


Figure 1: Workflow of our two-stream framework for 3D shape segmentation. Given a 3D shape, we learn representation for

each face in the mesh and classify it into the predefined semantic parts. Shape representations are learned with the proposed

two-stream framework (DCN and NN) from raw geometric descriptors: face normals and distance histogram. The learned

features are fused with an element-wise product and optimized by CRF for segmentation.

In Section 4, we show our two-stream segmentation frame-

work. In Section 5, we compare our approach with the

current state-of-the-art methods and report our results on

benchmark datasets. At last, we conclude in Section 6.

2. Related Work

2.1. 3D Shape Segmentation

Nowadays, 3D shape segmentation and labeling are

widely used in computer graphics and computer vision

fields. We can generally divide existing methods into the

following categories.

Traditional feature-based approaches. Some early

studies aim to manually design a single geometric descrip-

tor that is effective in mesh segmentation [2, 19]. However,

a single descriptor is insufficient to deal with various kinds

of 3D shapes.

Co-segmentation approaches. In order to address the

aforementioned limitation, data-driven approaches are uti-

lized to extract common geometric features, including un-

supervised co-segmentation methods [26, 14], and (semi-

)supervised methods [12, 30]. These learning-based ap-

proaches generally outperform single geometric features.

However, the simple combinations of geometric features are

still not robust enough to describe complicated 3D shapes in

many cases.

CNN-based approaches. Recently, neural networks

have been popularly employed in 3D model analysis, due

to their capabilities in extracting effective representations

from low-level features. Xie et al. [31] proposed a shallow

network to learn high-level features for segmentation, but

this approach does not offer better performance than stan-

dard shallow classifiers [11]. Guo et al. [9] and Shu et al.

[25] utilized CNNs to learn high-level features from hand-

engineering descriptors. These approaches simply concate-

nate hand-tuned features and lack geometric spatial coher-

ence.

Kalogerakis et al. [11] proposed a view-based deep ar-

chitecture for 3D shape segmentation and achieved state-

of-the-art performance. However, their approach suffers

from strong requirements on view selection, i.e., minimiz-

ing occlusions, covering shape surface, and guaranteeing

each part of shapes is visible in at least three views.

Comparing to the aforementioned methods, our ap-

proach only relies on the two most fundamental geometric

descriptors for 3D shape representation learning: one pre-

serves local precision and the other preserves global spatial

consistency. Instead of combining the same kind of fea-

ture at different scales as in [22], we combine two different

kinds of features. Furthermore, DCN defines convolution

and pooling operations on 3D shape surfaces directly and

thus has clearer geometric coherence than previous meth-

ods.

2.2. Convolutional Networks on Graphs

Inspired by the great success of CNNs in computer vi-

sion tasks, several approaches have been proposed to extend

convolutional networks from images to arbitrarily struc-

tured graphs [5, 10, 21, 3, 7, 4].

Bruna et al. [5], Henaff et al. [10] and Defferrard et al. [7]

proposed spectral networks which utilize spectral graph the-

ory to define graph convolution as multiplication of a filter

and graph node values in the Fourier space. The spatial net-

work proposed in [5] is based on a hierarchical clustering

of a graph. However, this approach does not have an effi-

cient strategy of weight sharing across different locations of

2699



the graph [5]. By contrast, the proposed DCN operates con-

volution and pooling on the surface mesh of 3D shapes in

the spatial domain and thus does not require strong regular-

ity assumptions on the input shape structure [5]. Moreover,

it is natural to define a face and its neighbors in the mesh

as a cluster for convolution filters, which provides efficient

weight sharing.

Some works also defined convolution on the surface

mesh of 3D shapes for shape correspondence. Masci et

al. [21] took geometry vector as input and had to com-

pute the convolution for all possible filter rotations due to

angular coordinate ambiguity. Boscaini et al. [3] took lo-

cal SHOT descriptor as input. In contrast to these earlier

works, our method learns the shape representation (layer by

layer and coarse to fine) from the most fundamental low-

level geometric features. Furthermore, the proposed DCN

is rotation-invariant and does not have the angular coordi-

nate ambiguity problem in [21].

3. Directional Convolution and Pooling

In this section, we present the details of directional con-

volution and pooling methods defined on surface meshes of

3D shapes, and how to generalize to cloud points.

3.1. Mesh Face Normal and Curvature

In geometry, curvatures can effectively represent the lo-

cal shape variations. The local directions of minimum and

maximum curvatures indicate the slowest and steepest vari-

ation of the surface normal, respectively. In this subsection,

we define the fundamental low-level geometric features on

each face based on surface normal and curvature.

Face normal: For each mesh face fi, let

{vfi1
,vfi2

,vfi3
} denote its vertices. The face fi’s

normal can be represented using the cross product of two

edge vectors as follows:

nfi = (vfi2
− vfi1

)× (vfi3
− vfi1

). (1)

As mentioned in [23], we can estimate the local shape

variations and properties over a local region by using the

differences in face normals, which is similar to estimate the

curvatures of a face.

Face curvature: The mesh vertex curvature magnitudes

and directions are computed based on [1]. We can use the

average value of three vertex’s curvatures (including magni-

tude and direction) to approximate the minimum and maxi-

mum curvatures on mesh face fi as follows:

ki =
(ki1 + ki2 + ki3)

3
and di =

(di1 + di2 + di3)

3
, (2)

where magnitude ki and direction di can be used to rep-

resent the minimum and maximum curvatures on face fi,
respectively.

3.2. Directional N-ring Face Neighbors

In order to define a convolution on the surface mesh, we

need to define a robust rotation-invariant face neighboring

mechanism at first. There are two aspects needed to be de-

fined in the concept of directional n-ring face neighbors:

(1) The set of n-ring face neighbors: the nth ring of a face

i is the set of faces that are at distance n − 1 from fi in

the given mesh, where the distance n is the minimum num-

ber of edges between two faces. (2) The order of n-ring

face neighbors: the order of neighbors is important in con-

volutions since filter weights are adaptive according to their

significance.

As mentioned above, local directions of curvatures in-

dicate the local shape variation. No matter how the model

rotates, the local shape geometry is invariant. So, we choose

the curvature direction as a guidance to define the order

of face neighbors. For face fi, we traverse the neigh-

bors ring by ring based on the direction of maximum cur-

vature counter-clockwise, and the first face neighbor for

each ring is the one having the minimal angle difference

between two vectors, i.e., the maximum curvature direc-

tion and the vector cij defined by the centroids of faces

fi and fj . The angle between two vectors can be com-

puted by using the geometric definition of dot product, i.e.,

θij = cos−1
(

d
max
i ·cij

‖dmax
i

‖‖cij‖

)

. Fig. 2 illustrates the first nth

rings of neighbors of face i under the defined order on a 3D

hand mesh model.

2nd ring

1st ring
θij

3rd ring

nth ring
Maximum curvature 

direction 

i

j
dimax

cij

Figure 2: The illustration of the first nth rings of neigh-

bors of face fi under the defined order on a 3D Hand mesh

model. Yellow triangle is face fi, pink triangles are 1st ring

neighbors, blue triangles are 2nd ring neighbors, and brown

triangles are 3rd ring neighbors, etc.

3.3. Directional Convolution on Mesh

Once directional n-ring face neighbors are defined, we

can present the definition of directional convolution of the

2700



feature φ with a kernel w on mesh face fi as follows:

(φ ∗ w)(i) =
1

K

∑

j∈Nn(i)

w(j)φ(j), (3)

where φ can be a scale or vector function based on the mesh

face features, such as normal, curvature, shape diameter,

etc. In this paper, we only use the face normal vectors as

the feature. Face normals are computed in Eq. (1). The

kernel w weighs the participation of neighbouring faces fj ,

which will be learned during the optimization of DCN. K is

the normalization factor, i.e., K =
∑

j∈Nn(i)
w(j). Nn(i)

is the set of neighbors of face fi. n is the index of ring for

face neighbors. The order of neighbors is computed as in

Section 3.2.

We define the filter size as n-r×n-r, which means that a

face and its first n rings of neighbors are convolved by the

filter. If n = 0, then only one face is convolved by the con-

volution filter. Since neighboring face number in n-ring of

different faces varies, we choose the average neighbor num-

ber as filter size for n-ring, and pad zeros for faces without

enough neighbors (or omit redundant neighbors).

3.4. Pooling on Mesh

Classic pooling layers in CNN make use of the natu-

ral multi-scale clustering of grid: they input all the feature

maps over a cluster, and output a single feature for that clus-

ter [5]. On surface mesh, we define a cluster as a face and its

1- to n-ring neighbors. Thus, given such a cluster, the pool-

ing is manipulated by a downsampling strategy of a clus-

ter of faces to 1 and denoted as n-r×n-r pooling. For max

pooling, the maximum value of feature maps in the cluster

is taken as output. Similarly, the mean normal value is taken

as the output for average pooling.

3.5. Generalization to Cloud Points

Although meshes and point clouds are two different rep-

resentations of 3D objects, we can easily modify the pro-

posed method to segment 3D point clouds. Specifically, we

can first use principal component analysis to compute the

local point normal and curvatures1. Then, we define the

point neighbors by finding the k nearest points. Finally, we

can employ the proposed directional convolution on point

clouds, same as on meshes.

4. 3D Segmentation with DCN

In this section, we describe our shape segmentation ap-

proach in detail (see Fig. 1). First, we compute normals

and distances for faces in a given 3D shape. Second, we

feed these raw features to the proposed two-stream frame-

work with DCN and NN, and then fuse the two streams by

1http://pointclouds.org/documentation/

tutorials/normal_estimation.php

an element-wise product and softmax. Finally, the segmen-

tation is optimized by CRF.

4.1. Input Features

In our approach, we aim to learn an effective 3D shape

representation, robust for a large variety of shapes. Two

types of input geometric features, face normals and distance

histogram, are utilized in order to ensure local precision and

global spatial consistency, respectively.

4.1.1 Face normal as local features

Normal is one of the most fundamental geometric features

to describe the shape of a surface mesh. We select face

normals to ensure the local precision of the segmentation.

To capture the local shape information of a surface at a

higher level of details, we extract a patch of the target face

and its first n rings of neighbors. Generally, taking a very

small patch as the input is insufficient to accurately describe

the local geometry. A larger patch will help but typically

leads to inefficiency in computing. Empirically, we choose

n = 6. The normals of faces in the patch are used as the lo-

cal input features of the surface patch centered on the target

face.

4.1.2 Distance histogram as global features

For segmentation over the same category of 3D shapes, se-

mantic parts consistently preserve the same relative posi-

tions in all the models. Thus, including global information

is likely to yield improvements. Although simply increas-

ing the size of local patches would cover larger part of a 3D

shape, it is computationally inefficient. Another strategy is

to use the coordinates of face centroids, but this scheme is

not shift-, scale-, or rotation-invariant. In this paper, we use

normalized histograms of the pairwise face distances to en-

sure the global spatial consistency.

To define pairwise distances, we first denote an input 3D

shape dataset of M models as D = {S1, S2, . . . , SM}. For

a 3D shape Sm with Nm faces to segment, we denote each

face as fSm

i , where m ∈ [1,M ] and i ∈ [1, Nm]. We build

a dual graph S
′

m with Nm vertices, in which each vertex

corresponds to a face of Sm and two vertices are connected

by an edge if and only if the two corresponding faces share

at least one vertex in Sm. The pairwise distance between

two faces fSm

i and fSm

j is denoted as di,j , which is the

shortest distance between corresponding vertices v
S

′

m

i and

v
S

′

m

j in the dual graph S
′

m. Since our input is “water-tight”

polygon meshes, every two vertices in the same 3D shape

are connected by one or more edges. Thus, the existence of

the pairwise distance between every two faces in the same

shape is guaranteed.

2701



In this way, we can get Nm − 1 pairwise distances for

face fSm

i . Then, a histogram is computed based on these

distances. Empirically, we choose a 50-bin histogram. Fi-

nally, we perform L2 normalization on the 50 elements of

each histogram, making the distance histogram insensitive

to the total number of faces in a 3D shape. Unlike coordi-

nates, normalized distance histograms are robust to scaling

and invariant to shifting and rotation.

4.2. Two-stream Framework with DCN and NN

In the proposed two-stream segmentation framework, the

local stream is a DCN with the face normal as the input,

and the global stream is a neural network with the distance

histogram as the input. Then we fuse the two streams with

an element-wise product and softmax.

Local stream DCN. The architecture of the proposed

DCN is design based on the idea of multi-scale and multi-

level feature ensembling. Limited by the size of experimen-

tal datasets, the network consists of only two convolution

and pooling layers and three fully connected layers.

Specifically, an input patch to DCN contains a center

face and its 1- to 6-ring neighbors. To get multi-scale fea-

tures, we first employ three sizes of convolution filters, i.e.,

3-r×3-r, 2-r×2-r, and 1-r×1-r, of stride 1 in layer Conv1. A

sliding max pooling of stride 1 [18] is separately applied for

the three feature maps in layer Pooling1. Since neighbors

that are closer to the target face carry more information and

less noise, we only keep the center and first 3 neighboring

rings of three feature maps and concatenate them together.

In Conv2 and Pooling2, we employ three sizes of filters of

stride 1 and average pooling to flatten the feature map. Fi-

nally, three fully connected layers with dropout and soft-

max are used and output classification probabilities Plocal.

Plocal is a real-valued vector of size C, where C is the num-

ber of predefined classes.

Global stream NN. The global stream is implemented

by a three-layer neural network with dropout and softmax,

which takes the distance histogram as input. We denote the

output softmax scores of the global stream as Pglobal, which

represents the probabilities of an input face belonging to

segmentation classes. Similar to Plocal, Pglobal is the vector

of probabilities inferred based on distance histograms.

Fusion in a graphical-model style. Assuming that the

local feature and global feature of the same face are inde-

pendent, we take our two-stream segmentation framework

as a directed graphical model. That is, the probability of

segmentation classes Pseg can be computed by an element-

wise product:

Pseg = σ(Plocal ◦ Pglobal), (4)

where σ(·) denotes the softmax function.

4.3. Mesh Label Optimization with CRF

Given Pseg for each triangle in a test 3D shape Sm with

Nm faces, we employ CRF [16] to refine the labels by in-

corporating the constraint on label consistency. The energy

function is

E(x) =
∑

i

ξi(xi) + λ
∑

i,j

ξij(xi, xj), (5)

where x is the label assignment for faces and λ is a non-

negative constant. In particular, we set λ = 50 as in [9].

Here, we define the unary item ξi(xi) as

ξi(xi) = − logP (xi), (6)

where P (xi) is the ith element in Pseg of face fi. Thus,

assigning fi to a class with low probability will result in a

high penalty.

We define the pairwise item ξij(xi, xj) as

ξij(xi, xj) =

{

0 if i = j

− log(θij/π)dij otherwise
, (7)

where θij and dij are the dihedral angle and distance be-

tween triangle face fi and fj , respectively. With this pair-

wise item, we penalize the smoothness between the labels

of adjutant face pairs.

5. Experimental Results

5.1. Datasets and Experimental Setups

In this section, we compare our approach with current

state-of-the-arts on the segmentation of a large variety of

shapes. The following benchmark datasets are employed

to evaluate our approach: Princeton Segmentation Bench-

mark (PSB) [6] (19 categories, 20 meshes per category) and

four categories from the Shape COSEG Dataset [29], in-

cluding Iron (18 meshes), Lamp (20 meshes), Candelabra

(28 meshes), and Guitar (44 meshes). We also perform our

experiments on two large categories, Vases (300 meshes)

and Chairs (400 meshes).

Figure 3: The average training and testing triangle face split

for all categories of 3D shapes.

2702



We followed the experimental setup of [9]. For small

categories from PSB and the Shape COSEG, we take 12
meshes for training and the remaining for testing. For the

two large categories, we take 20 meshes as the training set

for Vases and 50 meshes for Chairs. For each category, we

repeat our approach three times and report the average ac-

curacy and standard deviation. The average number of faces

used in the training and testing dataset is shown in Fig. 3.

In our experiments, we compared our approach with sev-

eral state-of-the-arts (both classic and deep learning-based),

including Sidi et al. [26], Kalogerakis et al. [12], Wang et

al. [30], Guo et al. [9], and shapePFCN [11]. Besides, we

also combined the two streams at penultimate layers as an

alternative approach (named Ours-early in Tables).

Our network is implemented using Python and Theano

[28]. Adam [15] with learning rate 10−4 is applied for op-

timization. Our deep learning framework runs on a GTX

980Ti GPU, and it takes about 20 minutes to train a model

with 20K-30K faces, excluding the pre-processing time of

computing the face normals and distance histograms.

5.2. Directional vs. Non-directional Convolutions

Figure 4: Training logloss (left) and test logloss (right) on

3D Human shapes with directional convolution (red curves)

and non-directional convolution (blue curves).

First, we show that directional convolution is necessary

for shape representation learning. In Fig. 4, we compare the

training and test loss of directional convolutions with non-

directional convolutions on one exemplar category: Human.

For the latter one, the input triangle faces are randomly

shuffled. Clearly, the network with the directional convolu-

tion converges faster and to a lower error in both the training

(12 meshes) and the testing (8 meshes) datasets.

5.3. Segmentation Accuracy

We compare the segmentation accuracy between our ap-

proaches and the current state-of-the-arts. Following [9],

the accuracy is computed as the percentage of area of cor-

rectly classified faces over area of all the surface. The per-

formance of existing methods is based on publicly reported

results in the literature. Best results are marked in bold.

The segmentation performance on the small datasets is

shown in Table 1. Our early fusion approach (Ours-early)

performs 0.0026% weaker than late fusion approach (Ours).

On average, our framework gains an improvement of 1.13%
against the best-performing previous approach. When it

comes to each category, our approaches outperform all ex-

isting methods on 15 out of 23 objects. In the remaining 8
categories, the accuracies of our method are only a bit less

than the prior-best. For the two large datasets, i.e., Chairs

and Vases, their segmentation accuracies are listed in Ta-

ble 2. From the table, we can see that our approaches out-

perform previous approaches significantly, which benefits

from the high learning capacity of our two-stream frame-

work with DCN and NN.

5.4. Visualization of DCN Kernels and Feature
Maps

To visualize kernels learned in DCN, we convolve the

trained filters in layer Conv1 over the surfaces of all 3D

shapes in the corresponding category and find out the

patches with strongest response for each filter (see Fig. 5).

Clearly, 1) filters of smaller size tend to focus on the fine

details of a shape, e.g., steep surface changes; 2) filters of

larger size tend to focus on the main trend of the shape, the

matched patches are more smooth.

Moreover, to better understand what the proposed two-

stream segmentation framework learns from face nor-

mals and distance histograms, we randomly select 10, 000
patches from each 3D shape category and feed them into

the trained network. Then, we extract the 48-dimensional

feature maps of layer FC4 in the local stream and FC2 in

the global stream. We also apply element-wise multipli-

cation on extracted local and global feature maps and use

the product as final feature maps. The three types of fea-

ture maps for category Teddy and Ant are visualized by t-

SNE [20], which embeds high-dimensional feature maps in

a 2D space while preserving the pairwise distance of the

instances. As shown in Fig. 6, the clusters from different

parts overlap with each other with global features, indicat-

ing a high similarity. That is mainly due to the symmetry of

Teddy and Ant. By contrast, the clusters with local features

are better separated. Combining global and local features

together, the t-SNE clusters are best separated in both cate-

gories, which clearly indicates that our framework learned

effective shape representations for segmentation.

5.5. Segmentation Examples

Fig. 7 demonstrates some exemplar segmentation results

of the proposed framework. In this figure, our approach

performs well on shapes with rotation and different poses.

However, the edges between different parts are not smooth,

which means that some faces locating at the edges are chal-

lengingly segmented. Apparently, if two neighboring faces

with similar face normal and distance histogram are located

at the edge of two separate parts, our approach has difficulty

classifying them correctly.

2703



Table 1: Mesh segmentation accuracy on PSB and four additional categories from Shape COSEG. The performance of

previous methods is from their papers, and “-” means the result was not reported.

Category Kalogerakis[12] Wang[30] Guo[9] ShapePFCN[11] Ours-early Ours

Human 0.9320 0.5560 0.9122 0.9380 0.9317(±0.0397) 0.9408(±0.0088)

Cup 0.9960 0.9960 0.9973 0.9370 0.9973(±0.0002) 0.9979(±0.0003)

Glasses 0.9720 - 0.9760 0.9630 0.9792(±0.0338) 0.9869(±0.0020)

Airplane 0.9610 - 0.9667 0.9250 0.9739(±0.0049) 0.9766(±0.0078)

Ant 0.9880 - 0.9880 0.9890 0.9898(±0.0012) 0.9898(±0.0008)

Chair 0.9840 0.9960 0.9867 0.9810 0.9941(±0.0048) 0.9935(±0.0051)

Octopus 0.9840 - 0.9879 0.9810 0.9891(±0.0013) 0.9934(±0.0007)

Table 0.9930 0.9960 0.9955 0.9930 0.9952(±0.0005) 0.9959(±0.0003)

Teddy 0.9810 - 0.9824 0.9650 0.9911(±0.0019) 0.9908(±0.0022)

Hand 0.8870 - 0.8871 0.8870 0.8796(±0.0034) 0.8861(±0.0028)

Plier 0.9620 - 0.9622 0.9570 0.9710(±0.0031) 0.9714(±0.0054)

Fish 0.9560 - 0.9564 0.9590 0.9688(±0.0025) 0.9705(±0.0016)

Bird 0.8790 - 0.8835 0.8630 0.9037(±0.0102) 0.9039(±0.0096)

Armadillo 0.9010 - 0.9227 0.9330 0.9361(±0.0020) 0.9382(±0.0012)

Bust 0.6210 - 0.6984 0.6640 0.7644(±0.0328) 0.7898(±0.0266)

Mech 0.9050 0.9130 0.9560 0.9790 0.9698(±0.0011) 0.9660(±0.0012)

Bearing 0.8660 - 0.9246 0.9120 0.9429(±0.0027) 0.9470(±0.0036)

Vase 0.8580 0.9050 0.8911 0.8570 0.8916(±0.0078) 0.8931(±0.0089)

FourLeg 0.8620 0.5430 0.8702 0.8950 0.8803(±0.0077) 0.8742(±0.0083)

Iron - - 0.9737 0.8770 0.9689(±0.0018) 0.9714(±0.0022)

Guitar - - 0.9715 0.9790 0.9847(±0.0043) 0.9932(±0.0037)

Lamp - - 0.9628 0.9090 0.9774(±0.0024) 0.9789(±0.0007)

Candelabra - - 0.9447 0.9630 0.9603(±0.0113) 0.9546(±0.0048)

Average 0.9204 0.8436 0.9409 0.9263 0.9496 0.9522

Table 2: Mesh segmentation accuracy on large datasets.

Category Sidi[26] Kim[14] Guo[9] Ours-early Ours

Chairs(400) 0.8020 0.9120 0.9252 0.9518(±0.0014) 0.9573(±0.0013)

Vases(300) 0.6990 0.8560 0.8854 0.9034(±0.0042) 0.9086(±0.0060)

;AͿ ;BͿ ;CͿ

Figure 5: Strongest responses of convolution filters in Conv1 of DCN. The center face of each patch is marked blue and

normal of each face is drawn in red. A: Best matches of 1-r×1-r filters. B: Best matches of 2-r×2-r filters. C: Best matches

of 3-r×3-r filters.

Another way to provide an intuitive understanding of

the segmentation results is to visualize probability maps of

layer FC3 in the global stream and of layer FC5 in the local

stream. For a better comparison, we also include segmen-

tations from the two-stream framework in the figure (last

column in Fig. 8). For the global stream, the segmenta-

tion suffers from the symmetry of the shapes. Taking shape

Human as an example, faces near ankle are classified into

2704



Figure 6: t-SNE visualization of global and local representations learned by proposed framework with NN and DCN. A:

Segmentations of our framework. B: Feature maps learned in FC2 of global stream (NN). C: Feature maps learned in FC3 of

local stream (DCN). D: The element-wise product of feature maps from local and global steams. Best viewed in color.

Figure 7: Visualization of segmentation on category Ant,

Teddy, and Human.

lower arm. That is because they are all near the end of body

and are not differentiable based on distance histograms. For

the local stream DCN, it performs well when face normals

of patches belonging to different classes are quite distinct

(e.g., category Cup). However, when the surfaces of differ-

ent classes are similar or change smoothly, the performance

is weak (e.g., category Human). That is because it is diffi-

cult to tell lower arm from upper arm with a small patch of

surface. In this case, the global stream plays a more impor-

tant role. By fusing the two streams, we make the best use

of local and global input features for segmentation.

6. Conclusion

In this paper, we proposed a novel 3D shape represen-

tation learning approach, Directionally Convolutional Net-

work (DCN). Based on a two-stream segmentation frame-

work, we learn effective shape representations from raw ge-

Figure 8: Visualization of segmentation results inferred by

different streams. A: Segmentations from the global stream

NN. B: Segmentations from the local stream DCN. C: Seg-

mentations from the combination of the two streams.

ometric features, i.e., face normals and distances, for robust

segmentation. Our method achieved the state-of-the-art re-

sults on a large variety of 3D shapes in benchmark datasets.

Limited by the size of datasets, our approach is based on

patches, which is time-consuming. In the future, we plan to

integrate Fully Convolutional Networks and CRF to build

an end-to-end learning framework and apply our method

on larger 3D shape datasets.

Acknowledgment This work was partially supported

by US National Science Foundation (NSF) under grant

CNS-1637312 and ACI-1657364, and by Ford Motor

Company University Research Program under grant

2015-9186R.

2705



References

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and

M. Desbrun. Anisotropic polygonal remeshing. In ACM

Transactions on Graphics (TOG), volume 22, pages 485–

493. ACM, 2003. 3

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. IEEE transactions

on pattern analysis and machine intelligence, 24(4):509–

522, 2002. 1, 2

[3] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-

ing shape correspondence with anisotropic convolutional

neural networks. In Advances in Neural Information Pro-

cessing Systems, pages 3189–3197, 2016. 2, 3

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. IEEE Signal Processing Magazine, 34(4):18–

42, 2017. 2

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. In Pro-

ceedings of the 2nd International Conference on Learning

Representations, 2014. 1, 2, 3, 4

[6] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark

for 3D mesh segmentation. In ACM Transactions on Graph-

ics (ToG), volume 28, page 73. ACM, 2009. 5

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Advances in Neural Information Processing Sys-

tems, pages 3837–3845, 2016. 1, 2

[8] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bom-

barell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Con-

volutional networks on graphs for learning molecular finger-

prints. In Advances in Neural Information Processing Sys-

tems, pages 2224–2232, 2015. 1

[9] K. Guo, D. Zou, and X. Chen. 3D mesh labeling via

deep convolutional neural networks. ACM Transactions on

Graphics (TOG), 35(1):3, 2015. 1, 2, 5, 6, 7

[10] M. Henaff, J. Bruna, and Y. LeCun. Deep convolu-

tional networks on graph-structured data. arXiv preprint

arXiv:1506.05163, 2015. 2

[11] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri. 3D

shape segmentation with projective convolutional networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017. 2, 6, 7

[12] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning

3D mesh segmentation and labeling. ACM Transactions on

Graphics (TOG), 29(4):102, 2010. 2, 6, 7

[13] B.-s. Kim, P. Kohli, and S. Savarese. 3D scene understanding

by voxel-CRF. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1425–1432, 2013. 1

[14] V. G. Kim, W. Li, N. J. Mitra, S. Chaudhuri, S. DiVerdi,

and T. Funkhouser. Learning part-based templates from large

collections of 3D shapes. ACM Transactions on Graphics

(TOG), 32(4):70, 2013. 1, 2, 7

[15] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In Proceedings of the 3rd International Conference

on Learning Representations, 2015. 6

[16] J. Lafferty, A. McCallum, F. Pereira, et al. Conditional ran-

dom fields: Probabilistic models for segmenting and labeling

sequence data. In Proceedings of the Eighteenth Interna-

tional Conference on Machine Learning, ICML, volume 1,

pages 282–289, 2001. 5

[17] D. Lin, S. Fidler, and R. Urtasun. Holistic scene understand-

ing for 3D object detection with RGBD cameras. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 1417–1424, 2013. 1

[18] G. Lin, C. Shen, A. van den Hengel, and I. Reid. Effi-

cient piecewise training of deep structured models for se-

mantic segmentation. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages

3194–3203, 2016. 5

[19] R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or. A part-aware

surface metric for shape analysis. In Computer Graphics

Forum, volume 28, pages 397–406. Wiley Online Library,

2009. 1, 2

[20] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9:2579–2605, 2008.

6

[21] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on riemannian man-

ifolds. In Proceedings of the IEEE international conference

on computer vision workshops, pages 37–45, 2015. 2, 3

[22] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-

forward semantic segmentation with zoom-out features. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3376–3385, 2015. 2

[23] S. Rusinkiewicz. Estimating curvatures and their derivatives

on triangle meshes. In 2nd International Symposium on 3D

Data Processing, Visualization and Transmission (3DPVT),

pages 486–493. IEEE, 2004. 3

[24] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finoc-

chio, A. Blake, M. Cook, and R. Moore. Real-time human

pose recognition in parts from single depth images. Commu-

nications of the ACM, 56(1):116–124, 2013. 1

[25] Z. Shu, C. Qi, S. Xin, C. Hu, L. Wang, Y. Zhang, and L. Liu.

Unsupervised 3D shape segmentation and co-segmentation

via deep learning. Computer Aided Geometric Design,

43:39–52, 2016. 2

[26] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-

Or. Unsupervised co-segmentation of a set of shapes via

descriptor-space spectral clustering. ACM Transactions on

Graphics (TOG), 30(6):1, 2011. 1, 2, 6, 7

[27] S. Song and J. Xiao. Deep sliding shapes for amodal 3D

object detection in RGB-D images. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 808–816, 2016. 1

[28] Theano Development Team. Theano: A Python framework

for fast computation of mathematical expressions. arXiv e-

prints, abs/1605.02688, May 2016. 6

[29] Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or,

and B. Chen. Active co-analysis of a set of shapes. ACM

Transactions on Graphics (TOG), 31(6):165, 2012. 5

[30] Y. Wang, M. Gong, T. Wang, D. Cohen-Or, H. Zhang, and

B. Chen. Projective analysis for 3D shape segmentation.

2706



ACM Transactions on Graphics (TOG), 32(6):192, 2013. 2,

6, 7

[31] Z. Xie, K. Xu, L. Liu, and Y. Xiong. 3D shape segmenta-

tion and labeling via extreme learning machine. In Computer

graphics forum, volume 33, pages 85–95. Wiley Online Li-

brary, 2014. 1, 2

[32] T. Xue, J. Liu, and X. Tang. Example-based 3D object recon-

struction from line drawings. In Computer Vision and Pat-

tern Recognition (CVPR), 2012 IEEE Conference on, pages

302–309. IEEE, 2012. 1

[33] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.

Understanding deep learning requires rethinking generaliza-

tion. In Proceedings of the 5th International Conference on

Learning Representations, 2017.

2707


