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ABSTRACT

When designing a software system, architects make a series of
design decisions that directly impact the system’s quality. Recent
studies have shown that the number of available design alterna-
tives grows rapidly with system size, creating an enormous space
of intertwined design concerns. This paper presents eQual, a novel
model-driven technique for simulation-based assessment of archi-
tectural designs that helps architects understand and explore the
effects of their decisions. We demonstrate that eQual effectively
explores massive spaces of design alternatives and significantly out-
performs state-of-the-art approaches, without being cumbersome
for architects to use.

1 INTRODUCTION

At the outset of a software development project, a set of critical
design decisions that form the system’s architecture needs to be
established. Those decisions may be made anew, reused from pre-
vious systems’ designs, or guided by chosen architectural styles
and patterns or implementation frameworks and libraries. Archi-
tectural design decisions span a wide range of issues, from system
structure, to behavior, interaction, deployment, evolution, and a
variety of non-functional properties [68]. It has been long accepted
that the number of design decisions grows quickly with the com-
plexity of the system. A recent study corroborates this observation
by proposing and empirically evaluating a technique for estimating
that number for existing systems [63]. The difficulty of design-
ing software systems lies not only in the sheer number of design
decisions, but also in the fact that many intertwined factors and
trade-offs must be taken into consideration [12, 13, 56].

Every architectural design decision is made by selecting one of
several possible alternatives for a given variation point in a soft-
ware system. For example, engineers may select between 1 and 5
authentication servers for their system. In this example, the au-
thentication servers comprise the variation point, while choosing
a specific number of servers is the selection of the alternative. An
architecture variant is the set of design decisions whose outcome
is the selection of an alternative for each variation point in a sys-
tem, i.e., a complete architecture for the system. In our example
system, in addition to the authentication server variation point,
an architectural variant would include the selection of concrete
alternatives for many other variation points, such as the number of
replicated customer data stores, the choice of each data store (e.g.,
different candidate implementations of NoSQL databases and the
relevant specific parameters of each), the choice of implementation
framework (e.g., different MVC-based Web frameworks and their
relevant parameters), overarching architectural style(s) and their
design implications (e.g., layered client-server that may yield an
N-tiered architecture vs. event-based that may result in distributed
peers), different candidate data caching and pre-fetching strategies
to reduce interaction latencies, and so on.

Ideally, individual alternatives would be carefully assessed to
make viable design decisions that satisfy a system’s requirements.

However, this is frequently not done in practice [16]. A well publi-
cized recent example is the Healthcare.gov portal (a.k.a. Obamacare)
that was marred with serious technical problems at launch [42, 52,
71]. Several studies have pointed out that the failures causing down-
times of up to 60% were due to flawed architectural and deployment
design decisions [72, 73]. As a result, Obamacare’s development
costs, originally estimated to be ~$100M, surpassed $1.5B [40].

The root-cause of such project failures is actually known: evalu-
ating system design options is an exceedingly difficult and complex
problem. The space of system variants grows exponentially in the
numbers of design decisions and alternatives. Thus, manually com-
paring the variants that are available to architects is beyond human
capabilities for most systems [28]. Prior work has aimed to support
engineers in this decision-making and to help them evaluate and
compare variants. Such comparisons require objective assessments
of each variant [35, 56]. The existing approaches rely on static
or dynamic analysis for assessing software models that represent
the variants. Static analysis techniques (e.g., [7, 27, 47]) tend to
require architects to develop complex mathematical models, which
imposes steep learning curves, significant modeling effort, and lim-
its on the resulting system’s scalability. Additionally, depending
on the mathematical models they rely on (e.g., Markov chains [26],
event calculi [38], or queueing networks [8]) these techniques are
confined to specific kinds of software system models [2].

While they come with shortcomings of their own (e.g., false neg-
atives, longer execution times), dynamic analysis techniques —i.e.,
architectural model simulations [22, 43] — are more capable of cap-
turing the nondeterminism reflective of reality [36] and are more
amenable to constructing models that are tailored to the task at
hand. Despite notable efforts [18, 45, 70, 74], simulations of software
architectural models have not been as widely employed as tradi-
tional static analyses [2], due to at least four reasons. First, creating
simulatable system design models is acknowledged as difficult [22].
Second, running simulations on complex models is time consuming,
mandating that scalability issues be explicitly addressed [55]. Third,
quantitative assessment of variants is a complex computational
problem because of the large number of involved trade-offs [48].
Finally, depending on the size of the simulations, massive datasets
may need to be analyzed and understood to assess system behavior.

To address the shortcomings of existing approaches, we have
developed eQual, a model-driven architecture-based technique that
enables simulation-driven assessment of architectural designs and
design variants. eQual’s goals are three-fold

(1) ease of use,
(2) effectiveness in producing accurate solutions, and
(3) scalability to large models.

eQual enables engineers to explore a potentially massive space of de-
sign decisions while minimizing the burden on the engineers. eQual
does so by asking a small number of relatively simple questions
about the system the engineers are designing and their preferences
for the system. In response, eQual automatically builds the requisite
system models, runs simulations in the background, and delivers
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to the engineers the ranked list of variants that correspond to their
current design choices. The engineers can then adjust their prefer-
ences, tighten or relax the acceptable bounds on system parameters,
or explore other variants, to reach the most appropriate architecture
for the problem at hand.

eQual takes two inputs: (1) a model of the system and (2) answers
to a set of questions. An example question is, “What is the maximum
allowed value for this variation point?” eQual provides interactive
facilities for creating the system model in a domain-specific lan-
guage (DSL), although software architects already frequently create
such models as part of their normal design processes [68]. The
model captures the system’s elements (e.g., components and connec-
tors), their behavioral descriptions, and their overall composition
into the system’s configuration. eQual’s questions (1) bound the
search space of system variants eQual will explore, and (2) identify
the non-functional properties that are of interest, thus improving
eQual’s efficiency and the quality of the results. In the extreme,
we do not assume that architects will be able to answer any of the
questions, so that eQual may have to explore an unbounded search
space. eQual uses the system model and any specified bounds to
generate and simulate system variants, eliminates the least desir-
able variants based on the of-interest properties, and iterates until
it arrives at a set of satisfactory variants.

We evaluate eQual in three ways, corresponding to its three goals
stated above. First, we demonstrate that using eQual is significantly
easier than the state-of-the-art alternative that targets the same
problem, GuideArch [24]. As a representative illustration, an archi-
tect only needed to spend six minutes to interactively answer the 27
questions eQual requires to analyze a recently published model of
Hadoop [9, 10], while GuideArch’s 356 inputs required more than
four hours. Second, we extensively evaluate eQual’s effectiveness.
We show that the quality of the designs eQual produces is higher
than that of GuideArch. We additionally evaluate the quality of de-
signs yielded by eQual against previously published ground-truths
obtained from real-world software systems. We show that eQual rec-
ommends variants that are of comparable quality to the real-world
solutions determined to be optimal, while it significantly outper-
forms the nominal solutions that are most commonly selected by
architects. Third, we demonstrate that eQual scales optimally with
the number of available computational nodes, system events, and
system variants. In our experiments, eQual was able to analyze
tens of thousands of variants and terabytes of simulation-generated
data.

This paper’s primary contributions include:

(1) A method for automatically generating architectural assess-
ment models from simple inputs that architects provide.

(2) Bipartite Relative Time-series Assessment, a technique for
efficient, distributed analysis of simulation-generated data,
solving a previously prohibitively inefficient variant-assessment
problem.

(3) An architecture for seamlessly distributing and parallelizing
simulations to multiple nodes.

(4) An evaluation of each of eQual’s three goals on real-world
systems, comparing to the state-of-the-art alternative, and
demonstrating its ease of use, accuracy of produced solutions,
and scalability.

Anon.

This work makes an added contribution that uses prior research
but has significant practical utility for the problem at hand:

(5) An extensible platform for using general-purpose or pro-
prietary evolutionary algorithms to automate design-space
exploration.

eQual is open-source. We will make it public in an unblinded
version of this paper, along with all evaluation data and scripts.

The rest of our paper is structured as follows. Section 2 intro-
duces an example of Hadoop, a real-world system we use to help
describe evaluate eQual. Section 3 describes our approach and Sec-
tion 4 evaluates it. Section 5 places our research in the context of
related work and Section 6 overviews future research directions
and summarizes our contributions.

2 RUNNING EXAMPLE

We will use a model of Hadoop to describe (Section 3) and evalu-
ate (Section 4) eQual. In this model, a computation is the problem
being solved. A task is an operation that is performed on the input
(e.g., map or reduce in Hadoop). Tasks can be replicated, e.g., for
reliability [9, 10]. A job is one instance of a task. Machines can exe-
cute these jobs. A task scheduler breaks up a computation into tasks,
creates jobs as copies of these tasks, and assigns jobs to machines in
the machine pool. After returning a response to the task scheduler,
each machine rejoins the pool and can be selected for a new task.
Figure 1 depicts a partial system model captured in a DSL (described
in Section 3.1).

Although eQual has been used to analyze Hadoop’s entire design
space, for simplicity of exposition, our description and evaluation
in this paper will focus on Hadoop’s variation points that affect
its key non-functional properties. There are five such variation
points: (1) Computation Size, the number of tasks required to com-
plete a computation; (2) Redundancy Level, the number of machines
that will run identical jobs; (3) Pool Size, the number of available
machines; (4) Machine Reliability, the probability of a machine re-
turning the correct result before a timeout; and (5) Processing Power
of each machine. Figure 2 depicts representative bounds for the
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Figure 1: Hadoop system model in a domain-specific language [9].
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Computation Size 500 2000
Redundancy Level 1 5
Pool Size 10 100
Machine Reliability 0.5 0.9
Processing Power 0.5 2

Figure 2: Hadoop variation points and representative bounds [9, 10].

variation points. This choice of variation-point bounds does not in
any way impact eQual, its analysis, or its comparison to competing
approaches. We have opted for these bounds simply because they
were obtained from a previously published analysis of a volunteer
computing platform that shares a number of characteristics with
Hadoop [9, 10].

3 THE eQual APPROACH

eQual helps engineers explore the design space for their system via
four steps: (1) modeling, (2) preparation, (3) selection, and (4) assess-
ment. Steps (1) and (2) are interactive and generate eQual’s inputs:
a system’s design model and the answers to a set of design-related
questions. eQual uses steps (3) and (4) to produce a list of ranked
system variants. Steps (1) and (3) adapt existing solutions, while
(2) and (4) are novel contributions of eQual. Steps (3) and (4) take
place iteratively: the outputs of assessment feed back into selection,
helping eQual to choose better alternatives, thereby generating
improved system variants.

Critically, eQual’s required inputs are types of artifacts the ar-
chitects should already have created or have the knowledge to
create reasonably easily. Modern software development typically
involves modeling of the system’s architecture (eQual’s step 1),
although sometimes informally or even implicitly [68]. Likewise,
the answers to questions eQual asks (eQual’s step 2), which result
in specifications of the desired behavioral properties in a system,
are concerns the architects have to consider regardless of whether
they use eQual.

eQual's overall architecture, with the components performing
the four steps clearly denoted, is depicted in Figure 3. The remainder
of this section details each of eQual’s four steps.

3.1 Modeling

eQual’s first input is a system’s architectural model that is amenable
to dynamic analysis. Several existing approaches enable creating
such models, including ArchStudio [17], XTEAM [22], PCM [46],
and DomainPro [62]. Each of these as well as other similar ap-
proaches would suit our purpose. For eQual’s implementation we
selected DomainPro [20, 62] because of its simple interface, dy-
namic analysis capabilities that use event-driven simulation, and
its model-driven architecture (MDA) approach [51] that allows ar-
chitects to define variation points in their models and try different
alternatives (although completely manually).

As is common with MDA approaches, a system is designed in
DomainPro in two phases. First, an engineer must specify or reuse a
previously defined metamodel for the system. Second, the engineer
designs the system by specializing and instantiating elements of this
metamodel. A metamodel is a collection of design building blocks

(e.g., components, interfaces, ports, services, hosts, resources, etc.)
that are relevant to modeling systems of certain kinds or in certain
domains. For example, Android-based systems are most naturally
modeled using concepts such as activities, fragments, and content
providers, while certain Web-based systems are best modeled using
services.

DomainPro provides a built-in, generic metamodel for component-
based architectures [49]. We employ this metamodel in eQual’s
design, implementation, and evaluation. While more targeted meta-
models for different classes of systems (e.g., highly distributed,
Web-based, mobile, [oT, etc.) are likely to increase the effectiveness
of eQual’s subsequent steps, this would result in additional burden
on architects and would render more difficult direct comparison to
techniques, such as GuideArch, that are not MDA-based.

The Hadoop model in Figure 1 uses DomainPro’s generic meta-
model by specializing and instantiating the metamodel elements [62].
Figure 1 represents Hadoop’s model using the resulting visual DSL:
a Computation is a DomainPro Operation depicted as a circle; each
activity in the Task Scheduler Component is a DomainPro Task de-
picted as an oval; Machine Pool is a DomainPro Resource depicted
as the shape containing the filled-in circles; data-flows are Domain-
Pro Links represented with wide arrows; and so on. Figure 1 omits
the DomainPro Parameters for each modeling element for clarity;
Figure 2 lists the key parameters we reference in this paper.

3.2 Preparation

eQual’s second input consists of answers to a set of questions
that fall into two categories: the system’s (1) variation points and
(2) properties of interest (e.g., scalability and dependability). eQual
formulates these questions in terms of the system’s design, pre-
senting specific choices that are intended to be straightforward for
architects.

A. Questions Regarding Variation Points
For each variation point V, eQual asks architects three questions:

(1) What is V’s lower bound?
(2) What is V’s upper bound?
(3) What is the desired function for exploring V'?

The lower and upper bounds capture the acceptable range of al-
ternatives for each variation point. Exploration functions enable
architects to customize how eQual samples the specified range in
the process of design exploration (as detailed in Sections 3.3 and 3.4).
For example, in our model of Hadoop, the Pool Size variation point
has the lower bound of 10 and upper bound of 100 (recall Figure 2).
The current prototype of eQual provides 12 exploration functions:
Uniform, Poisson, Gamma, Exponential, etc. eQual also allows ar-
chitects to provide lists of concrete values instead of ranges.

As shown by a prior analysis [63], well over 100 design deci-
sions have been made during the development of Hadoop. Each
design decision involved selecting an alternative for a variation
point. Hadoop’s architects had considered as few as 2 and as many
as 8 alternatives per variation point. Even the 68 minor Hadoop
revisions analyzed in [63] introduced up to 4 new design decisions
each. Exploring the effects of just those newly introduced design de-
cisions could be non-trivial. While manually exploring the resulting
system variants by considering 1-2 alternatives per decision might
be feasible, the resulting decision space grows exponentially with
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Figure 3: eQual’s architecture. The Design Environment and Simulation Engine components are provided by DomainPro [62].

the number of alternatives and quickly eclipses human abilities. For
example, a Hadoop version that involves merely 4 design decisions
and 5 alternatives per decision will have more than 500 variants.
By contrast, the burden eQual places on architects is to answer
4 X 3 = 12 questions about the involved variation points.

We do not expect architects to be able to answer the above
questions right away. For example, an architect may not be sure
what the lower bound for the size of the node pool or the upper
bound for the redundancy level should be. Instead, eQual allows
several possibilities: (1) Architects may know the exact answer to
a question, e.g., based on the requirements or domain knowledge.
(2) Architects may be able to provide a partial answer, such as a
property’s lower bound. (3) Architects may be unable to answer
the questions, leaving the range of alternatives unbounded. This
allows architects to explore properties for which they have different
degrees of knowledge.

B. Questions Regarding Non-Functional Properties
eQual’s second set of questions deals with the system’s desired non-
functional properties. These properties are the basis for assessing
design alternatives (as discussed in Section 3.4). The non-functional
properties are determined from the system requirements and the
characteristics of the domain. For example, in Hadoop, prior work
identified four properties [9, 10]: (1) Reliability (ratio of tasks that
have to be restarted to all tasks), (2) Machine Utilization, (3) Execu-
tion Time, and (4) Cost (the total number of executed jobs). Each
property has to be tied to an aspect of the output of the system’s
dynamic analysis. In DomainPro and other approaches that use
discrete-event simulation for dynamic analysis of system models
(e.g., IBM’s Rational Rhapsody [33]), the state of a system is cap-
tured at the times of event occurrences. Hence, the output is a set
of time-series objects regarding different aspects of the simulated
system.

For each non-functional property P, eQual asks three questions:

(1) What time-series object is of interest?
(2) Is P directly or inversely related to overall system quality?
(3) What is P’s importance coefficient?

For example, in the case of Hadoop’s Machine Utilization prop-
erty, the relevant time-series object is the one capturing the idle

capacity of the machine pool in the Hadoop model (recall Figure 1);
the direction of the relationship is inverse (lower idle capacity
means higher utilization); and the importance coefficient may be
set to 3 (an ordinal value that would treat Machine Utilization as
more important than, e.g., Cost whose coefficient is 1, and less
important than, e.g., Reliability whose coefficient is 5). Thus, for
the above-discussed example of a newly introduced Hadoop minor
version with 4 variation points, given Hadoop’s 4 properties of
interest, an architect using eQual would have to answer a total of
24 questions: 12 questions for the variation points, and 12 for the
properties.

eQual’s objective is to elaborate the information architects al-
ready must take into account, without further burdening them. In
current practice, architects will often ignore, accidentally omit, indi-
rectly consider, or incorrectly record information captured by these
questions. The many well-known software project failures provide
ample evidence of this [68]. By consolidating the questions into one
place and a standard format, eQual aims to convert this frequently
haphazard process into a methodical design. As the architects ex-
plore the design alternatives and gain a better understanding of the
system, they will be able to go back and add, remove, or change
their answers.

3.3 Selection

The system’s design model (Section 3.1) and the answers pertaining
to the system’s variation points and properties (Section 3.2) are
the inputs to the selection step, whose objective is to explore the
space of design variants intelligently and to make it tractable. For
example, in Hadoop, this can help the engineer explore the effects of
non-trivial decisions, such as: What yields better system reliability
at an acceptable cost, a greater number of less-reliable machines or
fewer more-reliable machines? How will this choice affect system
performance?

Selection begins by generating an initial set of variants, i.e., by
making an initial selection of alternatives for the system variation
points using the information provided by the architects during
preparation (Section 3.2). We call this initial set seed variants and
process eQual uses to pick the seed (and later) variants the selection
strategy. The seed variants feed into assessment (Section 3.4), where
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eQual comparatively analyzes the variants. Assessment feeds its
ranking of the variants back to selection (recall Figure 3), which in
turn uses this information to generate an improved set of variants
during the next iteration.

The key factors that determine the effectiveness of the selection
process are the manners in which (1) the seed variants are generated
and (2) the information supplied by the assessment step is used to
generate subsequent variants. In principle, eQual allows any such
selection strategy. The objective behind allowing different strategies
is to allow an architect to control the selection step’s number of
iterations and generated variants to fit her needs, specific context,
and available computational resources.

In our prototype implementation, we have explored two selection
strategies based on the genetic evolutionary-algorithm paradigm:
random seeding and edge-case seeding. In random seeding, we
choose the seed variants completely randomly. In edge-case seeding,
we aim to generate as many variants as possible containing either
side of the boundary conditions that have been provided to eQual.
For example, in Hadoop one variant would be generated by selecting
all lower-bound values from Figure 2 (500, 1, 10, 0.5, 0.5), another
by selecting all upper-bound values (2000, 5, 100, 0.9, 2), a third
by selecting upper-bound values for the top three variation points
and lower-bound values for the remaining two variation points
(2000, 5, 100, 0.5, 0.5), and so on. Note that edge-case seeding is not
possible in cases where options are nominal and do not have binary
or numerical values assigned to them.

Both strategies are able to quickly prune the space of variants and
arrive at good candidate designs. However, our empirical evaluation
(discussed in Section 4) indicates that the edge-case heuristic is
more efficient and arrives at better solutions. We aim to preserve
Pareto optimal [11] solutions at each step since this provides an
intuitive way to explore the extreme effects of decisions, giving
architects insight into the different system aspects and their inter-
relationships.

3.4 Assessment

To assess a variant’s quality, eQual dynamically analyzes it via
simulation. We have opted for simulation-based analysis because
simulations are representative of a system’s real behavior due to
their inherent nondeterminism [36]. eQual specifically relies on
discrete-event simulations, generating outputs in the form of time-
series objects. Comparing different variants thus requires an analy-
sis of their simulation-generated time-series. Although there are
dozens of similarity metrics, in most domains (e.g., robotics, speech
recognition, software engineering) Dynamic Time Warping (DTW)

Time Time

Figure 4: Reliability time-series of two Hadoop variants. The left
variant uses machines with 90% reliability and no redundancy; the
right variant uses machines with 50% reliability and redundancy fac-
tor of 2.

has been shown to perform better than the alternatives [19]. We
thus use DTW.

For each design variant, eQual generates a single time-series
object for each non-functional property. For Hadoop, that means
four time-series per variant, corresponding to the system’s (1) Re-
liability, (2) Execution Time, (3) Machine Utilization, and (4) Cost.
Each data point in a time-series corresponds to the computed value
for the given property at the given time.

Depending on the direction of the relationship of a property
with the overall system quality, we aim to find the variant that has
yielded the time-series with the highest (direct relationship, e.g.,
for Reliability) or lowest (inverse relationship, e.g., for Cost) values
for that property. To this end, we need to compare each time-series
with the optimum time-series. The optimum time-series for a given
non-functional property is a constant time-series each of whose
data points is equal to the highest (or lowest) value of the property
achieved across all simulations. This comparison requires having
access to all of the simulation-generated data in one place, and
computing the global optimum and distances from it. In turn, this
may entail transferring hundreds of megabytes of data per variant,
and having to redo all of the calculations in case a new variant
is added that changes the optimum time-series. Such a solution
would cause prohibitive performance and scalability problems in
scenarios with multiple iterations involving thousands of variants.

To address this problem, we devised the Bipartite Relative Time-
series Assessment technique (BRTA). BRTA enables distribution
of the time-series analysis and eliminates the need to transfer all
simulation-generated data to a central node. Instead, as indicated in
Figure 3, multiple nodes are tasked with assessing different subsets
of variants via simulation; a node may be responsible for as few as
one variant. Each node behaves in the manner described above: it
performs a discrete-event simulation of the design variants with
which it is tasked, computes an optimum time-series, and uses
DTW to compare the individual time-series with the optimum.
Note that the optimum time-series is now a local optimum since the
other nodes will perform the same tasks on their design variants.
In addition, for each node, BRTA calculates the range (minimum-
to-maximum) for the time-series computed locally, as well as the
normalized distance (distance divided by the number of points
in the time-series). For example, Figure 4 shows the time-series
captured by eQual for the Reliability of two of Hadoop’s variants.
The left variant’s normalized distance from its local maximum is
0.04, and the right variant’s 0.35.

Instead of returning all simulation-generated data to the assess-
ment node (recall Figure 3), BRTA only sends a summary containing
the above measurements. The global assessment algorithm gathers
these summaries and calculates the distance to the global optimum
time-series for each time-series using the following formula:

D, = {Maxg —.Ol + Dy (lifflirect)

Or = Ming + Dy (if inverse)

Dy is the distance to the global optimum; Oy is the local optimum; D;
is the distance to the local optimum; Max, (Ming) is the global max
(min) value among all time-series of a non-functional property.!

!The unblinded version of this paper will include a link to a technical report with a
proof of this formula’s correctness.
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Figure 5: eQual’s visualization of two candidate Hadoop variants
showing their respective values for the four properties of interest.

The updated summaries now include the globally normalized
values for each time-series in each variant and will be used to
rank the variants. To use the Dy values of different non-functional
properties to calculate the overall utility of a design variant, we
linearly rescale them to a value between 0 and 1. The overall quality
of the system, then, is the average, weighted by the importance
coefficients provided by the architects (recall Section 3.2), among all
of these values. In cases when multiple variants have comparable
qualities, eQual also allows architects to visually compare them.
Figure 5 shows an example such a visualization: the overlapping
radar diagrams provide architects with details that are lost in the
single system-quality numerical values.

4 EVALUATION

We evaluate eQual to answer three questions. (1) How onerous is
it for architects to answer the preparation questions eQual asks?
(2) Can eQual find solutions that are close to optimal? (3) Can
eQual scale to models with large numbers of variation points? More
specifically, we aim to measure eQual’s usability, effectiveness, and
scalability. To evaluate eQual, we have implemented its prototype
on top of DomainPro [62]. The resulting extension to DomainPro
totals 4.7K C# and 1.0K JavaScript SLoC. Furthermore, to enable
an extensive evaluation of eQual’s effectiveness, we built a utility
totaling an additional 1,000 C# and 200 MATLAB SLoC, as detailed
in Section 4.2.

4.1 eQual’s Usability

The focus of the usability evaluation is to measure how onerous
eQual is to apply by architects in practice. The assumption we
make in this evaluation is that eQual provides high-quality results.
The actual quality of those results will be evaluated empirically
in Section 4.2. We first present an analytical argument for eQual’s
usability, and then the results of its empirical evaluation.

A. Analytical Argument
In Section 3.2, we explained the questions eQual asks of architects.
Let us assume that a system has N,, variation points and N;, prop-
erties. For each of them, eQual asks a three-part question. The
maximum number of field entries eQual requires an architect to
make is, therefore, 3 x (N, + Np). Recall that the architect also has
the option of not answering some (or even all) of the questions
regarding variation points.

As discussed above, our analysis of Hadoop has relied on previ-
ously identified four critical non-functional properties [9, 10]. Prior

Anon.

research suggests that there are usually 4-6 non-functional proper-
ties of interest in a software project, and rarely more than 10 [4].
Moreover, the analysis presented in a recent study [63] showed that
the number of variation points per Hadoop version ranged between
1 and 12 [63]. Taking the largest number of variation points for a
single Hadoop version and the four properties, an architect using
eQual would have to provide no more than 48 answers to explore
the 4-dimensional decision space of at least 22 system variants.

The number of individual answers an architect is expected to
provide is precisely bounded by eQual. The granularity of each
answer is very small and its cognitive complexity is low. Most
importantly, eQual does not place a new burden on architects, but
only makes explicit the information that architects already have to
consider during system design.

B. Empirical Comparison to the State-of-the-Art

In addition to the analytical argument provided above, we also mod-
eled Hadoop in GuideArch [24], the most closely related approach
for exploring alternative design decisions. We compared the eQual
and GuideArch models in terms of the numbers of field entries and
the time required to complete them.

GuideArch helps architects make decisions in the early stages of
software design using fuzzy math [77] to deal with uncertainties
about system variation points in a quantifiable manner. To apply
fuzzy math, GuideArch uses three-point estimates, asking architects
to provide pessimistic, most likely, and optimistic values to describe
the effects of their decisions on the system’s non-functional prop-
erties. For instance, in the case of Hadoop’s Processing Power, for
each decision (such as using machines with 2Ghz CPUs) architects
have to specify the pessimistic, optimistic, and most likely values
for the Reliability, Utilization, Execution Time, and Cost properties.

GuideArch does not require the creation of a system model. How-
ever, GuideArch’s usefulness is contingent on the accuracy of its
inputs, which requires in-depth knowledge of the system’s domain
and behavior. This level of expertise is rarely available. To alleviate
this issue, GuideArch’s authors suggest that architects obtain this
information by analyzing prior data, looking at similar systems,
studying manufacturer specifications, and reading scientific publi-
cations [24]. These are difficult and time-consuming tasks that are
likely to rival the design effort required by eQual.

The specification of non-functional properties in GuideArch is
similar to eQual. However, as discussed above, the specification
of variation points is different, which, in turn, impacts the model-
ing and analysis of available options. GuideArch requires that all
options be specified discretely, and is unable to explore ranges.

In a representative experiment, we selected five options for each
of Hadoop’s variation points from Figure 2, totaling 25 alternatives.
For example, instead of simply specifying the range 10-100 for Pool
Size, we explicitly provided 10, 25, 50, 75, and 100 as the options.
The next step was to specify how each decision affects the non-
functional properties of the system. In doing so, we had to fill in
a 25 X 12 matrix in GuideArch. For eQual, we had to answer 27
questions: 3 X 5 for the five variation points, and 3 X 4 for the
four non-functional properties. Overall, it took one of this paper’s
authors more than four hours to complete over 300 mandatory
fields in GuideArch. By contrast, it took the same author under six
minutes to answer the 27 questions required by eQual.
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This discrepancy only grows for larger problems (e.g., more
variation points or more GuideArch options within a given vari-
ation point). In general, if T¢ is the total number of field entries
in GuideArch, Np the number of properties, Ny the number of
variation points, and a; the number of alternatives for a variation
point v;, then

Ny
Ty = 3Np _21 a;
i=

The number of GuideArch field entries grows quadratically in the
number of properties and variation points. The number of field
entries in eQual grows linearly: 3 X (N, + Np). This results in a foot-
print for eQual that is orders of magnitude smaller than GuideArch’s
when applied to large systems.

4.2 eQuals Effectiveness

Most other approaches concerned with design quality (e.g., Domain-
Pro [62], Palladio [5], ArchStudio [17], XTEAM [22], PCM [46]),
focus on a single variant, and do not explore the space of possible
design decisions (see Section 5 for further discussion). They are
complementary to eQual, as eQual can use each of them to evaluate
the individual variants’ quality; our prototype eQual implemen-
tation uses DomainPro for this purpose. Prior work has shown
that those techniques that aid engineers with arriving at effective
designs for their systems (e.g., ArchDesigner [1]) underperform
GuideArch in the quality of their top-ranked designs [23].

For the these reasons, we evaluated eQual’s effectiveness by di-
rectly comparing it with GuideArch as the leading, state-of-the-art
approach. Unlike prior work in the area, which has traditionally
been limited to such head-to-head comparisons [1, 24], we also
assessed the quality of eQual’s results on systems with known opti-
mal configurations. Our evaluation indicates that eQual produces
effective designs, which are of higher quality than prior work.

A. Head-to-Head Comparison with the State-of-the-Art
Both eQual and GuideArch use known optimization methods. Their
absolute effectiveness is difficult to determine as it requires ground-
truth results for the modeled systems, but we can compare their
effectiveness relative to one another.

To that end, we analyzed the Hadoop models created with eQual
and GuideArch as described in Section 4.1 and compared the top-
ranked variants they returned. For example, in the case of the
experiment highlighted in Section 4.1, both tools produced Hadoop

Apache | Web Server 11 9 10
BDB C | Berkeley DB C 9 10 | 10°
BDB ] Berkeley DB Java 6 8 100
Clasp Answer Set Solver 10 17 107
LLVM | Compiler Platform 7 8 107
AJStats | Analysis Tool 3 4 107

Figure 6: Software systems used to study the effectiveness of eQual.
Var. Points is the number of variation points in each system; Terms
is the number of terms in the systems’ fitness models; and Size is
the total number of variants in the design space.

variants that were equally reliable (94%), had equal machine uti-
lization (99%), and comparable cost (17 for GuideArch vs. 19 for
eQual). However, eQual’s top-ranked variant was nearly 7.5 times
faster than GuideArch’s (154s vs. 1,135s.). We identified one possible
reason for this discrepancy: We observed that GuideArch consis-
tently selects variants with lower machine reliability but higher
redundancy than those selected by eQual. The exact reasons behind
this strategy are unclear from GuideArch’s publications; we have
contacted its authors for possible answers.

We acknowledge that, as creators of eQual, we are more familiar
with it than with GuideArch. However, the author who performed
the analysis has extensive experience with architectural modeling,
including with GuideArch. Furthermore, we have a good under-
standing of Hadoop and made every effort to use GuideArch fairly.
Our observations are buttressed by the fact that the quality of the
variants GuideArch recommends depends heavily on the architect’s
ability to predict the effects of the design decisions on the system’s
non-functional properties. This is a non-trivial, error-prone task
regardless of one’s familiarity with GuideArch.

B. Evaluation on Systems with Known Optimal Designs

We further evaluated eQual’s effectiveness against known fitness
models of six real-world systems, summarized in Figure 6. Fitness
models describe the non-functional properties of a system using its
variation points and their interactions. The fitness models we used
in our evaluation were obtained by Siegmund et al. [64, 65] and
shown to accurately predict the non-functional properties of highly
configurable systems. These fitness models aim to detect interac-
tions among options (or features) and evaluate their influence on
the system’s non-functional attributes. Each has been obtained by
numerous measurements of different variants of a software system.
We decided to use these fitness models because they are analogous
to our objective in eQual, despite being applied to software systems
at a later stage (i.e., systems that are already implemented and de-
ployed). Furthermore, the resulting subject systems’ decision spaces
range from 100,000 variants to 1 quadrillion variants, making them
attractive for testing eQual’s range of applicability.

Apache | 0.264 0.311 | 0.146 0.163
BDB C | 0.763 0.564 | 0.325 0.035
BDB] 0.182 0.517 | 0.408 0.000
Clasp 0.323 0.352 | 0.174 0.179
LLVM 0.253 0.235 | 0.234 0.219
AJStats | 0.856 0.780 | 0.269 0.048

Figure 7: Comparison between the two seeding strategies employed
by eQual and the quality of the nominal solutions commonly se-
lected by architects. Default depicts the common solutions used by
architects, obtained from [65].
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Conceptually. a fitness model is simply a function from variants
to a fitness measurement Q : C — B, where fitness can be an aggre-
gation of any measurable non-functional property that produces
interval-scaled data. The model is described as a sumn of terms over
variation option values. Individual terms of the fitness model can
have different shapes, including n.¢(X), n.c(X)?, or n,c(_X).V'm.
For illustration, a configurable database management system with
the options encryption (E), corpression (C), page size (P), and
database size (D) may have the following fitness model:

Q(c) = 50 + 20.c(E) + 15.¢(C) — 0.5¢(P) + 2.5.¢(E).c(C).c(D)

In general, the fitness models are of the following form:

Q) =fo+ D, Vel ()

i jeo

fo represents a minimum constant base fitness shared by all variants.
Each term of the form ®{c(i)..c(j)) captures an aspect of the overall
fitness of the system.

Because only aggregate fitness models were available to us, with-
out loss of generality, we treated each term as an individual non-
functional property of a given system, and translated its coeflicients
into eQual’s coefficients. Then, using the formula of each term, we
generated the corresponding constant time-series representing the
term. These time-series were subsequently passed to eQual for ex-
ploration. To measure eQual's effectiveness, we normalized each
variant’s fitness and calculated the fitness of the best variant found

by eQual using the ground-truth fitness models. We then calculated
that variant’s distance from the global optimum. We call this the
Optimal Proximity. These steps were accomplished via an extension
to eQual totaling 1,000 C# SLoC, and an additional 200 MATLAB
SLoC to tune and visualize the resulting eQual models.

Figures 7 and 8 depict the results of applying eQual on our six
subject systems using the two strategies discussed in Section 3.3:
random seeding and edge-case seeding. Figure 7 compares eQual’s
two strategies against the solutions yielded by using the default
values suggested by the six systems’ developers [65]. These results
were obtained by setting the cross-over ratio for the genetic algo-
rithm to 0.85 and the mutation rate to 0.35, using 4 generations of
size 200. These hyper-parameters were obtained over nearly 30,000
test executions, by using grid-search to find the most suitable pa-
rameters on average. The results in Figure 7 show that in most cases
even the purely random seeding strategy for eQual is at least as
effective as the default values suggested by the developers. On the
other hand, the edge-case strategy finds superior variants that on
average exhibit over 93% of the global optimum. Figure 8 provides
additional detail, showing the distribution of running eQual on the
six subject systems 100 times using the edge-case strategy, with
generation sizes of 50, 100, and 200. The figure shows that, with
a larger number of generations, eQual is able to produce variants
that, on average, tend to match the reported global optimum for
each system; in the case of Clasp, the lone exception, the quality of
eQual’s suggested variant was still over 90% of the global optimum.
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Figure 9: eQual’s scalability with respect to the number of simula-
tion nodes.

4.3  eQual’s Scalability

To evaluate eQual’s scalability, we used the Google Compute Engine
(GCE). We created 16 nl-standard-1 nodes (the most basic config-
uration available in GCE, with 1 vCPU and 3.75 GB memory) as
simulation nodes, and a single ni-standard-2 node (2 vCPU and 7.5
GB memory) as the central controller node. All nodes were located
in Google’s us-centrall-f datacenter. We used the variation points
and non-functional property descriptions described in Section 3.
Number of Nodes — The first aspect of eQual’s scalability we
evaluated is the observed speed-up when increasing the number of
employed simulation nodes. We used the general genetic algorithm
for 8 generations and the generation size of 256 variants, totaling
2,048 variants. We did this with 2, 4, 8, and 16 simulation nodes,
and for three values of the Computation Size variation point. The
execution time was inversely proportional to the number of nodes
(Figure 9), suggesting that our approach can be scaled up optimally
by adding more nodes. Using more powerful nodes can further
speed up the computation. Note that each data point in Figure 9
consists of 2,048 simulations. Overall, we simulated more than
24,500 design variants.

Number of Events — For the second part of the scalability evalu-
ation, we measured the impact of increasing the number of events
that are generated during a simulation. This is indicative of how
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Figure 10: Sizes of data files generated by simulations for different
values of Computation Size (c).
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Figure 11: eQual’s scalability with respect to the number of variants.

well eQual performs on larger models. The total number of events
generated in Hadoop is nondeterministic. However, based on the
characteristics of the model, we hypothesized that increasing the
Computation Size should increase the number of events roughly
linearly if other variation points remain unchanged. We empirically
evaluated this hypothesis by using the average sizes of the time-
series object files generated during simulation as a reasonable proxy
for the number of events. Figure 10 shows that, on average, the
total number of events is directly proportional to Computation Size.
Coupled with the performance that eQual demonstrated for the
same values of Computation Size, shown in Figure 9 and discussed
above, this is indicative of eQual’s scalability in the face of growing
numbers of simulation events.

Number of Variants — Finally, we studied eQual’s performance
in the face of growing numbers of design variants. We modified
the genetic algorithm configurations to use five generation sizes:
16, 32, 64, 128, and 256. For each generation size, we ran eQual for
8 generations, on 4, 8, and 16 nodes. Figure 11 shows that eQual
is able to analyze over 2,000 design variants in ~120 minutes on 4
nodes, with a speed-up linear in the number of nodes, down to ~30
minutes on 16 nodes.

4.4 Threats to Validity

While the evaluation of eQual indicates that it can easily scale, has
a small footprint, and finds accurate solutions, we also took several
steps to mitigate the possible threats to our work’s validity. Two
constituent parts of eQual help mitigate the threats to its construct
validity: (1) the dynamic analysis of system designs by simulation
and (2) creating assessment models based on DTW. In the past,
these two solutions have been extensively used to great success.
Discrete event simulations have been used in a plethora of domains
{e.g., avionics, robotics, healthcare, computer networks, finance,
ete.) [67, 69], and the bedrock of our assessment models, DTW, is
so prevalent that it is “difficult to overstate its ubiquity” {19, 57].
DTW also subsumes Euclidean distance [19] as a special case [57],
which increases the eQual's range of applicability. The threat to
the external validity of our work is mitigated by the use of an
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MDA-based approach. MDA solutions have been shown to be suf-
ficiently robust and scalable, and are widely used in research and
industry [32, 37].

5 RELATED WORK

DomainPro [61, 62], Palladio [5], ArchStudio [17], XTEAM [22],
PCM [46], and other tools allow simulation-based analysis of a
single variant’s architectural model. By contrast, eQual explores
many variants to help make design decisions.

Rule-based approaches identify problems in a software design
model and apply rules to repair them. MOSES uses stepwise refine-
ment and simulation for performance analysis [15]. ArchE helps
meet the quality requirements during the design phase by sup-
porting modifiability and performance analysis, and suggesting
potential design improvements [47]. DeepCompass explores the
design space of embedded systems, relying on the ROBOCOP com-
ponent model and a Pareto analysis to resolve the conflicting goals
of optimal performance and cost between different architecture can-
didates [6]. Parsons et al. [54] introduced an approach for detecting
performance anti-patterns in Java-EE architectures. Their method
requires an implementation of a component-based system, which
can be monitored for performance. Since the approach is meant to
improve existing systems, it cannot be used during early develop-
ment stages. Their approach is meant to improve existing systems
and cannot be used during early development stages. PUMA facili-
tates communication between systems designed in UML and non-
functional property prediction tools [75], focusing on performance
and support feedback loop specification in JESS [76]. FORMULA
aims to overcome the challenge of the size of the design space in
DSE by exploring only a small subset of the space by removing the
design candidates considered equivalent based on a user-defined
notion of equivalence [34]. This heavily relies on “correct” estimates
of non-functional attributes of the model from the users. Unlike
eQual, these approaches are also limited by their predefined rules
and cannot explore the complete design space.

Metaheuristic approaches treat architecture improvement as
an optimization problem. DeSi [44], ArcheOpterix [2], and Per-
Opteryx [39] use evolutionary algorithms to optimize a system’s
deployment with respect to quality criteria. Multi-criteria genetic
algorithms can automatically improve software architecture based
on trade-off analyses, but existing approaches (e.g., [46]) tend to
suffer from scalability issues. AQOSA provides modeling based
on AADL and performance analysis tools, and evaluates design
alternatives based on cost, reliability, and performance [41]. The
SASSY framework targets service-oriented architecture models
and selects services and a pattern application to fulfill the quality
requirements [50]. Metaheuristic simulation based on a genetic
algorithm can derive the deployment architecture and runtime
reconfiguration rules to move a legacy application to the cloud
environment [25]. Mixed-integer linear programming can find min-
imum cost configuration for a given cloud-based application [3].
DESERT explores design alternatives by modeling system variations
in a tree structure and using Boolean constraints to cut branches
without feasible solutions [21]. DESERT-FD automates the con-
straint generation process and design space exploration [21]. GDSE

10

Anon.

uses meta-programming of domain-specific design space explo-
ration problems and expresses constraints for solvers to generate
architectural solutions [58]. GuideArch is the most closely related
technique for exploring design decisions [24], but it relies on a
much more burdensome fuzzy math system specifications [77] than
eQual’s requirements (recall Section 4.1). eQual similarly uses meta-
heuristic search to find architectural solutions within a large design
space, but focuses on non-functional properties and and requires
less work by the architects to use.

Software Product Lines (SPLs) typically target a fundamentally
different problem than eQual. SPLs [14, 30, 60, 66] allow for product
derivation, the process of configuring reusable software artifacts
for a set of requirements. Unlike SPLs, eQual neither adds nor re-
moves features from a product. SPLs can use genetic algorithms
to optimize feature selection [29], but, unlike eQual, this requires
developers to create objective functions to measure each variant’s
fitness. Combining multi-objective search and constraint solving
allows configuring large SPLs [31], but unlike eQual, this requires
using historical data about the SPL’s products to evaluate variants,
which prevents it from being used for new systems. Optimizing
highly configurable systems, despite being aimed at fully imple-
mented and deployed software systems, has clear relations to eQual.
Among these techniques we used the studies conducted by Sieg-
mund et al. [64, 65] to evaluate the effectiveness of eQual. Oh et
al. [53], and Sayyad [59] have recently devised techniques to more
efficiently explore the space of the system configurations. These
techniques can complement eQual’s exploration strategies.

6 CONTRIBUTIONS

It is widely acknowledged that, in a software engineering project,
early architectural design decisions are usually the most impact-
ful. However, this perceived criticality of the early decisions is
not reflected in the support available to architects for making and
evaluating them. The work described in this paper provides an
important step in addressing the chasm between the needed and
available support in this area. Our approach, eQual, guides archi-
tects in making informed choices, by quantifying the consequences
of their decisions early and throughout the design process. eQual
does so in a way that aims to minimize additional burden on the
architects, instead only providing structure and automated support
to the architects’ already existing tasks. eQual is able to solve very
large problems efficiently, guiding architects to select high-quality
architectural variants for their system.

While our results show promise, research challenges remain to
improving eQual’s practical effectiveness. Our work to date has
assumed that architects know the relative importance of the non-
functional properties in their systems. eQual allows architects to
change the non-functional properties’ importance coefficients, but
future versions will actively guide architects in the identification
of design hot-spots and help their understanding of the relative im-
portance of the properties. Combining eQual with a software archi-
tecture recovery technique will extend its applicability to existing
software systems with legacy architectures, for their future develop-
ment and improvements. Our successful application of eQual to the
six implemented real-world systems with known fitness models [64,
65] provides further confidence in the likely success of this strategy.
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