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Abstract

Community detection is a fundamental unsu-
pervised learning problem for unlabeled net-
works which has a broad range of applica-
tions. Many community detection algorithms
assume that the number of clusters r is known
apriori. In this paper, we propose an approach
based on semi-definite relaxations, which does
not require prior knowledge of model param-
eters like many existing convex relaxation
methods and recovers the number of clus-
ters and the clustering matrix exactly under
a broad parameter regime, with probability
tending to one. On a variety of simulated
and real data experiments, we show that the
proposed method often outperforms state-of-
the-art techniques for estimating the number
of clusters.

1 Introduction

As a fundamental problem in network analysis, com-
munity detection has drawn much attention from both
theorists and practitioners. Most existing methods re-
quire the prior knowledge of the true number of clusters,
which is often unavailable in real data applications. In
this paper we mainly focus on provably estimating the
number of clusters in a network.

While it is tempting to use a two-stage procedure [14]
where the number of clusters is estimated first and
then used as an input for clustering, an erroneous esti-
mation on the number of clusters can deteriorate the
clustering accuracy. Instead, we design an algorithm
which estimates the true number of clusters and re-
covers the cluster memberships simultaneously, with
provable guarantees.

In this paper, we focus on the widely-used Stochastic
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Block Models (SBM) [24]. The model assumes the
probability of an edge between two nodes are completely
determined by the unknown cluster memberships of the
nodes. Essentially, this imposes stochastic equivalence,
i.e. all nodes in the same cluster behave identically in
a probabilistic sense. Despite its simplicity, the SBM is
used as a building block in more sophisticated models
like the Degree Corrected Block Models [26] and Mixed
Membership Block Models [3] and has been applied
successfully for clustering real world networks.

Semi-definite programming (SDP) relaxations for net-
work clustering have been widely studied and many
different formulations have been proposed. It has
been empirically observed that these methods have
better clustering performance compared to spectral
methods [5, 45, 14]. As shown by [13, 5], SDPs arise
naturally when the likelihood of a SBM with equal
cluster sizes is relaxed. SDP returns a relaxation of
the clustering matrix, which is a n × n (n being the
number of nodes) symmetric matrix whose ijth ele-
ment is one if nodes i and j belong to the same cluster
and zero otherwise. We present a detailed discussion
on related work in Section 3. In this work, we use
the SDP formulation proposed by [39], which uses a
normalized variant of the clustering matrix. Similar
relaxations have been used to study k-means clustering
for sub-gaussian mixtures [34] and SBMs [44].

For community detection in SBM, an algorithm is con-
sidered effective if it is asymptotically consistent. There
are two types of consistency in the literature. When
the number of nodes in the graph is large enough, the
network is sufficiently dense, and the signal (usually
defined by the separation between intra-cluster proba-
bility and inter-cluster probability) is strong enough,
strongly consistent methods recover the ground truth
labels exactly, while the weakly consistent methods
recover a fraction of labels correctly where the fraction
approaches one as n goes to infinity.

There have been a number of SDP relaxations for gen-
eral unbalanced cluster sizes which have been shown
to be strongly consistent [40, 19, 9]. One can argue
that these methods readily render themselves to es-
timation of the number of blocks r. The idea would
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be to run the SDP with different values of r, and for
the correct one the clustering matrix will be the true
clustering matrix with high probability. However, all
these methods require the knowledge of model param-
eters. Furthermore, they work in the unequal cluster
size setting by introducing an additional penalty term,
which requires further tuning. Hence each run with a
different choice of r would have an internal tuning step
adding to the already expensive computation of the
SDP. In this paper, we propose a formulation that is
a) entirely tuning free when the number of clusters is
known, and b) when it is unknown, is able to recover
the number of clusters and the clustering matrix in one
shot.

Furthermore, our method provably works in the weakly
assortative setting, whereas the usual necessary sep-
aration condition for recovery is that the maximal
inter-cluster connecting probability (think of this as
noise) is smaller than the minimal intra-cluster connect-
ing probability (the signal) by a certain margin. This
separation condition is known as strong assortativity.
In contrast, our work only requires that for each node,
the probability of connecting to the nodes in its own
cluster is greater by a margin than the largest proba-
bility of connecting with nodes in other clusters. This
property is called weak assortativity. It is not hard to
see that weakly assortative models are a superset of
strongly assortative models. Weak assortativity was
first introduced in [5], who establish exact recovery
under this weaker condition for SDPs for blockmodels
with equal sized communities.

In Sec 5 we sketch a rather interesting empirical prop-
erty of our algorithm (also pointed out in [40]); namely
it can identify different granularities of separations as
a byproduct. For example, the tuning phase, which we
sketch in Section 5, finds different substructures of the
network as it searches over different tuning parameters.
For example, if there are K meta clusters which are
more well separated than the rest, then as we tune, we
will first find these meta-clusters, and then finer sub-
structures within them. While this is not the main goal
of our paper, it indeed makes our approach ideal for
exploratory analysis of networks. We also leave the the-
oretical analysis of finding multi-resolution clusterings
for future work.

We will formalize these concepts in Section 2 and dis-
cuss the related work in more detail in Section 3. Sec-
tion 4 contains our main theoretical contributions and
finally, in Section 5 we demonstrate the efficacy of our
algorithm compared to existing methods on a variety
of simulated and real networks.

2 Problem Setup and Notations

Assume (S1, · · · , Sr) represent a r-partition for n nodes
{1, · · · , n}. Let mi = |Si| be the size of each cluster,
and let mmin andmmax be the minimum and maximum
cluster sizes respectively. We denote by A the n × n
binary adjacency matrix with the true and unknown
membership matrix Z = {0, 1}n×r,

P (Aij = 1|Z) = ZTi BZj ∀i 6= j, (SBM(B,Z))

P (Aii = 0) = 1, ZTZ = diag(m), (1)

where B is a r × r matrix of within and across cluster
connection probabilities and m is a length r vector of
cluster sizes. The elements of B can decay with graph
size n. In this paper we focus on the regime where the
average expected degree grows faster than logarithm
of n. In this regime, it is possible to obtain strong or
weak consistency.

Given any block model, the goal for community de-
tection is to recover the column space of Z. For ex-
ample if we can solve ZZT or its normalized variant
Zdiag(m)−1ZT , then the labels can be recovered from
the eigenvectors of the clustering matrix.

The normalized clustering matrix: In this paper
we focus on recovering the following normalized version:

X0 = Zdiag(m)−1ZT (2)

It can be easily checked that X01n = 1n, since Z1k =
1n. Furthermore, X0 is positive semi-definite and its
trace (which equals its nuclear norm as well) equals
the number of clusters r.

Assortativity (strong vs. weak): Assortativity is
a condition usually required in membership recovery.
The strong assortativity (see Eq. (3)) requires the small-
est diagonal entry to be greater than the largest off-
diagonal entry.

min
k
Bkk −max

k 6=`
Bk` > 0 (3)

min
k

(
Bkk −max

`6=k
Bk`

)
> 0. (4)

[5] first introduces an SDP that provably achieves ex-
act recovery for weakly assortative models (Eq. (4))
with equal cluster sizes, i.e., compared with (3), weak
assortativity only compares the probability within the
same row and column; it requires that any given clus-
ter k, should have a larger probability of connecting
within itself than with nodes in any other cluster. It is
easy to check that strong assortativity indicates weak
assortativity and not vice versa.
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For any matrix X ∈ Rn×n, denote XSkS` as the sub-
matrix of X on indices Sk × S`, and XSk := XSk×Sk .
Let 1 be all one vector, and 1Sk ∈ Rn be the indi-
cator vector of Sk, equal to one on Sk and zero else-
where. The inner product of two matrices is defined as
〈A,B〉 = trace(ATB). We use ◦ to denote the Schur
(elementwise) product of two matrices. Standard no-
tations for complexity analysis o,O,Θ,Ω will be used.
And those with a tilde are to represent the same order
ignoring log factors.

3 Related Work

While most community detection methods assume that
the number of communities (r) is given apriori, there
has been much empirical and some theoretical work on
estimating r from networks.

Methods for estimating r: A large class of meth-
ods chooses r by maximizing some likelihood-based
criterion. While there are notable methods for estimat-
ing r for non-network structured data from mixture
models [38, 21, 7, 37], we will not discuss them here.

Many likelihood-based methods use variants or ap-
proximations of Bayesian Information Criterion (BIC);
BIC, while a popular choice for model selection, can
be computationally expensive since it depends on the
likelihood of the observed data. Variants of the Inte-
grated Classification Likelihood (ICL, originally pro-
posed by [7]) were proposed in [15, 27]. Other BIC
type criteria are studied in [32, 42, 33].

In [23] a computationally efficient variational Bayes
technique is proposed to estimate r. This method
is empirically shown to be more accurate than BIC
and ICL and faster than Cross Validation based ap-
proaches [11]. A Bayesian approach with a new prior
and an efficient sampling scheme is used to estimate r
in [41]. While the above methods are not provable, a
provably consistent likelihood ratio test is proposed to
estimate r in [43].

Another class of methods is based on the spectral ap-
proach. The idea is to estimate r by the number of
“leading eigenvalues” of a suitably normalized adjacency
matrix [36, 25, 10, 16]. Of these the USVT estima-
tor [10] uses random matrix theory to estimate r simply
by thresholding the empirical eigenvalues of the adja-
cency matrix appropriately. In [8] it is shown that the
informative eigenvalues of the non-backtracking matrix
are real-valued and separated from the bulk under the
SBM. In [28], the spectrum of the non-backtracking
matrix and the Bethe-Hessian operator are used to
estimate r, the later being shown to work better for
sparse graphs.

[1] proposes a degree-profiling method achieving the

optimal information theoretical limit for exact recovery.
This agnostic algorithm first learns a preliminary clas-
sification based on a subsample of edges, then adjust
the classification for each node based on the degree-
profiling from the preliminary classification. However it
involves a highly-tuned and hard to implement spectral
clustering step (also noted by [40]). It also requires spe-
cific modifications when applied to real world networks
(as pointed out by the authors) .

In [47], communities are sequentially extracted from
a network; the stopping criterion uses a bootstrapped
approximation of the null distribution of the statistic
of choice. In [6], the null distribution of a spectral test
statistic is derived, which is used to test r = 1 vs r > 1
at each step of a recursive bipartitioning algorithm. A
generalization of this approach for testing a null hy-
pothesis for r blocks can be found in [30]. While the al-
gorithm in [6] often produces over-estimates of r, [30]’s
hypothesis test depends on a preliminary fitting with
an algorithm which exactly recovers the parameters.
The final accuracy heavily depends on the accuracy of
this fit. Network cross-validation based methods have
also been used for selecting r. The cross-validation can
be carried out either via node splitting [3], or node-pair
splitting [22, 11]; the asymptotic consistency of these
methods are shown in [11]. We conclude with a com-
parison of our approach to other convex relaxations.

Comparison to other convex relaxations In re-
cent years, SDP has drawn much attention in han-
dling community detection problems with Stochas-
tic Block Models. Various of relaxations have been
shown to possess strong theoretical guarantees in re-
covering the true clustering structure without round-
ing [5, 19, 20, 9, 40, 35, 18]. Most of them aim at
recovering a binary clustering matrix, and show that
the relaxed SDP will have the ground truth clustering
matrix as its unique optimal solution. For unbalanced
cluster sizes, an extra penalization is often introduced
which requires additional tuning [9, 19, 40]. While
one can try different choices of r for these SDPs until
achieving exact recovery, the procedure is slower since
each run would need another internal tuning step.

SDP with a normalized clustering matrix was intro-
duced by [39]. They have been used for network clus-
tering [44] and for the relaxation of k-means clustering
of non-network structured data [39, 34] .

max 〈A,X〉
s.t. X � 0, X ≥ 0,

X1 = 1, trace(X) = r

(SDP-PW)

However the formulation in [44] requires an additional
parameter as an lower bound on the minimum size
of the clusters; loose lower bounds can empirically
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deteriorate the performance. Also the authors only
establish weak consistency of the solution.

Some of these methods do not require the knowledge of
r in the constraints, but instead have the dependency
implicitly. In [12] a convexified modularity minimiza-
tion for Degree-corrected SBM is proposed, which also
works for SBMs as a special case of degree corrected
models. The authors suggest one over total number of
edges as the default value for the tuning parameter, but
when dealing with delicate structures of the network,
this suggested value can be sub-optimal and further
tuning is required. The procedure also requires r for
the final clustering of the nodes via Spectral Clustering
from the clustering matrix.

A different convex relaxation motivated by low-rank
matrix recovery is studied in [14]. Here, first the eigen-
spectrum of A is used to estimate r, which is subse-
quently used to estimate tuning parameters required
in the main algorithm. We can also tune the tuning
parameter with other heuristics, but as the theorem
in that paper implies, the tuning parameter needs to
lie between the minimal intra-cluster probabilities and
maximal inter-cluster probabilities, which is only feasi-
ble for strongly assortative settings. We provide more
details in the experimental section.

Hierarchical clustering structures A phe-
nomenon that has been observed [40, 14] is that convex
relaxations can be used to find hierarchical structures
in the networks by varying the tuning parameter. In
the experimental section we demonstrate this with
some examples.

Separation conditions In terms of the separation
conditions, most aforementioned convex relaxations are
consistent in the dense regime under strong assortativ-
ity except [5] and [44]. However, [5] only prove exact
recovery of clusters for equal sized clusters, whereas [44]
only show weak consistency and require the knowledge
of additional parameters like the minimum cluster size.
[40] shows exact recovery while matching the informa-
tion theoretical lower bound, which is not the goal of
this paper.

In this paper, we compare our algorithm with noted
representatives from the related work. From the Spec-
tral methods, we compare with the USVT estimator
and the Bethe Hessian based estimator [28], which
has been shown to empirically outperform a variety
of other provable techniques like [43] and [11]. For
these methods, we first estimate r and then use the
Regularized Spectral Clustering [4, 29] algorithm to
obtain the final clustering. From the convex relaxation
literature, we compare with [14] and [12], neither of
which require r for estimating the clustering except for

the final clustering step.

4 Main Result

In various SDP relaxations for community detection
under SBMs, the objective function is taken as the
linear inner product of the adjacency matrix A and
the target clustering matrix X, some formulations also
have some additional penalty terms. The inner product
objective can be derived from several different metrics
for the opitimality of the clustering, such as likelihood
or modularity. The penalty terms vary depending
on what kind of a solution the SDP is encouraged
to yield. For example, in low-rank matrix recovery
literature, it is common practice to use the nuclear
norm regularization to encourage low-rank solution.
For a positive semi-definite matrix, the nuclear norm
is identical to its trace. When the number of clusters r
is unknown, we consider the following SDP.

max trace(AX)− λtrace(X)

s.t. X � 0, X ≥ 0, X1 = 1,
(SDP-λ)

where λ is a tuning parameter, and X ≥ 0 is an element-
wise non-negativity constraint. The following theorem
guarantees the exact recovery of the ground truth so-
lution matrix, when λ lies in the given range for the
tuning parameter.
Theorem 1. Let X̂ be the optimal solution of (SDP-λ)
for A ∼ SBM(B,Z) where mmin and mmax denote the
smallest and largest cluster sizes respectively. Define
the separation parameter δ = mink(Bkk−max`6=k Bk`).
If

c1 max
k

√
mkBkk + c2

√
nmax
k 6=`

Bk` ≤ λ

≤ mmin

(
δ −max

k,`

√
Bk` logmk

mk

)

then X̂ = X0 with probability at least 1− n−1 provided

δ ≥ 2
√

6 log nmax
k

√
Bkk
mk

+6 max
`6=k

√
Bk` log n

mmin

+
c
√
npmax

mmin
(5)

Remark 1. The above theorem controls how fast the
different parameters can grow or decay as n grows. For
ease of exposition, we will discuss these constraints on
each parameter by fixing the others. The number of
clusters r can increase with n. In the dense setting,
when Bkk = Θ(1), mmin = ω(

√
n) and r = o(

√
n),

which matches with the best upper bound on r from ex-
isting literature. Finally when maxk Bkk = Θ(log n/n),
we note that mmin = Θ̃(n) and r = Θ̃(1).
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We can see from the condition in Theorem 1 that the
tuning parameter should be of the order

√
d where d is

the average degree. In fact, as shown in the following
theorem, when the λ is greater than the operator norm,
(SDP-λ) returns a degenerating rank-1 solution. This
gives an upper bound for λ.
Proposition 1. When λ ≥ ‖A‖op, then the solution
for (SDP-λ) is 11T /n.

The proof of Proposition 1 is to be found in Appendix B.
Recall the properties of the ground truth clustering
matrix defined in Eq. (2). If the optimal solution
recovers the ground truth X0 exactly, we can estimate
r easily from its trace. Therefore we have the following
corollary.
Corollary 1. Let X̂ be the optimal solution of
(SDP-λ) with A ∼ SBM(B,Z), where B ∈ [0, 1]r×r.
Under the condition in Theorem 1, trace(X̂) = r with
probability at least 1− n−1.

In particular, when r is known, we have the following
exact recovery guarantee, which is stronger than the
weak consistency result in [44].
Theorem 2. Let A ∼ SBM(B,Z), where B ∈ [0, 1]r×r.
X0 is the optimal solution of (SDP-PW) with probabil-
ity at least 1− n−1, if the separation condition Eq. (5)
holds true.

We can see that the two SDPs (SDP-λ) and (SDP-PW)
are closely related. In fact, the Lagrangian function
of (SDP-PW) is same as the Lagrangian function of
(SDP-λ) if we take the lagrangian multiplier for the
constraint trace(X) = r as λ. We use this fact in the
proof of Theorem 1. Both proofs rely on constructing
a dual certificate witness, which we elaborate in the
following subsection.

4.1 Dual Certificate Witness

In this sketch we develop the sufficient conditions with
a certain construction of the dual certificate which
guarantees X0 to be the optimal solution. We derive
the main conditions and leave the technical details to
the supplementary materials. To start with, the KKT
conditions of (SDP-PW) can be written as below.

First Order Stationary

−A− Λ + (1αT + α1T ) + βI − Γ = 0 (6)
Primal Feasibility
X � 0, 0 ≤ X ≤ 1, X1n = 1n, trace(X) = r (7)

Dual Feasibility
Λ � 0, Γ ≥ 0 (8)

Complementary Slackness
〈Λ, X〉 = 0, Γ ◦X = 0 (9)

For (SDP-λ), we replace β by λ and drop the trace
constraint in the primal feasibility. Since we use X0 as
the primal construction, removing one primal feasibility
condition has no impact on the other part of the proof.

Consider the following primal-dual construction.

XSk = Emk/mk; XSkS` = 0, ∀k 6= ` (10)

ΛSk = −ASk + (1mkα
T
Sk

+ αSk1Tmk) + βImk ,

ΛSkS` = −(I − Emk
mk

)ASkS`(I −
Em`
m`

) (11)

ΓSk = 0,

ΓSk,S` = −ASk,S` − ΛSk,S` + (1mkα
T
S`

+ αSk1Tm`)
(12)

αSk =
1

mk
(ASk1mk + φk1mk) (13)

φk = −1

2

(
β +

1TmkASk1mk
mk

)
(14)

The first order condition Eq. (6) is satisfied by con-
struction. By Eq. (13) and (14), it can be seen that

αTSk1mk =
1

mk

(
1TmkASk1mk

)
+ φk =

1TmkASk1mk
2mk

− β

2

In view of the fact that both Λ and X are positive semi-
definite, 〈Λ, X〉 = 0 is equivalent to ΛX = 0. Now it
remains to verify:

(a) ΛX = 0; (b) Λ � 0; (c) Γuv ≥ 0, ∀u, v

And it can be seen that (a) holds by construction.

Positive Semidefiniteness of Λ For (b), since
span(1Sk) ⊂ ker(Λ), it suffices to show that for any
u ∈ span(1Sk)⊥, uTΛu ≥ ε‖u‖2. Consider the de-
composition u =

∑
k uSk , where uSk := u ◦ 1Sk , and

uSk ⊥ 1mk .

uTΛu =
∑
k

uTSkΛSkuSk +
∑
k 6=`

uTSkΛSkS`uS`

=−
∑
k

uTSkASkuSk + β
∑
k

uTSkuSk −
∑
k 6=`

uTSkASkS`uS`

=−
∑
k

uTSk(A− P )SkuSk

−
∑
k 6=`

uTSk(A− P )SkS`uS` + β‖u‖22

=− uTAu+ β‖u‖22 ≥ ε‖u‖2

In order to obtain a sufficient condition on β, we will use
the following lemma from Theorem 5.2 of [31], which
provides a tight bound for the spectral norm ‖A−EA‖
for stochastic block models.
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(a) B (b) Adjacency (c) λ = 27 (d) λ = 21 (e) λ = 13.

Figure 1: Solution matrices with various choices of λ.

Lemma 1 ([31] Theorem 5.2). Let A be the adjacency
matrix of a random graph on n nodes in which edges
occur independently. Set EA = P = (pij) and assume
that nmaxij pij ≤ d for d ≥ c0 log n and c0 > 0. Then,
for any r > 0 there exists a constant C = C(r, c0) such
that ‖A− P‖ ≤ C

√
d, with probability at least 1− n−r.

By Lemma 1, a sufficient condition is to have

β = Ω(
√
npmax) ≥ ‖A− P‖2 (15)

Positiveness of Γ For (c), denote di(Sk) =∑
j∈Sk Ai,j , which is the number of edges from node i

to cluster k, and d̄i(Sk) = di(Sk)
mk

. Define the average

degree between two clusters as d̄(SkS`) =
∑
i∈S`

di(Sk)

m`
.

For k 6= `, u ∈ Ck, v ∈ C`, we have Γuv ≥ 0 equivalent
to

d̄u(Sk)− d̄u(S`) +
1

2

(
d̄(SkS`)− d̄(SkSk)

)
+ d̄v(S`)− d̄v(Sk) +

1

2

(
d̄(SkS`)− d̄(S`S`)

)
− β

2m`
− β

2mk
≥ 0 (16)

By Chernoff bound and union bound, we have a suffi-
cient condition of Γuv ≥ 0 for all pairs of (u, v):

δ ≥ 2
√

6 log nmax
k

√
Bkk
mk

+ max
`6=k

6

√
Bk` log n

mmin
+ c

npmax

mmin

A complete proof could be found in Appendix A.

5 Experiments

First, we present a procedure for tuning λ in (SDP-λ)
in subsection 5.1. Then, in subsection 5.2 and 5.3 we
present results on simulated and real data.

5.1 Tuning and substructure finding

Algorithm 1 Semidefinite Program with Unknown r
(SPUR)
Input: graph A, number of candidates T ;
for i = 0:T-1 do
λ = exp( iT log(1 + ‖A‖op))− 1;
X̂λ = solution of (SDP-λ).

θ(λ) =
∑
i≤rλ

σi(Xλ)

trace(X̂λ)
;

end for
λ̂ = arg maxλ θ(λ);
Output: X̂λ̂, r̂ = [trace(X̂λ̂)];

As shown in Proposition 1, choice of λ should not
exceed the operator norm of the observed network.
Therefore we do a grid search for λ from 0 to ‖A‖op
in log scale. For each candidate λ, we solve (SDP-λ)
and get the corresponding solution X̂λ. The estimated
number of clusters is defined as rλ = [trace(X̂λ)], where
[·] represent the rounding operator. Let σi(X) be
the i-th eigenvalue of X. We then pick the solution
which maximizes the proportion of leading eigenvalues
λ̂ = arg maxλ

∑
i≤rλ σi(X̂λ)/trace(X̂λ). This fraction

calculates the proportion of leading eigenvalues in the
entire spectrum. If it equals to one, then the solution is
low rank. The algorithm is summarized in Algorithm 1.
In the experiments, for scalability concerns we fix a
smaller range and search over the range 0.1

√
d̄ to 2

√
d̄,

where d̄ denotes the average degree.

In theory, when λ lies in the interval specified by Corol-
lary 1 exact recovery is possible. Yet, in practice,
solutions with different choices of λ, even outside of
the theoretical range, still gives us some useful informa-
tion about the sub-structures of the network. Figure
1 shows a probability matrix which has large separa-
tion into two big clusters and each further splits into
two smaller clusters with different separations. With a
larger λ it returns an under estimated r, but consistent
to the hierarchical structure in the original network. In
this vein, the tuning method provides a great way to
do exploratory analysis of the network.
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(a) Expectation of network: (b) NMI;

Figure 2: The expectation matrix and NMI used for
the known r setting.

5.2 Synthetic data

We present our simulation results in three parts - known
r, increasing r and unknown r. We report the normal-
ized mutual information (NMI) of predicted label and
ground truth membership, and the accuracy of esti-
mating r. For each experiment, the average over 10
replicates is reported.

Known number of clusters We compare the NMI
of SPUR against some state-of-the-art methods, includ-
ing Regularized Spectral Clustering (RSC) [4], and two
convex relaxations which do not require r as input to
the optimization: convexified modularity maximization
(CMM) in [12]; and the `1 plus nuclear norm penalty
method proposed in [14] (L1+nuc). In this setting,
we use (SDP-PW) directly which does not involve any
tuning. In contracst, due to the hierarchical structure
of the network, the default values for the tuning param-
eters in both methods would only be able to recover
the lowest level of hierarchy, which consists of two clus-
ters. Hence for a fair comparison, we try a grid search
for those tuning parameters and choose the one that
gives largest eigengap between the r-th and r + 1th
eigenvalues of the clustering matrices. The expectation
of the network generated is shown in the left panel of
Figure 2. The right panel shows that the proposed
method outperforms the competing methods.

Figure 3: NMI under planted partition model with
increasing (unknown) number of clusters.

Figure 5: Adjacency matrix and predicted X for karate
club dataset; ordered by predicted labels.

Increasing number of clusters In this experiment,
we fix the number of nodes as 400 and increase the
number of clusters from 4 to 20. With each given r we
generate the graph with Bkk = 0.6, Bk` = 0.1, ∀k 6= `
and mmax/mmin = 4, then run the various estimation
algorithms same as in previous experiment. It is shown
in 3 that as number of clusters increases, all methods
deteriorate, but the performance for SPUR declines
slower than the others.

Unknown number of clusters In this experiment,
we carry out two synthetic experiments for weakly
assortative graphs for both balanced and unbalanced
cluster sizes. We generate the network with expectation
matrices shown in the leftmost column of Figure 4, and
show the NMI of predicted labels with ground truth
labels, and the fraction of returning the correct r, for
both balanced (Figure 4-(a)) and unbalanced (Figure 4-
(b)) settings. We run SPUR and compare the result
with 1) the Bethe-Hessian estimator (BH) in [28], in
particular BHac (which has been shown to perform
better for unbalanced settings), 2) USVT in [10].For
all competing methods, we run spectral clustering with
the estimated r to estimate the cluster memberships.
As we can see here, SPUR has a better accuracy in
label recovery than competing methods. SPUR also
achieves accurate cluster number faster than competing
methods.

Table 1: Estimated number of clusters for real networks.

Datasets Truth SDP BH USVT CMM

College Football 12 13 10 10 10
Political Books 3 3 4 4 2
Political Blogs 2 3 8 3 2

Dolphins 2 5 2 4 7
Karate 2 2 2 2 2
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(a) balanced setting with unknown r: NMI Accuracy of r.

(b) unbalanced setting with unknown r: NMI Accuracy of r.

Figure 4: The first row shows weakly assortative models with balanced cluster sizes and the corresponding NMI
and accuracy in estimating r; the second row shows those for unbalanced cluster sizes.

5.3 Real Datasets

We apply the proposed method on several real world
data sets1: the college football dataset [17], the political
books, political blogs [2], dolphins and karate club [46]
datasets. We compare the performance of SPUR with
BH, CMM and USVT in Table 1. As seen from [28],
most algorithm correctly finds r for about 2 or 3 of
these networks. It is also worth pointing out that this
typically happens because different techniques finds
different clusterings of the hidden substructures [6].
We will now show one such substructure we found in
the Karate club data.

Figure 5 shows the adjacency matrix and X̂ for the
Karate club data set. For λ = 3.1, we find two clusters,
whereas for λ = 1.4, we find 4 clusters, which are
further subdivisions of the first level. While our tuning
method picks up λ = 3.1 (r = 2) based on the scoring,
we show the substructure for λ = 1.4, r = 4 in Figure
5. The left panel shows the adjacency matrix of the
Karate club data ordered according to the clusters
obtained with λ = 1.4. The right panel of Figure 5
shows finer substructure of X̂; as suggested by the
adjacency matrix, within each group there are two
small clique like groups at the two corners, and the
hubs from each group.

1All datasets used here are available at http://
www-personal.umich.edu/~mejn/netdata/.

6 Conclusion

We present SPUR, a SDP-based algorithm which prov-
ably learns the number of clusters r in a SBM under
the weakly assortative setting. Our approach does
not require the knowledge of model parameters, and
foregoes the added tuning step used by existing SDP
approaches for unequal size clusters when r is known.
For unknown r, the tuning in the objective provides
guidance in exploring the finer sub-structure in the
network. Simulated and real data experiments show
that SPUR performs comparably or better than state-
of-the-art approaches.
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