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ABSTRACT
A low-energy hardware implementation of deep belief network
(DBN) architecture is developed using near-zero energy barrier
probabilistic spin logic devices (p-bits), which are modeled to real-
ize an intrinsic sigmoidal activation function. A CMOS/spin based
weighted array structure is designed to implement a restricted Boltz-
mann machine (RBM). Device-level simulations based on precise
physics relations are used to validate the sigmoidal relation between
the output probability of a p-bit and its input currents. Characteris-
tics of the resistive networks and p-bits are modeled in SPICE to
perform a circuit-level simulation investigating the performance,
area, and power consumption tradeoffs of the weighted array. In the
application-level simulation, a DBN is implemented in MATLAB
for digit recognition using the extracted device and circuit behav-
ioral models. The MNIST data set is used to assess the accuracy
of the DBN using 5,000 training images for five distinct network
topologies. The results indicate that a baseline error rate of 36.8%
for a 784×10 DBN trained by 100 samples can be reduced to only
3.7% using a 784×800×800×10 DBN trained by 5,000 input samples.
Finally, Power dissipation and accuracy tradeoffs for probabilistic
computing mechanisms using resistive devices are identified.
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1 INTRODUCTION
The interrelated fields of machine learning (ML), and artificial neu-
ral networks (ANN) have grown significantly in previous decades
due to the availability of powerful computing systems to train and
simulate large scale ANNs within reasonable time-scales, as well
as the abundance of data available to train such networks in recent
years. The resulting research has realized a bevy of ANN architec-
tures that have performed incredible feats including a wide range
of classification problems, and various recognition tasks.
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Most ML techniques in-use today rely on supervised learning,
where the systems are trained on patterns with a known desired out-
put, or label. However, intelligent biological systems exhibit unsu-
pervised learning whereby statistically correlated input modalities
are associated within an internal model used for probabilistic infer-
ence and decision making [5]. One interesting class of unsupervised
learning approaches that has been extensively researched is the Re-
stricted Boltzmannmachine (RBM) [11]. RBMs can be hierarchically
organized to realize deep belief networks (DBNs) that have demon-
strated unsupervised learning abilities, such as natural language
understanding [17]. Most RBM and DBN research has focused on
software implementations, which provides flexibility, but requires
significant execution time and energy due to largematrixmultiplica-
tions that are relatively inefficient when implemented on standard
Von-Neumann architectures due to the memory-processor band-
width bottleneck when compared to hardware-based in-memory
computing approaches [16]. Thus, research into hardware-based
RBM designs has recently sought to alleviate these constraints.

Previous hardware-based RBM implementations have aimed to
overcome software limitations by utilizing FPGAs [12, 15] and sto-
chastic CMOS [2]. In recent years, emerging technologies such as
resistive RAM (RRAM) [4, 21] and phase change memory (PCM)
[9] are proposed to be leveraged within the DBN architecture as
weighted connections interconnecting building blocks in RBMs.
While most of the previous hybrid Memristor/CMOS designs focus
on improving the synapse behaviors, the work presented herein
overcomes many of the preceding challenges by utilizing a novel
spintronic p-bit device that leverages intrinsic thermal noise within
low energy barrier nanomagnets to provide a natural building block
for RBMs within a compact and low-energy package. The contribu-
tion of this paper is go to beyond using low-energy barrier magnetic
tunnel junctions (MTJs), as has been previously introduced for a
neuron in spiking neuromorphic systems [19, 20]. To the best of
our knowledge this paper is the first effort to use MTJs with near-
zero energy barriers as neurons within an RBM implementation.
Additionally, various parameters of a hybrid CMOS/spin weight
array structure are investigated for metrics of power dissipation,
and error rate using the MNIST digit recognition benchmarks.

2 FUNDAMENTALS OF RBM
Boltzmann Machines (BM) are a class of recurrent stochastic ANNs
with binary nodes whereby each possible state of the network, v,
has an energy determined by the undirected connection weights
between nodes and the node bias as described by (1), where svi is
the state of node i in v, bi is the bias, or intrinsic excitability of node
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i, and wij is the connection weight between nodes i and j [1].

E(v) = −
∑
i
svi bi −

∑
i<j

svi s
v
j wi j (1)

P(si = 1) = σ (bi +
∑
j
wi jsj ) (2)

Each node in a BM has a probability to be in state 1 according
to (2), where σ is the logistic sigmoid function. BMs, when given
enough time, will reach a Boltzmann distribution where the proba-
bility of the system being in state v is found by P(v) = e−E(v )∑

u e−E(u)
,

where u could be any possible state of the system. Thus, the system
ismost likely to be found in states that have the lowest associated en-
ergy. Restricted Boltzmann machines (RBMs) are BMs constrained
to two fully-connected non-recurrent layers called the visible layer,
where salient inputs clamp nodes to output levels of either zero
or one, and the hidden layer, where associations between input
vectors are learned. By enforcing the conditional independence of
the visible and hidden layers, unbiased samples from the input can
be obtained in one time-step, which enhances the learning process.

The most widely used method for training RBMs is contrastive
divergence (CD), which is an approximate gradient descent pro-
cedure using Gibbs sampling [8]. CD operates in three phases: (1)
Positive Phase: A training input vector, v , is applied to the visible
layer by clamping the nodes to either 1 or 0 levels, and the hidden
layer is sampled, h. (2) Negative Phase: by clamping the hidden
layer to h, the reconstructed input layer is sampled,v ′. Then, clamp
the visible layer to v’ and sample the hidden layer to obtain h′. (3)
Update the weights according to ∆W = η(vhT −v ′h′T ), where η is
the learning rate andW is the weight matrix.

DBNs are realized when additional hidden layers are stacked on
top of an RBM, and can be trained in a very similar way to RBMs.
Essentially, training a DBN involves performing CD on the visible
layer and the first hidden layer for as many steps as desired, then
fixing those weights and moving up a hierarchy as follows. The
first hidden layer is now viewed as a visible layer, while the second
hidden layer acts as a hidden layer with respect to the CD procedure
identified above. Next, another set of CD steps are performed, and
then the process is repeated for each additional layer of the DBN.

3 SPIN-BASED BUILDING BLOCK FOR RBM
In this section, we provide a detailed description of the p-bit that
provides the building block for our proposed spin-based BM archi-
tecture. Individual building blocks are interconnected by networks
of memristive devices whose resistances can be programmed to
provide the desired weights. For instance, in this paper, we will
assume that the memristive devices are implemented using the
three terminal spin-orbit torque (SOT)-driven domain wall motion
(DWM) device proposed in [18].

The activation function is achieved by a spintronic building block
that has been used in the design of probabilistic spin logic devices
(p-bits) for a wide variety of Boolean and non-Boolean problems
[3, 6, 10, 22]. The basic functionality of the p-bit shown in Fig. 1 [6]
is to produce a stochastic output whose steady-state probability is
modulated by an input current to generate a sigmoidal activation
function. For instance, a high positive input current produces a
stochastic output with a high probability of “0”, and vice versa. In

Figure 1: Structure of a p-bit.

Figure 2: Time-averaged results over 100 ns for p-bit.

the absence of any input current, the device generates either 0 or
VDD outputs with roughly equal probability of 0.5, as shown in Fig.
2. This device consists of a 3-terminal, spin-Hall driven MTJ [14]
that uses a circular, unstable nanomagnet (∆ ≪ 40kT ), whereby its
output is amplified by CMOS inverters as shown in Fig. 1. This MTJ
with an unstable free layer can be fabricated using standard tech-
nology such that the surface anisotropy to achieve perpendicular
magnetic anisotropy (PMA) that is not strong enough to overcome
the demagnetizing field. Thus, the magnetization stochastically
rotates in the plane, due to the presence of thermal fluctuations.

The charge current that is injected to the spin-Hall layer creates
a spin-current flowing into the circular FM (in the +y direction),
which does not have an axis with any preferential geometry. The
spin-polarization of this spin-current is in the (±z) direction, and
pins the magnetization in the (+z) or (-z) direction depending on the
direction of the charge current, through the spin-torque mechanism
[22]. The inherent physics of the spin-current driven low-barrier
nanomagnet provides a natural sigmoidal function when a long
time average of magnetization is taken. Through the tunneling
magnetoresistance effect, a charge current flowing through the
MTJ with a stable fixed layer detects the modulated magnetization
as a voltage change. To achieve this, a small read voltage VR is
applied between the V+ and V− terminals through a reference
resistance R0, adjusted to the average conductance of the MTJ
(R−0 1 = GP +GAP/2) whereGP andGAP represented conductance
in parallel (P) and anti-parallel (AP) states, respectively. This voltage
becomes an input to the CMOS inverters that are biased at the
middle point of their DC operating point, creating a stochastic
output whose probability can be tuned by the input charge current.

Each component of the device is represented by an independent
spin-circuit based on experimentally-benchmarked models that
have been established in [7] and simulated as a spin-circuit in a
SPICE-like platform. Here, we obtain an analytical approximation
to the time-averaged behavior of the output characteristics. We



Figure 3: Proposed 32 × 32 hybrid CMOS/spin-based weighted array structure for RBM implementation.

Table 1: Parameters for p-bit Based Activation Function.

Parameter Description Value
Circular FM

ϕ Diameter 100nm
t Thickness 2nm
α Damping coefficient 0.01

MTJ
G0 Conductance 150e−6S
P Spin Polarization 0.52

Giant Spin Hall Layer(GSHE)
λ Spin-diffusion length 2.1nm
θ Spin Hall Angle 0.5

Volume l ×w × t 100nm × 100nm × 3.15nm

start by relating the charge current flowing in the spin Hall layer
to the spin-current absorbed by the magnet, assuming short-circuit
conditions for simplicity, i.e. 100% spin absorption by the FM:

Is/Ic = β =
L

t
(θ )(1 − sech( t

λ
)) (3)

where Is is the spin-current, Ic is the charge current, θ is the spin-
Hall angle, L, t , λ are the length, thickness and spin diffusion lengths
for the spin-Hall layer. The length and width of the GSHE layer
are assumed to be the same as the circular nanomagnet. With a
suitable choice of the L and t, the spin-current generated can be
greater in magnitude than the charge current generating “gain.”
For the parameters used in this paper, which are listed in Table 1,
the gain factor β is ∼ 10. Next, we approximate the behavior of
the magnetization as a function of an input spin-current, polarized
in the (±z) direction. For a magnet with only a PMA in the ±z
direction, a distribution function at steady state can be written
analytically as below, as long as the spin-current is also fully in the
±z direction:

ρ(mz ) =
1
Z
exp(∆m2

z + 2ismz ) (4)

where Z is a normalization constant,mz is the magnetization along
+z, is the thermal barrier of the nanomagnet, and is is a normaliza-
tion quantity for the spin-current such that is = Is/(4q/ℏαkT ), α be-
ing the damping coefficient of the magnet, q the electron charge and

ℏ the reduced Planck constant. It is possible to use (4) to obtain an av-
erage magnetization < mz >=

∫ +1
−1 dmzmzρ(mz )/

∫ +1
−1 dmzρ(mz ).

Assuming ∆ ≪ kT , < mz > can be evaluated to give the Langevin
function, < mz >= L(is ) where L(x) = 1

x − coth 1
x , which is an

exact description for the average magnetization in the presence of
a z-directed spin-current for a low barrier PMA magnet.

In the present case, however, the nanomagnet has a circular shape
with a strong in-plane anisotropy and no simple analytical formula
can be derived, thus We use the Langevin function with a fitting pa-
rameter that adjusts the normalization current by a factor η, so that
the modified normalization constant becomes (4q/ℏαkT )(η). This
factor increases with elevating the shape anisotropy (Hd ∼ 4πMs )
and becomes exactly one when there is no shape anisotropy. Once
the magnetization and charge currents are related, we can ap-
proximate the output probability of the CMOS inverters by a phe-
nomenological equation along with fitting parameter χ as follows,
p = VOUT

VDD ≈ 1
2 [1 − tanh(χ < mz >)], which allows us to relate

the input charge current to the output probability, with physical
parameters. Fig. 2 shows the comparison of the full SPICE-model
with respect to aforementioned equations showing good agreement
with two fitting parameters η and χ , which fit the magnetization
and CMOS components, respectively.

4 PROPOSEDWEIGHTED ARRAY DESIGN
Figure 3 shows the structure of the weighted array proposed herein
to implement the RBM architecture including the SOT-DWM based
weighted connections and biases, as well as the p-bit based acti-
vation functions. Transmission gates (TGs) are utilized in write
circuits within the bit cells of the weighted connection to adjust
weights by moving the DW position. As investigated in [24], TGs
can provide energy-efficient and symmetric switching operation for
SOT-based devices, which are desirable during the training phase.
Table 2 lists the required signaling for controlling the training and
read operations in the weighted array structure. Herein, a chain
of inverters are considered to drive signal lines, in which each
successive inverter is twice as large as the previous one.

During the read operation, write word line (WWL) is connected
to ground (GND) and the source line (SL) is in high impedance



Table 2: Signaling to Control The Array Operations.

Operation WWL RWL BL SL V+ V-
Increase Weight VPULSE GND VDD GND Hi-Z Hi-Z
Decrease Weight VPULSE GND GND GND Hi-Z Hi-Z

Read GND VDD VIN Hi-Z VDD VDD/2

Table 3: Relation between the input currents of activation
functions and array size for RP = 1MΩ.

Features Array Size
8 × 8 16 × 16 32 × 32 64 × 64

Max. Positive Current (µA) 2.71 5.14 10.79 21.46
Max. Negative Current (µA) 3.57 7.14 14.23 28.28
Max. output “0” Probability 0.77 0.88 0.95 0.97
Min. output “0” Probability 0.175 0.08 0.038 0.026

(Hi-Z) state, which disconnects the write path. The read word line
(RWL) for each row is connected to VDD, which turns ON the
read transistors in the weighted connection bit cell. The bit line
(BL) will be connected to the input signal (VIN), which results in
producing a current that affects the output probability of the p-bit
device. The direction of the generated current relies on the VIN
signal. In particular, since V- is supplied by a voltage source equal to
VDD/2, if VIN is connected to VDD the injected current to the p-bit
based activation function will have positive value, and if VIN is zero
the input current will be negative. The amplitude of the generated
current depends on the resistance of the weighted connectionwhich
is defined by the position of the DW in the SOT-DWM device.

During the training operation, the RWL is connected to GND,
which turns OFF the read transistors and disconnects the read path.
The WWL is connected to an input pulse (VPULSE) signal which
activates the write path for a short period of time. The duration of
the VPULSE should be designed in amanner such that it can provide
the desired learning rate, η, to the training circuit. For instance, a
high VPULSE duration results in a significant change in the DW
position in each training iteration, which effectively reduces the
number of different resistive states that can be realized by the
SOT-DWM device. Resistance of the weighted connections can be
adjusted by the BL and SL signals, as listed in Table 2. A higher
resistance leads to a smaller current injected to the p-bit device.
Therefore, the input signal connected to the weighted connection
will have lower impact on the output probability of the p-bit device,
which means the input signal exhibits a lower weight. The bias
nodes can also be adjusted similar to the weighted connection.

5 SIMULATION RESULTS AND DISCUSSION
To analyze the RBM implementation using the proposed p-bit device
and the weighted array structure, we have utilized a hierarchical
simulation framework including circuit-level and application-level
simulations. In circuit level simulation, the behavioral models of
the p-bit and SOT-DWM devices were leveraged in SPICE circuit
simulations using 20nm CMOS technology with 0.9V nominal volt-
age to validate the functionality of the designed weighted array
circuit. In application-level simulation, the results obtained from
device-level and circuit-level simulations are used to implement a
DBN architecture and analyze its behavior in MATLAB.

Figure 4: Weighted array power consumption versus the re-
sistance of the weighted connections and array size.

Table 4: Relation between the input currents of activation
functions and RP in a 32 × 32 array.

Features RP (MΩ)
0.25 0.5 0.75 1

Max. Positive Current (µA) 36.56 20.02 13.97 10.79
Max. Negative Current (µA) 54.95 28.12 18.9 14.23
Max. output “0” Probability 0.98 0.965 0.96 0.95
Min. output “0” Probability 0.01 0.026 0.032 0.038

5.1 Circuit-level simulation
The device-level simulations shown in Fig. 2 verified a sigmoidal
relation between the input current of the p-bit based activation
function and its output probability. The shape of the activation on
function is one of the major factors affecting the performance of
the RBM. Therefore, we have provided comprehensive analyses
on the impacts of weighted connection resistance and weighted
array dimensions on the input currents of the p-bit based activation
functions, and the power consumption of the weighted array.

Table 3 lists the range of the activation function input currents
for various weighted array dimensions, while the resistance of the
SOT-DWM device in parallel state (RP) is constant and equals 1MΩ.
The experimental results provided in [19, 28] exhibit that an MTJ
resistance in theMΩ range can be obtained by increasing the oxide
thickness in an MTJ structure. The highest positive and negative
currents can be achieved while the weighted connections are in
parallel state, i.e. lowest resistance, and all of the input voltages
(VIN) are equal to VDD and GND, respectively. The difference
between the amplitude of positive and negative currents in a given
array size with constant RP is caused by the different pull-down
and pull-up strengths in NMOS read transistors. The maximum and
minimum output-level “0” probabilities are listed in Table 3, which
can be obtained according to the measured input currents and the
sigmoidal activation function shown in Fig. 2.

Moreover, Table 4 illustrates the relation between the RP values
and input currents of the activation functions, and their correspond-
ing output probabilities, for a given 32 × 32 weighted array. The
lower RP resistance and higher array size provides a wider range
of output probabilities which can increase the RBM performance.
However, this is achieved at the cost of higher area and power
consumption. The trade-offs between the array size, weighted con-
nection resistance, and average power consumption in a single read
operation is shown in Fig. 4. The lowest power consumption of



Table 5: Comparison between various RBM implementations with an emphasis on activation function structure.

Design [12] [15] [2] [21] [4] [9] Proposed
Herein

Weighted
Connection

Embedded
multipliers

Embedded
multipliers

- LFSR
- AND/OR gates

RRAM
memristor RRAM PCM SOT-DWM

Activation
Function

CMOS-based
LUTs

-2-kB BRAM
- Picewise Linear

Interpolator
- Random number

Generator

- LFSR
- Bit-wise AND
- tree adder
- FSM-based
tanh unit

Off-chip

- 64 × 16 LUTs
- Pseudo Random
Number Generator

- Comparator

Off-chip

- near-zero
energy barrier
probabilistic
spin logic
device

Energy per neuron N/A ∼ 10 − 100n J ∼ 10 − 100p J N/A ∼ 1 − 10n J N/A ∼ 1 − 10f J
Normalized area per neuron N/A ∼ 3000× ∼ 90× N/A ∼ 1250× N/A ∼ 1×

22.6 µW is realized by an 8 × 8 array with RP = 1MΩ. However,
this array provides the narrowest range of the output probabilities,
which significantly reduces the performance of the DBN.

5.2 Application-level simulation
In the application-level simulation, we have leveraged the obtained
device and circuit behavioral models to simulate a DBN architecture
for digit recognition. In particular, learning rate and the shape of
the sigmoid activation function is extracted by the SOT-DWM and
p-bit device-level simulations, respectively, while the circuit-level
simulations defines the range of the output probabilities. To evalu-
ate the performance of the system, we have modified a MATLAB
implementation of DBN by Tanaka and Okutomi [23] and used the
MNIST data set [13] including 60,000 and 10,000 sample images
with 28 × 28 pixels for training and testing operations, respectively.
We have used Error rate (ERR) metric to evaluate the performance
of the DBN, as expressed by ERR = NF /N , where, N is the number
of input data, NF is the number of false inference [23].

The simplest model of the DBN that can be implemented for
MNIST digit recognition consists 784 nodes in visible layer to han-
dle 28 × 28 pixels of the input images, and 10 nodes in hidden layer
representing the output classes. Fig. 5 shows the relation between
the performance of various DBN topologies, and the number of
input training samples ranging from 100 to 5,000, which is obtained
using 1,000 test samples. The ERR and RMSE metrics can be im-
proved by enlarging the DBN structure through increasing the
number of hidden layers, as well as the number of nodes in each
layer. This improvement is realized at the cost of larger area and
power consumptions. Increasing the input training samples can
improve the DBN performance as well, however it will quickly
converge due to the limited weight values that can be provided by
SOT-DWM based weighted connections. As shown in Fig. 5, some
random behaviors are observed for networks with smaller sizes
that are trained by lower number of training samples, which will be
significantly reduced by increasing the number of training samples.

The simulation results exhibit the highest error rate of 36.8% for
a 784 × 10 DBN that is trained by 100 training samples. Meanwhile,
the lowest error rate of 3.7% was achieved using a 784×800×800×10
DBN trained by 5,000 input training samples. This illustrates that
the recognition error rate can be decreased by increasing the num-
ber of hidden layers, and training samples, which is also realized at
the cost of higher area and power overheads.

Figure 5: ERR for various DBN topologies.

5.3 Disucussion
Table 5 lists previous hardware-based RBM implementations, which
have aimed to overcome software limitations by utilizing FPGAs
[12, 15], stochastic CMOS [2], and hybrid memristor-CMOS designs
[4, 9, 21]. FPGA implementations demonstrated RBM speedups of
25-145 over software implementations [12, 15], but had significant
constraints such as only realizing a single 128× 128 RBM per FPGA
chip, routing congestion, and clock frequencies limited to 100MHz
[15]. The stochastic CMOS-based RBM implementation proposed
in [2] leveraged the low-complexity of stochastic CMOS arithmetic
to save area and power. However, the need for extremely long
bit-stream lengths negate energy savings and lead to very long la-
tencies. Additionally, a significant amount of Linear Feedback Shift
Registers (LFSRs) were required to produce the uncorrelated input
and weight bit-streams. In both the FPGA and stochastic CMOS
designs, improvements were achieved by implementing parallel
Boolean circuits such as multipliers and pseudo-random number
generators for probabilistic behavior, which has significant area and
energy overheads compared to leveraging the physical behaviors of
emerging devices to perform the computation intrinsically. Bojnordi
et al. [4] leveraged resistive RAM (RRAM) devices to implement
efficient matrix multiplication for weighted products within Boltz-
mann machine applications, and demonstrated significant speedup
of up to 100-fold over single-threaded cores and energy savings of
over 10-fold. Similarly, Sheri et al. [21] and Eryilmaz et al. [9] uti-
lized RRAM and PCM devices to implement matrix multiplication,
while the corresponding activation function circuitry is still based
on the CMOS technology, which suffers from the aforementioned
area and power consumption overheads.



While most of the previous hybrid Memristor/CMOS designs
focus on improving the performance of weighted connections, the
work presented herein overcomes many of the preceding challenges
of generating sigmoidal probabilistic activation functions by uti-
lizing a novel p-bit device that leverages intrinsic thermal noise
within low energy barrier nanomagnets to provide a natural build-
ing block for RBMs within a compact and low-energy package. As
listed in Table V, the proposed design can achieve approximately
three orders of magnitude improvement in term of energy con-
sumption compared to the most energy-efficient designs, while
realizing at least 90X device count reduction for considerable area
savings. Note that these calculations do not take into account the
weighted connections, since the main focus of this paper is on the
activation function. While SOT-DWM devices are utilized herein
for the weighted connections, any other memristive devices could
be utilized without loss of generality.

6 CONCLUSION
Herein, we developed a hybrid CMOS/spin-based DBN implemen-
tation using p-bit based activation functions modeled to produce a
probabilistic output that can be modulated by an input current. The
device-level simulations exhibited a sigmoid relation between the
input currents and output probability. The SPICE model of the p-bit
is used to design a weighted array structure to implement RBM. The
circuit simulations showed that the performance of the array can be
improved by enlarging the array size, as well as reducing the resis-
tance of the weighted connections. However, these improvements
are achieved at the cost of increased area and power consumption.
For instance, the lowest power dissipation among the examined
designs belongs to an 8 × 8 array with the maximum resistance of
1MΩ for weighted connections. However, this structure can only
provide the output probabilities ranging from 0.175 to 0.77, which
is the narrowest range among the examined designs resulting in a
DBN implementation with lowest accuracy.

Next, we simulated a DBN for digit recognition application in
MATLAB using the device and circuit-level behavioral models.
Trade-offs include the relations between the recognition accuracy
of the DBN and the number of training samples, which are compa-
rable to conventional hardware implementations. The recognition
error rate decreased substantially for the first thousand training
samples, regardless of the size of the array, while benefits continue
through several thousand inputs. However, at least two hidden
layers are desirable to achieve suitable error rates. Finally, we have
provided a comparison between previous hardware-based RBM im-
plementations and our design with an emphasis on the probabilistic
activation function within the neuron structure. The results exhib-
ited that the p-bit based activation function can achieve roughly
three orders of magnitude energy improvement, while realizing at
least 90X reduction in terms of device count, compared to the pre-
vious most energy-efficient designs. The research directions herein
enable several intriguing possibilities for future work, including: (1)
implementing the entire network in SPICE to obtain more robust
results; 2) investigating the effect of process variation and noise
on the accuracy of proposed architecture; 3) studying alternative
devices with lower susceptibility to thermal noise; and 4) studying
the scalability challenges of DBNs using larger datasets, e.g. CIFAR.
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