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In this paper, a novel shape matching energy is proposed to suppress slivers for 
tetrahedral mesh generation. Given a volumetric domain with a user-specified template 
(regular) simplex, the tetrahedral meshing problem is transformed into a shape matching 
formulation with a gradient-based energy, i.e., the gradient of linear shape function. It 
effectively inhibits small heights and suppresses all the badly-shaped tetrahedrons in 
tetrahedral meshes. The proposed approach iteratively optimizes vertex positions and 
mesh connectivity, and makes the simplices in the computed mesh as close as possible 
to the template simplex. We compare our results qualitatively and quantitatively with the 
state-of-the-art algorithm in tetrahedral meshing on extensive models using the standard 
measurement criteria.

 2017 Elsevier B.V. All rights reserved.

1. Introduction

Triangular and tetrahedral meshes are most basic 2D and 3D elements in computer graphics and geometric modeling 
fields. The mesh generation is to discretize spatial domain into a set of connected but non-overlapped simplex elements. 
Mesh quality highly depends on the size and shape of each element. In this paper, we focus on the tetrahedral mesh 
generation. There are several measurements for tetrahedral mesh quality, and dihedral angle is one of the most important 
criteria (Alliez et al., 2005; Guo et al., 2016), since badly-shaped tetrahedrons with tiny dihedral angles (i.e., sliver) can 
severely affect numerical simulation (Shewchuk, 2002a).

Essentially, simplex meshes are used to form a piecewise linear approximation of function u(x) to represent the given 
shapes. There are several ways to describe the approximation error. Optimal Delaunay Triangulation (ODT) (Chen and Xu, 
2004) was proposed to minimize the Lp norm of the difference over the domain � between the target function û(x) and 
the interpolated function u(x): E(x) =

∫

�

∥

∥û(x) − u(x)
∥

∥

Lp
dx. Interpolation error is an important mesh quality measurement. 

However, the definition of ODT determines that it cannot avoid sliver in tetrahedral mesh. A sliver with close to zero volume 
still has small interpolation error. So minimizing interpolation error cannot avoid sliver.
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Consider the Lp norm of the difference between the gradient of the target function �û(x) and the gradient of the 
interpolated function �u(x): E(x) =

∫

�

∥

∥�û(x) − �u(x)
∥

∥

Lp
dx, the gradient error can be strongly affected by the shape of 

the elements as well as their sizes. Once one dihedral angle approaches 0◦ or 180◦ in the tetrahedral mesh, the gradient 
error will grow dramatically large. In this paper, we propose a shape matching framework and design a gradient-based 
energy (i.e., the gradient of linear shape function), which heavily punish slivers in tetrahedral meshes. By specifying a 
template simplex, e.g. a regular simplex, the idea of the proposed method is to make the shape of the to-be-optimized 
simplex as close as possible to the shape of the template simplex. The experiment results show that our proposed energy 
has high effectiveness in sliver suppression compared with all other state-of-the-art methods in the tetrahedral meshing.

2. Related work

Tetrahedral mesh generation has been studied for several decades (Owen, 1998), and these approaches can be categorized 
as advancing front methods (Ito et al., 2004; Schöberl, 1997; Li et al., 2000), octree-based methods (Labelle and Shewchuk, 
2007; Neil Molino et al., 2003), Delaunay-based tetrahedral methods (Cheng et al., 2012), Poisson-disk sampling methods 
(Guo et al., 2016), etc.

We will focus on Delaunay-based tetrahedral meshing approaches, since our proposed sliver-suppressing optimization 
method is most relevant to this category. Generally speaking, there are two groups of Delaunay-based methods: (1) Delau-
nay refinement-based methods (Chew, 1997; Jamin et al., 2015; Si, 2015), which gradually insert new vertices to improve 
the mesh quality until meeting certain user-specified stopping conditions, such as dihedral angle, edge length, tetrahedral 
quality, etc. They are good to provide the theoretical guarantees of mesh quality, but are difficult to control the number 
of mesh vertices explicitly, and do not optimize the tetrahedral shapes globally. And also the resulting mesh usually has 
large variance on the element volume (2) Variational-based optimization methods, including Centroidal Voronoi Tessellation 
(CVT) (Du et al., 1999), ODT (Chen and Xu, 2004), and Particle-based methods (Zhong et al., 2013). Each of these meth-
ods defines an energy function, which is minimized through numerical optimization to reach a good-quality mesh result. 
CVT-based methods (Du and Wang, 2003; Du and Wang, 2005) have been well studied in computing meshes. However, 
it may generate a large number of slivers in 3D tetrahedral mesh (Yan et al., 2010), it caused by that CVT calculates the 
dual meshes of Voronoi cells, instead of computing the shape of tetrahedrons. ODT-based methods (Alliez et al., 2005;
Chen et al., 2014) perform better in terms of suppressing slivers comparing to CVT-based methods, However, it still can-
not completely avoid slivers. Comparing to CVT and ODT methods, the recent Particle-based mesh optimization method 
(Zhong et al., 2013) does not require to optimize the mesh connectivity during the optimization. This property makes it 
easy and fast to converge, but the lack of considering mesh structure leads to many slivers in the final tetrahedral mesh. 
It is noted that all of three variational-based optimization methods cannot eliminate badly-shaped elements (e.g., slivers) 
completely, so a post process for improving the mesh quality is necessary, such as sliver exudation (Cheng et al., 2000), ag-
gressive improvement (Klingner and Shewchuk, 2007), vertex perturbation (Tournois et al., 2009). In this paper, we present 
a gradient-based shape matching energy to effectively suppress slivers, either as a standalone optimization method, or as 
postprocessing for existing optimization techniques.

3. Shape matching triangulation energy

Our mesh optimization is illustrated in an algebraic framework, and we call it shape matching. Given a template d-simplex 
τ̂d , our target is to make any d-simplex τd in the mesh as similar as possible to τ̂d . Here “similar” means the same shape 
as well as the same sizing factor comparing with the template simplex. If the template is set as a regular d-simplex, any 
d-simplex in the mesh is expected to be a regular simplex with a constant sizing factor conforming to the defined template 
simplex, i.e., all simplices in the mesh are endowed with the same shape and the same size.

The shape matching idea is straightforward, but the tricky part is how to well represent the difference between the 
to-be-optimized simplex τd and the template simplex τ̂d . As the difference is being minimized, the to-be-optimized sim-
plex will become closer and closer to the template simplex. A good difference representation should be scale-sensitive, 
orientation-free, and also well encoding the shape information. Mathematically, a d-simplex embedded in d-dimension can 
be defined by a d × d matrix. Once the template simplex and the to-be-optimized simplex are both represented by d × d

matrices, an affine mapping can be utilized to build the relationship between those two simplices with another d ×d matrix, 
i.e., the Jacobian between those two simplices. If the affine mapping is an identity matrix, the to-be-optimized simplex is 
exactly equal to the template simplex. If the affine mapping is a rotation matrix, the to-be-optimized simplex is also equal 
to the template simplex. In this paper, the squared Frobenius norm of the affine transformation matrix is used to measure 
the difference between the to-be-optimized simplex and the template simplex, since Frobenius norm is invariant under ro-
tations and also it keeps the sizing information. Then by minimizing the summation of all differences over the entire mesh, 
the optimal solution of isotropic mesh will be reached when all to-be-optimized simplices are regular and of the same size.

The shape matching framework can be generalized for any d-simplex mesh. A 0-simplex is a vertex vi ; a 1-simplex is 
an edge ei j = v j − vi , 0 ≤ i < j ≤ d; a 2-simplex is a triangle; and a 3-simplex is a tetrahedron, etc. In addition, the shape 
matching framework can be easily extended to solve adaptive and anisotropic meshing problems. By mapping the to-be-
optimized simplex from Riemannian metric space to Euclidean space, then we still use the regular simplex as template. 
The computations after that are the same as the uniform isotropic case. The shape matching framework is extendable and 
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Fig. 1. The illustration of edge-based shape matching for a 2-simplex.

flexible, and it provides freedom to design different mesh element shapes based on different applications. Both isotropic 
and anisotropic meshing are demonstrated in the experiment section.

In this paper, our target is to remove badly-shaped elements, e.g., slivers, in the isotropic tetrahedral mesh. We will inter-
pret our energy under the proposed shape matching framework. Compared with the traditional Edge-based Shape Matching 
(ESM) in Sec. 3.1, the gradient of the linear shape function is used as basis to represent a simplex, and we called it Gradient-
based Shape Matching (GSM) in Sec. 3.2.

3.1. Edge-based Shape Matching (ESM)

The traditional methods (Knupp, 2001) used d edge vectors from one vertex as column vectors which form a d ×d matrix 
Td to represent a d-simplex τd . Given a matrix Td , the corresponding d-simplex is uniquely defined. Suppose T̂d represents 
the template d-simplex τ̂d , then the affine transformation Jd satisfies Jd = TdT̂

−1
d

. Squared Frobenius norm of this affine 
transformation ‖Jd‖2F is utilized to measure the difference between τ̂d and τd . This difference measurement is called shape 
matching energy Eτd . Summing up shape matching energies of all simplices, we obtain the energy for the entire d-simplex 
mesh Ed =

∑

τd∈T Eτd , where T is the set of d-simplices in the mesh.
The shape matching framework works for any d-simplex. For the simplicity of illustration, we demonstrate the basic idea 

using a 2-simplex (i.e., a triangle) in Fig. 1.
Any 2-simplex τ2 is represented as a matrix formed by two edge vectors T2 =

[

e01 e02
]

, where e01 = v1 − v0 and 
e02 = v2 − v0 . The determinant of T2 is proportional to the triangle area |τ2|. So matrix T2 encodes the shape as well as the 
size of the triangle.

The affine transformation J2 between τ̂2 and τ2 is expressed as:

J2
[

ê01 ê02
]

=
[

e01 e02
]

. (1)

If the template τ̂2 is a regular triangle with edge length â, the shape matching energy Eesm
τ2

of a simplex τ2 can be 
simplified as

Eesm
τ2

= ‖J2‖2F = trace(JT2 J2) = 2

3â2

∑

0≤i< j≤2

eTi jei j. (2)

When d = 3, the shape matching energy Eesm
τ3

from a simplex τ3 to a regular tetrahedron τ̂3 is represented by the affine 
transformation J3 as

Eesm
τ3

= trace
(

JT3 J3

)

= 1

2â2

∑

0≤i< j≤3

eTi jei j, (3)

where â is the edge length of τ̂3 .
The above definitions (2-simplex and 3-simplex) are based on edge vectors, so we call them Edge-based Shape Matching 

(ESM). The main disadvantage of ESM is that it cannot avoid slivers in tetrahedral mesh. The key reason is that slivers may 
have large edge lengths but close-to-zero heights. Based on this observation, Gradient-based Shape Matching (GSM) energy 
is proposed, which can be used to effectively suppress slivers.

3.2. Gradient-based Shape Matching (GSM)

For a d-simplex τd , barycentric coordinate ωi corresponding to each vertex i is used as the linear shape function. Any 
point v inside the simplex satisfies v =

∑d
i=0 ωivi , where 

∑d
i=0 ωi = 1. If we use the mesh to approximate certain data 

function u(x), then the data function value at the vertex is given. Suppose the data value at vertex vi of τd is u(vi), which 
is a constant. Then the data function value at v is u(v) =

∑d
i=0 ωiu(vi). The gradient of the data function can be written 

as �u(v) =
∑d

i=0 �ωiu(vi). �ωi corresponding to vertex vi of a d-simplex is a constant vector. The direction of �ωi is 
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Fig. 2. The illustration of gradient-based shape matching for a 2-simplex.

Fig. 3. Several typical badly-shaped tetrahedrons (Freitag and Knupp, 2002).

pointing perpendicularly from the opposite (d − 1)-simplex S i (as the base) to the vertex v i . The length of �ωi is equal to 
the inverse of height hi , i.e., |�ωi | = 1

|hi | in 2-simplex case, and |�ωi | = |S i |
|τd | in 3-simplex case, where |τd| is the volume 

of the simplex τd and |S i | is the area of face S i . Both its direction and length encode the shape information. Besides that 
�ωi, 0 ≤ i < d are linearly independent for any non-degenerate simplex. So using the gradients of linear shape functions as 
the bases to represent simplex well describe the shape as well as size difference between a badly-shaped simplex and a 
regular simplex.

For the simplicity of illustration, we still use a 2-simplex in Fig. 2 to demonstrate the basic idea of GSM.
Any 2-simplex τ2 is represented by its gradient matrix 

[

�ω0 �ω1
]

. Once �ω0 and �ω1 are given, e20, e21 is uniquely 
defined, so triangle is uniquely determined by �ω0 and �ω1 . Affine transformation D2 between τ̂2 and τ2 can be expressed 
as:

D2

[

�ω̂0 �ω̂1
]

=
[

�ω0 �ω1
]

. (4)

Then, GSM energy between the template τ̂2 and any 2-simplex τ2 is defined as

E
gsm
τ2 = trace(DT

2D2). (5)

Inherited from Frobenius norm properties, GSM energy is also scale-sensitive and orientation-free. By expanding Eq. (5)
with the height definition and Eq. (4), GSM energy is simplified as:

E
gsm
τ2 = â2

8

∑

0≤i< j≤2 e
T
i j
ei j

|τ2|2
= â2

2

2
∑

i=0

1

|hi|2
, (6)

where â is the edge length of the regular template τ̂2 , |τ2| is the area of simplex τ2 . For each 2-simplex, GSM energy is the 
summation of inverse of squared heights. When there is one internal dihedral angle approaching 0◦ or 180◦ , one or more 
heights will be also close to 0. Thus minimizing GSM energy inhibits small heights and also uneven height. So it suppresses 
all badly-shaped simplices. The minimal energy is reached when all heights are equal to each other, i.e., an equilateral 
2-simplex. Besides that, the energy for each simplex also encodes its size information (height hi ). So when minimizing the 
total energy, the result mesh will converge to the optimal solution.

3.2.1. Tetrahedralization d = 3
Tetrahedral mesh optimization is more challenging than triangular mesh optimization, especially to remove slivers com-

pletely. Fig. 3 shows several typical badly-shaped tetrahedrons (Freitag and Knupp, 2002). Most of them either have one or 
more dihedral angles approaching 0◦/180◦ or have uneven heights. Traditional ESM energy cannot avoid slivers as discussed 
in Sec. 3.1, while the proposed GSM energy significantly suppress all of them.

Affine transformation D3 between τ̂3 and τ3 is represented as:

D3

[

�ω̂0 �ω̂1 �ω̂2
]

=
[

�ω0 �ω1 �ω2
]

. (7)

For any 3-simplex, �ωi has the same direction as the normal of face S i , where S i is the face opposite to vertex vi . If the 
template tetrahedron is regular and with edge length â, then GSM energy E gsm

τ3 between τ̂3 and τ3 can be simplified as:
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E
gsm
τ3 = trace

(

DT
3D3

)

= â2

18

∑3
i=0 |S i |2

|τ3|2
= â2

2

3
∑

i=0

1

|hi |2
, (8)

where |S i | is the area of face S i , |τ3| is the volume of simplex τ3 .
GSM energy of a tetrahedron is the summation of the inverse of the squared heights. The optimal solution is to have the 

same heights, i.e. regular tetrahedron. The total GSM energy for the entire tetrahedral mesh is:

E
gsm

total
= â2

18

1

|T |
∑

τ3∈T

∑3
i=0 |S i|2

|τ3|2
, (9)

where T is the set of tetrahedrons in the volume mesh and |T | is the total number of tetrahedrons in the volume mesh. 
When minimizing the GSM energy, the optimal solution is to have all the heights to be the same. GSM energy has great 
punishment on a small height. So minimizing the energy effectively suppressing all the badly-shaped tetrahedrons.

3.2.2. Curve discretization d = 1
A curve can be discretized to be a set of 1-simplices. Inheriting from the idea of GSM, the mapping between the template 

τ̂1 and the to-be-optimized τ1 is the ratio between their lengths D1 = |τ̂1|
|τ1| . So GSM energy function of the line segment τ1

is:

E
gsm
τ1 = |τ̂1|2

|τ1|2
. (10)

GSM energy of the entire curve is:

Eτ1 = |τ̂1|2
|L |

∑

τ1∈L

1

|τ1|2
, (11)

where L is the set of 1-simplices and |L | is the total number of 1-simplices in the corresponding curve L .

3.3. The importance of GSM energy in tetrahedral meshing

The difference between ESM and GSM lies in the representation of a simplex. ESM uses edge vectors, while GSM utilizes 
the gradients of linear shape functions. When d = 3, we have �ω0 = e12×e13

6|τ3| , �ω1 = e02×e03
6|τ3| , �ω2 = e03×e01

6|τ3| , and �ω1 ×
�ω2 = e01

6|τ3| . Via the cross product property in matrix transformation, the affine transformation J3 in ESM satisfies:

(

J3ei j
)

× (J3eik) = |J3| J−T
3 ei j × eik, (12)

where |J3| is the determinant of matrix J3 .
Then the relation between affine transformations of ESM and GSM can be expressed as

D3 =
[

�ω0 �ω1 �ω2
] [

�ω̂0 �ω̂1 �ω̂2
]−1

=
|J3|J−T

3 |τ̂3|
|τ3|

[

ê12 × ê13 ê02 × ê03 ê03 × ê01
] [

ê12 × ê13 ê02 × ê03 ê03 × ê01
]−1

= J−T
3 .

(13)

Suppose the eigenvalues of J3 are λ1, λ2, λ3 , then ESM energy of one tetrahedron is

Eesm
τ3

= trace
(

JT3 J3

)

= λ2
1 + λ2

2 + λ2
3, (14)

while GSM energy of the tetrahedron is

E
gsm
τ3 = trace

(

J−1
3 J−T

3

)

= 1

λ2
1

+ 1

λ2
2

+ 1

λ2
3

. (15)

Although both ESM and GSM reach their minimums when λ1 = λ2 = λ3 , GSM is more sensitive to a small λi .

4. GSM energy optimization

The proposed GSM energy optimization is to build a high-quality regular d-simplex mesh in a domain �d based on a 
given regular template and the user-specified number of vertices N . Both the positions of N vertices and their connectivities 
are required to be optimized. Our mesh optimization process involves two operations: the numerical nonlinear optimization 
for vertex smoothing and the combinatorial optimization for connectivity update. These two operations are carried out 
iteratively to minimize the proposed GSM energy.
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4.1. Vertex smoothing

With fixed mesh connectivity, the optimization computation reduces to a nonlinear numerical optimization problem. The 
connectivity is fixed and inverted simplices should be avoided during the vertex smoothing, so the possible solution of a 
vertex should be inside its one-ring domain. Newton’s method converges quickly in the local region, so it is chosen to do 
vertex smoothing.

The vertex updating rule of Newton’s method is:

v∗ = v− �v = v − αh−1g, (16)

where h and g are the Hessian and gradient at vertex position v, v∗ is the updated position of vertex v, and α is the step 
size. The backtracking line search is utilized to determine the step size.

In the following, we will discuss how to calculate the gradient and Hessian of GSM energy. GSM energy in any d-simplex 
has the similar formulation, which can be written as:

E
gsm
τd = cd

p(v)

q(v)
, (17)

where cd is a constant. When d = 1, p(v) is 1, q(v) is the squared length of the simplex τ1; when d = 2, p(v) is the 
summation of the squared edge lengths, q(v) is the squared area of the simplex τ2; when d = 3, p(v) is the summation of 
the squared face areas, q(v) is the squared volume of the simplex τ3 .

The gradient and Hessian of GSM energy in d-simplex are:

gτd = cd
p′(v)q(v) − p(v)q′(v)

q(v)2
, (18)

hτd = cd
hpq(v) + p′(v)q′(v)T − q′(v)p′(v)T − hqp(v) − 2q(v)gτdq

′(v)T

q(v)2
, (19)

where p′(v), q′(v), hp and hq are the first order and second order derivatives of p(v), q(v). For arbitrary vertex v, its one-ring 
simplices set Tv are used for gradient and Hessian computations.

Based on the gradient and Hessian of GSM energy at any vertex, the search direction � = h−1g is obtained. Since 
GSM is not convex in the one-ring domain, the backtracking line search is used in both � and −� directions to obtain 
the optimal step size α. The initial value of α is set as the maximal possible movement inside its one-ring domain, i.e., 

αinit = maxvi∈Nv |v−vi |
∣

∣h−1g
∣

∣

, where the set of vertices in Tv is Nv .

It is noted that Newton’s method is defined for each vertex. The vertices are updated one by one following the descend-
ing order of the norm of vertex update vector, i.e., 

∥

∥αh−1g
∥

∥. The worst positioned vertex is optimized first. The backtracking 
line search and vertex update avoid the increase of GSM energy as well as inverted simplex.

4.2. Connectivity update

Traditional CVT and ODT energy functions for meshing are based on Delaunay triangulation, while our GSM energy is 
not congruent with Delaunay triangulation. Given an initial connectivity, a set of flip operations are employed to optimize 
the connectivity. The details of connectivity updating in triangular and tetrahedral meshes are different.

For a 3D triangular mesh, the initial mesh is obtained using surface constrained mesh generation (Yan et al., 2009). The 
2–2 edge-flipping operation is used to decrease the energy. A flip operation is performed if the energy will be decreased 
after the flip operation. Besides that, we also need to make sure the new triangles are still restricted to the original surface 
and avoid to generate non-manifold edges, i.e. one edge shared by more than two triangles. The edges along the sharp 
features and boundary edges are never flipped. During the connectivity optimization, we traverse through all the edges 
until the energy does not decrease anymore.

For a 3D tetrahedral volume mesh, the initial mesh is built by TetGen (Si, 2015). There are several flip operations available 
in tetrahedral meshing, including 2–3 flip, 3–2 flip, 4–4 flip. Besides that, edge removal and multi-face removal proposed in 
Shewchuk (2002b) are utilized to further improve the connectivity. Comparing to edge flip in triangle mesh, flip operation 
in tetrahedral mesh may change the number of tetrahedrons. The flip operation will be performed if average GSM energy 
to each simplex decreases after the operation. During the connectivity optimization, we will traverse through all the edge 
and faces until the energy cannot decrease anymore.

4.3. Boundary and feature

Sharp features and boundary edges of 2-simplex meshes are usually defined by a set of curves (1-simplex meshes). The 
boundary of a 3-simplex mesh is a 2-simplex mesh.
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In 2-simplex mesh optimization, we first extract the boundary and feature curves and estimate vertex numbers on 
those curves. Then the vertices along those curves are optimized. After that, we randomly sample the remaining vertices 
on surface domain and optimize them by fixing those boundary and feature points. The vertex numbers on one surface 
boundary curves or sharp features are estimated in the following way. Suppose A� is surface area and L� is the length of 
boundary curves, according to Euler’s polyhedron formula, we have:

Ns − F

2
− L�

2

√

4A�/
√
3F

= 2− 2g, (20)

where Ns is vertex number on boundary, F is face number of boundary, g is the genus of surface. Only F is unknown in 

Eq. (20), so we can compute F . Then edge length lest is estimated by lest =
√

4A�/
√
3F . Finally, the vertex number on each 

curve is obtained by dividing its length by lest .
In tetrahedral meshing, the vertex number on boundary is estimated at the beginning based on the domain boundary 

area A� and the domain volume V� . Body-centered cubic (BCC) lattice is used for the estimation. Voronoi cell of each 
vertex in BCC lattice is a truncated octahedron. By using truncated octahedron as Voronoi cell, the edge length lest of an 
equilateral tetrahedron satisfies

V� = N√
2
l3est − A�√

6
lest + 2− 2g, (21)

where N is total vertex number. lest can be calculated from Eq. (21). Then the boundary vertex number is Nb = 2A�√
3l2est

+ 2 −
2g . The 2-simplex mesh optimization is applied to the surface boundary with Nb vertices. After that, we randomly sample 
the remaining vertices inside the volume and optimize them with fixed boundary surface vertices.

In the following subsections, the vertex update rules for 1-simplex curves and 2-simplex surfaces are introduced.

4.3.1. Feature curve
1-simplex GSM optimizations are performed on the corresponding curves, which has been discussed in Sec. 3.2.2. During 

1-simplex mesh optimizations, all the vertices are restricted on the corresponding curves. The update vector is projected 
along the tangent direction of the curve at v. Suppose the normalized tangent direction of the curve l at vertex v is dlv , 
then the vertex update rule of Newton’s method based on Eq. (16) is:

v� = v−
(

α
(

hv
−1gv

)T

dlv

)

dlv . (22)

After that, v� is projected to the closest point on the corresponding curve.

4.3.2. Boundary surface
2-simplex GSM optimization is performed on the corresponding 3D surface, which has been discussed at the beginning 

of Sec. 3.2. During 3D surface optimization, vertices should be restricted to the given surface. When updating the vertex 
positions, vertex movement is only allowed on its tangent plane. Suppose the normal of vertex v is nv , then:

v∗ = v−
(

αhvgv −
(

(αhvgv)
T nv

)

nv

)

. (23)

After that, v� is projected to the closest point on the given surface.
The GSM optimization framework is given in Algorithm 1.

5. Experiment and comparisons

We implement the algorithms using C++. The experiments are done on a workstation with Intel® Xeon E5645 CPU 
2.40 GHz, and 32G DDR3 RAM. To demonstrate the performance of the proposed GSM method, we compare it with four 
mesh optimization approaches provided by The Computational Geometry Algorithms Library (CGAL) (Jamin et al., 2015). The 
optimizations of CGAL mesher have two categories. One is the local optimization, including vertex perturbation (Tournois 
et al., 2009) and sliver exudation (Cheng et al., 2000). The other one is the global optimization, including Lloyd smoother 
(Du et al., 1999; Du and Wang, 2003) and ODT smoother (Alliez et al., 2005; Chen and Xu, 2004). In the following, the 
tetrahedral mesh quality criteria are introduced in Sec. 5.1. The experimental results on isotropic meshing are presented in 
Sec. 5.2 (smooth surface) and Sec. 5.3 (surface with sharp features), and the experimental results of adaptive and anisotropic 
meshings are provided in Sec. 5.4. Finally, the running time and robustness analysis are given in Sec. 5.5 and 5.6. Due to the 
page limit, we only present seven models in the following, more meshing results are given in a supplementary document. 
Table 1 gives detailed quality statistics of all volume meshing models in the experiment. The best result in each model is 
shown in bold font.
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Algorithm 1: GSM optimization.

Input: vertex number N , boundary domain �, anisotropic metric M
Output: tetrahedral mesh (V , T ) with N vertices

1 estimate boundary vertex number Nb and edge length lest ;
2 if � contains sharp features then

3 estimate vertex number Ns for sharp features;
4 optimize vertices on sharp features V s according to Eq. (22);
5 end

6 optimize vertices Vb by fix V s according to Eq. (23);
7 randomly sample N − Nb − Ns vertices inside � as V f ;
8 build tetrahedral mesh T of all N vertices;
9 for k ← 0 to 50 do

10 calculate update vector �v of all vertices;
11 for i ← 0 to (N − Nb − Ns)/4 do

12 vt ← argmaxv∈V f
‖�v‖ with Newton’s Method Eq. (16);

13 update position of vt ;
14 end

15 optimize connectivity T ;
16 end

Fig. 4. Comparison of ESM and GSM on the Bumpycube volume. The red ones are tetrahedrons with the smallest dihedral angles less than 18◦, while the 
blue ones are tetrahedrons with the smallest dihedral angles less than 36◦. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

5.1. Quality measurement

The quality criteria used in all our experiments for the isotropic meshing are dihedral angle θ and radius ratio γ = 3 rin
rcirc

, 
where rin is inradius and rcirc is circumradius. θmin is the smallest dihedral angle. θmax is the largest dihedral angles. 
θ̄min is the average value of the smallest dihedral angle of each tetrahedron. γmin is the smallest radius ratios among all 
tetrahedrons. γmean is the average radius ratios of all tetrahedrons. The distribution of dihedral angles and radius ratios of 
all tetrahedrons are provided. Since the sliver is measured by the dihedral angles, we evaluate our experiments extensively 
by the number of tetrahedrons with different degrees of smallest dihedral angles 10◦ , 20◦ , 30◦ , and 40◦ as thresholds. For 
anisotropic tetrahedral meshes, each tetrahedron is transformed to the isotropic space, then its quality is measured based 
on the above isotropic criteria.

5.2. Isotropic tetrahedral meshing

Fig. 4 shows the isotropic tetrahedral meshing results on the Bumpycube volume for comparison between GSM and 
ESM. GSM produces better θmin and θmax comparing to ESM. It is also observed that GSM has better performance on sizing 
control. The tetrahedral meshing result of ESM optimization has larger variance on tetrahedral volumes.

Fig. 5 shows the isotropic tetrahedral meshing results on the Duck volume. With random initialization, GSM method 
produces meshes with better θmin, θmax , as well as radius ratios, which outperforms all other methods provided by CGAL 
(i.e., both local and global optimizations) as shown in Table 1. In order to generate high-quality tetrahedral meshes, we use 
Particle, Lloyd, and ODT results as the initializations, respectively, and then apply the proposed GSM, vertex perturbation, 
and sliver exudation to further suppress slivers. The results demonstrate that GSM method is an effective sliver remover. 
Fig. 5 also provides the distributions of dihedral angles and radius ratios in Duck volume meshes of different methods.

5.3. With sharp features

Fig. 6 shows the isotropic tetrahedral meshing results as well as distributions of dihedral angles and radius ratios on 
the Fandisk volume with sharp features in different methods. We reach the same conclusion as the previous example that 
no matter with random initialization or initialized by Particle, Lloyd, and ODT results, our proposed GSM method obtains 
better θmin, θmax , as well as radius ratios, outperforming all other methods provided by CGAL. More detailed quality statistics 
comparison is given in Table 1.
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Fig. 5. Duck volume meshing with 10,000 vertices. The red ones are tetrahedrons with the smallest dihedral angles less than 20◦, while the blue ones are 
tetrahedrons with smallest dihedral angles less than 40◦ . (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

5.4. Adaptive and anisotropic tetrahedral meshing

In order to show the generalization of the proposed GSM method, we also work on tetrahedral meshes in adaptive and 
anisotropic cases.

Fig. 7 shows the adaptive tetrahedral meshing results on Sphere volume with scaling field, i.e. M(x) = �
2 , where s =

(

0.025 + 0.2
∣

∣

∣

√

x2 + y2 + z2 − 0.5
∣

∣

∣

)−1
, � = diag{s, s, s}. It is noted that the proposed GSM method leads to better dihedral 

angles and radius ratios among other methods provided by CGAL.
Fig. 8 shows the anisotropic tetrahedral meshing results on the Sphere volume with metric field M(x) = QT (x)�Q(x), 

where � = diag(100, 10, 10), and Q’s three columns are (2 cos 6x, 1, 0)T and two orthogonal unit vectors. Table 1 provides 
quality statistics of Sphere volume meshes in the specified anisotropic field with both random and Particle initializations. 
Here, only GSM and GSM with Particle initialization are compared, since according to our observations, the approach in 
GSM with Particle initialization can obtain best mesh quality among all other methods.

Fig. 9 shows anisotropic tetrahedral meshing results inside a Cube with metric field defined as M(x) = �
2 , where � =

diag
(

(0.025 + 0.2(1 − e−x))−1,5,5
)

. The proposed GSM method works well with both random and Particle initializations 
as shown in Table 1.
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Fig. 6. Fandisk volume meshing with 18,000 vertices. The red ones are tetrahedrons with the smallest dihedral angles less than 20◦, while the blue ones 
are tetrahedrons with the smallest dihedral angles less than 40◦ . (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

5.5. Running time and convergence analysis

GSM is defined as a global optimization energy. Our GSM optimization iteratively updates vertex positions and vertex 
connectivities. There are several options to set the stop condition, i.e., maximum round number, energy decrease threshold, 
or any other mesh quality criteria. In our implementation, we set maximum round number as the criterion. In all of our 
experiments, maximum round number is set to be 50, which is large enough for all our experiments to converge. The time 
consumption is given in Table 1.

Duck volume is utilized as an example to show the relationship between θmin, θmax , θ̄min , γmean , and computational time 
in Fig. 10. The figure draws the first 40 rounds. The result shows that the optimizations converge fast so it provides good 
enough result after the first few rounds. θmin is not strictly increasing along with the computational time and θmax is not 
strictly decreasing along with the computational time, because we are not directly optimizing the minimal dihedral angle 
and the maximal dihedral angle. However, θ̄min and γmean keep increasing along with the computational time until reaching 
some local optimal solutions. Comparing to Perturb and Exude methods provided by CGAl, our implementation is not as 
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Fig. 7. Sphere volume meshing (10,000 vertices) with scaling field. The red ones are tetrahedrons with the smallest dihedral angles less than 15◦, while the 
blue ones are tetrahedrons with the smallest dihedral angles less than 30◦. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 8. Sphere volume meshing (10,000 vertices) with sinusoidal variation of anisotropy. The red tetrahedrons are the ones with smallest dihedral angles 
less than 15◦ , while the blue tetrahedrons are the ones with smallest dihedral angles less than 30◦ . (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Cube volume meshing (2000 vertices) with anisotropic variation in a single direction. The red ones are tetrahedron with smallest dihedral angles 
less than 20◦ , while the blue ones are tetrahedron with smallest dihedral angles less than 40◦. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Table 1

Quality statistics of all volume meshing models. Note: best results of each model are in bold font.

Model Method θmin/θmax γmin/γmean # < 10◦ # < 20◦ # < 30◦ # < 40◦ #tet Time (sec.)

Duck 
(Iso.)

Init 0.222/179 0.008/0.588 3422 12,830 25,445 38,473 57,898 n/a

GSM 25.93/137.6 0.357/0.852 0 0 33 2211 49,782 1768.76

Particle 1/179 0.02/0.898 190 413 737 1580 52,322 82.89

Particle+GSM 32/123.8 0.632/0.919 0 0 0 99 51,522 1830.03

Particle+Perturb 27.4/142 0.469/0.907 0 0 77 747 51,750 5.99

Particle+Exude 16.3/156 0.305/0.906 0 3 85 625 51,736 3.66

Lloyd 0.164/180 0.003/0.846 226 996 2592 6867 53,620 26.16

Lloyd+GSM 30.05/132.7 0.411/0.893 0 0 0 923 50,800 1876.72

Lloyd+Perturb 19.3/151 0.349/0.859 0 1 1480 5413 52,697 33.09

Lloyd+Exude 14.1/158 0.273/0.866 0 52 704 4116 52,093 28.16

ODT 4.18/174 0.084/0.875 36 325 1192 5036 52,571 17.28

ODT+GSM 26.75/134.6 0.456/0.894 0 0 2 981 50,837 1089.84

ODT+Perturb 23.6/146 0.413/0.881 0 0 603 4281 52,107 20.21

ODT+Exude 11.1/159 0.26/0.883 0 41 470 3903 51,978 17.85

Fandisk 
(Feature)

Init 0.09656/179 0.0035/0.589 6039 21934 44258 67,110 102,135 n/a

GSM 20.36/142.8 0.275/0.845 0 0 91 4550 88,015 4158.5

Particle 0.6863/179 0.013/0.898 272 701 1324 3038 92,620 301.71

Particle+GSM 29.6/132.2 0.423/0.916 0 0 1 471 91,241 4458.5

Particle+Perturb 15.73/157.1 0.266/0.903 0 192 783 2379 91,545 6.79

Particle+Exude 15.5/156.1 0.303/0.906 0 14 185 1290 90,442 6.59

Lloyd 0.486/179.2 0.01/0.842 409 1865 4869 12,850 93,683 51.24

Lloyd+GSM 27.51/136.9 0.413/0.889 0 0 6 1927 89,790 4315.6

Lloyd+Perturb 16.15/156.3 0.292/0.852 0 535 3355 10,903 92,420 55.53

Lloyd+Exude 12.56/160.5 0.219/0.863 0 84 1353 7802 90,329 52.4

ODT 3.724/173.5 0.081/0.873 70 626 2218 9079 91,633 34.00

ODT+GSM 25.06/138.4 0.386/0.889 0 0 12 2174 90,082 4345.86

ODT+Perturb 19.59/151.2 0.369/0.877 0 3 1454 8209 90,705 35.71

ODT+Exude 14/156.4 0.278/0.881 0 62 833 6899 89,663 32.32

Sphere 
(Adap.)

Init 0.23/179 0.005/0.558 7903 29,612 58,635 87,717 121,650 n/a

GSM 21.1/138 0.355/0.837 0 0 118 5887 103,485 7840.78

Particle 1.03/178 0.0203/0.856 372 1718 4655 12,282 111,505 410.37

Particle+GSM 30.2/130 0.531/0.900 0 0 0 1092 106,106 8787.22

Particle+Perturb 23.7/147 0.384/0.872 0 0 1801 8444 109,445 21.16

Particle+Exude 12.3/162 0.210/0.874 0 53 1127 6794 108,789 6.79

Lloyd 0.292/180 0.006/0.852 547 2234 6349 17,809 147,734 81.18

Lloyd+GSM 28.9/128 0.496/0.895 0 0 4 2134 140,757 9636.53

Lloyd+Perturb 23.2/147 0.368/0.867 0 0 2563 13,051 144,745 81.46

Lloyd+Exude 12.8/161 0.245/0.869 0 108 1775 11,106 144,018 73.28

ODT 1.47/178 0.0297/0.874 86 742 3284 15,068 144,176 54.9

ODT+GSM 26.1/129 0.439/0.893 0 0 6 2854 140,776 8888.4

ODT+Perturb 19.9/151 0.343/0.877 0 1 2484 14,134 143,547 47.29

ODT+Exude 9.45/161 0.216/0.879 1 136 1755 12,616 142,922 47.19

Sphere 
(Aniso.)

GSM 16.5/150.5 0.147/0.812 0 7 500 6359 51,405 4659.15

Particle+GSM 21.5/142.5 0.289/0.864 0 0 174 3398 52,206 4464.69

Cube 
(Aniso.)

GSM 17.2/146 0.271/0.832 0 2 33 737 8783 404.55

Particle+GSM 26.5/136 0.373/0.903 0 0 4 155 25,253 453.9
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Fig. 10. (a), (b), (c), (d) Dihedral angle and radius ratio quality changing along with computational time of the Duck model. (e) GSM energies changing 
along with the round numbers in different initializations.

Table 2

Quality statistics of Teddy volume meshes with different vertex numbers.

Method Vertex number 2000 5000 10,000 20,000 30,000

GSM θmin/θmax 25.6/138.9 24.09/139.1 23/136.9 23.74/136.6 23.39/140.2
Particle+GSM θmin/θmax 32.9/126.4 30.88/132.4 34.28/124 33.63/128.9 34.54/127.1
GSM γmin/γmean 0.309/0.842 0.347/0.848 0.402/0.853 0.36/0.853 0.353/0.853
Particle+GSM γmin/γmean 0.623/0.907 0.595/0.914 0.581/0.918 0.556/0.92 0.571/0.921

efficient currently, but could be improved. For instance, if we compute vertex and connectivity updates smarter instead of 
a global strategy or use some parallel strategies, the implementation will be much more efficient. This will be one of our 
future work.

Fig. 10e shows GSM energy changing along with the increasing of optimization round number in different initializations. 
In our GSM optimization, monotonic decrease of energy is guaranteed, so our optimization always converge with different 
initializations, including random, Particle, Lloyd, and ODT initializations. Although different initializations may lead to dif-
ferent final energies, Particle+GSM scheme reaches the lowest convergence energy comparing to other initializations in this 
example (i.e., Duck volume model).

5.6. Robustness

To show the robustness of our GSM energy, different vertex numbers on the Teddy volume are demonstrated. The volume 
clipping results are shown in Fig. 11 and quality statistics e.g. θmin, θmax, γmin, γmean of GSM and Particle+GSM methods are 
shown in Table 2. The result shows that GSM has stable performance under different vertex numbers both as a standalone 
optimization method and as post-processing after Particle optimization.

6. Conclusion

In this paper, we introduce an effective sliver suppression method based on shape matching idea. It generates high-
quality tetrahedral meshes in isotropic, adaptive, and anisotropic cases. The proposed GSM method is evaluated on extensive 
volume models and compared with state-of-the-art approaches. The results of proposed GSM method show much better 
performance than all other current methods. In the future, we would like to improve the computation speed by using GPU 
parallel techniques.
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Fig. 11. Teddy volume meshes with different vertex numbers. The blue ones are tetrahedrons with the smallest dihedral angle less than 40◦. Note: there’s 
no tetrahedron with the smallest dihedral angle less than 20◦ . (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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