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Abstract

Multimodal machine learning algorithms

aim to learn visual-textual correspondences.

Previous work suggests that concepts with

concrete visual manifestations may be eas-

ier to learn than concepts with abstract ones.

We give an algorithm for automatically

computing the visual concreteness of words

and topics within multimodal datasets. We

apply the approach in four settings, ranging

from image captions to images/text scraped

from historical books. In addition to en-

abling explorations of concepts in multi-

modal datasets, our concreteness scores

predict the capacity of machine learning

algorithms to learn textual/visual relation-

ships. We find that 1) concrete concepts

are indeed easier to learn; 2) the large num-

ber of algorithms we consider have similar

failure cases; 3) the precise positive rela-

tionship between concreteness and perfor-

mance varies between datasets. We con-

clude with recommendations for using con-

creteness scores to facilitate future multi-

modal research.

1 Introduction

Text and images are often used together to serve

as a richer form of content. For example, news

articles may be accompanied by photographs or

infographics; images shared on social media are

often coupled with descriptions or tags; and text-

books include illustrations, photos, and other vi-

sual elements. The ubiquity and diversity of such

“text+image” material (henceforth referred to as

multimodal content) suggest that, from the stand-

point of sharing information, images and text are

often natural complements.

Ideally, machine learning algorithms that in-

corporate information from both text and images

should have a fuller perspective than those that con-

sider either text or images in isolation. But Hill and

Korhonen (2014b) observe that for their particular

multimodal architecture, the level of concreteness

of a concept being represented — intuitively, the

idea of a dog is more concrete than that of beauty

— affects whether multimodal or single-channel

representations are more effective. In their case,

concreteness was derived for 766 nouns and verbs

from a fixed psycholinguistic database of human

ratings.

In contrast, we introduce an adaptive algorithm

for characterizing the visual concreteness of all the

concepts indexed textually (e.g., “dog”) in a given

multimodal dataset. Our approach is to leverage

the geometry of image/text space. Intuitively, a

visually concrete concept is one associated with

more locally similar sets of images; for example,

images associated with “dog” will likely contain

dogs, whereas images associated with “beautiful”

may contain flowers, sunsets, weddings, or an abun-

dance of other possibilities — see Fig. 1.

Allowing concreteness to be dataset-specific is

an important innovation because concreteness is

contextual. For example, in one dataset we work

with, our method scores “London” as highly con-

crete because of a preponderance of iconic London

images in it, such as Big Ben and double-decker

buses; whereas for a separate dataset, “London” is

used as a geotag for diverse images, so the same

word scores as highly non-concrete.

In addition to being dataset-specific, our method

readily scales, does not depend on an external

search engine, and is compatible with both dis-

crete and continuous textual concepts (e.g., topic

distributions).

Dataset-specific visual concreteness scores en-

able a variety of purposes. In this paper, we





dou et al., 2015; Silberer et al., 2016; Lu et al.,

2017; Bhaskar et al., 2017). Most related to our

work is that of Kiela et al. (2014); the authors use

Google image search to collect 50 images each for

a variety of words and compute the average co-

sine similarity between vector representations of

returned images. In contrast, our method can be

tuned to specific datasets without reliance on an ex-

ternal search engine. Other algorithmic advantages

of our method include that: it more readily scales

than previous solutions, it makes relatively few as-

sumptions regarding the distribution of images/text,

it normalizes for word frequency in a principled

fashion, and it can produce confidence intervals.

Finally, the method we propose can be applied to

both discrete and continuous concepts like topic

distributions.

3 Quantifying Visual Concreteness

To compute visual concreteness scores, we adopt

the same general approach as Kiela et al. (2014):

for a fixed text concept (i.e., a word or topic), we

measure the variance in the corresponding visual

features. The method is summarized in Figure 1.

3.1 Concreteness of discrete words

We assume as input a multimodal dataset of n im-

ages represented in a space where nearest neigh-

bors may be computed. Additionally, each image

is associated with a set of discrete words/tags. We

write wv for the set of words/tags associated with

image v, and Vw for the set of all images asso-

ciated with a word w. For example, if the vth

image is of a dog playing frisbee, wv might be

{frisbee, dog, in, park}, and v ∈ Vpark.

Our goal is to measure how “clustered” a word

is in image feature space. Specifically, we ask:

for each image v ∈ Vw, how often are v’s nearest

neighbors also associated with w? We thus com-

pute the expected value of MNIkw, the number of

mutually neighboring images of word w:

EPdata
[MNIkw] =

1

|Vw|

∑

v∈Vw

|NNk(v)∩Vw| , (1)

where NNk(v) denotes the set of v’s k nearest

neighbors in image space.

While Equation 1 measures clusteredness, it

does not properly normalize for frequency. Con-

sider a word like “and”; we expect it to have low

concreteness, but its associated images will share

neighbors simply because “and” is a frequent un-

igram. To correct for this, we compute the con-

creteness of a word as the ratio of E[MNIkw] under

the true distribution of the image data to a random

distribution of the image data:

concreteness(w) =
EPdata

[MNIkw]

EPrandom
[MNIkw]

(2)

While the denominator of this expression

can be computed in closed form, we use

EPrandom
[MNIkw] ≈

k|Vw|
n

; this approximation is

faster to compute and is negligibly different from

the true expectation in practice.

3.2 Extension to continuous topics

We extend the definition of concreteness to con-

tinuous concepts, so that our work applies also

to topic model outputs; this extension is needed

because the intersection in Equation 1 cannot be di-

rectly applied to real values. Assume we are given

a set of topics T and an image-by-topic matrix

Y ∈ R
n×|T |, where the vth row3 is a topic distri-

bution for the text associated with image v, i.e.,

Yij = P (topic j|image i). For each topic t, we

compute the average topic weight for each image

v’s neighbors, and take a weighted average as:

concreteness(t) =
k

n
·

∑n
v=1[Yvt

∑
j∈NNk(v) Yjt]∑n

v=1 Yvt
(3)

Note that Equations 1 and 3 are computations

of means. Therefore, confidence intervals can be

computed in both cases either using a normality

assumption or bootstrapping.

4 Datasets

We consider four datasets that span a vari-

ety of multimodal settings. Two are publicly

available and widely used (COCO/Flickr);

we collected and preprocessed the other two

(Wiki/BL). The Wikipedia and British Library

sets are available for download at http:

//www.cs.cornell.edu/˜jhessel/

concreteness/concreteness.html.

Dataset statistics are given in Table 1, and

summarized as follows:

Wikipedia (Wiki). We collected a dataset consist-

ing of 192K articles from the English Wikipedia,

along with the 549K images contained in those

3 The construction is necessarily different for different
types of datasets, as described in §4.







properties of words.

5.2 Concreteness within datasets

Figure 3 gives examples from Wiki, COCO, and

Flickr illustrating the concepts associated with the

smallest and largest concreteness scores according

to our method.10 The scores often align with intu-

ition, e.g., for Wiki, sports topics are often concrete,

whereas country-based or abstract-idea-based top-

ics are not.11 For COCO, polar (because of polar

bears) and ben (because of Big Ben) are concrete;

whereas somewhere and possibly are associated

with a wide variety of images.

Concreteness scores form a continuum, making

explicit not only the extrema (as in Figure 3) but

also the middle ground, e.g., in COCO, “wilder-

ness” (rank 479) is more visually concrete than

“outside” (rank 2012). Also, dataset-specific intri-

cacies that are not obvious a priori are highlighted,

e.g., in COCO, 150/151 references to “magnets”

(rank 6) are in the visual context of a refrigerator

(making “magnets” visually concrete) though the

converse is not true, as both “refrigerator” (rank

329) and “fridge” (rank 272) often appear without

magnets; 61 captions in COCO are exactly “There

is no image here to provide a caption for,” and this

dataset error is made explicit through concreteness

score computations.

5.3 Concreteness varies across datasets

To what extent are the concreteness scores dataset-

specific? To investigate this question, we com-

pute the correlation between Flickr and COCO un-

igram concreteness scores for 1129 overlapping

terms. While the two are positively correlated

(ρ = .48, p < .01) there are many exceptions

that highlight the utility of computing dataset-

independent scores. For instance, “London” is ex-

tremely concrete in COCO (rank 9) as compared

to in Flickr (rank 1110). In COCO, images of Lon-

don tend to be iconic (i.e., Big Ben, double decker

buses); in contrast, “London” often serves as a

geotag for a wider variety of images in Flickr. Con-

versely, “watch” in Flickr is concrete (rank 196) as

it tends to refer to the timepiece, whereas “watch”

is not concrete in COCO (rank 958) as it tends

to refer to the verb; while these relationships are

10The BL results are less interpretable and are omitted for
space reasons.

11Perhaps fittingly, the “linguistics” topic (top words: term,
word, common, list, names, called, form, refer, meaning) is
the least visually concrete of all 256 topics.

not obvious a priori, our concreteness method has

helped to highlight these usage differences between

the image tagging and captioning datasets.

6 Learning Image/Text Correspondences

Previous work suggests that incorporating visual

features for less concrete concepts can be harm-

ful in word similarity tasks (Hill and Korhonen,

2014b; Kiela et al., 2014; Kiela and Bottou, 2014;

Hill et al., 2014). However, it is less clear if this

intuition applies to more practical tasks (e.g., re-

trieval), or if this problem can be overcome simply

by applying the “right” machine learning algorithm.

We aim to tackle these questions in this section.

The learning task. The task we consider is the

construction of a joint embedding of images and

text into a shared vector space. Truly correspond-

ing image/text pairs (e.g., if the text is a caption

of that image) should be placed close together in

the new space relative to image/text pairs that do

not match. This task is a good representative of

multimodal learning because computing a joint em-

bedding of text and images is often a “first step”

for downstream tasks, e.g., cross-modal retrieval

(Rasiwasia et al., 2010), image tagging (Chen et al.,

2013), and caption generation (Kiros et al., 2015).

Evaluations. Following previous work in cross-

modal retrieval, we measure performance using

the top-k% hit rate (also called recall-at-k-percent,

R@k%; higher is better). Cross-modal retrieval

can be applied in either direction, i.e., searching

for an image given a body of text, or vice-versa.

We examine both the image-search-text and text-

search-image cases. For simplicity, we average

retrieval performance from both directions, produc-

ing a single metric;12 higher is better.

Visual Representations. Echoing Wei et al.

(2016), we find that features extracted from con-

volutional neural networks (CNNs) outperform

classical computer vision descriptors (e.g., color

histograms) for multimodal retrieval. We con-

sider two different CNNs pretrained on different

datasets: ResNet50 features trained on the Ima-

geNet classification task (RN-Imagenet), and In-

ceptionV3 (Szegedy et al., 2015) trained on the

OpenImages (Krasin et al., 2017) image tagging

task (I3-OpenImages).

12Averaging is done for ease of presentation; the perfor-
mance in both directions is similar. Among the parametric ap-
proaches (LS/DCCA/NS) across all datasets/NLP algorithms,
the mean difference in performance between the directions is





Finally, we consider Canonical Correlation Anal-

ysis (CCA), which projects image and text repre-

sentations down to independent dimensions of high

multimodal correlation. CCA-based methods are

popular within the IR community for learning mul-

timodal embeddings (Costa Pereira et al., 2014;

Gong et al., 2014). We use Wang et al. (2015b)’s

stochastic method for training deep CCA (Andrew

et al., 2013) (DCCA), a method that is competitive

with traditional kernel CCA (Wang et al., 2015a)

but less memory-intensive to train.

Training details. LS, NS, and DCCA were imple-

mented using Keras (Chollet et al., 2015).14 In to-

tal, we examine all combinations of: four datasets,

five NLP algorithms, two vision algorithms, four

cross-modal alignment algorithms, and two feature

preprocessing settings; each combination was run

using 10-fold cross-validation.

Absolute retrieval quality. The tables in Figure 5

contain the retrieval results for RN-ImageNet im-

age features across each dataset, alignment algo-

rithm, and text representation scheme. We show

results for R@1%, but R@5% and R@10% are

similar. I3-OpenImages image features underper-

form relative to RN-ImageNet and are omitted for

space reasons, though the results are similar.

The BL corpus is the most difficult of the

datasets we consider, yielding the lowest retrieval

scores. The highly-curated COCO dataset appears

to be the easiest, followed by Flickr and then

Wikipedia. No single algorithm combination is

“best” in all cases.

6.1 Concreteness scores and performance

We now examine the relationship between retrieval

performance and concreteness scores. Because con-

creteness scores are on the word/topic level, we

define a retrievability metric that summarizes an

algorithm’s performance on a given concept; for

example, we might expect that retrievability(dog)
is greater than retrievability(beautiful).

Borrowing the R@1% metric from the previous

section, we let I[ri < 1%] be an indicator vari-

able indicating that test instance i was retrieved

correctly, i.e., I[ri < 1%] is 1 if the the average

14We used Adam (Kingma and Ba, 2015), batch normaliza-
tion (Ioffe and Szegedy, 2015), and ReLU activations. Regular-
ization and architectures (e.g., number of layers in DCCA/NS,
regularization parameter in LS) were chosen over a valida-
tion set separately for each cross-validation split. Training is
stopped when retrieval metrics decline over the validation set.
All models were trained twice, using both raw features and
zero-mean/unit-variance features.

rank ri of the image-search-text/text-search-image

directions is better than 1%, and 0 otherwise. Let

sic be the affinity of test instance i to concept c. In

the case of topic distributions, sic is the proportion

of topic c in instance i; in the case of unigrams, sic
is the length-normalized count of unigram c on in-

stance i. Retrievability is defined using a weighted

average over test instances i as:

retrievability(c) =

∑
i sic · I[ri < 1%]∑

i sic
(6)

The retrievability of c will be higher if instances

more associated with c are more easily retrieved by

the algorithm.

Retrievability vs. Concreteness. The graphs in

Figure 5 plot our concreteness scores versus re-

trievability of the top 3 performing NLP/alignment

algorithm combinations for all 4 datasets. In all

cases, there is a strong positive correlation between

concreteness and retrievability, which provides ev-

idence that more concrete concepts are easier to

retrieve.

The shape of the concreteness-retrievability

curve appears to vary between datasets more than

between algorithms. In COCO, the relationship be-

tween the two appears to smoothly increase. In

Wiki, on the other hand, there appears to be a

concreteness threshold, beyond which retrieval be-

comes much easier.

There is little relationship between retrievabil-

ity and frequency, further suggesting that our con-

creteness measure is not simply mirroring fre-

quency. We re-made the plots in Figure 5, ex-

cept we swapped the x-axis from concreteness to

frequency; the resulting plots, given in Figure 6,

are much flatter, indicating that retrievability and

frequency are mostly uncorrelated. Additional re-

gression analyses reveal that for the top-3 perform-

ing algorithms on Flickr/Wiki/BL/COCO, concrete-

ness explains 33%/64%/11%/15% of the variance

in retrievability, respectively. In contrast, for all

datasets, frequency explained less than 1% of the

variance in retrievability.

7 Beyond Cross-Modal Retrieval

Concreteness scores do more than just predict re-

trieval performance; they also predict the diffi-

culty of image classification. Two popular shared

tasks from the ImageNet 2015 competition pub-

lished class-level errors of all entered systems.

We used the unigram concreteness scores from
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