
Ignem: Upward Migration of Cold Data

in Big Data File Systems

Simbarashe Dzinamarira∗, Florin Dinu†, T. S. Eugene Ng∗

Rice University∗, EPFL†

Abstract—This paper investigates whether migrating cold data
can yield significant speedup for big data jobs that run on modern
big data file systems. Our work is motivated by two observations.
First, improving the input stage of a job can provide significant
speedup because many jobs spend a large part of their execution
reading inputs. The second observation is that the inputs for
many jobs are cold. Common techniques that aim to keep hot
data in memory do not benefit these jobs.

We analyze the Google production cluster trace data and
find that the key ingredients for effectively migrating cold data
do exist in such production environments. Encouraged by our
findings, we design and implement Ignem, a framework for
migrating cold data in big data file systems. We evaluate Ignem
in a series of experiments and show that it provides significant
speedup for both small and large jobs. Specifically, Hive queries
are accelerated by up to 34%; the mean job duration in a trace-
driven workload is reduced by 12% and the task duration by
nearly 40%; other standalone jobs such as sort and wordcount
also improve similarly by up to 30%.

I. INTRODUCTION

In recent years, the input stage of big data analytics jobs

has become a more dominant part of the jobs’ execution time.

This has happened for two reasons. First, the input stage

typically handles much more data than subsequent stages.

Second, several recent proposals have shown how to accelerate

the non-input part of the job. Common techniques that aim to

keep hot data in memory do not benefit the input stage of

many data analytics jobs because the input data for these jobs

is cold. Together, these facts make the input stage a target for

optimization with a large potential for speedup.

A measurement study of SQL workloads on Spark [26]

reported that at the median, queries in various workloads spend

up to 19% of their execution time blocked on disk IO. Nearly

80% of the disk IO in production workloads analyzed in this

study is from reading map inputs. Eliminating these slow reads

by moving inputs into memory could improve query execution

by up to 15% 1. In this same study, rewriting one query in

C++ reduced CPU time by 2x because this eliminated a lot

of overhead from using Scala. Shortening the body of the all

queries by 2x would amplify the time spent on the initial reads

to 25% 2 of the overall execution time. Further optimizations

in the literature [22], [11], [15], [20] that improve CPU time

by an order of magnitude will see initial reads become a more

119% × 0.8
2 15%(Read time)

80%(CPU time)
2

+20%(IO time)

dominant part of the execution of jobs. We refer the reader

to Figure 7 in [11] for a breakdown of the benefits each

optimization could give. Initial reads matter even for iterative

machine learning jobs like Logistic regression and K-Means.

Reading inputs from disk can inflate the first iteration in each

job by 15x and 2.5x respectively, compared to later iterations

[37].

Although there are methods to have the file system automat-

ically identify and keep hot data in memory, such methods

often do not benefit a job’s input stage. Hot data refers to

frequently and recently accessed data. For example, Spark

[38] achieved an order of magnitude speedup over Hadoop for

iterative machine learning applications by keeping repeatedly

accessed data and intermediate outputs in memory. However,

the initial read of data from disk is not improved by these

optimizations. Triple-H [19] uses both frequency and recency

of accesses to compute a temperature for each block and

moves the block into faster storage when the temperature rises

above a certain threshold. PACMan [5] targets hot data that is

already in memory and determines which data should be kept

or evicted when memory pressure rises. The assumption that

motivates keeping hot data in memory is that read accesses in

the near future will likely be to the data that is currently hot.

However, only keeping hot data in memory does not benefit

a large class of jobs whose reads are on cold data. One study

shows that over 30% of tasks in a production workload belong

to jobs that access singly read data [5]. These are mostly

recurring jobs that process new data such as logs or user click-

stream data. The new data cannot all fit in memory but has

to be stored on disk before it is processed. This data is often

large and it is not processed immediately [35]. When the data

is eventually accessed from disk, it is cold and the reads are

not accelerated because the state of the art schemes would

keep or move only hot data into memory.

In this work, we first analyze the Google cluster trace

data so we can answer several questions that determine how

feasible it is to effectively migrate cold data upward into

memory in the storage hierarchy in such production environ-

ments: Can we identify cold data that will be accessed in

the near future? Once identified, can this data be migrated

into memory before it is accessed? Is there enough time

and residual bandwidth for migration? Upon answering these

questions, other questions also emerge: How much speed-up

can be expected when migration is done successfully? Can

migration work be scheduled in a manner that reduces disk

seeks and therefore improves disk throughput?

Our analysis yielded encouraging results and motivated us

to design Ignem, a system for migrating cold data in big data

file systems. We have implemented a prototype of Ignem and

we evaluate it in a series of experiments. Ignem provides

significant speedup for both small and large jobs. Specifically,

Hive queries are accelerated by up to 34%; the mean job

duration in a trace-driven workload is reduced by 12% and

the task duration by nearly 40%. Other standalone jobs such

as sort and wordcount also improve similarly by up to 30%.

II. MOTIVATION

A. Where and why data migration is useful

Data migration is beneficial because it can speed up the

initial stage of a job, which often is a significant part of the

overall job runtime. The reason for this is that the computation

time in later stages is not proportional to the job input size.

The initial stage often filters out or aggregates a large portion

of the job input which makes the output of this stage much

smaller than the job input size.

Prior work on MapReduce workloads at Google shows

up to a 10:1 ratio between the job input and the output

size of the map stage of the job [12]. Similarly, Rhea [17]

shows a reduction of 2-20000x between input and output

sizes for Hadoop mappers. Other studies also show similar

data reduction [7], [9]. We further support this argument by

running TPC-DS queries using the setup in Section IV and

looking at the proportion of time jobs spend in the initial

stage. On average, the map tasks account for 97% of total task

runtime. These map tasks read inputs and filter out much of the

data because of the SELECT statement and predicates in the

WHERE clause. Such selectively is common amongst database

queries and makes them good candidates for acceleration using

data migration.

B. Migrating inputs to memory yields significant benefits

We run the SWIM workload [2] to showcase the potential

benefits of migrating job input data into memory. The SWIM

workload is a popular trace driven workload based on produc-

tion jobs at Facebook. The workload is described in detail in

Section IV. Job inputs are stored in the Hadoop Distributed

File System (HDFS). We evaluate the effects of storing HDFS

files on a hard disk drive (HDD), on a solid state drive (SSD),

or in memory (RAM). The HDFS block size is set to 64MB.

Figure 1 shows histograms for the time it takes a mapper

task to read an entire HDFS input block. Reads from RAM

(Figure 1c) are, on average, 160x faster than those from HDD

(Figure 1a). This is because HDDs have lower sequential

throughput and in addition, their performance is severely

impacted by concurrent reads. Figure 2 shows a CDF of

mapper task runtimes. Average task runtime for tasks that read

from RAM is 23x smaller than for those reading from HDD.

While significant, the speedup for task runtime is smaller than

the speedup for HDFS block reads because tasks have other

overheads unrelated to reading data.

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

(a) Block reads from HDD - Mean 6.42s

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

(b) Block reads from SSD - Mean 0.28s

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

(c) Block reads from RAM - Mean 0.04s

Fig. 1: On average, HDFS block reads from RAM are 160x

faster than reads from HDD, and 7x faster than reads from

SSD.

10
-1

10
0

10
1

10
2

10
3

0

0.5

1

HDFS- HDD : Mean-6.44 s

HDFS- SDD : Mean-0.53 s

HDFS- RAM : Mean-0.28 s

Fig. 2: Reading from RAM leads to a large speedup for mapper

tasks

One approach to accelerate reads and reduce the negative ef-

fects of concurrency is to use SSDs. While HDFS block reads

from SSD are faster than those from HDD, Figures 1b and 1c

show that reading from RAM is still 7x faster. Similarly, task

runtimes (Figure 2) are lower when reading from RAM rather

than SSD. These results suggest that regardless of whether

cold job input data is stored on HDDs or SSDs, migrating the

data into memory is key to maximizing performance.

C. Conditions favorable for timely migration are present in

production workloads

To maximize the performance benefit delivered by data

migration, two conditions need to be met. First, migration

should be timely, that is, it should be possible to migrate

data before it is accessed. Second, there should be enough

available memory to hold the migrated data while it waits to be

accessed. With the support of a popular Google trace [28], we

argue that both conditions hold in practice. The trace reports

resource usage for over 12,000 servers during a month-long

period. These resources include CPUs, memory, and disks.

The trace also logs events such as the submission, scheduling,

and termination of jobs and tasks.
1) Why timely migration is achievable today: Whether a

block of data can be timely migrated depends on three factors:

the amount of time available for migration, the amount of IO

resources available for migration and the size of the data to

be migrated.

For the rest of the paper, we use the term lead-time to refer

to the amount of time available for migration. More precisely,

lead-time for a task is the time between the earliest moment

when migration can be triggered (usually job submission time)

and the moment when the data is accessed by the task. Lead-

time for a job is the time between job submission and the

start of the first task in the job. Note that our definition of job

lead-time is a lower bound since not all tasks in a job may

start simultaneously.

Sources of lead-time The most important sources of

lead-time in big data frameworks are queueing time and

platform overheads.

Current systems queue tasks while they wait for the re-

sources needed by the tasks to become available. Some sys-

tems queue tasks at the scheduler level [36] while others have

queues at the node level [27]. In both cases, the rationale is to

obtain high cluster utilization and resource packing efficiency

by having tasks ready for execution and by having a diverse

pool of task resource requirements to draw from. Our insight

is that task queueing time can be leveraged for migrating data.

For the Google workload, the mean and median job queueing

times are 8.8 and 1.8 seconds respectively. For the purpose of

this calculation job queueing time and lead-time are identical.

Per-platform overheads provide additional lead-time for

migration. The most important source is inherent in the design

of a large number of schedulers today. Centralized schedulers

rely on a heartbeat mechanism to react to cluster changes

and schedule new tasks. For scalability, heartbeat intervals are

in the order of seconds. For example, the default heartbeat

interval in Hadoop is 3 seconds. In addition to heartbeats,

shipping binaries to workers [39] and JVM warm-up costs [21]

can further increase lead-time.

Lead-time is sufficient As stated above, jobs in the

Google workload take on average 8.8 seconds to be scheduled.

Whether this lead-time is enough for data migration depends

on the amount of IO that jobs perform. The Google trace

reports task runtime as well as the time tasks spent blocked

on disk IO. For each job in the trace, we sum the disk IO

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

Fig. 3: For 81% of jobs in the Google trace, the lead-time is

sufficient for migration.

0 4 8 12 16 20 24
0

5

10

15

20

25

30

35

D
is

k
 u

ti
li

za
ti

o
n
 (

%
)

Mean utilization for 40 servers

Fig. 4: Disk bandwidth utilization over a 24 hour period for

servers in the Google workload. We plot individual timelines

for 10 servers, and the mean utilization for 40 servers. There

is abundant residual bandwidth that can be exploited for data

migration.

time for all its tasks. We then compare the lead-time for each

job with the disk IO time. This comparison assumes the disk

IO is served by one disk on a single machine. However, disk

IO for a job may be parallelized across multiple disks and

machines so more data could be migrated within the lead-

time. Figure 3 shows the ratio between the time spent reading,

and the lead-time. For 81% of jobs, the lead-time is greater

than the read-time meaning there is enough time to migrate

their entire inputs into memory. Note that this is despite the

fact that we are using a lower bound on a job’s lead-time. In

addition to the 81%, other jobs whose input can only partially

be migrated into memory may still benefit from migration by

having some of their tasks sped up.

Sufficient disk bandwidth for timely migration Our

previous example showed that the lead-time was sufficient

for a large number of jobs in the Google trace assuming a

migration speed equal to that at which the mapper would

process the data. In practice, migration can proceed faster. It

is not limited by the compute rate since it happens before the

data is accessed. Migration for a task may share disk resources

with foreground reads and writes. Nevertheless, we argue that

there is sufficient residual disk bandwidth in today’s clusters

to allow efficient migration.

The Google trace provides the time spent on IO for each

individual tasks during intervals that are up to 5 minutes

long. Starting from this we derive disk utilization numbers for

servers. We assume that the IO time for a task is uniformly

distributed over the whole interval. We compute the disk

utilization for a server at 1-second granularity. The disk

utilization for a server for interval [T−1s, T] is the sum of disk

IO time for that interval for all tasks that run on that server

and have an interval window that includes [T −1s, T]. Finally,

we average server disk utilization over 5-minute windows.

Figure 4 shows the disk utilization for a number of servers

in the Google cluster[28] for a 24h period. The behavior of

these servers is representative of the other servers in the trace.

At any point during the 24h period, the mean disk utilization

of 40 randomly chosen servers is at most 5%. For all 12,000+

servers, the mean disk utilization during the 24h period is

3.1%; and 1.3% for the entire month the trace covers. This

shows that current clusters are heavily over-provisioned for IO

and this allows ample opportunity for migration. Prior work

on a small academic cluster also shows that disks are often

under-utilized [13].

2) There is enough memory to store migrated data:

After data is migrated, it should remain in memory until

it is accessed. Insufficient memory would result in skipped

migrations or wasted work due to evictions. We perform a

worst-case analysis to argue that modern servers have plenty

of memory to serve migration. The Google trace shows that at

on average 10 tasks run on a server at a time. Assuming the

latest generation dual-socket CPUs, the number of tasks on a

server at a given time is unlikely to be greater than 50. Further,

assume that each of the 50 tasks is a mapper and each mapper

reads a large 256MB HDFS block. This means that 12.5GB of

RAM is sufficient to hold the migrated data for the maximum

number of tasks that can run concurrently. This is a small

amount of memory for today’s servers which are provisioned

with hundreds of GB of RAM. Another study’s analysis of two

private workloads [5] draws similar conclusions that there is

sufficient RAM to keep a significant portion of the working

set in RAM.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design and implementation deci-

sions behind Ignem, our system for cold data migration. In the

design discussion, we address several questions that arise when

performing migration and we explain the rationale behind

our design decisions. We believe our choices allow Ignem to

perform migration effectively while being fault-tolerant and

scalable. We then discuss how we implemented Ignem on

top of HDFS, a widely popular, state-of-the-art big data file

system.

A. Design

Ignem uses a master-slave architecture. The master is re-

sponsible for communicating with jobs and determining what

data needs to be migrated. The slaves control how and when

data is migrated into memory. Files are partitioned into blocks

and are stored on the slaves. Slaves have only a block-level

view of the data while the master has complete mappings of

files to blocks and of blocks to slaves. This design is consistent

with that of several of today’s big data file systems [33], [16],

[20].

The migration process is initiated when a client sends the

Ignem master a list of files that a job will soon need to read.

A client is any code that can send a request to Ignem. The

master maps the files to blocks stored on the slaves and sends

each slave the corresponding list of blocks. Each slave then

independently reads the data blocks from disk to memory and

manages when data is evicted from memory.

1) How can Ignem schedule migration work efficiently?

How can it avoid disk contention and which migrations should

it prioritize?: Starting migration right after job submission

can be suboptimal for two reasons. First, not all migration

may be equally beneficial. Second, it can result in poor disk

performance when migrations for several jobs are performed

concurrently.

Ignem slaves put incoming migration work into a queue

before handling it. While the natural strategy is to migrate

the queued blocks in a FIFO order, Ignem slaves prioritize

migration for blocks belonging to jobs with smaller input

sizes. This allows Ignem to improve the performance of more

jobs. This prioritization also increases the likelihood of fully

migrating a job’s input during its lead-time. If two jobs have

exactly the same input size we use job submission time

as a tie-breaker. Prioritization in Ignem does not preempt

the migration of a block once it has begun. To avoid disk

bandwidth degradation due to concurrent reads, each slave

only migrates one block at a time.

Ignem’s migration is work-conserving, i.e. it does not delay

pending migrations if there are no ongoing migrations. This

ensures that Ignem exploits lead-time efficiently and keeps the

disk well utilized.

2) How can Ignem deal with data replication?: Data repli-

cation is widely used in big data file systems. Each block

of data is replicated on several servers for failure resilience.

When performing migration for a replicated block the question

is which and how many of the replicas to migrate to memory.

Migrating several replicas wastes resources but provides ad-

ditional opportunities for a task to execute on a server where

its input data was migrated.

Ignem’s approach is to randomly choose only one replica

to migrate. This is based on the fact that network bandwidth

is not a bottleneck in current data-centers [25]. Thus, even

when a task cannot be scheduled on the server where its input

was migrated, it can still efficiently read the block over the

network. Ignem allows a task to specify locality preferences

with respect to migrated blocks. This is a straightforward

extension to current big data file systems because they provide

APIs to allow tasks to query input locations and specify disk-

based locality preferences.

3) How can Ignem avoid wasting disk bandwidth when

migrating?: Migration may waste disk bandwidth in two

cases. First, this can occur if the data that is migrated is never

read. Ignem only migrates data for known future reads so this

is not a concern in the common case. Job failures can lead

to migrated data being never read and we will explain later

how Ignem deals with this. Second, under memory pressure,

a migrated block could be evicted to make room for a new

block. Ignem avoids this by not evicting data before it is used.

The following discussion argues why we adopt this policy.

Ignem employs the Do not harm rule [8] which states that

a block of data A should never be evicted from memory in

order to make room for a block B that will be read later than

A. Keeping A results in a sure hit in memory for A, and a

potential hit/miss for B. Evicting A would result in a sure

miss for A without any guarantee for B. Therefore keeping A

is guaranteed to be at least as good as evicting it. In practice,

it is hard to infer the order in which migrated blocks will

be read because several tasks run concurrently on a server

and their runtimes may differ. In this case, the Do not harm

rule provides a conservative approach, assuming that A will be

read first and thus ensures a performance improvement without

wasting disk bandwidth.

4) How does Ignem avoid memory leaks in its migration

buffer?: For each migrated data block, a slave maintains a

reference list of job IDs for jobs that are expected to read the

block. A job ID is appended to this list when the slave receives

a command to migrate the block. When a job is completed,

the job submitter issues an evict instruction that causes the job

ID to be removed from the reference list. The evict instruction

is sent via the Ignem master and it is processed in a similar

manner to the migration instruction. A block is kept in memory

as long as its reference list is non-empty and is evicted when

it becomes empty. Evicting data as soon as no future accesses

are expected gives Ignem a low memory footprint.

In the case that a job fails or is terminated before it issues the

evict instruction, the reference lists containing this job’s input

blocks still need to be cleaned. When a memory occupancy

threshold is reached for the migration buffer, the slave queries

the cluster scheduler to check if the job is still running. If the

slave does not receive a confirmation that the job is still active,

it removes the job from all block reference lists. This cleanup

mechanism helps ensure that Ignem keeps data in memory

only for jobs that are still running.

As a performance optimization to keep memory usage low,

we also allow Ignem to implicitly remove a job from a block’s

reference list as soon as the job reads the block of data. This

causes data to be evicted sooner if the reference list becomes

empty. A job can opt into this implicit eviction mode when

the job submitter issues the migration instruction.

5) How can Ignem achieve failure resilience?: Ignem is

resilient to failures. When the master fails, a new master can

quickly be started and it starts handling new requests. If just

the master process fails, it can be restarted on the same server

and no further failure handling is required. If the server itself

fails, we launch the master on a different server. Clients know

how to reach the master by reading the IP address and port

of the master from a small configuration file placed on each

server in the cluster. After the new master is launched, we

update this configuration file and broadcast it to all servers.

A backup master can also be kept active at all times, and

have its address pre-listed in the configuration file. When

the master fails, Ignem loses its state about which blocks

are in memory, so eviction commands cannot be directed to

the appropriate slaves. Ignem slaves purge the reference lists

for all in-memory blocks when the master fails so as to be

consistent with the new masters empty state. The failure of

the master only results in a temporary performance loss for

those jobs whose migration had already begun.

For slave failures, we adopt resilience mechanisms similar

to those for slaves in HDFS. If only the slave process fails,

it can be restarted on the same server. All data that has been

migrated into memory is discarded. This causes a temporary

loss of performance, but after being restarted, the slaves can

handle new migration commands successfully. There is no

memory leak when slaves fail because the operating system

automatically cleans up the blocks in memory when a slave

process is terminated. If the entire server fails, the file system

removes the server from the namespace map. The Ignem

master queries the file system to get the locations of blocks

so it will receive an updated view with only live locations for

replicas of each block.

6) Can Ignem scale?: Ignem has a master-slave architec-

ture similar to HDFS, which has been shown to scale to

thousands of servers [33]. The Ignem master only has to handle

migration requests from job launchers, map these requests

to blocks, and send migration instructions to slaves. These

operations have a very small computational load compared

to what other centralized components such as the Hadoop

NameNode or Yarn ResourceManager already handle at scale.

In order to reduce RPC communication overheads, Ignem

sends migration commands between the master and slaves in

batches. To enable Ignem to handle more clients and slaves,

requests from clients to the master and commands from the

master to slaves can be processed in parallel by multiple

threads. The amount of extra memory required by Ignem at

every slave is negligible and consists of no more than 1KB

per block.

B. Implementation

We implemented Ignem as an extension of the Hadoop Dis-

tributed File System (HDFS). Ignem is backward compatible

with HDFS and therefore it can be easily deployed in real-

world settings. Though the rest of this section discusses Ignem

in the context of HDFS, the design principles behind it can

be applied in other file systems. We implemented the Ignem

master within the HDFS NameNode, and the Ignem slave

within the DataNode.

1) Migration mechanism at the slaves: HDFS has the

capability for users to explicitly lock files in memory. We build

on top of this to migrate inputs into memory. The slaves use

the mmap and mlock system calls to read a file in memory.

First, mmap maps a portion of the file to part of the virtual

address space of the slave process. The mlock call then locks

the mapped region into RAM, preventing that memory from

being paged out. The mlock causes data to be read from disk.

When data is no longer needed the munmap system call is

used to evict the data from memory. The input data is read-

only so there is no need to write back anything to disk once

data is evicted from memory.

While is it possible to migrate data onto the slave’s heap,

this would require changing the IO path of future reads to

access data from the slave’s heap instead of just opening a

file. The system calls above migrate data into the buffer cache

where it is accessible to other processes. This also avoids

double buffering.

2) Memory management: Ignem limits the amount of mi-

grated data to a configurable maximum threshold. If this mi-

gration memory buffer is full, migration commands are queued

until buffer space is available or until they are discarded due

to missed reads.

Each slave has a hash-map that maps a job’s ID to the

list of blocks migrated for the job. This hash-map allows

Ignem to efficiently locate the blocks that need to have their

reference lists modified. A job ID can be removed from a

block’s reference list explicitly via the eviction command when

the job completes, or implicitly when the job reads the data

block. Reads calls in HDFS carry the job ID so Ignem slaves

can extract the job ID and independently perform this implicit

eviction without contacting the Ignem master. A job chooses

whether or not to enable implicit eviction when the migration

command is issued.

3) Modifying applications to use Ignem: Before a job is

submitted to a system such as Yarn, a piece of code we call

the job-submitter is run to configure the job. Configuring a

job involves specifying which classes will be run and setting

the job’s input and output paths. The job-submitter is the best

place to insert the migration call because it is the first element

in a job’s lifecycle.

Inside the job-submitter one can create an instance of the file

system client (DFSClient). The DFSClient is used to perform

namespace operations such as opening, closing, creating and

deleting files. We extended the DFSClient in HDFS with a

migrate method whose main argument is a list of files to be

migrated or evicted. Extra arguments are used to select the

operation to perform, and whether eviction will be explicit or

implicit. The DFSClient communicates with the Ignem master

(which is part of the NameNode) via Remote Procedure Calls

(RPC).

Some MapReduce applications such as Sort have simple

job-submitters where the list of input files is easily accessi-

ble. Such applications can be easily modified to use Ignem

by adding a call to the migrate method on the DFSClient.

Frameworks like Hive have more complex job-submitters that

submit a sequence of MapReduce jobs for different stages of

the query. Modifying Hive was more involved with regards

to creating the list of files to be migrated, but the API to

Ignem is still a single function call. The change to Hive is a

one-off change to the framework. All queries that run on the

framework then get their inputs migrated transparently.

IV. EVALUATION

In this section, we evaluate our prototype of Ignem. We

study the benefits or migrating cold data using a workload

derived from a Facebook trace, two standalone MapReduce

jobs, and several Hive queries. Each job requires only a few

lines of code to enable it to use Ignem’s migration service.

We first describe our hardware and software setup, and our

workloads; then we present experimental results.

A. Hardware setup and software configuration

Hardware setup - We run our experiments on an 8 server

cluster. All servers run HDFS DataNodes processes, which we

extended to implement Ignem slaves. In addition to being a

slave, one server also runs the HDFS NameNode and Yarn Re-

sourceManager. The NameNode and ResourceManager have

very little computation load given the size of our cluster so

we can run them on a worker without any significant impact on

the worker’s performance. The Ignem master is implemented

as part of the NameNode.

Each server has a 1TB HDD drive, 128GB of RAM and

a Xeon E5-1650 CPU with 6 cores and 12 hyperthreads. We

have a 10Gbps network between the servers.

File system configurations - Most of our experiments

involve three configurations of the file system. The first two

configurations use default HDFS with Ignem disabled. In the

first configuration, all input data is stored on disk while in the

second configuration we force all inputs into RAM using the

vmtouch tool [3]. We call this second configuration HDFS-

Inputs-in-RAM. Vmtouch is run after input files are generated

and it locks all DataNode files in memory. Vmtouch does not

affect the outputs of jobs. Finally, we also run the workloads

on Ignem. For all configurations, we flush the buffer cache

before running jobs to ensure the inputs are on disk unless we

have explicitly locked them in memory using vmtouch.

B. Workloads

The workloads we use in this paper all consist of MapRe-

duce jobs that use HDFS as the underlying file system. All

the jobs use Apache Tez [29] as the execution engine.

1) SWIM workload: The SWIM workload [10] is a trace-

based workload derived from a production Hadoop cluster at

Facebook. The trace reports the input, shuffle and output data

sizes of the jobs that ran on the production cluster. The arrival

times for jobs are also provided. We scale down the data sizes

and inter-job arrival times. We evaluate Ignem using the first

200 jobs in the SWIM trace. We scale down the sizes of job

inputs to adjust for our smaller cluster. The total input size

for all 200 jobs after scaling is 170GB. We also reduce the

inter-job arrival time by 50%.

85% of jobs in our workload read 64MB or less and the

largest jobs read up to 24GB. The abundance of short jobs

and a heavy tail is a feature in other cluster traces too [4]. We

chose this workload because it is realistic and it also provides

a challenging scenario for Ignem. On one hand, the short

jobs read very little data so optimizing reads has a limited

impact on their durations. On the other hand, the large jobs

Absolute Duration (s) Speedup w.r.t HDFS

HDFS 14.4

Ignem 12.7 12%

HDFS-Inputs-in-RAM 11.4 21%

TABLE I: Despite counting in fixed overheads unrelated to

reading input, Ignem significantly improves the average job

duration by 12%. It realizes 60% of the upper bound benefit.

0 - 64 64 - 512 >512
0

0.1

0.2

0.3

0.4

0.5

0.6

Ignem

HDFS-Inputs-in-RAM

Fig. 5: Reduction in mean job duration for jobs, binned by

input data size. Ignem speeds up small,medium and large jobs

by 8.8%, 7.7% and 25% respectively

in the tail read so much data that there is unlikely enough

time to migrate the whole input. Despite these challenges, our

evaluation shows Ignem still provides significant speedup for

jobs in this workload.

2) Standalone MapReduce jobs: To evaluate the benefits

of migration in a more controlled setting, we also run sort

and wordcount jobs by themselves. The sort experiment uses

a 40GB dataset of random text. For wordcount, we vary the

input size from 1 GB to 12 GB to study how the benefits of

migration relate to the input size of a job and the available

lead-time. We generate the wordcount input by concatenating

a 400MB online text corpus [1] onto itself multiple times until

we reach the target input size.

3) Hive queries: Lastly, we evaluate Ignem’s benefits on

several queries from the TPC-DS benchmark [24] using Hive.

We added a hook into the Hive framework to enable it to

instruct Ignem to migrate query inputs into memory. The hook

is invoked when Hive finishes compiling each query.

C. SWIM Experimental results

1) Ignem significantly improves job duration in the SWIM

workload: Table I shows the average job duration for jobs

in the SWIM trace. When the SWIM workload is run with

all input data in memory, the average job duration is 21%

lower than when inputs are on disk. This 21% is an upper

bound for what any cold data migration scheme could do. As

we stated above, the SWIM workload leaves little room for

improvement. Despite this, Ignem provides a speedup of 12%.

This is nearly 60% of the upper bound.

Absolute Duration (s) Speedup w.r.t HDFS

HDFS 6.44

Ignem 4.03 38%

HDFS-Inputs-in-RAM 0.28 96%

TABLE II: Mapper tasks in the SWIM workload run 2.6x

faster when Ignem is used. The speedup is amplified further

for mappers because they have less fixed overheads that are

not related to reading inputs.

10
-3

10
-2

10
-1

10
0

0

0.5

1

HDFS : Mean-5.30 s

Ignem : Mean-3.22 s

HDFS-Inputs-in-RAM : Mean-0.04 s

Fig. 6: Ignem significantly reduces block read durations,

benefitting even blocks that are not migrated

2) Larger jobs are more sensitive to read optimization:

While Table I shows the overall performance over the whole

workload, we also investigate how Ignem performs for differ-

ent sized jobs. We divided our jobs into three bins by input

size. Figure 5 shows the reduction in relative average job

duration for each bin. For small jobs, Ignem provides an 8.8%

speed up. Its performance is very close to that of HDFS-Inputs-

in-RAM which means Ignem can usually migrate all inputs

for these small jobs. The same is true for medium-sized jobs

(64-512MB) and Ignem improves their duration by 7.7%. The

fact that HDFS-Inputs-in-RAM’s speedup drops for medium

sizes jobs is an inadvertent artifact of our workload having

few medium sized jobs and some of these jobs having high

computational overhead. The computational overhead limits

the job level speedup we can observe. In general though, jobs

with a larger input size should experience a larger speedup

when the inputs are in RAM. For the large jobs that read more

than 512MB, having inputs in memory reduces their duration

by nearly 60% on average. Ignem reduces the duration of these

jobs by 25%. Even though Ignem cannot migrate the entire

inputs of these jobs in time, the portion that is migrated has a

large pay-off since IO is a more significant part of these jobs.

3) Task level gains are even more significant: Ignem’s gains

at the job level are diluted by parts of the job that cannot

be improved by faster reads, such as shuffling, reducing and

writing outputs. In this section, we zoom in to look at the

speedup for map tasks since only these tasks read the input

data and therefore are directly accelerated by Ignem. Table II

shows Ignem improves average task duration by nearly 40%.

Though this may not translate to an equally large gain for the

jobs these tasks belong to, resources in the cluster are occupied

by map-tasks for much less time. This allows more work to

be packed into the cluster.

The lowest level of granularity we instrument are HDFS

0 0.5 1 1.5 2 2.5
10

-4

10
-2

10
0

(a) Per server memory usage under Ignem

0 0.5 1 1.5 2 2.5
10

-4

10
-2

10
0

(b) Per server memory usage of a hypothetical scheme that can
migrate and evict data instantaneously

Fig. 7: A comparison of the memory usage of Ignem vs. a

hypothetical scheme that performs migration instantaneously.

The memory footprint of Ignem is 2.6x lower on average, yet

Ignem can provide 60% of the benefit the hypothetical scheme.

block reads. Figure 6 shows a 40% reduction in the average

block read time, which is similar to the benefit at the task

level. These two numbers are similar because mapper tasks

in the SWIM workload spend most of their time reading and

perform very little computation. In Figure 6, we observe a

large reduction in the block read duration for about 60% of

blocks when using Ignem. This means roughly 60% of blocks

are successfully migrated and read from memory by tasks.

The rest of the block reads do not experience a large speedup

because Ignem did not have enough lead-time to migrate

them. However, there is still an improvement even for these

blocks that are not migrated because Ignem reduces the disk

contention these blocks experience by moving disk IO that

would otherwise contend with these blocks earlier.

4) Ignem provides good performance while using very little

memory: Figure 7 shows the relative frequency for the amount

of memory used per server to store blocks migrated into

memory. The histograms only show samples when memory

usage is non-zero, in order to exclude times when the cluster

is idle. We compare Ignem to a hypothetical scheme which

can migrate and evict data instantaneously. The hypothetical

scheme migrates the input when the job is submitted and

evicts it when the job completes. This scheme cannot be

implemented in practice because it is impossible to migrate

data instantaneously. However, we use it a comparison point

because it theoretically would provide the upper bound for

speedup like HDFS-Inputs-in-RAM does. Ignem uses 2.6x

less memory than the hypothetical scheme, but it is still able

to provide 60% of the speedup that the hypothetical scheme

would give.

Absolute Duration (s) Speedup w.r.t HDFS

HDFS 147

Ignem 114 22%

HDFS-Inputs-in-RAM 75 49%

TABLE III: Sort workload results

0 2 4 6 8 10 12
0

0.5

1

1.5

HDFS

Ignem

Ignem+10s

HDFS-Inputs-in-RAM

Fig. 8: Relative job durations for wordcount with different

input sizes

5) Prioritizing smaller jobs helps Ignem perform well:

Ignem slaves keep a queue of blocks waiting to be migrated.

Instead of processing this queue in FIFO order, Ignem pri-

oritizes migrating blocks for smaller jobs. When we disable

prioritization, Ignem provides 2% less speedup w.r.t HDFS.

This is nearly a 15% reduction in the benefit from Ignem in

for this workload.

D. Sort workload

As shown in Table III, when its inputs are all in RAM the

sort job runs nearly 2x faster. This highlights how important

reads are, even for jobs that have significant computation and

write a lot of data. While the buffer cache can absorb writes,

reads will block on disk IO unless the data has been migrated

into memory earlier. Though there is not enough lead-time to

migrate the entire input into RAM, Ignem migrates part of it

and reduces the job duration by 22%.

E. How the benefits of migration relate to input size and lead-

time

Figure 8 shows the duration of the Wordcount with varying

input sizes. When the data size is small the speedup from

having inputs in RAM is smaller because reading makes up

only a small part of the job. The speedup increases as reads

become a larger part of the job. The speedup then plateaus

when non-read activities start increasing at the same rate as

the read time.

When the data size is small, Ignem can migrate the whole

input into memory and matches the performance of HDFS-

Inputs-in-RAM. Ignem keeps up until the input is too large

to migrate within the lead-time. For our wordcount job, this

occurs after 2GB. More generally the inflection point depends

on the disk bandwidth and how much lead-time there is.

Beyond this point, the relative speed-up from migration starts

to decrease. Ignem still migrates the same amount of data, but

this becomes a smaller fraction of the total input. A migration

scheme that can infer the Ignem speed-up curve for different

jobs can potentially use this information to prioritize jobs

which will benefit more.

F. The effects of lead-time. Introducing delay can speed up a

job.

To determine how more lead-time would affect the speedup,

we artificially insert some lead-time into the wordcount job.

Before modification, the minimum lead-time for all blocks is

10s. We insert an additional 10s of lead-time into the jobs

and plot these results in Figure 8 with the label Ignem+10s.

We add lead-time by putting the wordcount job submitter to

sleep just after the migration call, but before the job submitter

finishes submitting the job. In a more natural setting, the extra

lead-time may be from queueing delay at the scheduler. The

sleep time is counted in the job duration.

When the input size is 1GB, Ignem+10s is 20% worse

than HDFS due to the sleep period. However, at 2GB, the

speedup from migration outweighs the extra 10s. Ignem+10s

is now better than HDFS though not as fast as Ignem without

the sleep. As the data size grows, Ignem+10s should be able

to migrate more data because of the larger lead-time. This

moves the minimum point in its speed-up curve further right.

Surprisingly though, at 4GB, Ignem+10s outperforms Ignem.

It seems counter-intuitive that adding time to a job reduces

its duration. This happens because Ignem is more efficient

at reading data from disk than the wordcount job itself. As

described in Section III-A1, Ignem schedules migration so that

only one block is read at a time, thereby avoiding high read-

concurrency which degrades disk bandwidth. It is an intriguing

concept that one can add delay to a system, perform work

more efficiently during the delay and make up for more than

the delay introduced, and so provide an overall speedup. This

concept can be applied to other systems.

G. Hive

Finally, we augmented the Hive framework to use Ignem.

In Figure 9a, Ignem improves query runtime by up to 34%

for query #3, and by 20% on average. To accelerate all these

queries, we only had to make a one-off modification in the

Hive framework itself.

The gains from Ignem are less pronounced for queries 82,

25 & 29 in Figure 9a because these queries have a larger

input size, as shown in Figure 9b. Eliminating disk reads has

a larger impact when the input size is large but the amount of

data that Ignem can migrate within the lead-time becomes a

smaller fraction of the input size, which leads to a lower speed

up. This is consistent with our discussion in Section IV-E.

However, Ignem can still deliver significant speed up under

these difficult circumstances.

15 26 40 3 7 19 24 82 25 29

Query #

0

0.2

0.4

0.6

0.8

Jo
b

 d
u

ra
ti

o
n

 r
ed

u
ct

io
n

 w
.r

.t
.

H
D

F
S Ignem

HDFS-Inputs-in-RAM

(a) Query durations. Ignem accelerates most queries by more than
20%

15 26 40 3 7 19 24 82 25 29

Query #

0

5

10

In
p
u
t

si
ze

 (
G

B
)

(b) Query input size

Fig. 9: Hive query durations and their respective input sizes.

Queries in both figures are sorted by input size.

V. RELATED WORK

Pacman [5] leverages the all-or-nothing property of data-

parallel workloads to implement a coordinated caching scheme

that improves job runtime. The key insight is that a job

is sped up only when the inputs of all tasks running in

parallel are cached. Pacman works well for iterative workloads

that read the same input repeatedly but cannot improve the

performance of jobs that read singly-accessed blocks. This

is because Pacman is purely a caching scheme and lacks

any data migration capabilities. Nevertheless, the authors of

Pacman acknowledge that 30% of all tasks in their workloads

read singly-accessed blocks and Pacman cannot improve their

performance. Ignem is complementary to Pacman in that

it specifically targets performance improvements for singly-

accessed blocks via migration.

A number of HDFS-based systems incorporate limited

forms of data migration. HPMR [32] improves job perfor-

mance by migrating a block from a remote rack to a server in

the rack where the task processing the block is likely to exe-

cute. Thus, HMPR is complementary to Ignem. Triple-H [19]

implements several data placement policies that distribute data

over the tiers in a heterogeneous storage system composed of

RAM, SSD, and HDD. The goal of the policies is to improve

performance and load balancing. Triple-H also implements

an eviction/promotion manager which evicts cold data from

RAM and promotes hot data to RAM. Data is labeled hot or

cold based on past access counts. In contrast, Ignem tackles

the problem of migrating cold data into RAM. Aqueduct [23]

uses a control-theoretical approach to statistically guarantee a

bound on the amount of impact on foreground work during a

data migration, while still accomplishing the data migration in

as short a time as possible. It does so by dynamically adjusting

the speed of data migration guided by periodic measurements

of the storage systems performance as perceived by the client

applications. Aqueduct is complementary to Ignem. Aqueduct

deals with how fast migration should proceed but assumes a

migration plan is provided as input. In contrast, Ignem deals

with creating such a migration plan.

A number of parallel file systems incorporate read-

ahead prefetching, a very restricted form of data migration.

GPFS [30], Lustre [31], Panache [14] as well as the Zebra

Striped Network File System [18] perform prefetching for

large files but only once the file has already been accessed

sequentially. Recent work has shown that parallel file systems

can also be made to serve the needs of data-parallel appli-

cations [6], [34] but no additional improvements have been

proposed to the read-ahead prefetching scheme. HPMR [32]

also performs prefetching after access but differs in that it

starts the prefetch from the end of a block. In contrast to these

solutions, Ignem migrates blocks before they are accessed

making full use of the jobs’ lead-time.

VI. CONCLUSION

This paper demonstrates that migrating cold data can deliver

significant benefits for applications that use big data file

systems. We first present analytic evidence that conditions

in production clusters are favorable for migration. There

is sufficient lead-time and residual bandwidth to migrate a

significant amount of data before jobs start reading.

We then design and build Ignem to demonstrate that the

potential speedup can be realized in practice. Ignem success-

fully migrates data and delivers large benefits across several

workloads described in Section IV. Ignem reduces the average

job duration in the SWIM workloads by 12%, and the average

task duration by 38%. A sort job runs 20% faster under Ignem

and wordcount jobs experience a speedup of up to 30%.

Beyond Ignem, our evaluation results demonstrate that the

input stage of jobs is an attractive target for optimization.

Ignem is only one point in a broad space that is yet to be

explored thoroughly. Exploring different alternatives to some

of our design decisions can produce further improvements.

The experiments we ran with all inputs in RAM show that

there is indeed room for further optimization.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their

thoughtful feedback. This research was sponsored by the NSF

under CNS-1422925 and CNS-1718980.

REFERENCES

[1] Consumer Complaint Database. https://catalog.
data.gov/dataset/consumer-complaint-database/resource/
2f297213-7198-4be1-af1e-2d2623e7f6e9.

[2] SWIM Workloads repository. https://github.com/SWIMProjectUCB/
SWIM/wiki/Workloads-repository.

[3] The Virtual Memory Toucher. https://hoytech.com/vmtouch/.

[4] ANANTHANARAYANAN, G., GHODSI, A., SHENKER, S., AND STOICA,
I. Effective straggler mitigation: Attack of the clones. In NSDI (2013),
vol. 13, pp. 185–198.

[5] ANANTHANARAYANAN, G., GHODSI, A., WANG, A., BORTHAKUR,
D., KANDULA, S., SHENKER, S., AND STOICA, I. PACMan: Coordi-
nated memory caching for parallel jobs. In Proc. NSDI 2012.

[6] ANANTHANARAYANAN, R., GUPTA, K., PANDEY, P., PUCHA, H.,
SARKAR, P., SHAH, M., AND TEWARI, R. Cloud analytics: Do we
really need to reinvent the storage stack? In Proceedings of the 2009

Conference on Hot Topics in Cloud Computing, HotCloud’09.

[7] APPUSWAMY, R., GKANTSIDIS, C., NARAYANAN, D., HODSON, O.,
AND ROWSTRON, A. Scale-up vs scale-out for hadoop: Time to rethink?
In Proceedings of the 4th annual Symposium on Cloud Computing

(2013), ACM, p. 20.

[8] CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K. A study
of integrated prefetching and caching strategies. ACM SIGMETRICS

Performance Evaluation Review 23, 1 (1995), 188–197.

[9] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive analytical
processing in big data systems: A cross-industry study of mapreduce
workloads. Proceedings of the VLDB Endowment 5, 12 (2012), 1802–
1813.

[10] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive analytical
processing in big data systems: A cross-industry study of mapreduce
workloads. Proceedings of the VLDB Endowment 5, 12 (2012), 1802–
1813.

[11] CROTTY, A., GALAKATOS, A., DURSUN, K., KRASKA, T.,
CETINTEMEL, U., AND ZDONIK, S. Tupleware: Redefining modern
analytics. arXiv preprint arXiv:1406.6667 (2014).

[12] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified Data Processing
on Large Clusters. In OSDI (2004).

[13] DZINAMARIRA, S., DINU, F., AND NG, T. E. Pfimbi: Accelerating
big data jobs through flow-controlled data replication. In Mass Storage

Systems and Technologies (MSST), 2016 32nd Symposium on (2016),
IEEE, pp. 1–13.

[14] ESHEL, M., HASKIN, R. L., HILDEBRAND, D., NAIK, M., SCHMUCK,
F. B., AND TEWARI, R. Panache: A parallel file system cache for global
file access. In 8th USENIX Conference on File and Storage Technologies,

San Jose, CA, USA, February 23-26, 2010 (2010).

[15] FLORATOU, A., PATEL, J. M., SHEKITA, E. J., AND TATA, S. Column-
oriented storage techniques for mapreduce. Proceedings of the VLDB

Endowment 4, 7 (2011), 419–429.

[16] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file
system. In Proceedings of the Nineteenth ACM Symposium on Operating

Systems Principles, SOSP ’03.

[17] GKANTSIDIS, C., VYTINIOTIS, D., HODSON, O., NARAYANAN, D.,
DINU, F., AND ROWSTRON, A. I. Rhea: Automatic filtering for
unstructured cloud storage. In NSDI (2013), vol. 13, pp. 2–5.

[18] HARTMAN, J. H., AND OUSTERHOUT, J. K. The zebra striped network
file system. In SOSP 93.

[19] ISLAM, N. S., LU, X., WASI-UR RAHMAN, M., SHANKAR, D., AND

PANDA, D. K. Triple-h: A hybrid approach to accelerate hdfs on hpc
clusters with heterogeneous storage architecture. In Cluster, Cloud

and Grid Computing (CCGrid), 2015 15th IEEE/ACM International

Symposium on (2015), IEEE, pp. 101–110.

[20] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND STOICA, I.
Tachyon: Reliable, memory speed storage for cluster computing frame-
works. In Proceedings of the ACM Symposium on Cloud Computing

(2014), ACM, pp. 1–15.

[21] LION, D., CHIU, A., SUN, H., ZHUANG, X., GRCEVSKI, N., AND

YUAN, D. Don’t get caught in the cold, warm-up your JVM: Understand
and eliminate JVM warm-up overhead in data-parallel systems. In OSDI

(2016).

[22] LIU, Z., AND NG, T. E. Leaky buffer: A novel abstraction for relieving
memory pressure from cluster data processing frameworks. IEEE

Transactions on Parallel and Distributed Systems 28, 1 (2017), 128–
140.

[23] LU, C., ALVAREZ, G. A., AND WILKES, J. Aqueduct: Online data
migration with performance guarantees. In FAST (2002).

[24] NAMBIAR, R. O., AND POESS, M. The making of tpc-ds. In
Proceedings of the 32nd international conference on Very large data

bases (2006), VLDB Endowment, pp. 1049–1058.

[25] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O. S., HOW-
ELL, J., AND SUZUE, Y. Flat datacenter storage. In OSDI (2012),
pp. 1–15.

[26] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER, S., AND

CHUN, B.-G. Making sense of performance in data analytics framework.
In Proc. NSDI 2015.

[27] RASLEY, J., KARANASOS, K., KANDULA, S., FONSECA, R., VO-
JNOVIC, M., AND RAO, S. Efficient queue management for cluster
scheduling. In Proceedings of the Eleventh European Conference on

Computer Systems (2016), ACM, p. 36.
[28] REISS, C., WILKES, J., AND HELLERSTEIN, J. L. Google cluster-usage

traces: format+ schema. Google Inc., White Paper (2011), 1–14.
[29] SAHA, B., SHAH, H., SETH, S., VIJAYARAGHAVAN, G., MURTHY, A.,

AND CURINO, C. Apache tez: A unifying framework for modeling and
building data processing applications. In Proceedings of the 2015 ACM

SIGMOD international conference on Management of Data (2015),
ACM, pp. 1357–1369.

[30] SCHMUCK, F., AND HASKIN, R. Gpfs: A shared-disk file system for
large computing clusters. In FAST 2002.

[31] SCHWAN, P. Lustre: Building a file system for 1,000-node clusters. In
PROCEEDINGS OF THE LINUX SYMPOSIUM 2003.

[32] SEO, S., JANG, I., WOO, K., KIM, I., KIM, J.-S., AND MAENG, S.
HPMR: Prefetching and pre-shuffling in shared mapreduce computation
environment. In Cluster Computing and Workshops, 2009. CLUS-

TER’09. IEEE International Conference on (2009), IEEE, pp. 1–8.
[33] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The

Hadoop Distributed File System. In Mass Storage Systems and Tech-

nologies (MSST), 2010 IEEE 26th Symposium on (2010), IEEE, pp. 1–
10.

[34] TANTISIRIROJ, W., SON, S. W., PATIL, S., LANG, S. J., GIBSON,
G., AND ROSS, R. B. On the duality of data-intensive file system
design: Reconciling hdfs and pvfs. In Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’11.
[35] THUSOO, A., SHAO, Z., ANTHONY, S., BORTHAKUR, D., JAIN, N.,

SEN SARMA, J., MURTHY, R., AND LIU, H. Data warehousing and
analytics infrastructure at facebook. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data (2010),
ACM, pp. 1013–1020.

[36] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER, D.,
TUNE, E., AND WILKES, J. Large-scale cluster management at google
with borg. In Proceedings of the Tenth European Conference on

Computer Systems (2015), ACM, p. 18.
[37] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MC-

CAULEY, M., FRANKLIN, M. J., SHENKER, S., AND STOICA, I. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, NSDI’12.
[38] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER, S.,

AND STOICA, I. Spark: cluster computing with working sets. In
Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing (2010), pp. 10–10.
[39] ZHANG, Z., LI, C., TAO, Y., YANG, R., TANG, H., AND XU, J. Fuxi: A

fault-tolerant resource management and job scheduling system at internet
scale. In VLDB (2014).

