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Abstract—We consider the problem of transmitting at the
optimal rate over a rapidly-varying wireless channel with un-
known statistics when the feedback about channel quality is very
limited. One motivation for this problem is that, in emerging
wireless networks, the use of mmWave bands means that the
channel quality can fluctuate rapidly and thus, one cannot rely on
full channel-state feedback to make transmission rate decisions.
Inspired by related problems in the context of multi-armed
bandits, we consider a well-known algorithm called Thompson
sampling to address this problem. However, unlike the traditional
multi-armed bandit problem, a direct application of Thompson
sampling results in a computational and storage complexity
that grows exponentially with time. Therefore, we propose an
algorithm called Modified Thompson sampling (MTS), whose
computational and storage complexity is simply linear in the
number of channel states and which achieves at most logarithmic
regret as a function of time when compared to an optimal
algorithm which knows the probability distribution of the channel
states.

Index Terms—Link Rate Selection, Thompson Sampling, Re-
gret Minimization, Computational Complexity.

I. INTRODUCTION

We are on the verge of an exciting and an unprecedented
expansion of the available communication spectrum. In par-
ticular, FCC has recently opened up (see [1]) vast spectrum
bands (at least 14 GHz in the 57 − 71 GHz range, and
more expected) above 28 GHz to public use. These new so-
called millimeter Wave (mmW) bands come with their unique
dynamics and challenges that demand a fresh look towards
the learning and utilization of this new spectrum. On the
one hand, the statistical characteristics and sensitivities of
these extremely high frequency levels do not fit (see [2]–
[5] and references therein for extended discussion) into the
commonly used communication radio frequencies (of up to
3 GHz), for which existing cellular technologies and most
commonly used 802.11a/b/g/n WiFi protocols are designed.
These new channels are highly sensitive to mobility and are
subject to drastic time variations that must be accommodated
in the learning process.

On the other hand, the vast expansion of the spectrum from
previous levels of about 3 GHz by an order of magnitude
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makes the use of existing estimation and allocation strategies
impractical due to the scaling and coordination costs. This mo-
tivates us in this work to take a fresh approach to fast learning
and resource allocation for multi-rate wireless communication
under time-varying and unknown channel conditions.

Traditional communication protocols employ a variety of
probing and channel estimation techniques to guide power
and rate allocation decisions (see [6]–[8]). While the sophis-
tication and efficiency of these methods vary from carefully
engineered cellular technologies to random-access-based WiFi
technologies, the common foundation that they are built upon
is the assumption that the cost of channel estimation is worth
the utility of the acquired channel state information (CSI).
This assumption holds in existing systems for two reasons:
first, because the channels in the existing communication
frequencies are less sensitive to mobilities and thus the CSI
can be utilized for a longer duration, and second because the
available spectrum of no more than 3 GHz is small enough to
track and thus important enough to utilize.

These approaches, however, are not necessarily applica-
ble in the emerging ultra-wideband wireless communication
paradigm due to the highly intermittent dynamics and the non-
traditional statistics of mmW channels (see [2], [9]–[11]), and
the vast scale of the new spectrum (see [1]). In such a setting,
where the channel statistics are unknown apriori and the
channel conditions are highly time-varying, it is necessary to
develop new online learning and adaptive allocation strategies
based on limited feedback, such as success/fail signals, that
can rapidly converge to optimal solutions with minimal regret.

Several interesting works have explored the learning and
rate allocation problem for sum throughput maximization (e.g.
[12]) under error bounds (e.g. [13]) based on degraded or
ACK/NACK type ARQ feedback. These works, however, do
not provide guarantees on short-term performance, such as
regret optimality (see [14]–[16]), that are critical in rapidly
time-varying channels such as mmW channels.

In this paper, we consider the problem of rate selection for a
single user where there is no explicit channel state feedback,
but the only feedback available is whether the transmission
was successful or not. This problem is related to, but also
quite different from, multi-armed bandit problems which have
been studied extensively in the context of spectrum sharing in
wireless networks (see [17]–[19]). While many of these works



are in the context of multiple users, somewhat surprisingly,
the rate selection problem with limited feedback is challenging
even for a single user which is what we focus on in this paper.

Our main contributions in this paper are the following:
• We pose the optimal link rate selection problem so that

the general Thompson Sampling (TS) algorithm (see
[15]) can be used. However, we identify computational
complexity and storage issues with the general TS algo-
rithm which renders it infeasible (see Sections III-A and
III-B).

• We design a Modified Thompson Sampling (MTS) al-
gorithm which ignores the fact that a higher transmis-
sion rate is less likely to succeed and decouples the
rate admissibility probabilities for various transmission
rates. Despite this approximation, we show that MTS has
logarithmic (or smaller) regret (see Sections III-C and
IV).

• We also discuss another way to decouple the rate admis-
sibility probabilities using existing Thompson sampling
ideas. However, we show that this approach leads to
inferior results compared to our proposed MTS algorithm
(see Section IV-A for the theory and Section VI for
simulations).

• For a special case, we show that the constant achieved
in the logarithmic upper bound for MTS is the tightest
possible by obtaining a lower bound using a Lai and
Robbins (see [16]) style of analysis (see Section V).

• We conclude the paper with simulation results corroborat-
ing the validity of our theoretical guarantees (see Section
VI).

II. MODEL AND PROBLEM STATEMENT

We consider a wireless link where the transmitter can
transmit at n possible transmission rates: r1, r2, ..., rn. Let the
set of these n transmission rates be denoted by R. Without
loss of generality, we assume that r1 < r2 < ... < rn.
Corresponding to each transmission rate ri, there is a rate
admissibility probability θ∗i which denotes the probability
with which the transmission will be successful at rate ri,
i.e., P{transmission at rate ri goes through} = θ∗i . Let θ∗ =
(θ∗1 , θ

∗
2 , . . . θ

∗
n). The probability of success for lower transmis-

sion rates is higher, i.e., we have 1 = θ∗1 > θ∗2 > ... > θ∗n.
The assumption that transmission at the lowest rate is always
successful is without loss of generality since we can always
let r1 = 0.

We elaborate on the above model further by looking at the
wireless channel in more detail. Consider a random channel
(h(t))t≥0 which can be in one of the following n states (at any
time t): h1, h2, ..., hn. Let H = {h1, h2, ..., hn}. Let the cor-
responding probabilities associated with these channel states
be ν∗ = (ν∗1 , ν

∗
2 , ..., ν

∗
n), i.e., P{h(t) = hi} = ν∗i , ∀1 ≤ i ≤

n, ∀t ≥ 0. At each time slot t, the channel state h(t) is drawn
independently from the above distribution. Each channel state
admits a maximum possible transmission rate, i.e., correspond-
ing to each channel state hi ∈ H, we have a maximum possible
rate ri which can be successfully transmitted. Without loss

of generality, we assume that h1, h2, ..., hn are ordered in
the increasing order of their respective maximum admissible
transmission rates, i.e., r1 < r2 < ... < rn. As before, let
R = {r1, r2, ..., rn}. Note that if the channel is in state hk,
it can admit transmission rates ri, 1 ≤ i ≤ k. Therefore, for
any rate ri the probability of being successfully transmitted
at any time t is

∑n
j=i ν

∗
j . From the definition of θ∗i , we have

θ∗i =
∑n
j=i ν

∗
j .

Our goal is to use the communication channel as efficiently
as possible. Hence, the aim is to transmit at the optimal
transmission rate, i.e., the transmission rate that maximizes
the expected throughput at each time slot. If the channel state
probabilities or the rate admissibility probabilities are known,
this essentially translates to solving the following optimization
problem to find the optimal rate r∗:

r∗ = arg max
ri∈R

ri ×
n∑
j=i

ν∗j ≡ arg max
ri∈R

ri × θ∗i (1)

The challenge is that the channel state probabilities or the
rate admissibility probabilities are unknown. Therefore, we
cannot solve the optimization problem (1) exactly. Our aim is
to design an algorithm that determines the rate of transmission
at each time slot such that our expected throughput over a large
time-horizon is as close to the optimal expected throughput as
possible.

We call the maximization problem in (1), the rate selection
problem where we adapt the channel transmission rate to the
unknown success probabilities θ∗i , which have to be learned
either directly or indirectly through some learning algorithm.
The rate selection problem has similarities to the multi-armed
bandit problem. Each transmission rate can be treated as a
possible arm to pull in a multi-armed bandit scenario. The
aim is to transmit at the optimal rate (pulling the optimal
arm) at each time slot to minimize the expected regret. The
major difference between our problem setup and the multi-
armed bandit problem is the fact that the rate admissibility
probabilities for different rates (components of θ∗) are corre-
lated and not independent of each other. This difference gives
rise to difficulties and challenges which do not arise in the
traditional multi-armed bandit framework.

We now set the notation for the rest of the paper. Let
the transmission rate at each time slot t be denoted by
r(t), which belongs to the set {r1, r2, ..., rn}. Also, let the
channel state at time t be h(t), where h(t) = hj , for some
j ∈ {1, 2, ..., n}. At each time slot t, we observe a random
variable X(t) = f(h(t), r(t)) , I{r(t) ≤ rj}, i.e., the
random variable X(t) is 1 if the transmission at rate r(t) was
successful and 0 otherwise. Let X(t) ∈ X , where X , {0, 1}.
If the rate at which we transmit is less than or equal to
the maximum admissible rate of the channel state then the
throughput is equal to the transmission rate, otherwise the
throughput is 0. The optimization problem (1) can then be
rewritten as:

r∗ = arg max
ri∈R

E[r(t)×X(t)|r(t) = ri, θ
∗] (2)



For ease of exposition, let i∗ denote the index correspond-
ing to the optimal rate, i.e., r∗ = ri∗ . Let the probability
distribution for the random transmission outcome X(t) =
f(h(t), r) at each time slot t (given the transmission rate r
and the underlying rate admissibility distribution parameter
θ) be represented by p(x; r, θ). Note that p(x; r, θ) is a
Bernoulli distribution as X(t) ∈ {0, 1}. For any parame-
ter θ, the optimal transmission rate is given by ropt(θ) =
arg maxr∈R E[r(t)X(t)|r(t) = r, θ]. Let r∗ = ri∗ =
ropt(θ

∗). Since we do not know the true parameter θ∗, we need
to design an algorithm that minimizes the number of times
we transmit at sub-optimal rates, i.e., the number of times we
select sub-optimal actions. We define the (expected) regret/loss
as E[l(T )] = E[

∑T
t=1 I{r(t) 6= ri∗}(ri∗θ∗i∗ − r(t)θ∗i(t))]. Here

i(t) denotes the index of r(t), i.e., r(t) = ri(t). The expected
regret can also be written as follows:

E[l(T )] = E[
∑
i6=i∗

Ni(T + 1)∆i] =
∑
i6=i∗

E[Ni(T + 1)]∆i.

where, Ni(T + 1) is the number of times we transmit at a
sub-optimal rate ri until time T and ∆i = ri∗θ

∗
i∗ − riθ∗i .

III. ALGORITHMS

In this section, we first briefly discuss the Thompson
Sampling (TS) algorithm (see [20], [14], [15]). Although the
Thompson sampling algorithm for the standard multi-armed
bandits problem with Bernoulli rewards does not apply directly
to our problem, we build on it to design MTS, a Modified
Thompson Sampling algorithm. However, a more general ver-
sion of the Thompson sampling algorithm (see [15], Algorithm
1) applies to our problem but is not feasible. We will illustrate
why this general TS algorithm is not suitable for our problem.
We then present our algorithm which is inspired by the TS
algorithm for Bernoulli bandits (see [20], [14]) and is referred
to as MTS (see Algorithm 2). In subsequent sections, we will
present theoretical guarantees on the performance of MTS. We
also provide simulation results to corroborate the theoretical
claims.

A. Thompson sampling algorithm

In the standard stochastic multi-armed bandit problem, we
have several actions (or arms) available to us and at every
time slot, we need to choose one of the available actions to
play. Once an action is played, we receive a random reward.
Corresponding to every action, the random reward is drawn
from a probability distribution with a finite expected value.
The reward for the action played is independent and identically
distributed (i.i.d.) at every time slot.

The objective of the problem is to design an algorithm
that determines the best action to play at any time slot, i.e.,
the action with the maximum expected value of the reward
outcome. The algorithm has access to the history of actions
played and the reward outcomes until the latest time slot and
can use this history to choose the next action. The multi-armed
bandit problem is a well-studied problem in literature (see [21]
for a survey).

Thompson sampling is a popular algorithm that is applied
to solve the multi-armed bandit problem. In [14], Agrawal
and Goyal obtain an upper bound on the regret (expected
reward loss because of the non-optimal actions played) due
to Thompson sampling for Bernoulli as well as non-Bernoulli
rewards, and show that it matches a lower bound due to Lai
and Robbins (see [16]) in the asymptotic regime (when the
number of times the bandit is played approaches infinity).

Thompson sampling can also be used in settings more
general than the multi-armed bandit setting (for example [15]).
While there are no known lower bounds in all such cases, it
has been shown in [15] that the regret is still upper bounded
logarithmically as a function of time T . The optimal link rate
selection problem falls in the more general problem setup
considered in [15]. Therefore, in principle, one can use the
general Thompson sampling algorithm (Algorithm 1) for the
problem we consider. However, a direct implementation is
infeasible as we discuss next.

Algorithm 1 General Thompson sampling
initialize prior pν(1) (for channel state probability vector ν).
for each t = 1, 2, . . . :

1) Draw ν(t) ∼ pν(t). Compute [θ(t)]i =
∑n
j=i[ν(t)]j .

2) Transmit at rate ri(t), where ri(t) = ropt(θ(t)).
3) Observe the random transmission outcome X(t).
4) (Prior Update) Set pν(t+ 1) ∝ P(X(t)|ν)pν(t)

end for

B. Challenges

Following are the major challenges which arise if we use
Algorithm 1 for our problem:

1) While dealing with the rate admissibility probabilities
θ, it is difficult to come up with a feasible prior distri-
bution (pθ(t)) for running the general Thompson sampling
algorithm. Since the rate admissibility probability distribution
is not multinomial and has interdependent components, the
prior required would be complicated and difficult to update.
However, one can use Thompson sampling to estimate the
channel state probability ν (Algorithm 1), but it comes at a
huge computational cost as we discuss next.

2) If we deal with the multinomial channel state distri-
bution ν, we can use the popular Dirichlet distribution as
the prior over V . But since we observe only the outcome
of our transmission and not the exact channel state, the
posterior update for the Dirichlet prior distribution may require
exponentially increasing storage and computational power
depending on the trajectory of the algorithm. For example,
let us consider the case where n = 3, i.e., there are 3
possible states the channel can take. At t = 1, we start with
a Dirichlet distribution as prior with parameters (1, 1, 1), i.e.,
Dir(1, 1, 1). Suppose at t = 1, we transmit at rate r2 and
it is successful. We simply know that the channel is either
in channel state 2 or 3. Therefore, after standard calcula-
tions, the prior becomes: B((1,2,1))

B((1,2,1))+B((1,1,2))Dir(1, 2, 1) +



Algorithm 2 Modified Thompson sampling algorithm
for each rate ri, i = 1, 2, ..., n, set Si = 0 and Fi = 0.
for each t = 1, 2, . . . :

1) For all rates ri, draw θi(t) ∼ Beta(Si + 1, Fi + 1). 1

2) Transmit at rate ri(t), where i(t) = arg maxi riθi(t).
3) Observe the random transmission outcome X(t).
4) (Posterior Update for Prior) If X(t) = 1, set Si(t) =

Si(t) + 1. Else if X(t) = 0, set Fi(t) = Fi(t) + 1.
end for

B((1,1,2))
B((1,2,1))+B((1,1,2))Dir(1, 1, 2)

{
where B(α) =

∏k
i=1 Γ(αi)

Γ(
∑k
i=1 αi)

and α = (α1, α2, . . . , αk)
}

. Clearly, we now need to store
2 sets of Dirichlet parameters instead of 1. As the number
of iterations increase, the number of parameters to be stored
and evaluated increases exponentially. After t time slots, the
number of Dirichlet distribution parameters to be stored and
evaluated could be as high as 2t. This renders the algorithm
infeasible due to memory and computational constraints.

C. Modified Thompson Sampling algorithm

Although it is difficult to find a prior for θ in the general
Thompson sampling algorithm, we would still like to work
with θ instead of ν as the limited feedback that we get from
the system does not give us exact CSI. The only information
we get is whether transmission at a certain rate was successful
or not. Hence, intuitively, it makes more sense to work with
θ instead of ν.

Therefore, in MTS (Algorithm 2), since it is not possible to
have one prior for the vector θ, we maintain n−1 priors for the
scalar components of θ, i.e., θ2, ..., θn. Note that θ1 = 1 for
all θ, so we only need n−1 priors. This decoupling allows us
to use the simple beta prior for the components of θ. At each
iteration we only update the prior of the component for which
the rate at which we transmit provides conclusive information.
As we shall establish in the sequel, this decoupling yields a
computationally light solution that achieves a logarithmic (or
smaller regret) as a function of time T . Note that it is a bit
surprising that one is still able to obtain logarithmic or lower
regret even though the estimate θ(t) = (θ1(t), θ2(t), ..., θn(t))
(stochastic estimate of θ∗) in Algorithm 2 does not conform
to the condition θ1(t) > θ2(t) > ... > θn(t) imposed by the
true model θ∗.

IV. PERFORMANCE ANALYSIS: AN UPPER BOUND

To study MTS, we cannot directly use Agrawal and Goyal’s
analysis (see [14]). Instead we modify their analysis to show
that our algorithm achieves logarithmic or constant regret
(depending upon the problem parameters). For our analysis,
we adopt the definitions and notation from [14], which we
reproduce here for convenience.

1Beta(a, b) refers to the beta distribution whose probability density function
is given by pa,b(x) =

xa−1(1−x)b−1

B(a,b)
, x ∈ [0, 1], where B(a, b) =

Γ(a)Γ(b)
Γ(a+b)

.

Definition 1. (Parameters Ni(t), i(t), Si(t) and µ̂i(t)). Let
ri(t) denote the transmitted rate at time t, where i(t) denotes
the index of the rate in the set R. Let Ni(t) denote the number
of times rate ri has been transmitted until time t−1. Let Si(t)
denote the number of successful transmissions of the rate ri
until time t − 1. Moreover, µ̂i(t) is defined as the empirical
mean of the transmission outcomes for a rate ri until time

t− 1, i.e., µ̂i(t) =
∑t−1
j=1:i(j)=i

X(j)

Ni(t)+1 .

To analyze the performance of MTS theoretically, we will
first upper bound the number of times we transmit at any sub-
optimal rate ri (i 6= i∗) until time T . Eventually, to obtain the
upper bound on total regret, we will simply sum the regret
until time T due to each sub-optimal rate of transmission.

Definition 2. (Thresholds xi, yi) For each rate ri(i 6= i∗), we
will choose two thresholds xi and yi such that riθ∗i < rixi <
riyi < ri∗θ

∗
i∗ . The choice of exact values of xi and yi will be

presented in the proof.

Definition 3. (Events Eµi (t), Eθi (t)) We define the event Eµi (t)
as the event such that µ̂i(t) ≤ xi. Similarly, Eθi (t) is the event
such that θi(t) ≤ yi.
Eµi (t) defines the event that the empirical average of the

outcomes of transmission at rate ri (until time t− 1) does not
deviate too much from the true expected value θ∗i . Similarly,
Eθi (t) defines the event that the sampled parameter for the rate
ri (by MTS at time t) does not deviate too much from θ∗i .

Definition 4. (Filtration F t−1) We define the filtration F t−1

as the history of rates transmitted and their outcomes until
time t− 1, i.e., F t−1 = {i(j), X(j); j = 1, ..., t− 1}.

Definition 5. (Parameters τi and pi,t). Let τi denote the time
when the optimal rate ri∗ is transmitted the ith time (for i ≥
1). Also, let τ0 = 0. We define the probability pi,t as, pi,t =
P(ri∗θi∗(t) > riyi|F t−1) = P(θi∗(t) >

riyi
ri∗
|F t−1).

A point worth noting is that, for every rate ri, F t−1

determines pi,t, Si(t), Ni(t), µ̂i(t), the distribution of θi(t)
and whether the event Eµi (t) is true or not. To bound the
expected number of times we transmit at rate ri, as in [14],
we split the expectation into three different terms based on the
occurrences of the events Eµi (t) and Eθi (t):

E[Ni(T + 1)]

=
T∑
t=1

P(i(t) = i)

=
T∑
t=1

P(i(t) = i, Eθi (t), Eµi (t))

+
T∑
t=1

P(i(t) = i, Eθi (t), Eµi (t)) +
T∑
t=1

P(i(t) = i, Eµi (t))

(3)

where Ā denotes the complement of event A.
Remark: To upper bound the LHS above, we will find
upper bounds for the three terms on RHS separately and
subsequently add them.



We start with analyzing the first term, i.e.,
∑T
t=1 P(i(t) =

i, Eθi (t), Eµi (t)). We obtain a lemma (as in [14]) which
establishes a relationship between the probability of choosing a
sub-optimal rate ri and the probability of choosing the optimal
rate ri∗ (given the filtration F t−1, along with the occurrence
of events Eθi (t), Eµi (t)) in terms of pi,t:

Lemma 1. For all t ∈ [1, T ], and i 6= i∗, we have:

P(i(t) = i,Eµi (t), Eθi (t)|F t−1)

≤ (1− pi,t)
pi,t

P(i(t) = i∗, Eµi (t), Eθi (t)|F t−1).

Proof. Since F t−1 determines the status of the event Eµi (t),
we assume that the event took place as otherwise the LHS of
the result is 0 and hence the lemma holds trivially. Therefore,
we just need to show the following:

P(i(t) = i|F t−1, E
θ
i (t))

≤ (1− pi,t)
pi,t

P(i(t) = i∗|F t−1, E
θ
i (t)).

(4)

For any sub-optimal rate of transmission ri, i.e., i 6= i∗, we
have:

P(i(t) = i|F t−1, E
θ
i (t))

≤ P(rjθj(t) ≤ riyi, ∀j|F t−1, E
θ
i (t))

= P(ri∗θi∗(t) ≤ riyi|F t−1)

× P(rjθj(t) ≤ riyi, ∀j 6= i∗|F t−1, E
θ
i (t))

= (1− pi,t)× P(rjθj(t) ≤ riyi, ∀j 6= i∗|F t−1, E
θ
i (t)).

The first inequality above follows from the fact that the event
{i(t) = i|Eθi (t)} is a subset of the event {rjθj(t), ∀j ≤
riyi|Eθi (t)}. Also, the first equality follows from the fact that
the beta priors for different rates at any time t are independent
of each other given the filtration F t−1. Conditioning on
the event Eθi (t) retains the independence between θi∗(t) and
θj(t), ∀j 6= i∗. Similarly, we have:

P(i(t) = i∗|F t−1, E
θ
i (t))

≥ P(ri∗θi∗(t) > riyi ≥ rjθj(t), ∀j 6= i∗|F t−1, E
θ
i (t))

= P(ri∗θi∗(t) > riyi|F t−1)

× P(rjθj(t) ≤ riyi, ∀j 6= i∗|F t−1, E
θ
i (t))

= pi,t × P(rjθj(t) ≤ riyi, ∀j 6= i∗|F t−1, E
θ
i (t)).

Combining the above two inequalities, we get (4) and hence
the lemma.

Using Lemma 1 and the analysis preceding Lemma 2 in
[14], we get:

T∑
t=1

P
(
i(t) = i, Eθi (t), Eµi (t)

)
=
T−1∑
j=0

E[
1

pi,τj+1
− 1]. (5)

We can upper bound the term E[ 1
pi,τj+1

] in the above equation
using Lemma 2 in Agrawal and Goyal’s paper (see [14]) by

replacing yi in their lemma with riyi
ri∗

: Hence, combining (5)
with Lemma 2 in from [14]:

T∑
t=1

P
(
i(t) = i, Eθi (t), Eµi (t)

)

≤ 24

∆
′2
i

+
T−1∑
j=0

Θ(e−∆
′2
i
j
2 +

e−Dij

(k + 1)∆
′2
i

+
1

e∆
′2
i
j
4 − 1

)

≤ 24

∆
′2
i

+ Θ(
1

∆
′2
i

+
1

Di∆
′2
i

+
1

∆
′4
i

) = O(1).

(6)

where ∆′i = θ∗i∗ −
riyi
ri∗

and Di = D( riyiri∗
, θ∗i∗). Here,

D(a, b) represents the KL divergence between two Bernoulli
distributions with parameters a and b respectively. We will
use this notation in the rest of the paper. Therefore, we get a
O(1) upper bound for the first term in (3). We now consider
the second term in (3), i.e.,

∑T
t=1 P(i(t) = i, Eθi (t), Eµi (t)).

To analyze the second term in (3), we split the analysis into
two cases:
Case 1: ri∗θ

∗
i∗

ri
≤ 1.

In this case, we have θi < xi < yi <
ri∗θ

∗
i∗

ri
≤ 1. For any ε ∈

(0, 1], we choose xi, yi such that D(xi,
ri∗θ

∗
i∗

ri
) =

D(θi,
ri∗θ

∗
i∗

ri
)

1+ε

and D(xi, yi) =
D(xi,

ri∗θ
∗
i∗

ri
)

1+ε =
D(θ∗i ,

ri∗θ
∗
i∗

ri
)

(1+ε)2 . Then, using
Lemma 4 in Agrawal and Goyal’s paper (see [14]), we get:

T∑
t=1

P(i(t) = i, Eθi (t), Eµi (t)) ≤ Li(T ) + 1, (7)

where Li(T ) = log T
D(xi,yi)

. We now consider the second case.

Case 2: ri∗θ
∗
i∗

ri
> 1.

In this case, we have riθi
ri∗

< rixi
ri∗

< riyi
ri∗

< θ∗i∗ ≤ 1. For
choosing xi, we proceed as in Case 1, i.e., for any ε ∈ (0, 1] we

choose xi such that D( rixiri∗
, θ∗i∗) =

D(
riθi
ri∗

,θ∗i∗ )

1+ε . For selecting
yi, we pick yi > 1 satisfying riyi

ri∗
< θ∗i∗ to obtain the following

lemma:

Lemma 2. Under the conditions of Case 2, we have:

T∑
t=1

P(i(t) = i, Eθi (t), Eµi (t)) = 0

Proof. Since under the conditions of Case 2, we choose yi >
1, therefore, P(Eθi (t)) = P(θi(t) > yi) = 0, ∀1 ≤ t ≤ T .
Hence the lemma.

Remark: The manner in which we handle the second term
in (3) is one of the differences between the analysis here and
in [14]. In Case 1, the difference between riθ

∗
i and ri∗θ

∗
i∗

is small, hence it requires more number of transmissions at
ri to distinguish it from ri∗ . This results in the logarithmic
upper bound obtained in (7). On the other hand, in Case 2,
the difference between riθ∗i and ri∗θ∗i∗ is large and hence the
event Eθi (t) happens with zero probability, resulting in Lemma
2.



Combining (7) and Lemma 2 with the fact that Li(T ) =
log T

D(xi,yi)
= (1 + ε)2 log T

D(θ∗i ,
ri∗θ

∗
i∗

ri
)
:

T∑
t=1

P(i(t) = i, Eθi (t), Eµi (t))

≤ I(
ri∗θ

∗
i∗

ri
≤ 1)(1 + ε)2 log T

D(θ∗i ,
ri∗θ

∗
i∗

ri
)

(8)

We are now left with the third and the final term in (3). Using
Lemma 3 in Agrawal and Goyal’s paper (see [14]) we get:

T∑
t=1

P(i(t) = i, Eµi (t)) ≤ 1

D(xi, θ∗i )
+ 1 (9)

Moreover, using the fact that D(xi,
ri∗θ

∗
i∗

ri
) =

D(θi,
ri∗θ

∗
i∗

ri
)

1+ε ,
after some manipulations, we can get:

xi − θ∗i ≥
ε

1 + ε
×

D(θ∗i ,
ri∗θ

∗
i∗

ri
)

log(
ri∗θ

∗
i∗ (1−θ∗i )

θ∗i (ri−ri∗θ∗i∗ ) )

Above inequality gives 1
D(xi,θ∗i ) ≤

1
2(xi−θ∗i )2 = O( 1

ε2 ). Using
the above fact in (9):

T∑
t=1

P(i(t) = i, Eµi (t)) ≤ O(
1

ε2
) (10)

Combining (6), (8) and (10), we get:

E[Ni(T + 1)]

≤ O(1) + I(
ri∗θ

∗
i∗

ri
≤ 1)(1 + ε)2 log T

D(θ∗i ,
ri∗θ

∗
i∗

ri
)

+O(
1

ε2
)

≤ (1 + ε′)
I( ri∗θ

∗
i∗

ri
≤ 1) log T

D(θ∗i ,
ri∗θ

∗
i∗

ri
)

+O(
1

ε′2
).

(11)

where ε′ = 3ε. Therefore, from (11), we get the following
theorem:

Theorem 1. For the n-rates optimal link rate selection prob-
lem, MTS algorithm has the following expected regret until
time T :

E[l(T )] ≤ (1 + ε)
∑
i6=i∗

I( ri∗θ
∗
i∗

ri
≤ 1) log T

D(θ∗i ,
ri∗θ

∗
i∗

ri
)

∆i +O(
n

ε2
)

for any ε ∈ (0, 1], where ∆i = ri∗θ
∗
i∗ − riθ∗i .

A. Discussion

The idea of decoupling the components of θ and using
separate priors can be used to design another algorithm for
the optimal link rate selection problem which we present as
Algorithm 3. This algorithm combines the idea of decoupling
components of θ with the Thompson sampling algorithm for
non-Bernoulli bandits presented in [14]. For Algorithm 3, the
following result is an immediate consequence of Theorem 1
in [14]:

Algorithm 3 Algorithm motivated by prior work in [14]
for each rate ri, i = 1, 2, ..., n, set Si = 0 and Fi = 0.
for each t = 1, 2, . . . :

1) For all rates ri, draw µi(t) ∼ Beta(Si + 1, Fi + 1).
2) Transmit at rate ri(t), where i(t) = arg maxi µi(t).
3) Observe the normalized random transmission throughput

Y (t) = r(t)
rn
X(t). Draw temp ∼ Bernoulli(Y (t)).

4) (Posterior Update for Prior) If temp = 1, set Si(t) =
Si(t) + 1. Else if temp= 0, set Fi(t) = Fi(t) + 1.

end for

Theorem 2. For the n-rates optimal link rate selection prob-
lem, Algorithm 3 has the following expected regret until time
T :

E[l(T )] ≤ (1 + ε)
∑
i6=i∗

log T

D( rirn θ
∗
i ,
ri∗
rn
θ∗i∗)

∆i +O(
n

ε2
)

for any ε ∈ (0, 1], where ∆i = ri∗θ
∗
i∗ − riθ∗i .

One of the contributions of this paper is to show that
the decoupling of transmission rates in our proposed MTS
algorithm is superior to Algorithm 3. To see this, note that
MTS has O(1) regret for certain problem parameters (Case 2)
whereas Algorithm 3 can only be proven to have O(log T )
regret regardless of problem parameters. Additionally, the
constant factor associated with the logarithmic regret term
for MTS is 1

D(θ∗i ,
ri∗θ

∗
i∗

ri
)
, whereas Algorithm 3 has a constant

factor of 1
D(

ri
rn
θ∗i ,

ri∗
rn

θ∗
i∗ )

. D( rirn θ
∗
i ,
ri∗
rn
θ∗i∗) will be less than

D(θ∗i ,
ri∗θ

∗
i∗

ri
) since the multiplication by ri

rn
in the former case

will drive the two Bernoulli distributions closer, effectively
reducing the KL-divergence between them. Simulation results
also confirm these findings.

V. PERFORMANCE ANALYSIS: A LOWER BOUND

In this section, we prove a lower bound for a special case
of the optimal link rate selection with 3 channel states and
show that MTS is optimal in this case, i.e., the constant factor
associated with the logarithmic regret term in MTS is tight.
We will use Lai and Robbins style of analysis to obtain the
lower bound (see [16] for details). Recall that, for the optimal
link rate selection problem with three channel states, we have:
H = {h1, h2, h3}, R = {r1, r2, r3} with r1 < r2 < r3.
Also, the channel state probability vector is given by ν∗ =
(ν∗1 , ν

∗
2 , ν
∗
3 ). The rate admissibility probability vector is given

by θ∗ = (θ∗1 , θ
∗
2 , θ
∗
3), where θ∗i =

∑3
j=i ν

∗
j . Typically, the

lowest rate of transmission is 0, so we assume r1 = 0.
Since r1 is zero, we will only consider the cases where

either rate r2 or rate r3 is optimal.
Case 1: r2 is optimal.

Let us start with the case where the rate r2 is the unique
optimal rate, i.e., r2θ

∗
2 > r3θ

∗
3 . Consider θ′ = (θ∗1 = 1, θ∗2 , θ

′
3),

such that r3θ
′
3 > r2θ

∗
2 , i.e., θ′ is such that the unique optimal

transmission rate for θ′ is r3 and the first two components of
θ′ and θ∗ are the same.



Definition 6. (Parameters Xi(s), ξt(i,F t−1)) Let Xi(s) de-
note the outcome when the rate ri is transmitted for the sth

time. Let ξt(i,F t−1) denote the probability of transmitting at
rate ri at time t depending on the history until time t− 1.

To prove a lower bound on the number of times we
transmit at the sub-optimal rate r3, we need to show that
probability (under θ∗) of N3(T + 1) being less than a certain
time-dependent threshold approaches 0 as time goes to ∞.
We define this threshold to be fT , i.e., we need to show
Pθ∗(N3(T + 1) ≤ fT ) = 0 as T → ∞. We will choose
an appropriate value of fT later. To obtain the lower bound,
we will consider a fixed but any general policy, so there will
be no restriction on ξt. Also note that the decision making
or the policy doesn’t depend on θ or θ′, it only depends
on the history of transmission rates and their outcomes, i.e.,
the filtration F t−1. For ease of exposition, whenever we talk
of probabilities or expectations, we will use θ∗ or θ′ in the
subscript to clarify the probability distribution being used.

At any time t, i(t) denotes the rate of transmission chosen.
Therefore, until time T , we have:

Pθ′(N3(T + 1) = n) =
∑

FT :N3(T+1)=n

Pθ′(FT )

Pθ(FT )
× Pθ(FT )

Note that Pθ(E) refers to the probability of an event E taking
place (until the algorithm has run till time T ) if the rate
admissibility probability vector is θ, i.e., probability of all such
filtrations FT such that the event E takes place. Pθ(E) will
depend on the policy ξt(i,F t−1) but the policy itself doesn’t
depend on anything except the filtration F t−1. For a particular
filtration FT (satisfying N3(T+1) = n), since the probability
vectors θ∗ and θ′ only differ in the third component, Pθ∗(FT )
and Pθ′(FT ) will only differ due to the time slots where the
rate of transmission was r3. Let m3(FT ) be the number of
times transmission at r3 resulted in a successful transmission
(under FT ). Therefore:

Pθ′(FT )

Pθ∗(FT )
=

{
θ′3
θ∗3

}m3(FT )

×
{

1− θ′3
1− θ∗3

}n−m3(FT )

= e
−
(
m3(FT ) log

θ∗3
θ′3

+(n−m3(FT )) log
1−θ∗3
1−θ′3

)
Let L(FT ) = m3(FT ) log

θ∗3
θ′3

+ (n − m3(FT )) log
1−θ∗3
1−θ′3

.
Therefore, we have:

Pθ′(N3(T + 1) = n) =
∑

FT :N3(T+1)=n

e−L(FT )Pθ∗(FT )

(12)

From (12), for the filtrations FT which are likely to have
similar probabilities under both θ∗ and θ′, the term L(FT )
would be small. We split the probability term in (12) into
two terms by considering L(FT ) ≤ cT or L(FT ) > cT .

We will choose an appropriate value of cT later. Considering
L(FT ) ≤ cT first:

Pθ′(FT :N3(T + 1) = n,L(FT ) ≤ cT )

=
∑

FT :N3(T+1)=n,L(FT )≤cT

e−L(FT )Pθ∗(FT )

≥ e−cT
∑

FT :N3(T+1)=n,L(FT )≤cT

Pθ∗(FT )

= e−cT Pθ∗(FT : N3(T + 1) = n,L(FT ) ≤ cT )

We can rewrite the above inequality as:

Pθ∗(FT : N3(T + 1) = n,L(FT ) ≤ cT )

≤ ecT Pθ′(FT : N3(T + 1) = n,L(FT ) ≤ cT )
(13)

From the law of total probability, we have:

Pθ∗(N3(T + 1) = n)

= Pθ∗(FT : N3(T + 1) = n,L(FT ) ≤ cT )

+ Pθ∗(FT : N3(T + 1) = n,L(FT ) > cT )

≤ ecT Pθ′(FT : N3(T + 1) = n,L(FT ) ≤ cT )

+ Pθ∗(FT : N3(T + 1) = n,L(FT ) > cT )

≤ ecT Pθ′(N3(T + 1) = n)

+ Pθ∗(FT : N3(T + 1) = n,L(FT ) > cT )

where the second last inequality follows from (13) and the
last inequality follows from the fact that {FT : N3(T + 1) =
n,L(FT ) ≤ cT } ⊆ {FT : N3(T + 1) = n}. As mentioned
previously, we need to show that probability (under θ∗) of
N3(T + 1) being less than a certain time-dependent threshold
(fT ) approaches 0 as time approaches ∞.

Pθ∗(N3(T + 1) ≤ fT )

=
∑
n≤fT

Pθ∗(N3(T + 1) = n)

≤ ecT
∑
n≤fT

Pθ′(N3(T + 1) = n)

+
∑
n≤fT

Pθ∗(N3(T + 1) = n,L(FT ) > cT )

= ecT Pθ′(N3(T + 1) ≤ fT )

+ Pθ∗(N3(T + 1) ≤ fT , L(FT ) > cT )

= ecT Pθ′(T −N3(T + 1) ≤ T − fT )

+ Pθ∗(N3(T + 1) ≤ fT , L(FT ) > cT )

(14)

Considering the first term on the RHS and using Markov’s
inequality, we get:

Pθ′(T −N3(T + 1) ≤ T − fT ) ≤ Eθ′(T −N3(T + 1))

T − fT
(15)

Under θ′, r3 is the optimal transmission rate, therefore T −
N3(T + 1) is the number of times the policy transmits at a
sub-optimal rate. We want this to be small, hence we choose
Eθ′(T − N3(T + 1)) = o(Tα), for some α ∈ (0, 1). Using
(15):

Pθ′
(
T −N3(T + 1) ≤ T − fT

)
≤ o(Tα−1) (16)



For ease of notation, let Y (s) =
∑s
j=1

{
(X3(j) log(

θ∗3
θ′3

)+(1−
X3(j)) log(

1−θ∗3
1−θ′3

)
}

. Now, we consider the second term on the
RHS of (14):

Pθ∗(N3(T + 1) ≤ fT , L(FT ) > cT )

=

fT∑
s=1

Pθ∗(N3(T + 1) = s, L(FT ) > cT )

=

fT∑
s=1

Pθ∗(N3(T + 1) = s, Y (s) > cT )

≤
fT∑
s=1

Pθ∗(N3(T + 1) = s, max
s∈1,2,...,fT

Y (s) > cT )

= Pθ∗(N3(T + 1) ≤ fT , max
s∈1,2,...,fT

Y (s) > cT )

≤ Pθ∗( max
s∈1,2,...,fT

Y (s) > cT )

where the first inequality follows from the fact that the event
{Y (s) > cT } ⊆ {maxs∈1,2,...,fT Y (s) > cT }, ∀1 ≤ s ≤
fT . The last step follows from the fact that P(A,B) ≤
P(A). Now, by Strong Law of Large Numbers, we have
limfT→∞ Y (fT ) = limfT→∞

1
fT

∑fT
s=1X3s log( θ3θ′3

) + (1 −
X3s) log( 1−θ3

1−θ′3
) = D(θ∗3 ||θ′3) almost surely. Also, it is easy to

show that if Xt → C a.s., then maxtXt → C almost surely.
Therefore, if we choose cT

fT
> D(θ∗3 ||θ′3), then Pθ(N3T ≤

fT , L(FT ) > cT )→ 0 as fT →∞ almost surely. This takes
care of the second term on the RHS in (14).

Combining (14) and (16), we observe that we need
ecT o(Tα−1)→ 0 as T →∞ so that Pθ∗(N3(T + 1) ≤ fT ) =
0 as T → 0. Therefore:

ecT o(Tα−1) = o(e(α−1) log T+cT )

Thus, we need (α − 1) log T + cT → −∞ as T → ∞. This
is true if we choose cT = 1−α

1+γ log T , where γ > 0. Also,
we choose fT = (1−δ)cT

D(θ∗3 ||θ′3) , δ ∈ (0, 1). These choices (of
fT , cT ) satisfy the requirements that fT → ∞ as T → ∞
and that cT

fT
> D(θ∗3 ||θ′3). Let ρ(T ) = Pθ∗(N3(T + 1) ≤

(1−δ)( 1−α
1+γ ) log T

D(θ∗3 ||θ′3) ). Therefore, we conclude that:

lim
T→∞

ρ(T ) = 0 (17)

(17) is true for any δ ∈ (0, 1), α ∈ (0, 1), γ > 0 and any
policy that transmits at a sub-optimal rate for o(Tα) times on
average. Using Markov’s inequality, we get:

D(θ∗3 ||θ′3)Eθ∗ [N3(T + 1)]

(1− δ)( 1−α
1+γ ) log T

≥ 1− ρ(T )

Since, the above equation is true for any δ ∈ (0, 1) and α ∈
(0, 1), taking limits on both sides, we get:

lim
T→∞

Eθ∗ [N3(T + 1)]

log T
≥ 1

D(θ∗3 ||θ′3)
(18)

Only thing left for us to do now is to choose an appropriate
θ′3. Note that we want r2θ2 < r3θ

′
3, hence we can choose any

θ′3 such that θ′3 = min{ r2r3 θ2 + ε, θ2}, ε > 0. Using this fact in
(18), we get:

lim
T→∞

Eθ∗ [N3(T + 1)]

log T
≥ 1

D(θ∗3 || r2r3 θ
∗
2)

We now consider the case when r3 is the optimal rate.
Case 2: r3 is optimal.

In the case when r3 is optimal, if r3θ
∗
3

r2
> 1, MTS achieves

O(1) regret and hence we can use the trivial lower bound of
0. On the other hand, if r3θ

∗
3

r2
≤ 1, we can choose a θ′2 such

that r2θ
′
2 > r3θ

∗
3 . The same analysis as that of Case 1 would

then hold. Note that r2θ
∗
2

r3
≤ 1 is always true since r2 > r3

and θ∗2 ≤ 1, so Case 1 doesn’t require a trivial lower bound.
Combining Case 1 and Case 2, we get the following

theorem:

Theorem 3. For the optimal link rate selection problem with
three channel states and r1 = 0, the lower bound on expected
regret (asymptotically) is given by:

lim
T→∞

E[l(T )]

log T
≥

I( ri∗θ
∗
i∗

ri
≤ 1)

D(θ∗i ,
ri∗θ

∗
i∗

ri
)
∆i, i 6= i∗

where ∆i = ri∗θ
∗
i∗ − riθ∗i .

Clearly, the upper bound obtained in Theorem 1 asymptoti-
cally matches the lower bound obtained above. A point worth
noting here is that although we only obtain the lower bound for
the special case of rate selection problem with three channel
states, the logarithmic (or smaller) expected regret obtained by
MTS in the general case matches the typical state-of-the-art
performance achieved by algorithms for the generalizations of
the multi-armed bandit problem (see [15]).

VI. SIMULATION RESULTS

To corroborate our theoretical results, we implement MTS
as well as Algorithm 3 for the optimal link rate selection
problem with three channel states. We consider r1 = 1, r2 = 2
and r3 = 3. We conduct the following experiments to check
the validity of our results:

1) We take ν∗ = (0.1, 0.1, 0.8) (or θ∗ = (1, 0.9, 0.8)) for
the first experiment. Under this choice of ν∗, rate r3 = 3

is optimal. Moreover, r3θ
∗
3

r2
> 1 and r3θ

∗
3

r1
> 1. Hence, by

Theorem 1, MTS should have O(1) regret and by Theorem 2,
Algorithm 3 should have logarithmic regret.

The results for this experiment are on the left plot in
Figure 1. Clearly, the graph confirms the theoretical results.
We also repeat the experiment for ν∗ = (0.3, 0, 0.7) (or
θ∗ = (1, 0.7, 0.7)). This case is also similar to the previous
case and the results are plotted on the right graph in Figure 1.

2) We take ν∗ = (0.3, 0.4, 0.3) (or θ∗ = (1, 0.7, 0.3)) for
the second experiment. Under this choice of ν∗, rate r2 = 2 is
optimal. We have r2θ

∗
2

r1
> 1, but unlike the previous experiment

r3θ
∗
3

r1
≤ 1. Hence, by Theorem 1, MTS will have O(1) regret

corresponding to rate r1 and logarithmic regret corresponding
to rate r3. On the other hand, by Theorem 2, Algorithm 3 will
have logarithmic regret for both r1 and r3. Hence, although



both algorithms will have an overall logarithmic regret, MTS
should perform better than Algorithm 3.

The results for this experiment are on the left plot in
Figure 2. Clearly, the graph confirms the theoretical results.
We also repeat the experiment for ν∗ = (0.4, 0.1, 0.5) (or
θ∗ = (1, 0.6, 0.5)). This case is also similar to the previous
case, although r3 is optimal in this case instead of r2. and the
results are plotted on the right graph in Figure 2.

In all the experiments, MTS outperforms Algorithm 3 by a
huge margin as expected.

Fig. 1. Experiment 1: Implementing MTS and Algorithm 3 for ν∗ =
(0.1, 0.1, 0.8) (left) and ν∗ = (0.3, 0, 0.7) (right). MTS achievesO(1) regret
for both cases while Algorithm 3 achieves logarithmic regret.

Fig. 2. Experiment 2: Implementing MTS and Algorithm 3 for ν∗ =
(0.3, 0.4, 0.3) (left) and ν∗ = (0.4, 0.1, 0.5) (right). Both MTS and
Algorithm 3 achieve logarithmic regret but MTS outperforms Algorithm 3
by a huge margin.

VII. CONCLUSION

In this paper, we consider the optimal link rate selection
problem in rapidly varying wireless channels with limited
feedback. We propose a low-complexity and low-regret al-
gorithm (MTS) motivated by Thompson sampling to solve
the problem. We show that our algorithm MTS achieves
logarithmic (or smaller) regret both theoretically as well as
experimentally. We also show that for the special case of 3
channel states, the regret achieved by MTS matches the lower
bound. Lower bound analysis for the general n-channel states
problem remains open and could be an interesting topic for
further research. It will also be interesting to study how the
results here can be used to obtain regret bounds for multiple-
user models such as the one in [22].
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