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Abstract—In this paper we frame a fairly comprehensive set of
spacetime detection problems, where a subspace signal modulates
the mean-value vector of a multivariate normal measurement
and nonstationary additive noise determines the covariance
matrix. The measured spacetime data matrix consists of multiple
measurements in time. As time advances, the signal component
moves around in a subspace and the noise covariance matrix
changes in scale.

I. INTRODUCTION

Consider an L-element array of sensors, each of which records
an M -sample time series. We denote the mth measure-
ment, x[m] = αHs[m] + n[m], with x ∈ CL, α ∈ C,
H ∈ CL×p, s ∈ Cp, n ∈ CL. When M copies of such a
measurement are organized into an L×M matrix, the result
is X = αHSH + N, where X = [x[1],x[2], . . . ,x[M ]],
SH = [s[1], s[2], . . . , s[M ]], N = [n[1],n[2], . . . ,n[M ]]. At
time index m, the ith column of H determines the channel
response hisi[m] to the signal transmitted from source i.

We shall test H0 : x[m] = n[m], m = 1, 2, . . . ,M versus
H1 : x[m] = αHs[m] + n[m], m = 1, 2, . . . ,M , for various
assumptions on Σm in the noise model n[m] : CNL[0,Σm],
and for various assumptions about what is known in the signal
model αHs[m]. The distribution of X is the distribution of
independent CNL[αHs[m],Σm] random vectors, assumed to
be proper. We term this a problem of multipulse subspace
detection, as the signal component of the measurement is
trapped in a subspace 〈H〉, and there is a sequence of temporal
measurements, as in SAR, STAP, and pulsed Doppler radar.
The term multi-snapshot subspace detector would have been
just as descriptive for passive problems, where the sequence
of measurements corresponds to snapshots in time of a space-
time field. Throughout our developments we shall maximize
likelihood with respect to unknown parameters, to obtain
generalized likelihood ratios (GLRs). In the statistics literature
these are termed ordinary likelihoods.

II. TEMPORALLY STATIONARY NOISE OF KNOWN
COVARIANCE

The measurement model is CNL[αHs[m],Σ[m]], with
Σ[m] = Σ for all m = 1, 2, . . . ,M . The covariance Σ is
known. Without loss of generality we may assume Σ = IL×L.
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There are four cases to be considered for the subspace signal
model αHs[m].

Multipulse matched filter. In this case, H is known, s[m]
is known, and α is unknown. Write HSH = G. It is a
simple matter to show that the likelihood ratio is the multipulse
incoherent matched filter

log Λ =
| tr[GHX] |2

tr[GHG]
. (1)

This statistic is invariant to translation of measurements X in
〈H〉⊥. It’s null distribution is χ2

2. This generalizes a related
result in [1].

Multipulse matched subspace detector. In this case, H is
known, but αs[m] is unknown. When likelihood is maximized
with respect to the unknown αs[m], the resulting GLR is

log Λ = tr[XHPHX] (2)

This statistic is invariant to rotation of measurements X in
〈H〉, 〈H〉⊥, and to translation in 〈H〉⊥. This is a cylinder. The
null distribution is χ2

2Mp. This generalizes a related result in
[1].

Dual of Matched subspace detector. In this case, αH is
unknown, but s[m] is known. When likelihood is maximized
with respect to the subspace basis αH, the resulting GLR is

log Λ = tr[XPSXH ] (3)

This statistic is invariant to rotation in 〈S〉, 〈S〉⊥, and trans-
lation in 〈S〉⊥. Its null distribution is χ2

2Lp.

Matched direction detector. In this case αH, and s[m] are
unknown. When likelihood is maximized with respect to these
unknowns, the resulting GLR is

log Λ =

p∑
r=1

evr[XXH ] (4)

where evr is the rth largest eigenvalue. This statistic could as
well have been written tr[UH

p XXHUp], where Up contains
the p dominant eignevectors for XXH . So the measurements
are matched to the p dominant eigenvectors, or orthogonal
directions, of the sample covariance matrix. This statistic is
invariant to unitary transformation of the measurement matrix
X→ UXV, for U ∈ CL×L, V ∈ CM×M unitary. Under the
null and for p = 1, log Λ is the largest eigenvalue of a central
complex Wishart distribution, and its pdf is given in [2].
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III. TEMPORALLY STATIONARY NOISE OF KNOWN
COVARIANCE STRUCTURE, BUT UNKNOWN AND

STATIONARY SCALE

The measurement model is CNL[αHs[m],Σ[m]], with
Σ[m] = σ2Σ for all m = 1, 2, . . . ,M . The nominal co-
variance Σ is known, but its stationary scale σ2 is unknown.
Without loss of generality we may assume Σ = IL×L. There
are four cases to be considered for the subspace signal model
αHs[m].

CFAR incoherent matched filter. In this case, H is known,
and s[m] is known. Write HS = G. The generalized likeli-
hood ratio, obtained by maximizing likelihood with respect to
σ2 and α, under each of H0 and H1 is

1− 1

Λ1/LM
=

| tr[GHX] |2

tr[GHG]tr[XXH ]
. (5)

This statistic is invariant to translation of measurements X in
〈H〉⊥. This generalizes a related result in [1].

Multipulse CFAR matched subspace detector. In this case,
H is known, and αs[m] is unknown. Likelihood is maximized
with respect to the unknown scale σ2 and the sequence of
unknown signal vectors αs[m],m = 1, . . . ,M . The result is

1− 1

Λ1/LM
=

tr[XHPHX]

tr[XHX]
(6)

This is a multipulse CFAR matched subspace detector, gen-
eralizing the result of [1]. It is invariant to rotation in 〈H〉,
〈H〉⊥, scaling of X, and unitary transformation X → XU,
for U ∈ CM×M unitary. Under the null it is distributed as
β(Mp,M(L− p)). This generalizes a related result in [1].

Dual of multipulse CFAR matched subspace detector. In
this case, αH is unknown, but s[m] is known. The GLR is

1− 1

Λ1/LM
=

tr[XPSXH ]

tr[XXH ]
(7)

This statistic is invariant to rotation in 〈S〉, 〈S〉⊥, and to
scaling of X. Its null distribution is β(Lp,L(M − p)).

Multipulse CFAR matched direction detector. In this case,
αH is unknown, and s[m] is unknown. The GLR is

1− 1

Λ1/LM
=

∑p
r=1 evr(XXH)

tr[XXH ]
(8)

This statistic is invariant to unitary transformation X →
UXV, for U ∈ CL×L, V ∈ CM×M unitary, and to scaling
of X, making it CFAR. This statistic generalizes the matched
direction detector of [3]. For p = 1 and L = 2, the null and
alternate distributions of Λ are studied in [3].

IV. NOISE OF KNOWN COVARIANCE, WITH UNKNOWN
AND TIME-VARYING SCALE

The measurement model is CNL[αHs[m],Σ[m]], with
Σ[m] = σ2[m]Σ for m = 1, 2, . . . ,M . The nominal covari-
ance Σ is known, but its time-varying scale σ2[m] is unknown.
Without loss of generality we may assume Σ = IL×L. In this
model there is just one assumption about the signal model
αHs[m] that leads to a tractable GLR, namely H is known,
but αs[m] is unknown.

Multipulse Coherence Estimator (MPCE). In this case, H is
known, but αs[m] is unknown. Likelihood may be maximized
over unknown σ2[m] and αs[m] to produce the GLR

1− 1

Λ1/L
= 1−

M∏
m=1

(1− ρ2m); ρ2m =
xH [m]PHx[m]

xH [m]x[m]
(9)

This multipulse coherence statistic in invariant to rotation
in 〈H〉, 〈H〉⊥, and time-varying scalings of the x[m]’s. Its
null distribution is the distribution of the random variable
1 −

∏
um, where the random variables um are independent

random variables distributed as um ∼ β(L−p, p). This MPCE
has been derived by Abramovich and Besson [4] by assigning
a Gamma prior to an i.i.d. sequence of σ2[m]. They then
marginalized for a Bayesian likelihood, and approximated the
result to obtain (9). In [5] this result is generalized to obtain
a multipulse adaptive coherence estimator (MPACE) that uses
secondary data to estimate an unknown covariance matrix.

V. STATIONARY NOISE OF UNKNOWN COVARIANCE

The measurement model is CNL[αHs[m],Σ[m]], with
Σ[m] = Σ for all m = 1, 2, . . . ,M . The covariance Σ is
unknown, but stationary in time. In this model there is just
one assumption about the signal model αHs[m] that leads to
a tractable GLR, namely αH is unknown, but s[m] known.
This is the generalization of the RX problem [6] considered
by Bliss and Parker [7].

Multi-rank RX. In this case, αH is unknown, and s[m] is
known. When likelihood is maximized over the unknown basis
αH, the following GLR results:

1

Λ1/M
=

det(X(IM −PS)XH)

det(XXH)
. (10)

This statistic is invariant to transformation X → TX, for
T ∈ CL×L nonsingular. In a related paper [8], it is shown that
this statistics may be written as a variation on the Wilks Λ.
Its null distribution is shown to be distributed as the random
variable

∏L
`=1 u`, where the independent u`’s are u` ∼ β(M−

p − ` − 1, p). This result specializes to the null distribution
found by Reed and Yu for the case p = 1. This exact null
distribution for finite values of L and M may be compared
with the large random matrix approximation of Hiltunen and
Loubaton [9] for asymptotically large L and M .
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VI. CONCLUSIONS

The detectors of this paper may be considered to be first-
order detectors, where the signal component to be detected is
carried in the mean value vectors of a sequence of temporal
measurements in a multi-sensor array. The second-order ver-
sions of these problems would assign a multivariate normal
prior distribution to unknowns αs[m], leading to variations on
standard problems in factor analysis [10], [11].
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