x2 can be viewed as partly random and partly adversar-

ial. Information-theoretically, it has long been known that this setting is solvable in the sense that

maximizing agreement between views subject to satisfying a few simple conditions will indeed lead

to a low error hypothesis (Abney, 2002). However, the efficient algorithms used to solve the case

of independence given the label break down, because the induced noise no longer looks like ran-

dom classification noise but instead like malicious misclassification noise (Sloan, 1995), for which

no efficient algorithms are known. In this work, we give the first polynomial-time procedure for

learning linear separators from primarily unlabeled data under data with weak dependence. More

specifically, as in the algorithm of Balcan and Blum (2010) for the setting of independence given the

label, our algorithm requires polynomially many unlabeled examples and a single labeled example.

However, our algorithm does not produce a linear separator as its hypothesis.

One caveat: we make two assumptions that when combined are not without loss of generality.

They are: (1) the target linear separators fi for each view i ∈ {1, 2} go through the origin, and (2)

the underlying distributions for each view have center of mass at the origin. While we are able to

relax these somewhat, we do not know how to remove them completely. We additionally assume

that there is a 1/poly margin.

The paper is organized as follows. The model is detailed in Section 2. Section 3 has an overview

of our algorithm, while the details are in Section 4. The analysis of the algorithm is in Section 5.

2. Model

We consider the following setting. There is a domain X = X1 × X2 where X1 = R
d1 and

X2 = R
d2 . That is, each example is of the form x = (x1, x2) where x1 ∈ X1 and x2 ∈ X2.

There is also an unknown target f that classifies points in X as either positive or negative; i.e.,

f : X → {+1,−1}. We make the co-training assumption that each component, or “view”, of an

example is sufficient for classification. Formally, there exist two functions f1 over X1 and f2 over

X2 and an (unknown) distribution D over X such that for any (x1, x2) in the support of D we have

f1(x1) = f(x1, x2) = f2(x2). The classification y = f(x1, x2) is never observed by the learner.

(At the end we allow for a single labeled example to break symmetry.)

For each classification y ∈ {+1,−1}, let Dy denote the distribution D conditioned on the ex-

ample having label y, and let αy be the probability that a random example is of label y ∈ {+1,−1}.
So, D = α+1D+1 + α−1D−1, where α−1 + α+1 = 1. For simplicity we will assume that both

αy are bounded away from 0 by constants, e.g., α+1, α−1 ∈ [0.1, 0.9]. Let Dy,i be the marginal

probability over xi of distribution Dy where the label is y ∈ {+1,−1} and the view is i ∈ {1, 2}.

2

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

We assume access to unlabeled data only, and our goal will be to learn a hypothesis h such that

either h ≈ f or h ≈ −f (at that point, we would just need one random labeled example to determine

whether to output h or −h). We will denote our (unlabeled) training examples as (x
(i)
1 , x

(i)
2).

2.1. Assumptions about the target function

We will assume that in both views, the target function belongs to the class of homogeneous linear

separators. Namely, there exist w1, w2 such that f1(x1) = sign(x>1 w1) and f2(x2) = sign(x>2 w2),
where sign(z) = +1 if z ≥ 0 and sign(z) = −1 if z < 0. We assume that ‖w1‖ ≤ 1, ‖w2‖ ≤ 1
and that ‖x1‖ ≤ 1, ‖x2‖ ≤ 1 for all (x1, x2) in the support of D.

We say that a classifier f has a γ-margin under distribution D if for any (x1, x2) ∈ support(Dy)
we have y(x>1 w1) ≥ γ and y(x>2 w2) ≥ γ. Namely, for (x1, x2) such that f(x1, x2) = +1 we have

x>1 w1 ≥ γ and x>2 w2 ≥ γ, and for (x1, x2) such that f(x1, x2) = −1 we have x>1 w1 ≤ −γ
and x>2 w2 ≤ −γ. We assume there exists a γ-margin for some γ ≥ 1/poly(d1d2). Putting these

together we have:

Assumption 1 We assume that the target function f is a homogeneous linear separator in each

view and there is a γ = 1/poly(d1d2) margin.

2.2. Assumptions about the distribution

We say that the distribution D satisfies λ-weak dependence (Abney, 2002), if for each label y ∈
{+1,−1}, for every (x1, x2) ∈ support(Dy) we have that

Dy(x1, x2) ≥ λDy,1(x1)Dy,2(x2) .

Namely, both D+1 and D−1 can be viewed as with probability λ, sampling independently from the

marginal distributions, and with probability 1− λ, sampling in some arbitrarily dependent manner.

We in fact can relax this to allow the weak dependence assumption to be limited to only a subset

of non-negligible probability of the domain X1. Given a set X ′
1 ⊆ X1 such that Prx1∼Dy,1

[x1 ∈
X ′

1] ≥ η for y ∈ {+1,−1}, we say that the distribution D satisfies (λ,X ′
1)-weak dependence if for

each y ∈ {+1,−1}, for every (x1, x2) ∈ support(Dy) ∩ (X ′
1 ×X2) we have that

Dy(x1, x2) ≥ λDy,1(x1)Dy,2(x2) .

We say that a distribution is homogeneous if ED[x] = 0, namely, the mean of the distribution is the

origin. We can relax it by only requiring that the origin can be described as a mixture of the positive

and negative distribution. Formally,

Definition 2 A distribution D is (ρ,X ′
1)-semi homogeneous, for X ′

1 ⊆ X1 and ρ = (ρ+1, ρ−1) ∈
(0, 1)2 s.t. ρ+1 + ρ−1 = 1, if ρ+1Ex1∼D+1,1

[x1|x1 ∈ X ′
1] + ρ−1Ex1∼D−1,1

[x1|x1 ∈ X ′
1] = 0.

We make the following assumption about the distribution D.

Assumption 3 We assume that there exists a X ′
1 ⊆ X1 such that Prx1∼Dy,1

[x1 ∈ X ′
1] ≥ η

for y ∈ {+1,−1} and there exist ρ = (ρ+1, ρ−1) ∈ (0, 1)2 with ρ+1 + ρ−1 = 1 such that the

distribution D is (ρ,X ′
1)-semi homogeneous and satisfies (λ,X ′

1)-weak dependence.

3

BLUM MANSOUR

2.3. Notation

We will use the notation V C(d, ε, δ) to specify the number of examples required to guarantee that

a hypothesis class H of VC dimension d would have, with probability 1− δ, all hypotheses of zero

empirical error having true error at most ε. For the most part we will ignore the dependency on

confidence δ and use V C(d, ε), since dependency on δ is only a lower order term.

3. Algorithm: overview

We start by giving a high level intuition for the algorithm, and the challenges that the analysis

is faced with. We assume that we are in the realizable setting. Namely, that each function f1
and f2 is a homogeneous hyperplane and gives a perfect labeling. This implies that for any pair

(x
(i)
1 , x

(i)
2) in the support of D we have that f1(x

(i)
1)f2(x

(i)
2) = 1, since f1 and f2 agree on the label

y ∈ {−1,+1}. Since f1 and f2 are homogeneous hyperplanes, we have that

sign(w>
1 x

(i)
1)sign(w>

2 x
(i)
2) = +1.

Recall that we also assume that each hyperplane wi classifies all points in the support of the distri-

bution D correctly by margin γ. Therefore,

(w>
1 x

(i)
1)>(w>

2 x
(i)
2) = (x

(i)
1)>(w1w

>
2)x

(i)
2 = (x

(i)
1)>Wx

(i)
2 ≥ γ2

where W = (w1w
>
2) is a rank 1 symmetric matrix and we use the γ-margin assumption.

Our algorithm will try to reconstruct an approximation to W from a sample of m1 points. We

have the following feasibility convex program, where M is a d1 × d2 real-valued matrix.

Find a matrix Msuch that

∀i ∈ [1,m1] : (x
(i)
1)>Mx

(i)
2 ≥ γ2

‖M‖2F ≤ 1 ,

where ‖M‖2F =
∑d1

i=1

∑d2
j=1M

2
i,j is the squared Forbenius norm of matrices. By our γ-margin

assumption we are guaranteed that the convex program is feasible.

Our first step in the algorithm will be to take a large sample from D and find a matrix M that

solves the above convex program. The main challenge in the algorithm is how to use the matrix M
in order to predict labels. When given a test example (x1, x2), we know that both x1 and x2 have

the same label, the real issue is to decide which pairs will get the positive label (i.e., +1) and which

will get the opposite negative label (i.e., −1).

Ideally, we would like to claim that if we take two pairs (x1, x2) and (x′1, x
′
2) and have x>1 Mx′2 <

0 then the two pairs have different labels. However, in our training we never observe such pairs!

The main part of the algorithm and the analysis is aimed at overcoming this hurdle.

To gain intuition, consider the case that D satisfies full independence given the label, and is

uniform in each view. In this case when we consider two examples with the same label, say

(x
(i)
1 , x

(i)
2) and (x

(j)
1 , x

(j)
2), their probability is equal to that of (x

(i)
1 , x

(j)
2) and (x

(j)
1 , x

(i)
2). This

implies that the matrix M we learn will have, with high probability, (x
(i)
1)>Mx

(j)
2 > 0 and simi-

larly (x
(j)
1)>Mx

(i)
2 > 0, since those examples are equally probable under the uniform distribution.

4

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

Now consider two examples of different labels, (x
(i)
1 , x

(i)
2) and (x

(j)
1 , x

(j)
2). Since the hyper-

planes are homogeneous we know that (x
(i)
1 , x

(i)
2) and (−x

(j)
1 ,−x

(j)
2) have the same label. Also,

(x
(j)
1 , x

(j)
2) and (−x

(j)
1 ,−x

(j)
2) are equally likely under the uniform distribution. These together

imply that with high probability (x
(i)
1)>M(−x

(j)
2) > 0 or equivalently, (x

(i)
1)>M(x

(j)
2) < 0.

Our goal is to recover a predictor that with high probability will have a low error rate. As-

sume we have one positive example (x
(i)
1 , x

(i)
2) and one negative (x

(j)
1 , x

(j)
2) (by sampling two ex-

amples, this will happen with a constant probability, i.e., 2α+1α−1). We can take an additional

sample of size m2 and use M and x
(i)
1 to classify the points. Namely, for an example (x

(k)
1 , x

(k)
2)

if (x
(i)
1)>M(x

(k)
2) > 0 label x

(k)
1 positive, and otherwise label it negative. Assume that we have

learned M to some error ε < 1/m2, then we will have a constant probability that all our predicted

labels are correct. We can now learn a separating hyperplane h1. In a similar way we can learn

a separating hyperplane h2. With constant probability we learn a good predictor, we just need to

verify now that what we have is a good predictor.

In order to verify that a pair of hypotheses (h1, h2) are a good predictor, we can do the following.

We first test that the probability that h1 6= h2 is small. Then we test that the probability that

h1(x) = +1 is about α+1. The first test guarantees that the two hypotheses will be consistent

(with high probability). However, two hypothesis can be consistent by simply always predicting

+1; for this, the second test verifies that they give the right proportion of +1 and −1. (Note that

if α+1 = α−1 we cannot really distinguish positive and negatives. Also, we do not really need to

know α+1: it is enough to know that α+1 is in some bounded range, say [0.1, 0.9].)
The above outline assumed that the distribution D is uniform in each view and satisfies inde-

pendence given the label. When we move to our more general distributions, a challenge is that when

you flip an example through the origin, the result may not even be in the support of D, so one cannot

directly conclude anything about how M behaves on it. Additionally, we wish to allow for much

more dependence between the views, namely (λ,X ′
1)-weak dependence. Both of these make our

setting more challenging.

4. Algorithm

We start by describing our algorithm. The algorithm is composed of two main parts. The first part

is a function GetMatrix that computes the matrix M . The second part is a function GetHypo

for computing a pair of hypotheses (h1, h2). Formally,

M ← GetMatrix(m1).
(h1, h2)← GetHypo(M,m2,m3, limit2)
RETURN (h1, h2)

We will specify the setting of the parameters m1,m2,m3 and limit2 with the appropriate functions.

The function GetMatrix draws m1 examples, where m1 = V C(d1d2, ε1α+1α−1) and ε1 =
(γ2λη)/(6m2) (the parameter m2 will be specified later). Given the sample of the m1 examples,

it writes a convex program to recover a matrix M with margin γ2 with respect to all the examples.

Formally,

Function GetMatrix(m1).

Sample m1 examples (x
(i)
1 , x

(i)
2).

5

BLUM MANSOUR

Solve the quadratic program:

Find d1 × d2 matrix M such that

(x
(i)
1)>Mx

(i)
2 ≥ γ2

∑d1
i=1

∑d2
j=1M

2
i,j ≤ 1.

RETURNM .

We will later show that with high probability the matrix M is such that points drawn from X ′
1 and

X2, independently, but with the same label, are likely to have a margin of at least γ2/2.

Given the matrix M , the function GetHypo needs to find a pair (h1, h2) which will (hopefully)

have an error of at most ε. The function runs in iterations until it finds a suitable pair (h1, h2). The

function GetHypo1 tries to find an accurate hypothesis h1. In the analysis we show that it has a

non-negligible success probability. Given a candidate h1, the function GetHypo2 finds a suitable

hypothesis h2. If some hypothesis h2 was found (i.e., h2 6= ⊥) the function verify tests the pair

(h1, h2). Once verify succeeds, the program terminates and returns the pair (h1, h2). (We defer

the parameters specification to later.) Formally,

Function GetHypo(M,m2,m3, limit2, ε3, ε4)
Pass← FALSE

REPEAT

h1 ← GetHypo1(M,m2, limit2)
h2 ← GetHypo2(h1,m3)
IF h2 6= ⊥ THEN

Pass← verify(h1, h2,m4, ε3, ε4)
UNTIL Pass = TRUE.

RETURN (h1, h2).

The function GetHypo1 needs to produce a candidate h1 hypothesis. It uses as a subroutine

large sample which returns a subset of examples of size at least limit2 out of m2 examples it

samples, where m2 = Θ(limit2/γ
2), limit2 = V C(d1, ε2)/λ and ε2 = 1

m3
(m3 will be specified

later). We rather arbitrarily assume that the first call returns a set of only positive examples and

the second call a set of only negative examples. In the analysis we show that this occurs with non-

negligible probability. When this happens, we can find a separating hyperplane h1 and return it.

Formally,

Function GetHypo1(M,m2, limit2)
REPEAT

S+1 ← large sample(M,m2, limit2).
S−1 ← large sample(M,m2, limit2).

UNTIL Finding h1 separating S+1 from S−1.

RETURN h1

The function large sample samples a point (x1, x2) and a sample of size m2 of (x
(i)
1 , x

(i)
2). It

considers examples (x
(i)
1 , x

(i)
2) such that x>1 Mx

(i)
2 < 0, which are candidates to have the opposite

label of x1, and collects their first view x
(i)
1 . It continues the process until it finds a large enough

such subset, namely of size at least limit2, and returns it. Formally,

6

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

Function large sample(m2, limit2)
REPEAT

sample one example (x1, x2)

sample m2 examples (x
(i)
1 , x

(i)
2).

Let S′ = {x
(i)
1 : x>1 Mx

(i)
2 < 0}.

UNTIL |S′| ≥ limit2
RETURN S′

The function GetHypo2 needs to produce a candidate h2 given h1. It samples m3 examples,

where m3 = V C(d2, ε3) and ε3 = εηλ/60. It uses the hypothesis h1 to label the sample, and then

searches for a hypothesis h2 that agrees with the labeling. The basic goal is that if h1 is highly

accurate, then we should be able to recover a hypothesis h2. Formally,

Function GetHypo2(h1,m3)

Sample m3 examples (x
(i)
1 , x

(i)
2).

Let T+1 = {x
(i)
2 : h1(x

(i)
1) = +1} and T−1 = {x

(i)
2 : h1(x

(i)
1) = −1}.

Find h2 separating T+1 from T−1.

If no such h2 set h2 ← ⊥
RETURN h2.

The function verify receives a pair (h1, h2) and tests whether it is an adequate pair. This

is done by sampling m4 = Θ(1
ε2
4

log(2/δ)) and performing two tests. The first is that the two

hypothesis almost always agree, i.e., disagree on at most an ε3 + ε4 fraction, where ε4 = ε3. The

second is that for each label h2 gives approximately the correct probability. Formally,

Function verify(h1, h2,m4, ε3, ε4)

Sample m4 examples (x
(i)
1 , x

(i)
2).

Let S = {(x
(i)
1 , x

(i)
2) : h1(x

(i)
1) 6= h2(x

(i)
2)}.

Let S2,y = {(x
(i)
1 , x

(i)
2) : h2(x

(i)
2) = y}

IF (|S|/m4 ≤ ε3 + ε4) and (αy − 3ε4 ≤ |S2,y|/m4 for y ∈ {+1,−1})
THEN test←TRUE ELSE test←FALSE
RETURN test

The pseudo-code of all the program appears in Appendix A.

5. Analysis

5.1. Analysis of GetMatrix

We start by analyzing the function GetMatrix which returns the matrix M . Clearly, the running

time of GetMatrix is polynomial, since it solves a feasible convex program. We need to analyze

the properties of the matrix returned by GetMatrix.

We claim that on unseen examples we are likely to have similar margin. (Note that on W we

are guarantee to have margin at least γ2, but for M it will follow from the generalization bounds of

linear classifiers.)

7

BLUM MANSOUR

Lemma 4 A sample of size m1 = V C(d1d2, ε1α+1α−1, δ) guarantees that with probability at

least 1− δ we have:

Pr
(x1,x2)∼Dy

[x>1 Mx2 < γ2/2] < ε1

where y ∈ {+1,−1}.

Proof Since D(x) = α+1D+1(x) + α−1D−1(x), we have that

Pr
(x1,x2)∼D+1

[x>1 Mx2 < γ2/2] ≤
1

α+1
Pr

(x1,x2)∼D
[x>1 Mx2 < γ2/2]; ,

and similarly for D−1,

Pr
(x1,x2)∼D−1

[x>1 Mx2 < γ2/2] ≤
1

α−1
Pr

(x1,x2)∼D
[x>1 Mx2 < γ2/2] .

The value of x>1 Mx2 can be viewed as a dot-product in d1d2 dimensions between a weight vector

with entries Mij and an example vector with entries x1ix2j . Using the VC dimension generalization

bound we have that

Pr
(x1,x2)∼D

[x>1 Mx2 < γ2/2] ≤ ε1α+1α−1 ,

which implies the lemma.

We remark that an alternative bound can be derived for m1 = Θ(1
ε1γ4α+1α−1

) based on a general-

ization bound using the margin γ.

We now claim that since the distribution D satisfies (λ,X ′
1)-weak dependence, even if we sam-

ple from the marginal distributions we will get a similar bound.

Lemma 5 Assume that D satisfies (λ,X ′
1)-weak dependence as in Assumption 3. Let M be the

matrix output by GetMatrix(m1, ε1, δ). Then, with probability 1− δ, for y ∈ {+1,−1}.

Pr
x1∼Dy,1,x2∼Dy,2

[x>1 Mx2 < γ2/2|x1 ∈ X ′
1] <

ε1
λη

Proof Since D satisfies (λ,X ′
1)-weak dependence,

λ Pr
x1∼Dy,1,x2∼Dy,2

[x>1 Mx2 < γ2/2|x1 ∈ X ′
1] ≤ Pr

(x1,x2)∼Dy

[x>1 Mx2 < γ2/2|x1 ∈ X ′
1]

Clearly we have that,

Pr
(x1,x2)∼Dy

[x1 ∈ X ′
1] Pr

(x1,x2)∼Dy

[x>1 Mx2 < γ2/2|x1 ∈ X ′
1] ≤ Pr

(x1,x2)∼Dy

[x>1 Mx2 < γ2/2].

From Lemma 4, given our setting of m1, with probability 1− δ, for each y ∈ {−1,+1}, we have

Pr
(x1,x2)∼Dy

[x>1 Mx2 < γ2/2] < ε1

Since distribution D satisfies Assumption 3, it implies that Pr(x1,x2)∼Dy
[x1 ∈ X ′

1] ≥ η and the

lemma follows.

It will be convenient to call matrices that satisfies Lemma 5, good matrices, and for the most part

we will assume that our matrix M is a good matrix.

Definition 6 We call a matrix M good if for y ∈ {+1,−1}.

Pr
x1∼Dy,1,x2∼Dy,2

[x>1 Mx2 < γ2/2|x1 ∈ X ′
1] <

ε1
λη

.

8

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

5.2. Analysis large sample

We start with defining the inputs we wish to target. Those are inputs for which the first view, x1,

has the property that there is a non-negligible probability that a random second view of the opposite

label, x′2, will cause the bilinear form with M to be negative, i.e., x>1 Mx′2 < 0.

Definition 7 We say x1 ∈ support(D−y,1) is (ξ,M,+y)-heavy if Prx′

2
∼D+y,2

[x>1 Mx′2 < 0] ≥ ξ.

The next lemma shows that if the distribution is semi-homogeneous, then with high probability,

the expectation of x>1 Mx′2 is noticeably negative over x1 ∈ X ′
1 and x′2 of opposite label from x1.

Lemma 8 Assuming that D is (ρ,X ′
1)-semi homogeneous and has margin γ, then for a good

matrix M , we have:

Ex1∼D−y,1,x
′

2
∼Dy,2

[x>1 Mx′2|x1 ∈ X ′
1] ≤

−γ2

4

ρ−y

ρy
.

Proof Since the matrix M is good, for ε1 ≤ γ2λη/6 and γ ≤ 1, we have,

Ex1∼D+y,1,x
′

2
∼D+y,2

[x>1 Mx′2|x1 ∈ X ′
1] ≥

(

1−
ε1
λη

)

γ2

2
−

ε1
λη
≥

γ2

4
,

since |x>1 Mx′2| ≤ 1 for all x1 ∈ X1, x
′
2 ∈ X2. Note also that since D is (ρ,X ′

1)-semi homogeneous

we have that ρyEx1∼Dy,1
[x1|x1 ∈ X ′

1] + ρ−yEx1∼D−y,1
[x1|x1 ∈ X ′

1] = 0, which implies that

Ex1∼D−y,1
[x1|x1 ∈ X ′

1] =
−ρy
ρ−y

Ex1∼D+y,1
[x1|x∈X

′
1]. Therefore,

γ2

4
≤ Ex1∼D+y,1,x

′

2
∼D+y,2

[x>1 Mx′2|x1 ∈ X ′
1]

= Ex1∼D+y,1
[x>1 |x1 ∈ X ′

1] M Ex′

2
∼D+y,2

[x′2]

=
−ρy
ρ−y

Ex1∼D−y,1
[x>1 |x1 ∈ X ′

1] M Ex′

2
∼D+y,2

[x′2]

=
−ρy
ρ−y

Ex1∼D−y,1,x
′

2
∼D+y,2

[x>1 Mx′2|x1 ∈ X ′
1]

This implies that

Ex1∼D−y,1,x
′

2
∼D+y,2

[x>1 Mx′2|x1 ∈ X ′
1] ≤ −

γ2ρ−y

4ρy

which completes the proof.

It will be convenient to have a notation βy =
ρ−y

8ρy
. Since x>1 Mx′2 ≥ −1, from Lemma 8 we

have that γ2βy ≤ 1/2. We also have that βy ≥ γ2/32.1 It would be convenient to assume that βy is

a constant, e.g., β+1, β−1 ∈ [0.01, 0.99]

Lemma 9 For y ∈ {−1,+1}, a good matrix M has the property that x1 ∼ D−y,1, conditioned on

x1 ∈ X ′
1, is (γ2βy,M, y)-heavy with probability at least γ2βy.

1. Since γ2

4
≤

−ρy

ρ−y

Ex1∼D−y,1,x
′

2
∼D+y,2

[x>

1 Mx′

2|x1 ∈ X ′

1] ≤
ρy

ρ−y

= 8βy

9

BLUM MANSOUR

Proof Since the matrix M is good, by Lemma 8 we have that,

Ex1∼D−y,1,x
′

2
∼D+y,2

[x>1 Mx′2|x1 ∈ X ′
1] ≤ −

γ2

4
·
ρ−y

ρy
= −2γ2βy .

The claim now follows from Markov’s inequality, using the fact that |x>1 Mx′2| ≤ 1 for all x1 ∈
X1, x

′
2 ∈ X2. In particular, if the probability, conditioned on x1 ∈ X ′

1, that x1 is (γ2βy,M,+y)-
heavy is less than γ2βy, then this would imply that Prx1∼D−y,1,x

′

2
∼D+y,2

[x>1 Mx′2 ≥ 0|x1 ∈ X ′
1] ≥

(1 − γ2βy)
2 > 1 − 2γ2βy and so the expected value of x>1 Mx′2 would have to be greater than

−2γ2βy, a contradiction to Lemma 8.

Lemma 10 Fix y ∈ {+1,−1}. Assuming the matrix M is good, in each iteration of function

large sample, with probability ηα−yγ
2βy/2 = Θ(ηγ2) it selects x1 from D−y,1, x1 ∈ X ′

1, and

the size of S′ is at least limit2 ≤ γ2βym2. Furthermore, with an additional probability of 1/e, for

ε1 < γη/m2 we have that all the examples in S′ are of label y.

Proof Assuming the matrix M is good, by Lemma 9, there is at least a γ2βy probability that a

random x1 from D−y,1, conditioned on x1 ∈ X ′
1, is (γ2βy,M,+y)-heavy. This implies that a

random x1 from D has this property with probability at least ηα−yγ
2βy = Θ(ηγ2).

Assume this is the case, i.e., x1 has label −y, x1 ∈ X ′
1 and is (γ2βy,M,+y)-heavy. This

implies that the expected size of S′ is at least γ2βym2 = Θ(γ2m2) = limit2. Therefore, with

probability at least half, S′ has at least limit2 examples of label +y.

By Lemma 5, for ε1 < λη/m2, with an additional probability of at least 1/e, S′ is likely to have

no examples labeled −y.

5.3. Analysis GetHypo1

Lemma 11 Assuming the matrix M is good, in function GetHypo1 each iteration, with probabil-

ity at least

η2γ4β+1β−1α+1α−1

16e2
=

η2γ4α+1α−1

1024e2
= Θ(η2γ4),

terminates and outputs a hypothesis h1 that has error at most ε2.

Proof By Lemma 10 we have that with probability ηγ2α−1β+1/(2e) the set S+1 are all positive

examples and with probability ηγ2α+1β−1/(2e) the set S−1 are all negative examples and each

of the sets is of size at least limit2. Given that this happens, the sets S+1 and S−1 are linearly

separable, and therefore, in such a case, function GetHypo1 finds a separating h1 and terminates.

With probability at least 1/4, there are subsets I+1 ⊆ S+1 and I−1 ⊆ S−1 of size at least

λ limit2 which contain a random independent samples from the marginal distributions of D+1

and D−1, respectively. (This is due to the (λ,X ′
1)-weak dependence of D.) Since λ limit2 =

V C(d1, ε2) we can apply the VC dimension generalization bounds to bound the error of h1 by ε2.

10

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

5.4. Analysis GetHypo2

Lemma 12 Assuming the matrix M is good, with probability Θ(η2γ4) the function GetHypo2

outputs a hypothesis h2 that: (1) has error at most ε3 and (2) has probability of disagreeing with h1
at most ε3.

Proof By Lemma 11 we have, with probability at least Θ(η2γ4) that Pr[h1 6= f1] ≤ ε2 = 1/m3.

Assume that holds. This implies that with probability at least 1/e we have that all the m3 examples

sampled in GetHypo2 are classified correctly by h1. In such a case we will find a separating hy-

perplane h2. The size of m3 = V C(d2, ε3) guarantees that, with constant probability, the error of

h2 is at most ε3 and the probability that h1 and h2 disagree is also ε3.

5.5. Analysis verify

We first show that any hypothesis h = (h1, h2) with the property that (1) h1 and h2 agree with

high probability over examples (x1, x2) from D, and (2) h1 and h2 label a reasonable fraction of

examples positive and a reasonable fraction negative, must either be close to the target f or close

to its complement −f . This extends Theorem 15 from Balcan and Blum (2010) to the case that D
satisfies (λ,X ′

1)-weak dependence, and the proof is essentially the same.

Lemma 13 Assume h = (h1, h2) such that: (1) Pr(x1,x2)∼D[h1(x1) 6= h2(x2)] ≤ µ, and (2)

Pr(x1,x2)∼D[h(x2) = y] > 2µ
λη

, for y ∈ {+1,−1}. Then either: (1) Pr(x1,x2)∼D[h2(x1) 6=

f(x1, x2)] ≤
2µ
ηλ

or (2) Pr(x1,x2)∼D[h2(x1) 6= −f(x1, x2)] ≤
2µ
ηλ

.

Proof By definition of D we have,

Pr
(x1,x2)∼D

[h1(x1) 6= h2(x2)] = α+1 Pr
(x1,x2)∼D+1

[h1(x1) 6= h2(x2)]+α−1 Pr
(x1,x2)∼D−1

[h1(x1) 6= h2(x2)]

Fix y ∈ {+1,−1}. Since distribution D satisfies (λ,X ′
1)-weak dependence we have

Pr
(x1,x2)∼Dy

[h1(x1) 6= h2(x2)] ≥η Pr
(x1,x2)∼Dy

[h1(x1) 6= h2(x2)|x1 ∈ X ′
1]

≥ηλ Pr
x1∼Dy,1,x2∼Dy,2

[h1(x1) 6= h2(x2)|x1 ∈ X ′
1]

=ηλ(Pr
x1∼Dy,1

[h1(x1) = y|x1 ∈ X ′
1] Pr

x2∼Dy,2

[h2(x2) 6= y]

+ Pr
x1∼Dy,1

[h1(x1) 6= y|x1 ∈ X ′
1] Pr

x2∼Dy,2

[h2(x2) = y])

=ηλ((1− χy) Pr
x2∼Dy,2

[h2(x2) 6= y] + χy Pr
x2∼Dy,2

[h2(x2) = y]),

where χy = Prx1∼Dy,1
[h1(x1) 6= y|x1 ∈ X ′

1]. If χy ≤ 1/2 we have that

2

ηλ
Pr

(x1,x2)∼Dy

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼Dy,2

[h2(x2) 6= y]

and if χy ≥ 1/2 we have that

2

ηλ
Pr

(x1,x2)∼Dy

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼Dy,2

[h2(x2) = y].

11

BLUM MANSOUR

We now consider all the possibilities depending on y and χy. First assume that for some y ∈
{+1,−1}, we have,

2

ηλ
Pr

(x1,x2)∼D+y

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼D+y,2

[h2(x2) 6= +y] = Pr
x2∼D+y,2

[h2(x2) = −y]

and
2

ηλ
Pr

(x1,x2)∼D−y

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼D−y,2

[h2(x2) = −y].

This implies that

2µ

ηλ
≥

2

ηλ
Pr

(x1,x2)∼D
[h1(x1) 6= h2(x2)] ≥ Pr

x2∼D
[h2(x2) = −y],

which is a contradiction to the assumption that Prx2∼D[h2(x2) = −y] >
2ε
ηλ

for both y ∈ {−1,+1}.
Therefore we have two remaining possibilities. The first possibility,

2

ηλ
Pr

(x1,x2)∼D+1

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼D+1,2

[h2(x2) 6= +1] = Pr
x2∼D+1,2

[h2(x2) 6= f2(x2)]

and

2

ηλ
Pr

(x1,x2)∼D−1

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼D−1,2

[h2(x2) = +1] = Pr
x2∼D−1,2

[h2(x2) 6= f(x2)],

implies that
2µ

ηλ
≥

2

ηλ
Pr

(x1,x2)∼D
[h1(x1) 6= h2(x2)] ≥ Pr

x2∼D
[h2(x2) 6= f(x)],

which is conclusion (1) of the lemma. The second possibility,

2

ηλ
Pr

(x1,x2)∼D+1

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼D+1,2

[h2(x2) 6= −1] = Pr
x2∼D+1,2

[h2(x2) 6= −f2(x2)]

and

2

ηλ
Pr

(x1,x2)∼D−1

[h1(x1) 6= h2(x2)] ≥ Pr
x2∼D−1,2

[h2(x2) = −1] = Pr
x2∼D−1,2

[h2(x2) 6= −f2(x2)],

implies that

2µ

ηλ
≥

2

ηλ
Pr

(x1,x2)∼D
[h1(x1) 6= h2(x2)] ≥ Pr

x2∼D
[h2(x2) 6= −f(x)],

which is conclusion (2) of the lemma.

Lemma 14 Assume that h = (h1, h2) such that: (1) Pr(x1,x2)∼D[h1(x1) 6= h2(x2)] ≤ ε3, and (2)

Pr(x1,x2)∼D[h2(x2) = y] > αy − 2ε4 > 2ε3
λη

, for y ∈ {+1,−1}. Then, for m4 = Θ(1
ε2
4

log(2/δ)),

with probability at least 1− δ the function verify will return TRUE.

12

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

Proof With probability 1−δ we have two events. The first is that the empirical estimate of h1 6= h2,

i.e., |S|/m4, is within ε4 from its true probability. That is,

∣

∣

∣

∣

Pr
D
[h1(x1) 6= h2(x2)]−

|S|

m4

∣

∣

∣

∣

≤ ε4

which implies that |S|/m4 ≤ ε3 + ε4, which is the first test of verify.

The second is that the empirical estimate of h2 = y, i.e., |S2,y|/m4, is within ε4 from its true

probability, i.e.,
∣

∣

∣

∣

Pr
D
[h2(x2) = y]−

|S2,y|

m4

∣

∣

∣

∣

≤ ε4

which implies that αy−3ε4 ≤ |S2,y|/m4 for y ∈ {+1,−1}, which is the second test of verify.

Lemma 15 Assume that h = (h1, h2) such that: (1) Pr(x1,x2)∼D[h1(x1) 6= h2(x2)] > ε3 + 2ε4,

or (2) Pr(x1,x2)∼D[h2(x2) = y] < αy − 4ε4, for y ∈ {+1,−1}. Then, for m4 = Θ(1
ε2
4

log(2/δ)),

with probability at least 1− δ the function verify will return FALSE.

Proof With probability 1−δ we have two events. The first is that the empirical estimate of h1 6= h2,

i.e., |S|/m4, is within ε4 from its true probability. That is,

∣

∣

∣

∣

Pr
D
[h1(x1) 6= h2(x2)]−

|S|

m4

∣

∣

∣

∣

≤ ε4

The second is that the empirical estimate of h2 = y, i.e., |S2,y|/m4, is within ε4 from its true

probability, i.e.,
∣

∣

∣

∣

Pr
D
[h2(x2) = 1]−

|S2,y|

m4

∣

∣

∣

∣

≤ ε4

Assume both events hold. If we have Pr(x1,x2)∼D[h1(x1) 6= h2(x2)] > ε3 + 2ε4, then we have

|S|/m4 > ε3 + ε4, and verify returns FALSE.

If for some y ∈ {+1,−1} we have Pr(x1,x2)∼D[h(x2) = y] < αy − 4ε4, this implies that

αy − 3ε4 > |S2,y|/m4, and verify returns FALSE.

Note that the above lemmas do not apply for the case that both: (1) ε3 < Pr(x1,x2)∼D[h1(x1) 6=
h2(x2)] ≤ ε3 + 2ε4, and (2) αy − 4ε4 < Pr(x1,x2)∼D[h2(x2) = y] ≤ αy − 2ε4, for y ∈ {+1,−1}.
However, in this case we are fine with verify returning either TRUE, since the pair (h1, h2) is

good enough, or FALSE, which implies that we keep searching for a new pair (h1, h2).

5.6. Analysis GetHypo

Lemma 16 Assuming that the matrix M is good, w.h.p. the following holds: (1) in function

GetHypo each iteration terminates with probability at least Θ(η2γ4), and (2) When it terminates

the output hypotheses (h1, h2) have error at most ε.

13

BLUM MANSOUR

Proof By Lemma 11 we have that with probability Θ(η2γ4) the procedure GetHypo1 generates

a hypothesis h1 which has error at most ε2. By Lemma 12 we have that procedure GetHypo2

generates a hypothesis h2 for which PrD[h1 6= h2] ≤ ε3, and PrD[f 6= h2] ≤ ε3. (Note that

success probability of both depends mostly on the same events so the joint success probability is

Θ(η2γ4).) If this holds, then by Lemma 14, with high probability, function verify will return

TRUE on (h1, h2) and in such a case, by Lemma 13 they have error at most 2ε3/(ηλ) < ε. The

probability of all the events to hold is at least Θ(η2γ4).
By Lemma 15 if either: (1) Pr[h1 6= h2] > ε3 + 2ε4, or (2) Pr[h2 = y] < αy − 4ε4, then w.h.p.

verify will return FALSE. Therefore, if verify returns TRUE, then w.h.p. we have both (1)

Pr[h1 6= h2] ≤ ε3 + 2ε4 = µ and (2) Pr[h2 = y] ≥ αy − 4ε4 > 2µ/(λη) for y ∈ {+1,−1}. By

Lemma 13, this implies that (h1, h2) has error at most 2µ/(λη) < ε.

5.7. Correctness and complexity

Theorem 17 With probability 1−δ we have that the output (h1, h2) has error at most ε. In addition

the expected running time is polynomial in η−1, γ−1, ε−1, log(1/δ), d1, d2.

Proof For the correctness: By Lemma 5 the matrix M output by GenMatrix is good. By

Lemma 16 we have that when GetHypo terminates it outputs (h1, h2) has error at most ε.

6. Open problems

Our learning algorithm requires the target linear separators to pass through the origin and for the cen-

ter of mass of the distribution on x1 to be the origin as well (or at least for there to exist X ′
1, η, ρ+1,

and ρ−1 such that the distribution is (ρ,X ′
1)-semi-homogeneous as in Assumption 3). One natural

open problem is whether this assumption on the distribution can be removed. Another open prob-

lem is whether one can remove the assumption that the data distribution has an inverse-polynomial

margin.

Acknowledgments

AB was supported in part by the National Science Foundation under grants CCF-1525971, CCF-

1535967, and CCF-1331175.

YM was supported in part by a grant from the Israel Science Foundation, a grant from the United

States-Israel Binational Science Foundation (BSF), and the Israeli Centers of Research Excellence

(I-CORE) program (Center No. 4/11).

14

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

References

S. Abney. Bootstrapping. In Proceedings of the 40th Annual Meeting of the Association for Com-

putational Linguistics (ACL), pages 360–367, 2002.

M.-F. Balcan and A. Blum. A discriminative model for semi-supervised learning. JACM, 57(3),

2010. Article 19.

A. Blum and T. M. Mitchell. Combining labeled and unlabeled data with co-training. In Proc. 11th

Annual Conf. Computational Learning Theory, pages 92–100, 1998.

Kamalika Chaudhuri, Sham M. Kakade, Karen Livescu, and Karthik Sridharan. Multi-view cluster-

ing via canonical correlation analysis. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning, ICML ’09, pages 129–136, 2009. ISBN 978-1-60558-516-1.

Sanjoy Dasgupta, Michael L Littman, and David McAllester. Pac generalization bounds for co-

training. In NIPS, volume 1, pages 375–382, 2001.

Ngoc Quynh Do Thi, Steven Bethard, and Marie-Francine Moens. Facing the most difficult case of

semantic role labeling: A collaboration of word embeddings and co-training. In Proceedings of

the 26th International Conference on Computational Linguistics. ACL, 2016.

Svetlana Kiritchenko and Stan Matwin. Email classification with co-training. In Proceedings of the

2011 Conference of the Center for Advanced Studies on Collaborative Research, CASCON ’11,

pages 301–312, 2011.

Abhishek Kumar and Hal Daumé. A co-training approach for multi-view spectral clustering. In

Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 393–

400, 2011.

Anat Levin, Paul A Viola, and Yoav Freund. Unsupervised improvement of visual detectors using

co-training. In ICCV, pages 626–633, 2003.

Weifeng Liu, Yang Li, Xu Lin, Dacheng Tao, and Yanjiang Wang. Hessian-regularized co-training

for social activity recognition. PloS one, 9(9):e108474, 2014.

Robert H. Sloan. Four types of noise in data for PAC learning. Information Processing Letters, 54

(3):157–162, 1995.

Xiaojun Wan. Co-training for cross-lingual sentiment classification. In Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 1-volume 1, pages 235–243. Association

for Computational Linguistics, 2009.

15

BLUM MANSOUR

Appendix A. Pseudo Code of the algorithm

ε1 = (γ2λη)/(6m2);ε2 =
1
m3

; ε3 = εηλ/60; ε4 = ε3
m1 = V C(d1d2, ε1)/(α+1α−1); m2 = Θ(limit2/γ

2);
limit2 = V C(d1, ε2)/λ; m3 = V C(d2, ε3); m4 = Θ(1

ε2
4

log(2/δ));

M ← GetMatrix(m1).
(h1, h2)← GetHypo(M,m2,m3, limit2)
RETURN (h1, h2).

Function GetMatrix(m1).

Sample m1 examples (x
(i)
1 , x

(i)
2).

Solve the quadratic program:

Find d1 × d2 matrix M such that

(x
(i)
1)>Mx

(i)
2 ≥ γ2

∑d1
i=1

∑d2
j=1M

2
i,j ≤ 1.

RETURNM .

Function GetHypo(M,m2,m3, limit2, ε3, ε4)
Pass← FALSE

REPEAT

h1 ← GetHypo1(M,m2, limit2)
h2 ← GetHypo2(h1,m3)
IF h2 6= ⊥ THEN

Pass← verify(h1, h2,m4, ε3, ε4)
UNTIL Pass =TRUE.

RETURN (h1, h2).

Function GetHypo1(M,m2, limit2)
REPEAT

S+1 ← large sample(M,m2, limit2).
S−1 ← large sample(M,m2, limit2).

UNTIL Finding h1 separating S+1 from S−1.

RETURN h1

Function GetHypo2(h1,m3)

Sample m3 examples (x
(i)
1 , x

(i)
2).

Let T+1 = {x
(i)
2 : h1(x

(i)
1) = +1} and T−1 = {x

(i)
2 : h1(x

(i)
1) = −1}.

Find h2 separating T+1 from T−1.

If no such h2 set h2 ← ⊥
RETURN h2.

Function large sample(m2, limit2)

16

EFFICIENT CO-TRAINING OF LINEAR SEPARATORS UNDER WEAK DEPENDENCE

REPEAT

sample (x1, x2)

sample m2 examples (x
(i)
1 , x

(i)
2).

Let S′ = {x
(i)
1 : x>1 Mx

(i)
2 < 0}.

UNTIL |S′| ≥ limit2
RETURN S′

Function verify(h1, h2,m4, ε3, ε4)

Sample m4 examples (x
(i)
1 , x

(i)
2).

Let S = {(x
(i)
1 , x

(i)
2) : h1(x

(i)
1) 6= h2(x

(i)
2)}.

Let S2,y = {(x
(i)
1 , x

(i)
2) : h2(x

(i)
2) = y}

IF (|S|/m4 ≤ ε3 + ε4) and (αy − 3ε4 ≤ |S2,y|/m4 for y ∈ {+1,−1})
THEN test←TRUE ELSE test←FALSE
RETURN test

17

	Introduction
	Model
	Assumptions about the target function
	Assumptions about the distribution
	Notation

	Algorithm: overview
	Algorithm
	Analysis
	Analysis of GetMatrix
	Analysis large_sample
	Analysis GetHypo1
	Analysis GetHypo2
	Analysis verify
	Analysis GetHypo
	Correctness and complexity

	Open problems
	 Pseudo Code of the algorithm

