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1 Introduction

Languages make different distinctions regarding what constitutes a meaningful
difference in sound, yet children quickly learn to distinguish between these sounds
in their native language. A major question in the field of language acquisition
regards what strategies children use to acquire knowledge of their language from
linguistic input. Empirical research shows that children are able to track some
statistical properties of their input (Saffran et al., 1996; Maye et al., 2002). One way
to convert these statistical observations into linguistic knowledge is by tracking
distributional regularities of the input, such as regularities in the frequency or
duration of sounds in the child’s environment, a process known as distributional
learning. This distribution of sounds is hypothesized to be important for phonetic
category learning (Maye et al., 2008).

Computational models help us explore how well linguistic structures can be
learned from input given a set of statistical tools. Perhaps we wish to test how
completely the phonetic categories of some language can be learned given informa-
tion about the distribution of sounds in natural speech. Provided with this input, a
model could be programmed with a learning algorithm taking advantage of these
data, and its output (the categories recovered by the model) could be compared to
the categories existing in the language.

In practice, however, the input for such models is often simplified compared
to the input available to children: acoustic vowel information is sampled from
unrealistically parametric distributions whose parameters are taken from carefully
enunciated words produced in laboratory settings, and lexical information providing
context for these sounds is transcribed phonemically, rather than phonetically.
These simplifications occur both due to technical limitations of the models and
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because realistic annotated data are expensive. Because the purpose of modeling
language acquisition is to test how linguistic structures can be learned from input,
it is important to ensure that these simplifications are not impacting model results
in unexpected ways.

In this paper, we explore the effect of input simplification on models of pho-
netic category learning, specifically on the learning of vowel categories. We run
a lexical-distributional phonetic category learning model on more realistic input
data, containing vowel variability caused by reduction or changes in duration. We
examine two different input languages, English and Japanese, to see whether model
performance is affected similarly by input simplifications in different languages.
We show that as variation in the input increases, model performance — unlike the
performance of a child — decreases. We also show that although model perfor-
mance decreases on both English and Japanese, it does so in different ways. By
characterizing the ways in which realistic input changes the phonetic category
learning problem, our goal is to aid in extending computational models of phonetic
category acquisition to use natural acoustic data rather than artificially constructed
regular data, while still maintaining linguistically relevant output.

2 Phonetic category acquisition
2.1 Phonetic variability

Infants are initially able to discriminate among a universal set of acoustically
perceptible sounds, even if a particular contrast is not functional in their native
language. However, as children become more experienced with their language,
their discrimination of non-native phonetic contrasts declines. This occurs in their
first year, specifically around 10-12 months for consonants (Werker and Tees, 1984)
and beginning around 6 months for vowels (Polka and Werker, 1994). During
this learning process, children must deal with a large amount of variation. Two
speakers saying the same word in the same language may have differences in
pronunciation based on dialect, age, or gender. Even the sounds produced by a
single individual are affected by speaking rate, pitch, co-articulation with nearby
segments, and prosodic effects such as vowel lengthening and reduction. Empirical
results have shown that children are able to generalize at a relatively early age
across affect (Singh et al., 2004), amplitude and pitch (Singh et al., 2008; Quam
and Swingley, 2010), accents with vowel shift (White and Aslin, 2011), gender
(Houston and Jusczyk, 2000), and speaking rate (Weismer and Hesketh, 1996).
Given the apparent ‘inconsistency’ of the child’s input, learning the phonetic
categories of their language quickly seems like a difficult prospect. However, there
is mounting evidence that variability actually facilitates language learning. This
has been shown in grammatical domains (Gémez, 2002), word recognition (Rost
and McMurray, 2009; Singh, 2008; Quam et al., 2017), and phonetic categorization



(Scarborough, 2003). This variability causes learners to shift their focus to sources
of more stable structure, better defining their phonetic categories.

Models of phonetic category learning have only rarely been tested on input
data with the high level of variability characteristic of children’s input, and our
goal is to characterize how increases in variability impact performance. Empirical
evidence shows that the types of variability encountered by children, for example
speaking rate (Fourakis, 1991; Moon and Lindblom, 1994; Lindblom, 1983; Stack
et al., 2006) and gender and dialect (Byrd, 1994), affect vowel acoustics. This
work will focus primarily on two types of acoustic variability due to prosody. The
first, vowel reduction, is a change in the acoustic quality of the vowel — generally
a weakening and centralization within vowel space — caused by the vowel being
unstressed, short in duration, quickly articulated, etc. The second, phrase-final
lengthening, causes lengthening of vowels around the boundary of a phrase. English
and Japanese, the languages used in our simulations, are interesting with respect
to these prosodic effects. English has extensive vowel reduction in conversational
speech (Johnson, 2004) but, although phrase-final lengthening occurs, we might not
expect it to strongly affect category learning of English vowels as vowel duration is
not phonemic in English. In contrast, Japanese does have phonemic vowel duration,
indicating that phrase-final lengthening could affect categorization of long versus
short vowels; however, it is a mora- rather than stress-timed language and therefore
less likely to have substantial vowel reduction (Grabe and Low, 2002).

2.2 Models of phonetic learning

A leading hypothesis in phonetic category acquisition is distributional learning,
the idea that learners attend to distributions of sounds in their input as a cue to
category membership (Maye et al., 2002). Several computational models have
implemented distributional learning algorithms and shown their effectiveness at
learning phonetic categories from corpus data. An early model gives evidence of
the learnability of distributional information by using Expectation Maximization of
a mixture of Gaussians to show that cardinal vowels /i/, /a/, and /u/ can be learned
when the system is given a target number of vowel categories (De Boer and Kuhl,
2003). Later models extended this to discovering categories without knowing the
number of vowels in advance and without having access to all the data at once,
simultaneously estimating the number and parameters of vowel categories. These
models extend the mixture of Gaussians algorithm to include competition, allowing
the model to account for developmental changes in over-generalization (Vallabha
et al., 2007; McMurray et al., 2009). Vallabha et al. (2007) also extend their model
to look at both English and Japanese, as we do here. Bion et al. (2013) show that
when using natural adult- and child-directed Japanese speech, distributions of short
and long vowel categories are overlapping and unlikely to be captured well by a



purely distributional model.

The data used in these studies are often from laboratory elicitation settings
where participants are recorded producing stressed, clearly enunciated words that
are often single-syllable and/or consist of a particular consonant frame. Phonetic
categories are assumed to approximate Gaussian (normal) distributions and the
data from these laboratory productions are used to parametrize these distributions,
giving each vowel a mean and variance characteristic of clear laboratory speech. To
produce sufficient data for the model to analyze, additional data points are sampled
from these distributions. This results in input which is artificially Gaussian in
nature (a criticism also made by Dillon et al. (2013), who use a non-parametric
resampling method instead) and, due to how the original laboratory vowels were
produced, does not take vowel reduction or phrasal lengthening effects into account.
In cases where sounds are elicited in a consistent consonant frame, it also produces
data with no variation due to co-articulation.

Purely distributional models of category learning are only concerned with
the categorization of individual sounds; they do not assume any more complex
hierarchical structure of language. However, such models struggle to identify
categories when faced with overlapping distributions of sound. Feldman et al.
(2013) showed that results on overlapping data can be improved by taking into
account a structure wherein the child’s word learning influences their learning of
distinct sounds and vice versa. For models using such lexical information, this
generally comes from a phonemically transcribed context, in which each token of
a word is transcribed the same way. However, for naturally produced acoustic data
we would expect to see vowel sounds changing based on their position in a phrase,
how carefully they were enunciated, and what segments they were produced near
(Harmegnies and Poch-Olivé, 1992; Picheny et al., 1986; Ferguson, 2004). Thus,
although these models show great success in categorizing phonetic input with low
variability, it is unclear whether their results would be similarly successful on input
including the effects of variability present in conversational speech.

Speech recognizers using Hidden Markov Model representations of speech tend
to use more realistic data but to have fewer linguistic constraints on the type and
number of categories that are produced (Lee and Glass, 2012; Varadarajan et al.,
2008; Jansen and Church, 2011). These models tend to over-produce categories
due to co-articulation, as they have no way to explain the sound change in the
vowel which occurs as a consequence of its phonetic context. In this work, we
are specifically interested in how children arrive at a more linguistically relevant
output. We would like a model to produce generalizable categories, rather than
assuming a new vowel category for every possible co-articulated pair.

For our simulations, we adopt the model from Feldman et al. (2013). This
model has two main advantages. First, it performs well on data with low vari-
ability: for overlapping distributions of vowel formants, Feldman et al. (2013)



Table 1: The three types of input corpora differed in their degree of simplification,
yielding different patterns of variability at the lexical and acoustic levels.

|| Transcription Vowel Acoustics
Simulation 1 phonemic re-sampled from lab productions
Simulation 2 phonetic re-sampled from lab productions
Simulation 3 phonetic measured from the corpus

showed that including lexical information to disambiguate between overlapping
sounds improves performance over a purely distributional model, raising their
phonetic categorization results from an F-Score of 0.45 (out of 1.0) for a purely
distributional model, up to a F-Score of 0.76 for a model including both lexical
and distributional information. Second, the inclusion of additional structure for
the input is developmentally motivated, as children begin segmenting speech and
learning forms and meaning for simple words around the same time that they are
acquiring phonetic categories (Jusczyk and Aslin, 1995; Swingley, 2009). These
attributes make it a good candidate for testing the effects of realistic input and for
testing model results on multiple languages.

3 Simulations

To test how variation in language affects model performance, we ran a series of
simulations with increasing levels of lexical and acoustic variability (Table 1). The
first simulation replicates previous work by using input with simplification of both
lexical and acoustic information, testing whether there are language specific effects
of this simplification by extending a model previously only run on English to
Japanese. The second simulation replaces the phonemic lexical transcription with
a phonetic one, increasing lexical variability while maintaining artificial acoustics.
In this simulation, words may be pronounced differently at different times but
the vowel acoustics themselves will always be normally distributed. Finally the
last simulation is most faithful to input found in the real world; we continue to
use phonetic transcriptions of lexical items while also using acoustic information
directly from the audio recordings.

3.1 Model

The model from Feldman et al. (2013) takes as input a set of acoustic values
and lexical contexts. For our simulations, these acoustic values consist of first
and second formant pairs for English vowels and formant pairs plus duration for
Japanese vowels. Our lexical contexts consist of categorical consonant frames
from either phonetic or phonemic transcriptions of conversational English and
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Figure 1: Variability in formant values that are resampled from lab productions (left)
and measured from corpus recordings (right).

Japanese speech. Parameter values for the model are the same as in Feldman et al.
(2013), with lexical and phonetic concentration parameters set to 10 (see their
paper also for details of the mathematical model). The model produces vowel
categories, defined as Gaussian distributions of sounds, as well as lexical categories
which consist of sequences of phones with vowel values selected from the model-
determined vowel categories. The model itself does not give labels to the categories
it produces, but for example, one lexical category might consist of all word tokens
of the form /k Cluster]l n/, where Cluster 1 consists of /&/ vowels; this lexical
category would represent what we would think of as the word can. Although the
model is allowed to propose a potentially infinite number of categories, making it
language independent, it has a bias toward fewer categories, resulting in a more
realistic output. The lexical-distributional format of the model means that there is
an organization of sounds into words rather than each sound standing independently.
Not only are learners optimizing their set of sound categories to best describe the
acoustic data they receive, but they are doing so in light of the lexical categories
they think generated the words of the corpus. This gives the output of the learning
process a higher-level structure.

3.2 Input data

Following previous work, vowel formants were measured in Hertz. Vowel
duration was measured in log(ms), and log vowel durations were then scaled by 100
so that their magnitude was comparable to that of formant values. First and second
formant values in Simulations 1 and 2 were sampled from a Gaussian distribution
generated by vowels produced and recorded in laboratory settings (see Figure 1
for a comparison of acoustic values between these simulations and Simulation 3).
Lab production vowels from English were sampled from categories based on the
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Figure 2: Short and long Japanese vowels as resampled from adult-directed produc-
tions (left) and measured from child-directed recordings (right).

recordings of Hillenbrand et al. (1995), which consists of men and women from the
Upper Midwest reading a series of words consisting of a vowel inserted into a h_d
frame. Formants for each of these vowels were measured once, at the maximally
steady point of the vowel, resulting in a clean set of acoustic values, containing
minimal co-articulation and reduction. Lab production vowels for Japanese were
sampled from categories based on Mokhtari and Tanaka (2000), which includes
vowels spoken by men from the ETL-WD-I and II balanced word dataset. Words
from the dataset were chosen if they contained vowels with the longest steady-state
nuclei and least co-articulatory influences. Adult productions from the R-JMICC
corpus (Mazuka et al., 2006) were used to estimate the Gaussians for Japanese
durations (Figure 2).

The phonemic and phonetic lexical contexts for English, as well as the natural
acoustic data for Simulation 3, were taken from the Buckeye Speech Corpus
(Pitt et al., 2007), a hand-aligned corpus of transcribed interviews with men and
women from the Columbus, Ohio area. Data consist of transcripts that have been
hand-aligned to corresponding audio files so particular acoustic values (including
the first and second formant) of each vowel can be identified within their actual
context. F1 and F2 values were extracted automatically using Praat (Boersma,
2001) and averaged over the middle third of the vowel to avoid formant artifacts
and accidental sampling from neighboring segments. Only monophthongs were
used.

The phonemic and phonetic lexical contexts for Japanese, as well as the natural
acoustic data for Simulation 3, were taken from the R-JMICC corpus (Mazuka
et al., 2006). This corpus consists of recordings of 22 mothers speaking to their
children, ages 18-24 months, and to an adult experimenter. The B and T sections of
the corpus were used as child-directed speech and the A section of the corpus was
used as adult-directed speech. Words that included singing, laughing, coughing,
onomatopoeias, and fragments the transcriber could not understand were excluded.
In addition, words were excluded if they included more than one vowel for which
the annotators could not judge onset or offset time; this automatically excluded
any word that included a sequence of two vowels. Formants were extracted
automatically using Praat (Boersma, 2001). To identify tracking errors, the means



Table 2: Pairwise F-scores for models trained on adult-directed (AD) and child-
directed (CD) speech.

Phonetic F-score Lexical F-score
English Japanese English Japanese
AD [ CD AD [ CD AD [ CD AD | CD
Simulation 1 0.78 | 0.80 | 0.96 | 0.98 096 | 094 | 098 | 0.98
Simulation 2 0.46 - 0.95 | 0.95 0.63 - 0.97 | 0.99
Simulation 3 0.13 - 0.24 | 0.22 0.41 - 0.59 | 0.61

and variances of the categories in child-directed speech and adult-directed speech
were computed, and word tokens were excluded if either of the first two formant
values (as measured by Praat) were more than two standard deviations away from
the mean of the category they belonged to.

We ran simulations on both adult- and child-directed speech in Japanese. In
English, we ran simulations on adult-directed speech, but did not have access to
a phonetically annotated corpus of child-directed speech. English child-directed
results are given for Simulation 1, with phonemic transcription of words taken
from the CHILDES parental frequency count (Li and Shirai, 2000; MacWhinney,
2000); these are comparable with previous results on similar input reported by
Feldman et al. (2013). The fact that Japanese CDS results are similar to Japanese
ADS results for all three simulations might lead us to predict similar behavior for
English ADS and CDS, but this is still an open empirical question.

3.3 Simulation 1

Our first simulation uses a simplified lexicon and acoustic values to replicate
previous work and extend this work to Japanese. For example, in this corpus,
every time the word can is present, it is represented as /k & n/, with the /a&/
replaced by first and second formant values sampled from the Gaussian estimated
by all /&/ laboratory productions. Input data for both languages consisted of
5,000 word frame tokens from a phonemic transcript with consonants represented
categorically and vowels replaced with data points sampled from distributions over
lab productions. For English, these 5,000 words are made up of 1099 word types,
while for Japanese, they are made up of 751 types. Both languages perform very
well on this simplified input corpora (Table 2).

We see similar results for the English data as in previous work; a phonetic
category recovery with a F-Score of 0.78 compared to the 0.76 from Feldman
et al. (2013). When we extend the model to Japanese, it performs even better
(F-Score of 0.98). This high performance in Japanese may be partially due to the
quality of distributional information in the model’s input. A comparison of the
re-sampled vowels for English and Japanese (Figure 1) shows that even for the
Gaussian distributions over laboratory produced vowels, the Japanese vowels show
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Figure 3: Vowel confusion matrices. Rows correspond to true categories; columns
correspond to model categories. The color of a square indicates the proportion of
vowel tokens from the true category that are assigned to a model category, with darker
squares corresponding to a higher proportion of tokens.

greater separability in F1 and F2.

Using confusion matrices (Figure 3), we can see which categories of sounds
the model is most likely to confuse. The model correctly categorizes most of the
sounds — that is, tokens belonging to the same vowel category are categorized as
being the same sound by the model. We can see, however, that in Japanese the
model has a slight tendency to create categories containing both short and long
sounds (becoming more pronounced in Simulation 3, below) whereas in English
the model has a tendency to create some categories containing tokens of many
vowel types (a ‘catch all’ category).

These results go beyond previous findings to show that the high performance
of the model extends to another language, Japanese, and that learning performance
on adult- and child-directed corpora is comparable in this model. They provide a
baseline for Simulations 2 and 3, which investigate the effect of increased variability
on learning performance.

3.4 Simulation 2

Simulation 2 uses more realistic lexical information in the form of phonetic
transcripts for lexical context, but retains the simplified acoustic information from
Simulation 1. In this corpus, the word can may vary each time it is present
depending on how it was produced in the original audio. For example, it may
be represented as /k 1 n/, /k € n/, or /k o n/ as well as /k & n/. In each of these
cases, the vowel is replaced by first and second formant values sampled from the
Gaussian estimated by laboratory productions of the corresponding vowel. The
most notable contrast between English phonemic and phonetic lexical transcripts
involved phonetic reduction. Frequent words in English are often reduced in natural
speech, resulting in words with a single phonemic transcription for Simulation
1 having numerous phonetic variations in Simulation 2. This vowel reduction



generated numerous ‘minimal pairs’ in English which appeared to contain different
vowels but were in reality reduced versions of a single word type. This type of
prosodic variation affected English lexical information considerably more than
Japanese. For English, the phonetic transcription of the same 5,000 words that
were used in the Simulation 1 contained 1813 types, in comparison to the 1099
types from the phonemic transcription. In contrast, for Japanese, the phonetic
transcription of the 5,000 words only increased to 791 word types (from 751 in the
phonemic transcription). This is mirrored in the results, as we see a sharp drop in
performance for English once the lexicon is represented more realistically, but no
corresponding drop in performance for Japanese (Table 2).

These results indicate that variation in the input does affect model performance,
but that certain types of simplification — such as representing lexical items phonem-
ically rather than phonetically — may hide more variation in some languages than in
others. For languages with a large amount of phonetic reduction, such as English, a
single word type can surface with many different pronunciations depending on how
fast or carefully it is produced. These different pronunciations cause the model to
create more categories containing multiple vowel types as it attempts to categorize
all these tokens as types of the same word (Figure 3), lowering model performance.
In the example given above, if the multiple pronunciations of can are correctly
identified as tokens of a single lexical item, this encourages the model to create a
single vowel category varying over [1/e/o/2].

3.5 Simulation 3

The final simulation was run on the most realistic input, with lexical items
represented by phonetic transcription and vowels replaced by acoustic values taken
from the spoken corpus. For example, every presentation of the word can was
represented as /k (F1,F2) n/ with formant values taken directly from the audio
recording of that particular word instance. The increased variation present in this
input caused a large drop in performance for both English and Japanese (Table 2).
From the confusion matrix for Japanese, we see that additional categories were
created for the short vowels (evidenced by the faint diagonal line in the upper right
corner of the matrix; Figure 3). This appears to be due to prosodic lengthening
affecting vowel durations, in some cases encouraging the model to create extra
durational categories for vowels in words frequently found immediately preceding
prosodic boundaries, which are known to lower speaking rate and thus to increase
vowel duration (Bion et al., 2013). Although these confusions are present in
Japanese but not English, they do not account for the majority of confusions in
Japanese and, when normalized out (by normalizing speaking rate for each word in
the corpus), performance in Japanese does not improve.

These results show that model performance does not only decrease when run
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on more realistic acoustic input; it plummets. Although there appear to be some
language specific effects on the increased variability due to lengthening in Japanese,
they do not account for much of the confusion of model vowel categories. The
drop in performance for both languages here is primarily due to the non-normal
and highly overlapping distribution of actual acoustic values seen in Figure 1.

3.6 Summary of Results

We find a decline in model performance on both English and Japanese as the
input corpora become more faithful to the original acoustics and thus contain more
variability. Although increasing vowel variability impacts phonetic learning in both
languages, the consequences of that impact differ. Both languages perform very
well when phonemic transcriptions are used for lexical items and acoustic values
are sampled from lab productions for vowels, but English suffers a sharp drop in
performance as soon as the lexicon is represented phonetically, while scores stay
high for Japanese until the sampled lab vowels are replaced with acoustics taken
directly from the spoken corpus.

4 Discussion

In this paper, we investigated the impact of simplified input to computational
models of phonetic acquisition. Three simulations were run on corpora of decreas-
ing simplification. As input to the model becomes more natural and contains more
variability, model performance declines considerably. Model performance is much
better on certain types of input, specifically input where words are represented
as having a consistent pronunciation and vowel values make up clear, relatively
non-overlapping, normally distributed categories. Unfortunately, this is not the
same type of input that children receive. The model’s poor performance on re-
alistic data indicates that it may be missing cues utilized by children in learning
vowel categories, particularly given the existing experimental results showing that
children learn better from variable data.

The magnitude of the decline in model performance indicates a serious mis-
match between previous models and real speech data. If previous modeling results
were taken as evidence that distributional and lexical information can help children
acquire phonetic category systems from data, the present results should serve to
qualify that claim: distributional and lexical information can help children acquire
phonetic categories from realistic data only when equipped with some way to
compensate for other sources of variation. This steep decline in performance is not
likely to be a failing of the particular model we tested; rather, we would expect the
impact of acoustic variation to extend to more traditional distributional models as
well, which would still have the added difficulty in disambiguating overlapping
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categories. Given that performance seems to decline due to irregularities or vari-
ability in the data received by the model, there seem to be two possible solutions:
either the selection of a low-variability subset of tokens which the model uses to
learn vowel categories, ignoring messier examples of vowel data (Adriaans and
Swingley, 2012) or a simultaneous normalization process by which the model uses
some information about prosody, context, etc. to normalize variable tokens so they
can be utilized for learning (Dillon et al., 2013).

These results show that simplifying input to computational models of phonetic
category learning can drastically impact model performance. At least part of this
difference arises from the lack of prosodic variability, such as vowel reduction and
phrase-final lengthening, in simplified input. In future work it will be important
to consider how prosody is taken into account during phonetic learning. More
generally, our results underscore the importance of ecologically valid datasets. For
computational modeling to be useful in exploring child language acquisition, we
must account for the variation in the input children actually receive.
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