Recovering Architectural Design Decisions

Arman Shahbazian%, Youn Kyu Lee%, Duc Le%, Yuriy Brun *, and Nenad Medvidovic

¥ University of Southern California
Los Angeles, CA, USA 90089-0781
{armansha, younkyul, ducmle, neno} @usc.edu

Abstract—Designing and maintaining a software system’s ar-
chitecture typically involve making numerous design decisions,
each potentially affecting the system’s functional and nonfunc-
tional properties. Understanding these design decisions can help
inform future decisions and implementation choices and can
avoid introducing regressions and architectural inefficiencies later.
Unfortunately, design decisions are rarely well documented and
are typically a lost artifact of the architecture creation and
maintenance process. The loss of this information can thus hurt
development. To address this shortcoming, we develop RecovAr,
a technique for automatically recovering design decisions from
the project’s readily available history artifacts, such as an issue
tracker and version control repository. RecovAr uses state-of-
the-art architectural recovery techniques on a series of version
control commits and maps those commits to issues to identify
decisions that affect system architecture. While some decisions
can still be lost through this process, our evaluation on Hadoop
and Struts, two large open-source systems with over 8 years of
development each and, on average, more than 1 million lines of
code, shows that RecovAr has the recall of 75% and a precision
of 77 %. Our work formally defines architectural design decisions
and develops an approach for tracing such decisions in project
histories. Additionally, the work introduces methods to classify
whether decisions are architectural and to map decisions to code
elements. Finally, our work contributes a methodology engineers
can follow to preserve design-decision knowledge in their projects.

I. INTRODUCTION

Software architecture has become the centerpiece of modern
software development [37]. Developers are increasingly relying
on software architecture to lead them through the process
of creating and implementing large and complex systems.
Understanding of a software system’s architecture and the
set of decisions that led to its creation is crucial for making
new decisions about the system both at the design and
implementation levels. Further, engineers who are aware of the
architectural impacts of their changes deliver higher-quality
code [27]. Unfortunately, the design decisions made during
the software lifecycle are typically not well documented and
so the rationale for these choices is often lost [14]. It is
thus desirable for architects and developers to be able to
automatically recover past design decisions. Unfortunately,
modern architectural recovery techniques, e.g., [40], [11], focus
on recovering “what” the architecture of a system looks like,
and not “why” the architecture looks the way it does, a symptom
of a phenomenon known as knowledge vaporization in software
systems [13]. Recovering the design decisions that lead to an
architecture is one way to capture this “why.”

S %

%University of Massachusetts Amherst
Ambherst, MA, USA, 01003-9264
brun @cs.umass.edu

In this paper, we make the observation that modern software
development offers access not only to the system itself but
also to the history of its development (e.g., a version control
repository) and a database of issues, change requests, and
tasks, often partially augmented with reasons and justifications
mapped to specific code changes that address them (e.g., an
issue tracking system). Guided by these observations and
the fact that access to architects who designed the system
is limited and expensive, we develop RecovAr, a technique
for automatically recovering design decisions made during the
development process.

While RecovAr is independent of a system’s architectural
paradigm (e.g., component-based, microservices, SOA, system-
of-systems), it does assume the existence of suitable means
of obtaining static architectural structure from implementation
artifacts. Specifically, our work discussed in this paper relies on
two existing techniques that recover such architectural structure
from code, ACDC [40] and ARC [11].! By recovering this
architectural information at multiple points during the system’s
development and mapping the changes in the structure to
the rich information available in the system’s issue tracking
systems, RecovAr can recover many (though not all) of the
system’s design decisions and traceability links between those
decisions and code changes, issues, and other documentation.

We applied RecovAr to over 100 versions of Hadoop and
Struts, two large, widely adopted open-source systems, with
over 8 years of development each and, on average, more than
1 million lines of code. We found that RecovAr can accurately
uncover the architectural design decisions embodied in the sys-
tems, recovering 75% of the decisions with a precision of 77%.

This paper makes the following contributions:

« We formally define the notion of an architectural design
decision and develop an approach for tracing such deci-
sions in existing software project histories.

« We introduce methods to classify whether decisions are
architectural and to map decisions to code elements.

« We empirically examine how design decisions manifest in
software systems, evaluating our approach on two large,
widely-used systems.

1 Existing literature refers to these and similar techniques as “architecture
recovery techniques,” and the produced artifacts as “architectures.” For legacy
and simplicity reasons, we will also use this terminology in the remainder
of the paper, with the understanding that what is recovered is only a partial,
structural view of a system’s static architecture.

« We develop a methodology for preserving design-decision
knowledge in software projects.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the background necessary for our approach.
Section IIT describes RecovAr and Section IV evaluates it.
Section V places our work in the context of related research
and Section VI summarizes our contributions.

II. BACKGROUND

Research has demonstrated that software architecture plays
a critical role in the evolution and maintenance of software
systems [10], and that awareness of the architectural implica-
tions of code changes results in higher-quality code [27]. This
has led to the development of several architectural recovery
techniques that help counteract the challenges brought about
by architectural drift and erosion [41], [11], [10], [40].

These recovery techniques are typically based on some slant
of the originally proposed view of software architecture as four
Cs building blocks: components, connectors, configurations,
and constraints. Despite being simple and appealing, this view
has proven to be incomplete and has required further elabo-
ration. To that end, recent work has approached architecture
from the perspective of design decisions. Our work builds on
these two bodies of research, describing a software architecture
as a set of design decisions (Section II-A) and automatic
architectural recovery (Section II-B).

A. Architectural Design Decisions

For many years, research community and industry alike had
been focused on the result, the consequences of the design
decisions made, trying to capture them in the architecture of
the system under consideration, often using a graphical repre-
sentation. Such representations were, and to a great extent still
are, centered on views [17], as captured by the ISO/IEC/IEEE
42010 standard [12], or the use of an architecture description
language (ADL) [23]. However, this approach to documenting
software architectures can cause problems such as expensive
system evolution, lack of stakeholders communication, and
limited reusability of architectures [33].

Architecture as a set of design decisions was proposed
to address these shortcomings. This new paradigm focuses
on capturing and documenting rationale, constraints, and
alternatives of design decisions [41]. More specifically Jansen et
al. defined architectural design decisions as a description of the
set of architectural additions, subtractions and modifications
to the software architecture, the rationale, the design rules,
and additional requirements that (partially) realize one or more
requirements on a given architecture [13], [5]. The key element
in their definition is rationale, i.e., the reasons behind an archi-
tectural design decision. Kruchten et al. proposed an ontology
that classified architectural decisions into three categories:
(1) existence decisions (ontocrises), (2) property decisions
(diacrises), and (3) executive decisions (pericrises) [16]. Among
the three categories, existence decisions — decisions that state
some element or artifact will positively show up or disappear
in a system —are the most prevalent and capture the most

volatile aspects of a system [16], [13]. Property and executive
decisions are enduring guidelines that are mostly driven by the
business environment and affect the methodologies, and to a
large extent the choices of technologies and tools.

Inspired by the described existing work, the notion of
design decisions used in this paper values the rationales and
consequences as two equally important constituent parts of
design decisions. However, not all design decisions are created
equal. Some design decisions are straightforward, with clear
singular rationale and consequence, while some are cross-
cutting and intertwined [5], i.e., affect multiple components
and/or connectors and often become intimately intertwined with
other design decisions. To distinguish between different kinds of
design decisions we classify them into three categories: (1) sim-
ple, (2) compound, and (3) cross-cutting. Simple decisions have
a singular rationale and consequence. Compound decisions
include several closely related rationales, but their consequences
are generally contained to one component. Finally, cross-cutting
decisions affect a wider range of components and their rationale
follows a higher level concern such as architectural quality of
the system.

B. Architecture Recovery, Change, and Decay Evaluator

To capture the consequence aspect of design decisions, we
build on top of the existing work in architecture modeling and
recovering. To obtain the static architectures of a system from
its source code, we use the state-of-the-art workbench, called
ARCADE [4], [20]. ARCADE employs a suite of architecture-
recovery techniques and a set of metrics for measuring different
aspects of architectural change. It constructs an expansive view
showcasing the actual (as opposed to idealized) evolution of a
software system’s architecture.

ARCADE allows an architect (1) to extract multiple archi-
tectural views from a system’s codebase and (2) to study
the architectural changes during the system’s evolution as
reflected in those views. ARCADE provides access to multiple
recovery techniques. We use two of the techniques in this paper:
Algorithm for Comprehension-Driven Clustering (ACDC) [40]
and Architecture Recovery using Concerns (ARC) [11]. ACDC
and ARC approach a system’s architecture from different
perspectives, and have been shown to exhibit the best accuracy
and scalability among the recovery techniques provided in
ARCADE. ACDC’s view is oriented toward components that
are based on structural patterns (e.g., components consisting of
entities that together form a particular subgraph). On the other
hand, ARC’s view produces components that are semantically
related due to sharing similar system-level concerns (e.g., a
component whose main concern is handling distributed jobs).

To measure architectural changes across the development
history of a software system, ARCADE provides several
architecture similarity metrics: cvg [20] and a2a [4], Molo [39],
and MoJoFM [43]. These are system-level similarity metrics
calculated based on the cost of transforming one architecture
into another. Using similar principles, RecovAr conducts the
change analysis and extracts a system’s architectural changes
(see Section III-A).

IIT. THE RECOVAR APPROACH

Knowledge vaporization in software systems plays a major
role in increasing maintenance costs, and exacerbates architec-
tural drift and erosion [13]. The goal of RecovAr is to uncover
architectural design decisions in software systems, and thereby
help reverse the course of knowledge vaporization by providing
a crisper understanding of such decisions and their effects.

In this section, we further claborate on the definition and
classification of design decisions. We describe how architectural
changes can be recovered from the source code of real software
systems. We also describe a process whereby architectural
design decisions are identified in real systems. Finally, our
approach enables engineers to continuously capture the archi-
tectural decisions in software systems during their evolation.

Section II-A identified two constituent parts of an architec-
taral design decision, rationale and consequence. The static
architecture of a system explicitly captures the system’s com-
ponents and possibly other architectural entities, but rationale
is usually missing or, at best, implicit in the structural elements.
For this reason, our approach focuses on the consequences of
design decisions. We have developed a technique that leverages
the combination of source code and issue repositories to obtain
the design decision consequences. Issue repositories are used to
keep of track of bugs, development tasks, and feature requests
in a software development project. Code repositories contain
historical data about the inception, evolution, and incremental
code changes in a software system. Together, these repositories
provide the most reliable and accurate pieces of information
about a system.

RecovAr automatically extracts the required information
from a system’s repositories and outputs the set of design
decisions made during the system’s lifecycle. In order (o
achieve this RecovAr first recovers the static architecture
of the target system. RecovAr then cross-links the issues to
their corresponding code-level changes. These links are in
tarn analyzed to identify candidate architectural changes and,
subsequently, their rationales.

A high level overview of RecovAr’s workflow is displayed in
Figure 1. RecovAr begins by recovering the static architecture
of a system, This step is only required if an up-to-date, reliable,
documented architecture is not available.

After recovering or obtaining the architectures of different
versions of its target system, RecovAr follows through three
distinct phases. In the first phase (Change Analysis) RecovAr
identifies how the architecture of the system has changed
along its evolution path. The second phase (Mapping) mines
the system’s issuc repository and creates a mapping (called
architectural impact list) from issucs to the architectural
entities they have affected. Finally, the third phase (Decision
Extraction) creates an overarching decision graph by putting
together the architectural changes and the architectural impact
list. This graph is in twrn traversed to uncover the individual
design decisions. In the remainder of this section we detail
each of the three phases.

L]

Issue Tracker Version Control

.

¢ R
Jssues Commit Source
Logs Code
[Mapping ‘ — _)Arch{tectw !
e el
|) ~ [Recavery: ;

T \

+
Architectural || e Architectures |
impact List

7 ™

’ Decision |
S e
Extraction | .

J \

\
Extracted | Architectural |
Decisions Changes |
legend
i N W
Artifact " L New J 3aff,—the,yxe:f,J .
| Compenent

‘\Compcnent Flow

Fig. 1. Overview of RecovAr. Using the existing source code, commit logs,
and extracted issues obtained [rom code and issue repositories, our approach
automatically extracts the underlying design decisions. Implementation of the
new components spans over 4,000 Source Lines of Code (SLoC).
A. Change Analysis

Architectural change has been recognized as a critical
phenomenon from the very beginnings of the study of software
architecture [28]. However, only recently have researchers tried
to empirically measure and analyze architectural change in
software systems [20], [4]. These efforts rely on architectural
change metrics that quantify the extent to which the architecture
of a software system changes as the system evolves. This work
has served as a motivation and useful foundation in obtaining
a concrete view of architectural changes.

Specifically, we have designed Change Analyzer (CA), which
is inspired by the manner in which existing metrics {e.g.,
a2a [4], Molo [39], and MoJoFM [431) measure architcctural
change. These metrics consider five operations used to trans-
form architecture A into architecture B: addition, removal, and
relocation of system entities (e.g., methods, classes, libraries)
from one component to another, as well as addition and removal
of components themselves [1], [22], [26]. We use a similar
notion and define architectural change as a set of architectural
deltas. An architectural delta is: (1) any modification to a
component’s internal entities including additions and removals
(rclocation is treated as a combined addition to the destination
component and removal from the source component), or
(2) additions and removals of entire components. We then
aggregate these deltas into architectural change instances.
Algorithm 1 describes the details of the approach used to
extract the architectural deltas and changes.

CA works in two passes. In the first pass, CA matches the
most similar components in the given pair of architectures.

Algorithm 1: Change Analysis

Input: ArchitectureA,ArchitectureB
Output: Changes <= a set of architectural changes

1 Let ComponentsA = ArchitectureA’s components
2 Let ComponentsB = ArchitectureB’s components
3 Let Eq, Ecposen = 0

4 if |ComponentsA| # |ComponentsB| then

5 | Balance(ComponentsA,ComponentsB)

¢ foreach c, € ComponentsA do

7 | foreach c¢; € ComponentsB do

8 cost = CalculareChangeCost(cq,cp)

9 \;e = {cq,Cp,cost}

add e to Eu

1 Eppsen = MinCostMatcher(ComponentsA,ComponentsB, Epp)
12 foreach e € E_j,., do
13 |_Changes = GetChangelnstances(e.cy,e.c;) L UChanges

14 return Changes

Algorithm 2: GerChangelnstances method

Input: ComponentA,Component B
Output: Changes
1 Let EntitiesA = ComponentA’s entities
2 Let EntitiesB = ComponentB’s entities
3 if EntitiesAN EntitiesB = @ then
4 | Change chy,chy

5 | chy.deltas = EntitiesA
6 | chy.deltas = EntitiesB
7 | return {chy,chy}

8 else

9 | Change ch

10 | ch.deltas = (EntitiesA\J EntitiesB) — (EntitiesA N EntitiesB)
1 | return {ch}

In the second pass, CA compares the matched components,
extracts the architectural delta(s), and clusters them into
architectural change instances.

The objective of the matching pass is to find the most similar
components in a way that minimizes the overall difference
between the matched components. Since two architectures
can have different numbers of components, CA first balances
(Algorithm 1, line 5) the two architectures. To do so, CA
adds “dummy” (i.c., empty) components to the architecture
with fewer components until both architectures have the same
number of components. After balancing the architectures, CA
creates a weighted bipartite graph from architecture A to
architecture B and calculates the cost of each edge. Existence
of an edge denotes that component C4 has been transformed
into component Cg. The cost of an edge is the total number
of architectural deltas required to effect the transformation.

Figure 2 displays a simple example of two architectures and
the corresponding bipartite graph with all possible edges. Min-
CostMatcher (Algorithm 1, line 11) takes the two architectures
and the set of edges between them, and selects the edges in a
way that ensures a bijective matching between the components
of the two architectures with the minimum overall cost (sum
of the costs of the selected edges). MinCostMatcher is based
on linear programming; its details are omitted for brevity.

Architecture A

Fig. 2. Calculating the costs of the edges and finding the perfect matching.
The bold connectors are the selected edges that lead to minimum overall cost.

Changes

Fig. 3. Extracted changes between the architectures depicted in Fig. 2. Double-
lined diamonds indicate removals while regular diamonds denote additions.

In the second pass, CA cxtracts the architectural deltas
between the matched components. If there are no common
architectural entities between two matched components, we
create two change instances, one for the component that has
been removed and one for the newly added component. The
reason is to distinguish between transformations of components
and their additions and removals. Figure 3 depicts the extracted
changes of our example architectures.

B. Mapping

The output of CA is a set of architectural changes that is a
superset of the consequences of design decisions. The goal of
Mapping is to find all the issues that point to the rationale of the
design decisions that yielded those consequences. To that end,
Mapping first identifies the issues that satisfy two conditions:
(1) they belong to the version of the system being analyzed and
(2) they have been marked as resolved and their consequent
code changes have been merged with the main code base of the
system. Mapping then extracts the code-level entities affected
by each issue. These code-level entities are identified by mining
the issues’ commit logs and pull requests. Using one or more
architecture recovery methods available in ARCADE, the code-
level entities are translated into corresponding architectural
entities. The list of all issues, as well as the mapping between
the issues and the architectural entities affected by them is
called the Architectural Impact List.

Figure 4 displays a graph-based view of this list. It is possible
for issues to have overlapping entities (e.g., i2 and i3 arc
both connected to entity 5). It is also important to note that

i1 i2 i3 i4
Fig. 4. Architectural impact list. Squares represents issues and diamonds

represent entities. An edge from an issue to an entity means that resolving
that issue resulted in modifying that entity.

Fig. 5. The overarching decisions graph contains two decisions D1 and D2.
Squares denote issues, and circles denote changes.

the presence of an edge from an issue to an entity does not
necessarily indicate architectural change (e.g., entities 1 and 5

are not part of any of the architectural changes in Figure 3).

This is intuitively expected, since a great many of issues do
not incur substantial enough change in the source code and
thereby the architecture of the system.

C. Decision Extraction

In its final phase, RecovAr creates the overarching decision
graph by putting together the architectural changes and their
pertaining issues. This graph is traversed and individual design
decisions are identified. Algorithm 3 details this phase.

Algorithm 3 traverses the architectural impact list generated
in the Mapping phase and the list of changes. If there is
an intersection between the entities matched to issues and the
entities involved in changes, then it adds an edge connecting the
issue with the change. The intuition behind this is that an issue
contains the rationale for a decision if it affects the change(s),
which are the consequences, of that decision. We note that,
hypothetically, there can be situations in which an issue is the
cause of a change without directly affecting any architectural
deltas in that change. For example, if an issue leads to removing
all the dependencies to an entity, that entity might get relocated
out of its containing component by the architecture recovery
technique. However, detecting these situations in a system’s
architecture is not possible with existing recovery techniques,
because they abstract away the dependencies among internal
entities of a component. Although such information could
easily be incorporated, RecovAr would be unable to deal with
such scenarios as currently implemented.

The decisions graph for our running example is depicted in
Figure 5. The FindDecisions method in Algorithm 3 removes
all orphaned changes and issues, and in the remaining graph
locates the largest disconnected subgraphs. Each disconnected
subgraph represents a decision. The reason is that these
disconnected subgraphs arc the largest sets of interrelated

Decision Issue(s) Change(s)

Type

Simple Job tracking module @ hadoop.mapred co-
only kept track of the jobs mponent was modified.
executed in the past 24
hours. If an admin checked
the history after a day of
inactivity, e.g., on Monday,
the list would be empty.

Compound UTF8 compressor does (1) CompressionInput-
not handle end of line cor- Stream was added and
rectly. CompressionCodec
Sequenced files should was modified.
support custom compres-

SOIS.

Cross- Random seeks corrupt (1) hadoop.streaming

cutting the InputStream data. was modified.

hadoop.metrics co-
mponent was modified.
) hadoop. £s was mod-
ified.

Streaming must send
status signals every 10 sec-
onds.

Task status should in-
clude timestamp for job
transitions.

Fig. 6. Examples of recovered Hadoop decisions.

Algorithm 3: Decision Extraction

Input: ArchitecturallmpactList,Changes
Qutput: Decisions
1 Let DecisionsGraph = bipartite graph of decisions
2 foreach (issue,entities) € ArchitecturallmpactList do
foreach c € Changes do
Lif c.deltas Nentities # O then

[I NN

| connect(issue,c) in DecisionsGraph

6 Decisions = FindDecisions(DecisionsGraph)
7 return Decisions

rationales and consequences that do not depend on other issues
or changes. Intuitively, we expect that, in a real-world system,
only a subset of issues will impose changes whose impact
on the system can be considered architectural. Furthermore,
each of those issues will reflect a specific, targeted objective.
Therefore, in a typical system, the graph of changes and issues
should contain disconnected subgraphs of reasonable sizes.
This is discussed further in our evaluation in Section IV.

In Section II, we identified three different types of decisions:
(1) Simple decisions are the decisions that consist of a single
change and a single issue. These decisions have a clear rationale
and consequence. (2) Compound decisions are the decisions that
include multiple issues and a single change. These decisions
are similar to simple decisions and the issues involved are
closely related to an overarching rationale. Finally, (3) cross-
cutting decisions are the decisions that include multiple changes
and one or more issues. These decisions have a higher-level,
compound rationale— e.g., improving system reliability or
performance — that requires multiple changes to be achieved.

For illustration, Figure 6 lists three real examples of deci-
sions, one of each type, uncovered from Hadoop. Information
in the Issue(s) column contains the summaries of the issues

System Domain Versions Issues MSLoC
Hadoop Distributed Processing 68 2969 30.0
Struts Web Apps Framework 36 1351 6.7

Fig. 7. Subject systems analyzed in our study.

pertaining to that decision. Each boxed number indicates a
separate issue or change. The data in the Change(s) column
are short descriptions of the changes involved in a given
decision. The simple decision in the top row is an update to
satisfy a requirement by changing the job tracking module. The
compound decision in the middle row describes the two sides of
a problem that is resolved by changing the compression module
of Hadoop. Finally the uncovered cross-cutting decision in the
bottom row is about a series of changes applied to increase
the reliability of Hadoop’s task execution.

Applying RecovAr continuously throughout a project’s
lifecycle (e.g., as can be done with testing [31], [25], [24]),
helps preserve architectural knowledge and could encourage
engineers to write architecturally-conscious issue descriptions,
increasing system quality [32].

IV. EVALUATION

We have empirically evaluated RecovAr’s applicability and
accuracy. IV-A discusses the real-world systems on which Reco-
vAr was applied, demonstrating its applicability. Sections IV-B
and IV-C discuss RecovAr’s precision and recall.

A. Applicability

Figure 7 describes the two subject systems we have used in
our evaluation. These systems were selected from the catalogue
of Apache open-source software systems [2]. We selected
Hadoop [3] and Struts [35] because they are widely adopted and
fit the target profile of candidate systems for our approach: they
are open-source, have accessible issue and code repositories,
and log the fixing commits (i.e., the changes applied to the
system to resolve the corresponding issues). Furthermore, these
systems are at the higher end of the Apache software systems’
spectrum in terms of size and lifespan. Both of these projects
use GitHub as their version control and source repository, and
Jira [15] as their issue repository. We analyzed more than 100
versions of Hadoop and Struts in total. Our analyses spanned
over 8 years of development, and over 35 million SL.oC, and
over 4,000 resolved issues.

An overview of the results of applying RecovAr to the
two subject systems is depicted in Figure 8. These results are
grouped by (1) system (Hadoop vs. Struts) and (2) employed
recovery technique (ARC vs. ACDC). In this table, No. of Iss.
in Decisions represents the total number of issues that were
identified to be part of an architectural design decision. On
average, only about 18% of the issues for Hadoop and 6%
of the issues for Struts have had architecturally significant
effects, and hence have been considered parts of a design
decision. This is in line with the intuition that only a subset of
issues will impose changes whose impact on the system can be
considered architectural. Moreover, this observation bolsters the
importance of RecovAr for understanding the current state of

S Hadoop Struts
ystems

ACDC ARC ACDC ARC
No. of Iss. in Decisions 427 674 70 94
No. of Changes 950 3935 220 1359
No. of Decisions 112 149 27 23
Avg. Issues/Decision 3.81 452 2.59 4.94
Avg. Changes/Decision 1.77 2.36 1.77 2.21

Fig. 8. Number of changes, recovered decisions, and frequencies of issues
and changes per decision.

a system and the decisions that have led to it. Without having
access to RecovAr, architects would have to analyze 5-to-15
times more issues and commits to uncover the rationales and
root causes behind the architectural changes of their system.
The remainder of Figure 8 displays the total number of detected
architectural changes (No. of Changes), the total number of
uncovered architectural design decisions (No. of Decisions),
and the average numbers of issues and changes per decision
(Avg. Issues/Decision and Avg. Changes/Decision, respectively).
It is worth mentioning that not all the detected changes were
matched to design decisions, which we will elaborate on further
when evaluating RecovAr’s recall (Section IV-C).

As displayed in Figure 8, depending on the technique
used to recover the architecture, the number of uncovered
design decisions varies. The reason is that ACDC and ARC
approach architecture recovery from different perspectives:
ACDC leverages a system’s module dependencies; ARC derives
a more semantic of a system’s architecture, detecting concerns
via information retrieval techniques. Therefore, the nature of
the recovered architectures and changes, and consequently the
uncovered design decisions, are different. Recent work has
shown that these recovery techniques provide complementary
views of a system’s architecture [20]. The propagation of
these complementary views to our approach has yielded some
tangible effects. For instance, RecovAr running ARC was able
to uncover a decision about refactoring the names of a set of
classes and methods in Hadoop, while RecovAr running ACDC
could not uncover that decision. The reason is that ARC is
sensitive to lexical changes by design.

RecovAr aims to uncover three kinds of architectural design
decisions (recall Section II). Our results confirmed the presence
of all three kinds in our subject systems. Figure 9 depicts the
distribution of different kinds of decisions detected for each
pair of systems and recovery techniques. While the relative
proportion of simple and cross-cutting decisions varies across
systems and employed recovery techniques, the number of

37% 83% 26%
51% 48%
< D YV

(a) Hadoop-ACDC (b) Hadoop-ARC (c¢) Struts-ACDC (d) Struts-ARC

Fig. 9. Distribution of types of decision in the subject systems: solid black
denotes simple decisions; grey denotes compound decisions; white denotes
cross-cutting decisions.

compound decisions is consistently the smallest.

B. Precision

To assess RecovAr’s precision, we need to determine whether
the uncovered architectural design decisions are valid. As
captured in the premise of RecovAr, architectural design
decisions are not generally documented, hence a ground-truth
for our analyses was not readily available.

To overcome this hurdle, we devised a systematic plan to
objectively assess the uncovered design decisions. We defined
a set of criteria targeting the two aspects of an architectural
design decision —rationale and consequence — and used them
as the basis of our assessment. Two PhD students carried out
the analysis and the results of their independent examinations
were later aggregated. In the remainder of this section, we will
elaborate on the details of the conducted analyses.

We use four criteria targeting different parts of an architec-
tural design decision (two targeting rationales and two targeting
consequences). Each criterion is rated using a three-level-scale,
with the numeric values of 0, 0.5, and 1. In this scale, O means
that the criterion is not satisfied; 0.5 means that the satisfaction
of the criterion is confirmed after further investigation by
examining the source-code, details of the issues, or commit
logs; finally, 1 means that the criterion is evidently satisfied.
The reason we use a three-level scale in our analysis is to
measure the precision of RecovAr’s results from the viewpoint
of non-experts, and to distinguish the decisions according
to the cffort required for understanding them. To that end,
any criterion whose evaluation requires (1) in-depth system
expertise, (2) inspection of information other than that captured
in design decisions, and/or (3) having access to the original
architects of the system, is given a rating of 0.

The criteria for assessing rationales are two-fold:

1) Rationale Clarity indicates whether the rationale and its

constituent parts are easily understandable. This is accom-
plished by looking at issue summaries and pinpointing
the problems or requirements driving the decision.

2) Rationale Cohesion indicates the degree to which there is
a coherent relationship among the issues that make up a
given rationale. Rationale Cohesion is only analyzed if
the decision is shown to possess Rationale Clarity.

The criteria for assessing consequences are also two-fold:

1) Consequence-Rationale Association assesses whether the
changes and their constituent architectural deltas are
related to the listed rationale.

2) Consequence Tractability assesses whether the size of the
changes is tractable. In other words, is the number of
changes and their constituent deltas small enough to be
understandable in a short amount of time??

The two PhD students independently scored every decision
based on the above criteria. The three-level scale allowed us to
develop a finer-grained understanding of the decisions’ quality.

As illustrative examples, we explain the scoring procedures
for two decisions in Hadoop. Listing 1 displays a simple

20ur evaluation considered decisions that included more than five changes
not to satisfy this criterion, but this heuristic can be relaxed.

Decision Types Hadoop Struts
ACDC ARC ACDC ARC
Simple 0.89 0.95 0.90 0.99
Compound 0.50 0.52 0.76 0.56
Cross-Cutting 0.61 0.76 0.78 0.77
Overall 0.72 0.72 0.81 0.71

Fig. 10. Average scores of recovered decisions per recovery-technique for
Hadoop and Struts.

design decision as uncovered by RecovAr in Hadoop version
0.9.0. The rationale consists of a single issue that explains the
intent is to separate the user logs from system logs. However,
the rationale summary does not explain why this needs to
happen. Looking at the issue in Jira, the reason is that system
logs are cluttering the user logs, and system logs nced to
be cleared out more frequently than user logs. Since we
had to look at the issue to understand “why” this decision
was made, the Rationale Clarity in this case was scored 0.5.
Since we only have one issue, the Rationale Cohesion is not
applicable. The consequence involves one change with a single
architectural delta, i.e., adding the TaskLog. The relationship
of this change to the issue is clear and the change size is
tractable. Therefore, Consequence-Rationale Association and
Consequence Tractability each received 1.

Rationales:
Issue 1:
Desc: Seperating user logs from system
logs in map reduce
ID : HADOOP-489
Consequences :
Change 1:

Added: org.apache.hadoop.mapred. TasklLog

Listing 1. A simple decision from Hadoop v. 0.9.0

Listing 2 is a cross-cutting example from Hadoop 0.10.1.
Although the rationales seem unrelated, after inspecting the
code and issue logs, we realized that LzoCodec will be available
only if the Native Library is loaded. Therefore, this decision
received 0.5 for Rationale Cohesion.

Rationales:
Issue 1:
Desc: Implement the LzoCodec to support
the 1zo compression algorithms
ID : HADOOP-851
Issue 2:
Desc: Native libraries
ID : HADOOP-873
Consequences :

are not loaded

Listing 2. Part of a cross-cutting decision from Hadoop v. 0.10.1

Figure 10 displays the average scores of the analyzed
decisions, grouped by the decision type and the recovery
technique used for uncovering the decisions. Figures 11 and 12
display the cumulative distributions of the decision scores
for Hadoop and Struts, respectively. The right-leaning feature
of these distributions indicates that higher-quality decisions
are more prevalent than lower-quality ones. The threshold
of acceptability for measuring precision is adjustable, but in
our evaluation we required that a decision scores at least 0.5

100%

80% ¢

60% -

40% ¢

Decisions with a lower
or equal score

20% ¢

O% L L
a 0.2 0.4 0.6 0.8 1
Decisions’ scores

L 1L

[

Smoothed cumulative distribution of the decision scores for Hadoop.

100% ‘ ‘ ‘

— ACDC ¢

g0y | 7 ARC K

60% ; /

40%

Decisions with a lower
or equal score

20%

0% ; ;
0 0.2 04 0.6 0.8 1
Decisions' scores

Fig. 12. Smoothed cumulative distribution of the decision scores for Struts.

in the majority (i.e., at least three) of the criteria. In our
analyses, on average (considering both ARC and ACDC) 76%
of the decisions for Hadoop and 78% of the decision for Struts
met this condition. Figure 13 depicts a descriptive view of
the results of our evaluation, classifying the decisions by the
required criteria. The values denote the proportion of decisions
that have at lcast partially satisfied the criteria corresponding
to a given inlersection.

Most of the unacceptable decisions were made in the newly
introduced major versions of the two systems. This is consistent
with prior findings: The number of architectural changes
between a minor version (e.g., 0.20.2) and the immediately
following major version (e.g., 1.0.0) tends to be significantly
higher than the architectural change between two consecutive
minor versions [4]. In these cases, the decision sizes (mumber
of rationales and consequences) tend to be higher than our
conservative thresholds, and these decisions tend to be rated as
unacceptable. However, these decisions still provide valuable
insight into why the architecture has changed.

The reason that the ARC-based decisions generally score
lower (i.e., they are less right-leaning) than the ACDC-based

Association

Cohesion

Clarity Tractability

Fig. 13. Classification of the recovered decisions based on the satisfied criteria.

ones is due to the nature of changes extracted by ARC. As
discussed previously, ACDC adopts primarily a structural
approach to architecture, while ARC follows a scmantic
approach, which requires a higher level of system understanding.
Therefore, attaining a conclusive rating for these decisions was
not possible by only looking at the decision elements defined
earlier. Our findings suggest that the uncovered decisions based
on ARC are more suitable for experienced users.

C. Recall

Another target of our evaluation was the extent to which
RecovAr manages to successfully capture the design decisions
in our subject systems. Based on the definition of the architec-
taral design decisions (recall Section I), every architectural
change is a consequence of a design decision. We thus use
the coverage of architectural changes by the identified design
decisions as a proxy indicator for measuring RecovAr’s recall.

Our initial analysis reported low recall values, indicating
that a relatively small fraction of the extracted changes formed
design decisions. The first row of Figure 14 displays the results
of this analysis. The recall of the extracted architectural changes
was consistently around 20% in our subject systems regardless
of the used recovery technique. To understand the cause of this,
we manually examined the detected architectural changes for
which RecovAr could not locate the rationale. We were able
to identify two major reasons why an architectural change was
not marked as part of a design decision by RecovAr. The first
was when architectural change was happening in off-the-shelf
components that arc integrated with the system and cvolve
separately. These can be third-party libraries, integrations with
the other Apache software projects, or even changes in the
core Java libraries that are detected by the recovery techniques.
Examples of this phenomenon for Struts include changes to
the Spring Framework’s architecture [34], and for Hadoop
changes to Jetty [8] and several non-core Apache Common
projects. The second reason is what we call the “orphaned
commit” phenomenon. Orphaned commits are those comimnits
that conceptually belong to an issue, but (1) were not added
to an issue, (2) have been merged with the code-base before
their containing issues have been marked as resolved, or (3) a
human error in the issue data rendered them useless for our
approach (e.g., incorrectly specified affected version).

We consider orphaned commits a shortcoming of our
approach that can affect its recall. Orphaned commits might
also limit RecovAr’s ability to recover the initial architectural

Hadoop Struts
ACDC ARC ACDC ARC
Before Cleanup 20% 19% 21% 24%
After Cleanup 85% 67% 80% 63%

Fig. 14. RecovAr’s recall before (top row) and after (bottom row) the clean-up
of the raw-data.

design decisions that are not documented as issues. This is
less concerning when issue trackers are used in tandem with
project management tools for task assignments in the early
stages of development. However, the imposed changes on a
system’s architecture do not capture the original intentions
of the developers and architects. Therefore, we carefully
inspected the architectural changes to eliminate the ones
caused by external factors. In our inspection, we created a
list of namespaces whose elements should not be considered
architectural changes caused by the developer decisions. Partial
lists of these namespaces for Hadoop and Struts are displayed
for illustration in Listings 3 and 4, respectively. We verified each
entry by searching the system’s code repository and confirming
that the instances where imported and not developed internally
by the developer teams.

com.facebook .x
java.lang.x

org.apache .commons. cli .x
javax .ws.rs.x

Listing 3. Imported namespaces for Hadoop

com. opensymphony . xwork2. util . x
java.io.x

org.apache .commons.*
org.springframework .x

Listing 4. Imported namespaces for Struts

We subsequently reevaluated RecovAr’s recall. The results
are displayed in the second row of Figure 14. The recall was

73% on average after climinating externally caused changes.

This also reveals an interesting byproduct of RecovAr: by using
RecovAr or a specially modified version of it, we can detect the
parts of a system that are not developed or maintained by the
system’s core team. This information can be used for automatic
detection of external libraries and dependencies in software
systems, and can help the recovery techniques in extracting a
more accurate view of a system’s core architecture.

D. Threats to validity

We identify several potential threats to the validity of our
study with their corresponding mitigating factors. The key
threats to external validity involve our subject systems. We
chose the two systems in our evaluations from the higher end
of the Apache spectrum in terms of size and lifespan; each
have a vibrant community, and are widely adopted. Another
threat stems from the fact that both of our systems use GitHub
and Jira. However, RecovAr only relies on the basic issue and
commit information that can be found in any generic issuc
tracker or version control system. The different numbers of

versions analyzed per system pose another potential threat to
validity. This is unavoidable, however, since some systems
simply undergo more evolution than others.

The construct validity of our study is mainly threatencd
by the accuracy of the recovered architectural views and of
our detection of architectural decisions. To mitigate the first
threat, we selected the two architecture recovery techniques,
ACDC and ARC, that have demonstrated the greatest accuracy
in a comparative analysis of available techniques [10]. These
techniques are developed independently of one another and use
very different strategies for recovering an architecture. This,
coupled with the fact that their results exhibit similar trends,
helps to strengthen the confidence in our conclusions. The
manual inspection of the accuracy of the design decisions
uncovered by our approach is another threat. Human error
in this process could affect the reported results. To alleviate
this problem, two PhD students independently analyzed the
results to limit the potential biases and mistakes. Morcover,
the inspection procedure was designed to be very conservative.

V. RELATED WORK

Tyree et al. [38] described the importance of design decisions
in demystifying the software architecture and filling in the short-
comings of traditional approaches, such as RM-ODP (Reference
Model for Open Distributed Processing) [29], or 4+1 [17]. They
devised a methodology for architects to document architectural
design decisions, requirements, and pertinent assumptions.
Other decision centric approaches (e.g., [7], [44]) have been
proposed to direct the derivation of target architectures from
requirements. These techniques aim to make design rationale
reusable. RecovAr can augment these techniques and reduce
the architects’ burden by pointing to the existing decisions
where such documents do not exist.

Jansen and Bosch et al. [13], [5] defined architectural
design decisions and argued for the benefits of the invaluable
information getting lost when architecture is modeled using
purely structural elements. Several researchers focused on
studying the concrete benefits of using design decisions in
improving software system’s quality [36], [21], and decision
making under uncertainty [6]. Falessi et al. extensively studied
design rationale and argued for the value of capturing and
explicitly documenting this information [9]. A recent survey
by Weinreich et al. [42] showed that knowledge vaporization
is a problem in practice, even at the individual level. However,
unlike RecovAr, none of these research studies have focused
on automatic recovery of undocumented design decisions.

Roeller et al. [30] proposed RAAM to support reconstruction
of the assumptions picture of a system, i.e., early architectural
design decisions. A serious shortcoming of this approach is
that the researchers need to acquire a deep understanding of the
software system to reconstruct the assumptions. ADDRA [14]
was designed to recover architectural design decisions in an
after the fact documentation effort. It was built on the premise
that in practice, software architectures are often documented
after the fact, i.e. when a system is realized and architectural
design decisions have been taken. Similar to RAAM, and unlike

our approach, ADDRA also relies on architects to articulate
their “tacit” knowledge.

VI. CONTRIBUTIONS AND FUTURE WORK

In this paper, we took a step toward addressing the prob-
lems arising from knowledge vaporization and architectural
erosion [19]. We formally defined the notion of an architectural
design decision. We introduced RecovAr, a technique that uses a
project’s readily available history artifacts (e.g., an issue tracker
or code repository), to automatically recover the architectural
design decisions embodied in that system. We empirically
examined how design decisions manifest in software systems,
using two large, widely-adopted open-source software systems.
While our approach may not recover all the design decisions in
a software system, in our evaluation RecovAr exhibited high
accuracy and recall. Finally, our developed methodology helps
preserve design-decision knowledge in software projects.

There are a number of remaining research challenges that
will guide our future work. There is a slew of information in
software repositories that can help increase the accuracy of
our approach [18]. These include comments, commit messages,
documentations, pull requests, tests, etc. RecovAr can be
extended with a summarization technique to provide succinct
summaries of the recovered rationales and consequences.
Furthermore, we will investigate models that employ RecovAr
to predict the architectural consequences of issues based on
their description thus helping engineers make better-informed
decisions during design and code review time [32].

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under grants no. CCF-1453474, CCF-1564162, CCF-1618231,
and CCF-1717963, by the U.S. Office of Naval Research under
grant no. N0O0014-17-1-2896, and by Huawei Technologies.

REFERENCES

[1] B. Agnew, C. Hofmeister, and J. Purtilo. Planning for change: A
reconfiguration language for distributed systems. Distributed Systems
Engineering, 1(5):313, 1994,

[2] Apache software foundation. http://apache.org/, 2018.

[3] Apache Hadoop. http://hadoop.apache.org/, 2018.

[4] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic. A large-scale study of architectural evolution in open-
source software systems. Empirical Software Engineering, 2016.

[5] I. Bosch. Software architecture: The next step. In European Workshop
on Software Architecture, pages 194-199, 2004.

[6] J. E. Burge. Design rationale: Researching under uncertainty. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 2008.

[71 X. Cui, Y. Sun, and H. Mei. Towards automated solution synthesis
and rationale capture in decision-centric architecture design. In WICSA,
pages 221-230, 2008.

[8] Eclipse Jetty. https://eclipse.org/jetty/, 2018.

[9] D. Falessi, L. C. Briand, G. Cantone, R. Capilla, and P. Kruchten. The

value of design rationale information. TOSEM, 22(3):21, 2013.

J. Garcia, L. Ivkovic, and N. Medvidovic. A comparative analysis of

software architecture recovery techniques. In ASE, 2013.

J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai. Enhanc-

ing architectural recovery using concerns. In ASE, pages 552-555, 2011.

ISO/IEC 42010: 2011 systems and software engineering—recommended

practice for architectural description of software-intensive systems.

Technical report, ISO, 2011.

[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

271

[28]

[29]
[30]

31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

A. Jansen and J. Bosch. Software architecture as a set of architectural

design decisions. In WICSA, pages 109-120, 2005.
A. Jansen, J. Bosch, and P. Avgeriou. Documenting after the fact:

Recovering architectural design decisions. JSS, 81(4):536-557, 2008.
Jira. https://www.atlassian.com/software/jira, 2018.

P. Kruchten. An ontology of architectural design decisions in software
intensive systems. In 2nd Groningen Workshop on Software Variability,
pages 54-61, 2004.

P. B. Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42-50, 1995.

M. Langhammer, A. Shahbazian, N. Medvidovic, and R. H. Reussner.
Automated extraction of rich software models from limited system
information. In WICSA, pages 99-108, 2016.

D. Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical study
of architectural decay in open-source software. In ICSA, 2018.

D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian,
and N. Medvidovic. An empirical study of architectural change in
open-source software systems. In MSR, pages 235-245, 2015.

1. Malavolta, H. Muccini, and V. Smrithi Rekha. Supporting architectural
design decisions evolution through model driven engineering. Software
Engineering for Resilient Systems, pages 63-77, 2011.

N. Medvidovic. ADLs and dynamic architecture changes. In Second
International Software Architecture Workshop, 1996.

N. Medvidovic and R. N. Taylor. A classification and comparison
framework for software architecture description languages. 7TSE,
26(1):70-93, 2000.

K. Mugslu, Y. Brun, and A. Meliou. Data debugging with continuous
testing. In ESEC/FSE NIER, pages 631-634, 2013.

K. Musglu, Y. Brun, and A. Meliou. Preventing data errors with
continuous testing. In ISSTA, pages 373-384, 2015.

P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime
software evolution. In ICSE, pages 177-186, 1998.

M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman.
Are developers aware of the architectural impact of their changes? In
ASE, pages 95-105, 2017.

D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4), 1992.
RM-ODP. http://www.rm-odp.net/, 2018.
R. Roeller, P. Lago, and H. van Vliet.
assumptions. JSS, 79(4):552-573, 2006.
D. Saff and M. D. Ernst. Reducing wasted development time via
continuous testing. In ISSRE, pages 281-292, 2003.

A. Shahbazian, D. Nam, and N. Medvidovic. Toward predicting
architectural significance of implementation issues. In MSR, 2018.

M. Shahin, P. Liang, and M. R. Khayyambashi. Architectural design deci-
sion: Existing models and tools. In WICSA/ECSA, pages 293-296, 2009.
Spring application framework. https://spring.io/, 2018.

Struts. http://struts.apache.org/, 2018.

A. Tang, M. H. Tran, J. Han, and H. Van Vliet. Design reasoning
improves software design quality. In QoSA, pages 28-42, 2008.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

J. Tyree and A. Akerman. Architecture decisions: Demystifying
architecture. IEEE Software, 22(2):19-27, 2005.

V. Tzerpos and R. C. Holt. MoJo: A distance metric for software
clusterings. In RE, pages 187-193, 1999.

V. Tzerpos and R. C. Holt. ACDC: An algorithm for comprehension-
driven clustering. In Working Conference on Reverse Engineering, pages
258-267, 2000.

R. Weinreich and 1. Groher. Software architecture knowledge
management approaches and their support for knowledge management
activities: A systematic literature review. Information and Software
Technology, 80:265-286, 2016.

R. Weinreich, I. Groher, and C. Miesbauer. An expert survey on kinds,
influence factors and documentation of design decisions in practice.
Future Generation Computer Systems, 47:145-160, 2015.

7. Wen and V. Tzerpos. An effectiveness measure for software clustering
algorithms. 1In International Workshop on Program Comprehension,
pages 194-203, 2004.

O. Zimmermann, T. Gschwind, J. Kiister, F. Leymann, and N. Schuster.
Reusable architectural decision models for enterprise application
development. In QoSA, pages 15-32, 2007.

Recovering architectural

	icsa2018_Page_01
	icsa2018_Page_02
	icsa2018_Page_03
	icsa2018_Page_04
	icsa2018_Page_05
	icsa2018_Page_06
	icsa2018_Page_07
	icsa2018_Page_08
	icsa2018_Page_09
	icsa2018_Page_10

