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Abstract

Multimodal machine learning algorithms
aim to learn visual-textual correspondences.
Previous work suggests that concepts with
concrete visual manifestations may be eas-
ier to learn than concepts with abstract ones.
We give an algorithm for automatically
computing the visual concreteness of words
and topics within multimodal datasets. We
apply the approach in four settings, ranging
from image captions to images/text scraped
from historical books. In addition to en-
abling explorations of concepts in multi-
modal datasets, our concreteness scores
predict the capacity of machine learning
algorithms to learn textual/visual relation-
ships. We find that 1) concrete concepts
are indeed easier to learn; 2) the large num-
ber of algorithms we consider have similar
failure cases; 3) the precise positive rela-
tionship between concreteness and perfor-
mance varies between datasets. We con-
clude with recommendations for using con-
creteness scores to facilitate future multi-
modal research.

1 Introduction

Text and images are often used together to serve
as a richer form of content. For example, news
articles may be accompanied by photographs or
infographics; images shared on social media are
often coupled with descriptions or tags; and text-
books include illustrations, photos, and other vi-
sual elements. The ubiquity and diversity of such
“text+image” material (henceforth referred to as
multimodal content) suggest that, from the stand-
point of sharing information, images and text are
often natural complements.
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Ideally, machine learning algorithms that in-
corporate information from both text and images
should have a fuller perspective than those that con-
sider either text or images in isolation. But Hill and
Korhonen (2014b) observe that for their particular
multimodal architecture, the level of concreteness
of a concept being represented — intuitively, the
idea of a dog is more concrete than that of beauty
— affects whether multimodal or single-channel
representations are more effective. In their case,
concreteness was derived for 766 nouns and verbs
from a fixed psycholinguistic database of human
ratings.

In contrast, we introduce an adaptive algorithm
for characterizing the visual concreteness of all the
concepts indexed textually (e.g., “dog”) in a given
multimodal dataset. Our approach is to leverage
the geometry of image/text space. Intuitively, a
visually concrete concept is one associated with
more locally similar sets of images; for example,
images associated with “dog” will likely contain
dogs, whereas images associated with “beautiful”
may contain flowers, sunsets, weddings, or an abun-
dance of other possibilities — see Fig. 1.

Allowing concreteness to be dataset-specific is
an important innovation because concreteness is
contextual. For example, in one dataset we work
with, our method scores “London” as highly con-
crete because of a preponderance of iconic London
images in it, such as Big Ben and double-decker
buses; whereas for a separate dataset, “London” is
used as a geotag for diverse images, so the same
word scores as highly non-concrete.

In addition to being dataset-specific, our method
readily scales, does not depend on an external
search engine, and is compatible with both dis-
crete and continuous textual concepts (e.g., topic
distributions).

Dataset-specific visual concreteness scores en-
able a variety of purposes. In this paper, we
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Figure 1: Demonstration of visual concreteness estimation on an example from the COCO dataset. The
degree of visual clustering of textual concepts is measured using a nearest neighbor technique. The
concreteness of “dogs” is greater than the concreteness of “beautiful” because images associated with
“dogs” are packed tightly into two clusters, while images associated with “beautiful” are spread evenly.'

focus on using them to: 1) explore multimodal
datasets; and 2) predict how easily concepts will
be learned in a machine learning setting. We ap-
ply our method to four large multimodal datasets,
ranging from image captions to image/text data
scraped from Wikipedia,” to examine the relation-
ship between concreteness scores and the perfor-
mance of machine learning algorithms. Specifi-
cally, we consider the cross-modal retrieval prob-
lem, and examine a number of NLP, vision, and
retrieval algorithms. Across all 320 significantly
different experimental settings (= 4 datasets x
2 image-representation algorithms x 5 textual-
representation algorithms x 4 text/image alignment
algorithms x 2 feature pre-processing schemes),
we find that more concrete instances are easier to
retrieve, and that different algorithms have sim-
ilar failure cases. Interestingly, the relationship
between concreteness and retrievability varies sig-
nificantly based on dataset: some datasets appear to
have a linear relationship between the two, whereas
others exhibit a concreteness threshold beyond
which retrieval becomes much easier.

We believe that our work can have a positive im-
pact on future multimodal research. §8 gives more
detail, but in brief, we see implications in (1) eval-
uation — more credit should perhaps be assigned
to performance on non-concrete concepts; (2) cre-
ating or augmenting multimodal datasets, where
one might a priori consider the desired relative
proportion of concrete vs. non-concrete concepts;
and (3) curriculum learning (Bengio et al., 2009),

'"Tmage copyright information is provided in the supple-
mentary material.

2 We release our Wikipedia and British Library
data at http://www.cs.cornell.edu/~jhessel/
concreteness/concreteness.html

where ordering of training examples could take
concreteness levels into account.

2 Related Work

Applying machine learning to understand visual-
textual relationships has enabled a number of new
applications, e.g., better accessibility via auto-
matic generation of alt text (Garcia et al., 2016),
cheaper training-data acquisition for computer vi-
sion (Joulin et al., 2016; Veit et al., 2017), and
cross-modal retrieval systems, e.g., Rasiwasia et al.
(2010); Costa Pereira et al. (2014).

Multimodal datasets often have substantially dif-
fering characteristics, and are used for different
tasks (BaltruSaitis et al., 2017). Some commonly
used datasets couple images with a handful of un-
ordered tags (Barnard et al., 2003; Cusano et al.,
2004; Grangier and Bengio, 2008; Chen et al.,
2013, inter alia) or short, literal natural language
captions (Farhadi et al., 2010; Ordéiiez et al., 2011;
Kulkarni et al., 2013; Fang et al., 2015, inter alia).
In other cross-modal retrieval settings, images are
paired with long, only loosely thematically-related
documents. (Khan et al., 2009; Socher and Fei-Fei,
2010; Jia et al., 2011; Zhuang et al., 2013, inter
alia). We provide experimental results on both
types of data.

Concreteness in datasets has been previously
studied in either text-only cases (Turney et al.,
2011; Hill et al., 2013) or by incorporating human
judgments of perception into models (Silberer and
Lapata, 2012; Hill and Korhonen, 2014a). Other
work has quantified characteristics of concrete-
ness in multimodal datasets (Young et al., 2014;
Hill et al., 2014; Hill and Korhonen, 2014b; Kiela
and Bottou, 2014; Jas and Parikh, 2015; Lazari-



dou et al., 2015; Silberer et al., 2016; Lu et al.,
2017; Bhaskar et al., 2017). Most related to our
work is that of Kiela et al. (2014); the authors use
Google image search to collect 50 images each for
a variety of words and compute the average co-
sine similarity between vector representations of
returned images. In contrast, our method can be
tuned to specific datasets without reliance on an ex-
ternal search engine. Other algorithmic advantages
of our method include that: it more readily scales
than previous solutions, it makes relatively few as-
sumptions regarding the distribution of images/text,
it normalizes for word frequency in a principled
fashion, and it can produce confidence intervals.
Finally, the method we propose can be applied to
both discrete and continuous concepts like topic
distributions.

3 Quantifying Visual Concreteness

To compute visual concreteness scores, we adopt
the same general approach as Kiela et al. (2014):
for a fixed text concept (i.e., a word or topic), we
measure the variance in the corresponding visual
features. The method is summarized in Figure 1.

3.1 Concreteness of discrete words

We assume as input a multimodal dataset of n im-
ages represented in a space where nearest neigh-
bors may be computed. Additionally, each image
is associated with a set of discrete words/tags. We
write w, for the set of words/tags associated with
image v, and V,, for the set of all images asso-
ciated with a word w. For example, if the v*"
image is of a dog playing frisbee, w, might be
{frisbee, dog, in, park}, and v € Vpark.

Our goal is to measure how “clustered” a word
is in image feature space. Specifically, we ask:
for each image v € V,,, how often are v’s nearest
neighbors also associated with w? We thus com-
pute the expected value of MNIk the number of
mutually neighboring images of word w:
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where NN¥(v) denotes the set of v’s k nearest
neighbors in image space.

While Equation 1 measures clusteredness, it
does not properly normalize for frequency. Con-
sider a word like “and”; we expect it to have low
concreteness, but its associated images will share

neighbors simply because “and” is a frequent un-
igram. To correct for this, we compute the con-
creteness of a word as the ratio of E[MNI¥ | under
the true distribution of the image data to a random
distribution of the image data:

EPdata [MNI’IIZ]

concreteness(w) = ()
Eprandom [MNIﬁ:I
While the denominator of this expression

can be computed in closed form, we use
Ep. .. [MNI?] ~ W; this approximation is
faster to compute and is negligibly different from

the true expectation in practice.

3.2 [Extension to continuous topics

We extend the definition of concreteness to con-
tinuous concepts, so that our work applies also
to topic model outputs; this extension is needed
because the intersection in Equation 1 cannot be di-
rectly applied to real values. Assume we are given
a set of topics 7" and an image-by-topic matrix
Y € R™I7I, where the v row? is a topic distri-
bution for the text associated with image v, i.e.,
Y;; = P(topic jlimage 7). For each topic ¢, we
compute the average topic weight for each image
v’s neighbors, and take a weighted average as:

D o1 Yot 22 ennt vy Yit)
2 o=t Yor
(3)

Note that Equations 1 and 3 are computations
of means. Therefore, confidence intervals can be
computed in both cases either using a normality
assumption or bootstrapping.

concreteness(t) =

3|

4 Datasets

We consider four datasets that span a vari-
ety of multimodal settings. Two are publicly
available and widely wused (COCO/Flickr);
we collected and preprocessed the other two
(Wiki/BL). The Wikipedia and British Library
sets are available for download at http:
//www.cs.cornell.edu/~jhessel/
concreteness/concreteness.html.
Dataset statistics are given in Table 1,
summarized as follows:

Wikipedia (Wiki). We collected a dataset consist-
ing of 192K articles from the English Wikipedia,
along with the 549K images contained in those

and

3 The construction is necessarily different for different
types of datasets, as described in §4.



Wiki 1: ... Lansdale
was a United States
Air Force officer...
Wiki 2: ... Micronesia
is a subregion of
Oceania...

BL 1: ... cool your

« | head. i have no wish
to see you dead...

BL 2: ... the schuylkill
and delaware meet
on their way to the
sea...

Figure 2: Examples of text and images from our
new Wiki/BL datasets.

#Images MeanLen Train/Test
Wiki 549K 1397.8  177K/10K
BL 405K 2269.6 69K/ 5K
COCO | 123K 10.5  568K/10K
Flickr | 754K 9.0 744K/10K

Table 1: Dataset statistics: total number of im-
ages, average text length in words, and size of the
train/test splits we use in §6.

articles. Following Wilson’s popularity filtering
technique,* we selected this subset of Wikipedia
by identifying articles that received at least 50
views on March 5th, 2016.5 To our knowledge,
the previous largest publicly available multimodal
Wikipedia dataset comes from ImageCLEF’s 2011
retrieval task (Popescu et al., 2010), which consists
of 137K images associated with English articles.

Images often appear on multiple pages: an image
of the Eiffel tower might appear on pages for Paris,
for Gustave Eiffel, and for the tower itself.

Historical Books from British Library (BL).
The British Library has released a set of digitized
books (British Library Labs, 2016) consisting of
25M pages of OCRed text, alongside SO0K+ im-
ages scraped from those pages of text. The re-
lease splits images into four categories; we ignore
“bound covers” and “embellishments” and use im-
ages identified as “plates” and “medium sized.” We
associated images with all text within a 3-page win-
dow.

This raw data collection is noisy. Many books
are not in English, some books contain far more
images than others, and the images themselves are
of varying size and rotation. To combat these issues

‘nttps://goo.gl/Bl1lyy0
>The articles were extracted from an early March, 2016
data dump.

we only keep books that have identifiably English
text; for each cross-validation split in our machine-
learning experiments (§6) we sample at most 10
images from each book; and we use book-level
holdout so that no images/text in the test set are
from books in the training set.

Captions and Tags. We also examine two popular
existing datasets: Microsoft COCO (captions) (Lin
et al., 2014) (COCO) and MIRFLICKR-1M (tags)
(Huiskes et al., 2010) (Flickr). For COCO, we con-
struct our own training/validation splits from the
123K images, each of which has 5 captions. For
Flickr, as an initial preprocessing step we only con-
sider the 7.3K tags that appear at least 200 times,
and the 754K images that are associated with at
least 3 of the 7.3K valid tags.

S Validation of Concreteness Scoring

We apply our concreteness measure to the four
datasets. For COCO and Flickr, we use unigrams
as concepts, while for Wiki and BL, we extract
256-dimensional topic distributions using Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). For
BL, topic distributions are derived from text in the
aforementioned 3 page window; for Wiki, for each
image, we compute the mean topic distribution of
all articles that image appears in; for Flickr, we
associate images with all of their tags; for COCO,
we concatenate all captions for a given image. For
computing concreteness scores for COCO/Flickr,
we only consider unigrams associated with at least
100 images, so as to ensure the stability of MNI as
defined in Equation 1.

We extract image features from the pre-softmax
layer of a deep convolutional neural network,
ResNet50 (He et al., 2016), pretrained for the
ImageNet classification task (Deng et al., 2009);
this method is known to be a strong baseline
(Sharif Razavian et al., 2014).° For nearest neigh-
bor search, we use the Annoy library,” which
computes approximate kNN efficiently. We use
k = 50 nearest neighbors, though the results pre-
sented are stable for reasonable choices of k, e.g.,
k = 25,100.

5.1 Concreteness and human judgments

Following Kiela et al. (2014), we borrow a dataset
of human judgments to validate our concreteness

SWe explore different image/text representations in later
sections.
"github.com/spotify/annoy
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Figure 3: Examples of the most and least concrete words/topics from Wiki, COCO, and Flickr, along with
example images associated with each highlighted word/topic.

computation method.® The concreteness of words
is a topic of interest in psychology because con-
creteness relates to a variety of aspects of human
behavior, e.g., language acquisition, memory, etc.
Schwanenflugel and Shoben (1983); Paivio (1991);
Walker and Hulme (1999); De Groot and Keijzer
(2000).

We compare against the human-gathered uni-
gram concreteness judgments provided in the USF
Norms dataset (USF) (Nelson et al., 2004); for each
unigram, raters provided judgments of its concrete-
ness on a 1-7 scale. For Flickr/COCO, we com-
pute Spearman correlation using these per-unigram
scores (the vocabulary overlap between USF and
Flickt/COCO is 1.3K/1.6K), and for Wiki/BL, we
compute topic-level human judgment scores via a
simple average amongst the top 100 most probable
words in the topic.

As a null hypothesis, we consider the possibility
that our concreteness measure is simply mirroring
frequency information.” We measure frequency for
each dataset by measuring how often a particular
word/topic appears in it. A useful concreteness
measure should correlate with USF more than a
simple frequency baseline does.

For COCO/Flickr/Wiki, concreteness scores out-
put by our method positively correlate with hu-
man judgments of concreteness more than fre-
quency does (see Figure 4). For COCO, this pat-
tern holds even when controlling for part-of-speech

8 Note that because concreteness of words/topics varies
from dataset to dataset, we don’t expect one set of human
judgments to correlate perfectly with our concreteness scores.
However, partial correlation with human judgment offers a
common-sense “reality check.”

*We return to this hypothesis in §6.1 as well; there, too,
we find that concreteness and frequency capture different in-
formation.

(not shown), whereas Flickr adjectives are not cor-
related with USF. For BL, neither frequency nor
our concreteness scores are significantly correlated
with USF. Thus, in three of our four datasets, our
measure tends to predict human concreteness judg-
ments better than frequency.

IS Frequency

LLi-

Flickr ~ COCO Wiki BL

0.4
I Concreteness

0.2

0

Spearman Correlation
With Human Judgement

Figure 4: Spearman correlations between hu-
man judgment (USF) and our algorithm’s out-
puts, and dataset frequency. In the case of
Flickr/COCO/WIKI our concreteness scores corre-
late with human judgement to a greater extent than
frequency. For BL, neither frequency nor our con-
creteness measure is correlated with human judge-
ment. **¥/*¥¥/* :=p < .001/.01/.05

Concreteness and frequency. While concrete-
ness measures correlate with human judgment
better than frequency, we do expect some cor-
relation between a word’s frequency and its
concreteness (Gorman, 1961). In all cases,
we observe a moderate-to-strong positive cor-
relation between infrequency and concreteness
(Pwikis Peocos Pflickrs poi. = -06,.35,.40,.71) indi-
cating that rarer words/topics are more concrete,
in general. However, the correlation is not perfect,
and concreteness and frequency measure different



properties of words.

5.2 Concreteness within datasets

Figure 3 gives examples from Wiki, COCO, and
Flickr illustrating the concepts associated with the
smallest and largest concreteness scores according
to our method.!® The scores often align with intu-
ition, e.g., for Wiki, sports topics are often concrete,
whereas country-based or abstract-idea-based top-
ics are not.!" For COCO, polar (because of polar
bears) and ben (because of Big Ben) are concrete;
whereas somewhere and possibly are associated
with a wide variety of images.

Concreteness scores form a continuum, making
explicit not only the extrema (as in Figure 3) but
also the middle ground, e.g., in COCO, “wilder-
ness” (rank 479) is more visually concrete than
“outside” (rank 2012). Also, dataset-specific intri-
cacies that are not obvious a priori are highlighted,
e.g., in COCO, 150/151 references to “magnets”
(rank 6) are in the visual context of a refrigerator
(making “magnets” visually concrete) though the
converse is not true, as both “refrigerator” (rank
329) and “fridge” (rank 272) often appear without
magnets; 61 captions in COCO are exactly “There
is no image here to provide a caption for,” and this
dataset error is made explicit through concreteness
score computations.

5.3 Concreteness varies across datasets

To what extent are the concreteness scores dataset-
specific? To investigate this question, we com-
pute the correlation between Flickr and COCO un-
igram concreteness scores for 1129 overlapping
terms. While the two are positively correlated
(p = .48,p < .01) there are many exceptions
that highlight the utility of computing dataset-
independent scores. For instance, “London” is ex-
tremely concrete in COCO (rank 9) as compared
to in Flickr (rank 1110). In COCO, images of Lon-
don tend to be iconic (i.e., Big Ben, double decker
buses); in contrast, “London” often serves as a
geotag for a wider variety of images in Flickr. Con-
versely, “watch” in Flickr is concrete (rank 196) as
it tends to refer to the timepiece, whereas “watch”
is not concrete in COCO (rank 958) as it tends
to refer to the verb; while these relationships are

10The BL results are less interpretable and are omitted for
space reasons.

Perhaps fittingly, the “linguistics™ topic (top words: term,
word, common, list, names, called, form, refer, meaning) is
the least visually concrete of all 256 topics.

not obvious a priori, our concreteness method has
helped to highlight these usage differences between
the image tagging and captioning datasets.

6 Learning Image/Text Correspondences

Previous work suggests that incorporating visual
features for less concrete concepts can be harm-
ful in word similarity tasks (Hill and Korhonen,
2014b; Kiela et al., 2014; Kiela and Bottou, 2014,
Hill et al., 2014). However, it is less clear if this
intuition applies to more practical tasks (e.g., re-
trieval), or if this problem can be overcome simply
by applying the “right” machine learning algorithm.
We aim to tackle these questions in this section.

The learning task. The task we consider is the
construction of a joint embedding of images and
text into a shared vector space. Truly correspond-
ing image/text pairs (e.g., if the text is a caption
of that image) should be placed close together in
the new space relative to image/text pairs that do
not match. This task is a good representative of
multimodal learning because computing a joint em-
bedding of text and images is often a “first step”
for downstream tasks, e.g., cross-modal retrieval
(Rasiwasia et al., 2010), image tagging (Chen et al.,
2013), and caption generation (Kiros et al., 2015).

Evaluations. Following previous work in cross-
modal retrieval, we measure performance using
the top-k£% hit rate (also called recall-at-k-percent,
RQEk%; higher is better). Cross-modal retrieval
can be applied in either direction, i.e., searching
for an image given a body of text, or vice-versa.
We examine both the image-search-text and text-
search-image cases. For simplicity, we average
retrieval performance from both directions, produc-
ing a single metric;'? higher is better.

Visual Representations. Echoing Wei et al.
(2016), we find that features extracted from con-
volutional neural networks (CNNs) outperform
classical computer vision descriptors (e.g., color
histograms) for multimodal retrieval. We con-
sider two different CNNs pretrained on different
datasets: ResNet50 features trained on the Ima-
geNet classification task (RN-Imagenet), and In-
ceptionV3 (Szegedy et al., 2015) trained on the
Openlmages (Krasin et al., 2017) image tagging
task (I3-Openlmages).

12 Averaging is done for ease of presentation; the perfor-
mance in both directions is similar. Among the parametric ap-

proaches (LS/DCCA/NS) across all datasets/NLP algorithms,
the mean difference in performance between the directions is
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Figure 5: Concreteness scores versus retrievability (plotted) for each dataset, along with Recall at 1%
(in tables, higher is better) for each algorithm combination. Tables give average retrieval performance
over 10-fold cross-validation for each combination of NLP/alignment algorithm; the best, second best,
and third best performing combinations are bolded and colored. The concreteness versus retrievability
curves are plotted for the top-3 performing algorithms, though similar results hold for all algorithms.
Our concreteness scores and performance are positively correlated, though the shape of the relationship
between the two differs from dataset to dataset (note the differing scales of the y-axes). All results are for
RN-ImageNet; the similar [3-Openlmages results are omitted for space reasons.

Text Representations. We consider sparse uni-
gram and tfidf indicator vectors. In both cases,
we limit the vocabulary size to 7.5K. We next con-
sider latent-variable bag-of-words models, includ-
ing LDA (Blei et al., 2003) (256 topics, trained with
Mallet (McCallum, 2002)) a specialized biterm
topic model (BTM) (Yan et al., 2013) for short
texts (30 topics), and paragraph vectors (PV) (Le
and Mikolov, 2014) (PV-DBOW version, 256 di-
mensions, trained with Gensim (Rehﬁfek and So-
jka, 2010)).13

Alignment of Text and Images. We explore four
algorithms for learning correspondences between
image and text vectors. We first compare against
Hodosh et al. (2013)’s nonparametric baseline
(NP), which is akin to a nearest-neighbor search.
This algorithm is related to the concreteness score
algorithm we previously introduced in that it ex-
ploits the geometry of the image/text spaces using
nearest-neighbor techniques. In general, perfor-
mance metrics for this algorithm provide an esti-
mate of how “easy” a particular task is in terms of
the initial image/text representations.

1.7% (std. dev=2%).

3We also ran experiments encoding text using order-aware
recurrent neural networks, but we did not observe significant
performance differences. Those results are omitted for space
reasons.

We next map image features to text features via
a simple linear transformation. Let (¢;,v;) be a
text/image pair in the dataset. We learn a linear
transformation W that minimizes

Z ||Wfimage(vi) - ftext(ti)”% + )‘HWHF (4)

for feature extraction functions fimage and fiext, €.g.,
RN-ImageNet/LDA. It is possible to map images
onto text as in Equation 4, or map text onto images
in an analogous fashion. We find that the direc-
tionality of the mapping is important. We train
models in both directions, and combine their best-
performing results into a single least-squares (LS)
model.

Next we consider Negative Sampling (NS),
which balances two objectives: true image/text
pairs should be close in the shared latent space,
while randomly combined image/text pairs should
be far apart. For a text/image pair (¢;,v;), let
s(ti, v;) be the cosine similarity of the pair in the
shared space. The loss for a single positive example
(ti,v;) given a negative sample (¢}, v}) is

h(s(ti,vi), s(ti7v£)) + h(s(ti,vi),s(tg,vi)) (5)

for the hinge function h(p, n) = max{0, a—p+n}.
Following Kiros et al. (2015) we set a = .2.



Finally, we consider Canonical Correlation Anal-
ysis (CCA), which projects image and text repre-
sentations down to independent dimensions of high
multimodal correlation. CCA-based methods are
popular within the IR community for learning mul-
timodal embeddings (Costa Pereira et al., 2014;
Gong et al., 2014). We use Wang et al. (2015b)’s
stochastic method for training deep CCA (Andrew
etal., 2013) (DCCA), a method that is competitive
with traditional kernel CCA (Wang et al., 2015a)
but less memory-intensive to train.

Training details. LS, NS, and DCCA were imple-
mented using Keras (Chollet et al., 2015).'* In to-
tal, we examine all combinations of: four datasets,
five NLP algorithms, two vision algorithms, four
cross-modal alignment algorithms, and two feature
preprocessing settings; each combination was run
using 10-fold cross-validation.

Absolute retrieval quality. The tables in Figure 5
contain the retrieval results for RN-ImageNet im-
age features across each dataset, alignment algo-
rithm, and text representation scheme. We show
results for RQ1%, but R@5% and RQ10% are
similar. I3-Openlmages image features underper-
form relative to RN-ImageNet and are omitted for
space reasons, though the results are similar.

The BL corpus is the most difficult of the
datasets we consider, yielding the lowest retrieval
scores. The highly-curated COCO dataset appears
to be the easiest, followed by Flickr and then
Wikipedia. No single algorithm combination is
“best” in all cases.

6.1 Concreteness scores and performance

We now examine the relationship between retrieval
performance and concreteness scores. Because con-
creteness scores are on the word/topic level, we
define a retrievability metric that summarizes an
algorithm’s performance on a given concept; for
example, we might expect that retrievability (dog)
is greater than retrievability (beautiful).

Borrowing the RQ1% metric from the previous
section, we let I[r; < 1%] be an indicator vari-
able indicating that test instance i was retrieved
correctly, i.e., I[r; < 1%] is 1 if the the average

“We used Adam (Kingma and Ba, 2015), batch normaliza-
tion (Ioffe and Szegedy, 2015), and ReL U activations. Regular-
ization and architectures (e.g., number of layers in DCCA/NS,
regularization parameter in LS) were chosen over a valida-
tion set separately for each cross-validation split. Training is
stopped when retrieval metrics decline over the validation set.
All models were trained twice, using both raw features and
zero-mean/unit-variance features.

rank r; of the image-search-text/text-search-image
directions is better than 1%, and O otherwise. Let
s;c be the affinity of test instance ¢ to concept c. In
the case of topic distributions, s;. is the proportion
of topic c in instance ¢; in the case of unigrams, ;.
is the length-normalized count of unigram c on in-
stance ¢. Retrievability is defined using a weighted
average over test instances 7 as:

retrievability(c) = 2 8ic s < 1] (6)

> Sie

The retrievability of ¢ will be higher if instances
more associated with ¢ are more easily retrieved by
the algorithm.

Retrievability vs. Concreteness. The graphs in
Figure 5 plot our concreteness scores versus re-
trievability of the top 3 performing NLP/alignment
algorithm combinations for all 4 datasets. In all
cases, there is a strong positive correlation between
concreteness and retrievability, which provides ev-
idence that more concrete concepts are easier to
retrieve.

The shape of the concreteness-retrievability
curve appears to vary between datasets more than
between algorithms. In COCO, the relationship be-
tween the two appears to smoothly increase. In
Wiki, on the other hand, there appears to be a
concreteness threshold, beyond which retrieval be-
comes much easier.

There is little relationship between retrievabil-
ity and frequency, further suggesting that our con-
creteness measure is not simply mirroring fre-
quency. We re-made the plots in Figure 5, ex-
cept we swapped the x-axis from concreteness to
frequency; the resulting plots, given in Figure 6,
are much flatter, indicating that retrievability and
frequency are mostly uncorrelated. Additional re-
gression analyses reveal that for the top-3 perform-
ing algorithms on Flickr/Wiki/BL/COCO, concrete-
ness explains 33%/64%/11%/15% of the variance
in retrievability, respectively. In contrast, for all
datasets, frequency explained less than 1% of the
variance in retrievability.

7 Beyond Cross-Modal Retrieval

Concreteness scores do more than just predict re-
trieval performance; they also predict the diffi-
culty of image classification. Two popular shared
tasks from the ImageNet 2015 competition pub-
lished class-level errors of all entered systems.
We used the unigram concreteness scores from
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Figure 6: Correlation between word/topic fre-
quency and retrievability for each of the four
datasets. Compared to our concreteness measure
(see Figure 5; note that the while x-axes are differ-
ent, the y-axes are the same) frequency explains
relatively little variance in retrievability.

Flickt/COCO computed in §3 to derive concrete-
ness scores for the ImageNet classes.!> We find that
for both classification and localization, for all 10
top performing entries, and for both Flickr/COCO,
there exists a moderate-to-strong Spearman correla-
tion between concreteness and performance among
the classes for which concreteness scores were
available (Nfickr, Neoco = 171, 288; .18 < p < .44;
p < .003 in all cases). This result suggests that
concrete concepts may tend to be easier on tasks
other than retrieval, as well.

8 Future Directions

At present, it remains unclear if abstract concepts
should be viewed as noise to be discarded (as in
Kiela et al. (2014)), or more difficult, but learn-
able, signal. Because large datasets (e.g., social
media) increasingly mix modalities using ambigu-
ous, abstract language, researchers will need to
tackle this question going forward. We hope that
visual concreteness scores can guide investigations
of the trickiest aspects of multimodal tasks. Our
work suggests the following future directions:
Evaluating algorithms: Because concreteness
scores are able to predict performance prior to train-
'SThere are 1K classes in both ImageNet tasks, but we were

only able to compute concreteness scores for a subset, due to
vocabulary differences.

ing, evaluations could be reported over concrete
and abstract instances separately, as opposed to
aggregating into a single performance metric. A
new algorithm that consistently performs well on
non-concrete concepts, even at the expense of per-
formance on concrete concepts, would represent a
significant advance in multimodal learning.
Designing datasets: When constructing a new
multimodal dataset, or augmenting an existing one,
concreteness scores can offer insights regarding
how resources should be allocated. Most directly,
these scores enable focusing on “concrete visual
concepts” (Huiskes et al., 2010; Chen et al., 2015),
by issuing image-search queries could be issued
exclusively for concrete concepts during dataset
construction. The opposite approach could also be
employed, by prioritizing less concrete concepts.
Curriculum learning: During training, instances
could be up/down-weighted in the training process
in accordance with concreteness scores. It is not
clear if placing more weight on the trickier cases
(down-weighting concreteness), or giving up on
the harder instances (up-weighting concreteness)
would lead to better performance, or differing algo-
rithm behavior.
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