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ABSTRACT
Principal component analysis of cylindrical neighborhoods is
proposed to study the local geometry of embedded Rieman-
nian manifolds. At every generic point and scale, a high-
dimensional cylinder orthogonal to the tangent space at the
point cuts out a path-connected patch whose point-set dis-
tribution in ambient space encodes the intrinsic and extrin-
sic curvature. The covariance matrix of the points from that
neighborhood has eigenvectors whose scale limit tends to the
Frenet-Serret frame for curves, and to what we call the Ricci-
Weingarten principal directions for submanifolds. More im-
portantly, the limit of differences and products of eigenvalues
can be used to recover curvature information at the point. The
formula for hypersurfaces in terms of principal curvatures is
particularly simple and plays a crucial role in the study of
higher-codimension cases.

Index Terms— covariance analysis, curvature, integral
invariants, PCA, Riemannian manifold

1. INTRODUCTION

The ideal goal of manifold learning is the local characteriza-
tion and reconstruction of manifold geometry from the study
of the underlying point set.

Computations of the volume of small geodesic balls
within a manifold [1], and volumes cut out by a hypersurface
in a ball of the ambient space [2], establish a direct relation
to extrinsic mean curvature and the intrinsic Riemann curva-
ture. The eigenvalue decomposition of covariance matrices
of spherical intersection domains on the manifold was intro-
duced in [3], [4, 5] to obtain local adaptive Galerkin frames,
which provide estimates of the dimension and the tangent
space of a submanifold at every point. Covariance integral
invariants have been studied [6], [7], [8, 9], [10], [11], [12],
[13, 14] as a means to determine relevant local geometric in-
formation while maintaining good behavior in noise [15, 16],
[17], e.g., for feature estimation of point clouds. Some of
these covariance methods use the Taylor expansion of the
eigenvalue decomposition of the matrices at scale to estimate
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principal directions and curvatures, primarily for curves and
surfaces.

In this paper we define an integral invariant for embedded
Riemannian manifolds of any dimension, based on a cylin-
drical covariance matrix at every point, as a function of the
scale. Then its eigenvalue Taylor expansion can be computed
exactly to second order. Its limit eigenvectors reproduce the
Frenet-Serret frame in the case of curves and the principal di-
rections of the Ricci-Weingarten tensor in general; its limit
eigenvalues are directly related to the principal curvatures of
such a tensor. For hypersurfaces this permits the partial re-
construction, up to sign choices, of the second fundamental
form and thus the Riemann curvature tensor at every generic
point from the statistics of the underlying point-set.

2. GEOMETRIC COVARIANCE MATRICES

The covariance matrices defined in [3], [4, 5] for general man-
ifolds, and the integral invariants studied in [8, 9], [10], [11,
15, 16] for smooth curves and surfaces, are local moments of
inertia based essentially on domains of intersection with balls.

In our work we modify this approach by considering
cylindrical intersections. As motivation we may define the
spherical covariance matrix of a euclidean n-dimensional
submanifold M ⇢ Rn+k for a (n + k)-ball Bp(") of radius
" � 0 at point p 2 M as

�p(") :=
1

Volp(")

Z

Bp(")\M
(x� p) · (x� p)T dVol,

where dVol is the measure on the manifold induced by the
euclidean measure, and Volp(") is the volume ofM \ Bp(").

A local adaptive Galerkin basis [3] for invariant mani-
folds of dynamical systems is obtained from the eigenvalue
decomposition of this integral invariant, where the "2 scaling
of the first n eigenvalues singles out the tangent space TpM
spanned by the corresponding eigenvectors, and the remain-
ing k eigenvectors, from the eigenvalues scaling at least as "4,
span the normal space NpM. This serves as a method to de-
compose the tangent space at p into normal and tangent direc-
tions at a given scale. In the case of surfaces, these yield ex-
pressions for the Taylor expansion of the eigenvalues in terms



of the dimension and the principal curvatures, which can then
be used as geometry descriptors at scale, e.g. [4], [15]. The
other most important property is that some of these estima-
tors are robust with respect to noise [8], [11], [17] due to the
averaging nature of the integrals.

But results like these have not been generalized to man-
ifolds of arbitrary dimension embedded in euclidean space,
mainly because of the difficulty to compute integrals that re-
quire, e.g., M \ Bp(") to be parametrized. For small enough
", M is locally given around p by k smooth functions fj :

TpM ⇠
=

Rn ! R, 1  j  k, such that fj(0) = 0 and
rfj(0) = 0; this makes the domain of integration kxk2 +Pk

j=1 fj(x)
2  "2, for x 2 TpM, which renders the n-

dimensional multiple integral of the spherical covariance ma-
trix intractable in practice. We change the type of intersection
by using cylinders so that the integration domain reduces to a
ball on the tangent space.

We define the cylindrical component Cylp(",V) of radius
" � 0 of an n-manifold M ⇢ Rn+k, over the m-plane V in
the Grassmannian Gr(m,n+ k) at a point p 2 M, to be the
component of the cylinder intersection onto V,

Cylp(",V) := M \ {x 2 Rn+k
: kprojV(x� p)k  "},

which is path-connected to the point p. Here projV(·) is the
orthogonal projection of a point onto the m-plane V. Thus,
the section of M that is cut out only takes the points con-
nected to p that lie inside the cylinder created by extending a
ball inside V into the perpendicular directions V?. We pro-
pose this as our main object of interest.

Definition If the volume Vp(") of Cylp(",V) is finite for an
m-plane V 2 Gr(m,n+ k), the cylindrical covariance ma-
trix over V of radius ", at point p 2 M of an n-dimensional
submanifold M ⇢ Rn+k is

Cp(",V) :=
1

Vp(")

Z

Cylp(",V)
(x� p) · (x� p)T dVol,

where dVol is the measure on M from the induced metric.

It is useful to think of Cp(",V) as an (n + k) ⇥ (n + k)
matrix-valued function of scale ". This function may be given
an eigenvalue expansion for each " [18], [19].

Since using the eigenvalue decomposition of the spheri-
cal covariance to leading order singles out the dimension of
the manifold and the tangent space (the cylindrical covari-
ance eigenvectors for generic V do so as well), we can always
choose V = TpM, as in fig. 1. Indeed, this will result in
the simplest eigenvalue expansion for Cp(") := Cp(", TpM)

with the curvature information at second order as expected.

3. REGULAR CURVES

The case of regular curves �(s) in Rn needs to be studied in-
dependently of higher-dimensional submanifolds, since they

Fig. 1. The cylindrical component over the tangent space cuts
out a section of the manifold whose covariance matrix defines
an integral invariant at scale " related to the curvature at p.

only have extrinsic curvature. Our covariance matrix at scale
" and point t, parametrized by arclength s, reduces to

Ct(") =
1

2✏

Z t+✏

t�✏
(�(s)� �(t)) · (�(s)� �(t))T ds.

The Frenet-Serret frame is classicaly defined as the frame
obtained by the Gram-Schmidt orthonormalization of the
derivative vectors {�0

(s), �00
(s), . . . , �(n)

(s)} at every point.
Then it is shown in [5], [20] that this frame is recovered from
the limiting eigenvectors of the covariance matrix.

Proposition 3.1 Let � : I ! Rn be a parametric curve of
class Cn+1, regular of order n. Let e1(t), . . . , en(t) denote
the Frenet-Serret frame at �(t). Let V 1(t), . . . ,V n(t) denote
the limit eigenvector of Ct(") at �(t) for " ! 0. Then for
j = 1, . . . , n, ej(t) = ±V j(t).

Generalized curvatures of such a curve at point t can be
defined by the scalar products j(s) = h e0j(s) , ej+1(s) i
for 1  j  n� 1, and these functions are classically known
to determine the curve locally up to rigid motion [21]. Now,
the leading term of the eigenvalue series expansion of Ct(")
is directly related to the generalized curvatures [5]:

�1(") =
1

3

"2 +O("4),

�j(") =
(1 · · ·j�1)

2

(j!)2
Bj

Bj�1
"2j +O("2j+2

), j = 2, . . . , n

whereBj are the following Hankel determinants of size n⇥n

Bn = det(An), (An)ij =

(
1

i+j+1 , if i+ j is even;
0 otherwise.

Concrete examples and the explicit computation of the re-
cursion formula for these determinants is carried out in [20]



by using the theory of monic orthogonal polynomials. Solv-
ing the Stieltjes moment problem for a particular Hankel se-
quence that includes the case of interest, produces an explicit
expression for the determinants, using Selberg’s integral for-
mula. This yields the main result of covariance analysis for
regular curves [20]:

Theorem 3.2 Let � : I ! Rn be a parametric curve of class
Cn+1, regular of order n for any n 2 N. Let j(t) denote the
jth curvature function of � evaluated at t, and let �j(") be
the jth eigenvalue of Ct("). For each t 2 I and each j < n,

lim

"!0

�j+1

�1�j
= Aj

2
j with Aj�1 =

✓
j + (�1)

j

j

◆2
3

4j2 � 1

.

Given a sign choice, the curvature functions j could in
principle be estimated by this method, applying a covariance
analysis for decreasing scales around every point. Implemen-
tation of this for a fine sample of points would constitute a
scheme at scale for local characterization of the curve up to
rigid motion.

4. RIEMANNIAN MANIFOLDS

For a Riemannian manifold (M, h ·, · i) the intrinsic curvature
tensor can be defined [22], [23], [24], [25] as a measure of the
non-commutativity of the Levi-Civita connection:

R(x,y)z = (rxry �ryrx �r[x,y])z,

for vector fields x,y, z of the bundle TM. The Ricci tensor
is the result of tracing out over a tangent basis {eµ}nµ=1:

Ric(x,y) =
nX

µ=1

hR(eµ,x)y, eµi,

and intuitively corresponds to an average of sectional curva-
tures. When embedded in euclidean space with directional
derivative r, the extrinsic curvature is given in terms of the
second fundamental form II(x,y) = (rx y)?, where ? is
the orthogonal projection onto the normal bundle of M. For
a hypersurface, it conceptually measures how the normal vec-
tor turns tangentially. All these are symmetric bilinear forms
that smoothly vary with the point, and as such, there are corre-
sponding linear operators on TpM associated by metric pair-
ing over a tangent basis [24]:

h bReµ, e⌫i = Ric(eµ, e⌫),

h bSNeµ, e⌫i = hII(eµ, e⌫),Ni,
called respectively the Ricci operator and the Weingarten op-
erator in the normal direction N . We finally recall the notion
of mean curvature vector, generalizing the mean curvature of
hypersurfaces: H =

Pn
µ=1 II(eµ, eµ), i.e., the trace of the

Weingarten operator. Similarly, the scalar curvature R is de-
fined to be the trace of the Ricci operator.

Let us define the Ricci-Weingarten operator as the endo-
morphism of TpM given by

cW :=

bSH � bR,

and we call its eigenvectors and eigenvalues the Ricci-
Weingarten principal directions and principal curvatures.

Proposition 4.1 The asymptotic volume ratio between the
cylindrical component over the tangent space of M and the
euclidean ball of the same dimension is:

Vol(Cylp("))

Vol(Bp("))
= 1 +

"2

2(n+ 2)

(kHk2 �R) +O("4),

where in fact kHk2 �R = tr

cW .

The cylindrical covariance analysis eigenvectors tend to
the generalized principal directions.

Proposition 4.2 LetM be an n-dimensional Riemannin sub-
manifold of Rn+k. Then for every generic point p 2 M
the limit eigenvectors {V i(0)}n+k

i=1 of the tangent cylindrical
covariance matrix Cp(") yield a local adapted orthonormal
frame of TpM � NpM. The tangent basis consists of the
Ricci-Weingarten principal directions {eµ}nµ=1 correspond-
ing to n eigenvalues that scale as "2, whereas the normal ba-
sis {N j}kj=1 corresponds to k eigenvalues that scale as "4.

For Einstein manifolds the Ricci curvature vanishes at or-
thonormal vectors which amounts to diagonalizing just the
Weingarten operator and thus having the classical principal
directions for the mean curvature as limit eigenvectors. When
the manifold is minimal the mean curvature is zero so the
diagonalization reduces to that of the Ricci operator and its
principal directions. The general tangent frame selected by
the limit eigenvectors of the covariance matrix is thus an inter-
mediate set of perpendicular directions between these two ex-
treme cases. The main result of the present work is a version
of theorem 3.2 for general manifolds in terms of the eigen-
value decomposition of cW .

Theorem 4.3 The tangent eigenvalues of Cp(") satisfy

lim

"!0

�µ(")� �⌫(")

�µ(")�⌫(")
=

n+ 2

n+ 4

(Wµ �W⌫ ) ,

where Wµ are the eigenvalues of cW at p. Also, the normal
eigenvalues satisfy:

lim

"!0

1

�µ(")�⌫(")

n+kX

j=n+1

�j(") =
n+ 2

n+ 4

✓
3

4

kHk2 � 1

2

R
◆

for any µ, ⌫ = 1, . . . , n.



The second formula above provides a closed-form expres-
sion for the average of the curvature integrals in the normal
eigenvalues of [4, 5], generalizing the explicit result for sur-
faces [4].

Example Let S be a hypersurface in Rn+1. At every generic
point p, the limit eigenvectors of Cp(") yield a local adapted
orthonormal frame he1, . . . , eni � hNi ⇠

=

TpRn+1. If the
principal curvatures are of different absolute value, this basis
exactly consists of the classical principal directions. More-
over, in this case the Ricci-Weingarten eigenvalues simplify
to result in

lim

"!0

�µ(")� �⌫(")

�µ(")�⌫(")
=

n+ 2

n+ 4

(2
µ � 2

⌫ ),

and
lim

"!0

�n+1(")

�µ(")�⌫(")
=

n+ 2

n+ 4

✓
3

4

H2 �K
◆
,

for any µ, ⌫ = 1, . . . , n. Here µ, H, K are respectively the
principal, mean and Gaussian curvatures of S at p. This yields
the same factor as our other formula for planar curves.

Within a general ambient Riemannian manifold N there
are no global cartesian coordinates available but for scales
smaller than the injectivity radius rp at each point, geodesic
coordinates (Riemann normal coordinates) are available via
the exponential map ofN , since in that case it is a diffeomor-
phism from the tangent space. Then the cylindrical compo-
nent of radius 0  "  rp at a point p of an n-dimensional
submanifoldM of an (n+k)-dimensional Riemannian man-
ifold N , over the m-plane V, can be defined to be:

Cylp(",V) = M\{q 2 N : kprojV(exp�1
p (q))k  "  rp},

and with this, a cylindrical geodesic covariance matrix can in
turn still be meaningful:

Cp(",V) =
1

Vp(")

Z

Cylp(",V)
[exp

�1
p (q)⌦ exp

�1
p (q)] dVol,

where dVol is the induced measure on M from the metric of
N . The entries of the matrix are given by choosing a frame
at p that establishes an isomorphism TpN ⇠

=

Rn+k in which
the exp map acquires vector components through the normal
coordinates. In this context, our analysis can be generalized
as long as the extra ambient curvature operator is taken into
account: cW =

bSH +

bRN � bRM.

5. CURVATURE RECONSTRUCTION

Using the volume comparison formula for a hypersurface S ,
we can determine at every point the number

A := H2 � 2K = lim

"!0

2(n+ 2)

"2


Vol(Cylp(", TpS))

Vol(Bp("))
� 1

�
.

Calling Aµ⌫ = 2
µ � 2

⌫ , these can be computed from the
eigenvalue limits of our theorem in the hypersurface case, un-
der the same generic conditions, so that the principal curva-
tures can be determined:

2
µ =

1

n
(A+

nX

⇢=1

Aµ⇢),
2
⌫ 6=µ =

1

n
(A+

nX

⇢=1

Aµ⇢)�Aµ⌫ .

Since the orientation of the normal vector changes all signs of
the curvature, we have 2n�1 sign choices, locally maintained
around p by the n functions . In principle these functions
and principal directions at every point determine the second
fundamental form locally, so by the hypersurface characteri-
zation theorem [25], there exist 2n�1 hypersurfaces unique up
to rigid motion corresponding to the given underlying point-
set via this covariance analysis.

Hence, all the information to recover the extrinsic and
intrinsic curvatures of M, up to 2

k(n�1) sign choices, is in
the eigenvalue decomposition of the matrices Cp(") of the k
local hypersurfaces Sj , created by projecting M to the lin-
ear spaces TpM � hN ji. Precisely, if [Vj ] are the matrices
of the principal direction vectors of Sj , i.e. the limit eigen-
vectors of Cp(") as columns in a chosen orthonormal frame
{uµ}nµ=1 [ {vj}kj=1 for TpM �NpM, and [Kj ] are the di-
agonal matrices of principal curvatures, then the second fun-
damental form is:

II(uµ,u⌫) =

kX

j=1

[VjKjV
T
j ]µ⌫ vj , µ, ⌫ = 1, . . . , n.

Therefore, by Gauss equation, the Riemann curvature tensor
components at p in this frame are hR(uµ,u⌫)u↵, u�i =

kX

j=1

�
VjKjV

T
j |µ�VjKjV

T
j |⌫↵ � VjKjV

T
j |µ↵VjKjV

T
j |⌫�

�

The next natural step would be the study of special geo-
metric properties from covariance eigenvalues.

6. CONCLUSION

We have proposed a cylindrical covariance matrix, defined at
the scale of the cylinder radius, as a descriptor to be estimated
from the point set of a Riemannian submanifold. The eigen-
vectors of this covariance matrix converge to a basis for a
tangent frame, and this basis defines generalized principal di-
rections. The eigenvalues of the covariance matrix converge
to functions of extrinsic and intrinsic curvature. This extends
the use of multiscale integral invariants to manifolds of ar-
bitrary dimension embedded in euclidean space, and can be
generalized to other ambient Riemannian manifolds by using
geodesic normal coordinates through the exponential map.
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[13] Quentin Mérigot, Geometric structure detection in point
clouds, PhD. Thesis, Université Nice Sophia Antipolis,
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