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Abstract—This paper investigates whether migrating cold data
can yield significant speedup for big data jobs that run on modern
big data file systems. Our work is motivated by two observations.
First, improving the input stage of a job can provide significant
speedup because many jobs spend a large part of their execution
reading inputs. The second observation is that the inputs for
many jobs are cold. Common techniques that aim to keep hot
data in memory do not benefit these jobs.

We analyze the Google production cluster trace data and
find that the key ingredients for effectively migrating cold data
do exist in such production environments. Encouraged by our
findings, we design and implement Ignem, a framework for
migrating cold data in big data file systems. We evaluate Ignem
in a series of experiments and show that it provides significant
speedup for both small and large jobs. Specifically, Hive queries
are accelerated by up to 34%; the mean job duration in a trace-
driven workload is reduced by 12% and the task duration by
nearly 40%; other standalone jobs such as sort and wordcount
also improve similarly by up to 30%.

I. INTRODUCTION

In recent years, the input stage of big data analytics jobs
has become a more dominant part of the jobs’ execution time.
This has happened for two reasons. First, the input stage
typically handles much more data than subsequent stages.
Second, several recent proposals have shown how to accelerate
the non-input part of the job. Common techniques that aim to
keep hot data in memory do not benefit the input stage of
many data analytics jobs because the input data for these jobs
is cold. Together, these facts make the input stage a target for
optimization with a large potential for speedup.

A measurement study of SQL workloads on Spark [26]
reported that at the median, queries in various workloads spend
up to 19% of their execution time blocked on disk I0. Nearly
80% of the disk 10 in production workloads analyzed in this
study is from reading map inputs. Eliminating these slow reads
by moving inputs into memory could improve query execution
by up to 15% !. In this same study, rewriting one query in
C++ reduced CPU time by 2x because this eliminated a lot
of overhead from using Scala. Shortening the body of the all
queries by 2x would amplify the time spent on the initial reads
to 25% 2 of the overall execution time. Further optimizations
in the literature [22], [11], [15], [20] that improve CPU time
by an order of magnitude will see initial reads become a more
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dominant part of the execution of jobs. We refer the reader
to Figure 7 in [11] for a breakdown of the benefits each
optimization could give. Initial reads matter even for iterative
machine learning jobs like Logistic regression and K-Means.
Reading inputs from disk can inflate the first iteration in each
job by 15x and 2.5x respectively, compared to later iterations
[37].

Although there are methods to have the file system automat-
ically identify and keep hot data in memory, such methods
often do not benefit a job’s input stage. Hot data refers to
frequently and recently accessed data. For example, Spark
[38] achieved an order of magnitude speedup over Hadoop for
iterative machine learning applications by keeping repeatedly
accessed data and intermediate outputs in memory. However,
the initial read of data from disk is not improved by these
optimizations. Triple-H [19] uses both frequency and recency
of accesses to compute a temperature for each block and
moves the block into faster storage when the temperature rises
above a certain threshold. PACMan [5] targets hot data that is
already in memory and determines which data should be kept
or evicted when memory pressure rises. The assumption that
motivates keeping hot data in memory is that read accesses in
the near future will likely be to the data that is currently hot.
However, only keeping hot data in memory does not benefit
a large class of jobs whose reads are on cold data. One study
shows that over 30% of tasks in a production workload belong
to jobs that access singly read data [5]. These are mostly
recurring jobs that process new data such as logs or user click-
stream data. The new data cannot all fit in memory but has
to be stored on disk before it is processed. This data is often
large and it is not processed immediately [35]. When the data
is eventually accessed from disk, it is cold and the reads are
not accelerated because the state of the art schemes would
keep or move only hot data into memory.

In this work, we first analyze the Google cluster trace
data so we can answer several questions that determine how
feasible it is to effectively migrate cold data upward into
memory in the storage hierarchy in such production environ-
ments: Can we identify cold data that will be accessed in
the near future? Once identified, can this data be migrated
into memory before it is accessed? Is there enough time
and residual bandwidth for migration? Upon answering these
questions, other questions also emerge: How much speed-up
can be expected when migration is done successfully? Can
migration work be scheduled in a manner that reduces disk



seeks and therefore improves disk throughput?

Our analysis yielded encouraging results and motivated us
to design Ignem, a system for migrating cold data in big data
file systems. We have implemented a prototype of Ignem and
we evaluate it in a series of experiments. Ignem provides
significant speedup for both small and large jobs. Specifically,
Hive queries are accelerated by up to 34%; the mean job
duration in a trace-driven workload is reduced by 12% and
the task duration by nearly 40%. Other standalone jobs such
as sort and wordcount also improve similarly by up to 30%.

II. MOTIVATION
A. Where and why data migration is useful

Data migration is beneficial because it can speed up the
initial stage of a job, which often is a significant part of the
overall job runtime. The reason for this is that the computation
time in later stages is not proportional to the job input size.
The initial stage often filters out or aggregates a large portion
of the job input which makes the output of this stage much
smaller than the job input size.

Prior work on MapReduce workloads at Google shows
up to a 10:1 ratio between the job input and the output
size of the map stage of the job [12]. Similarly, Rhea [17]
shows a reduction of 2-20000x between input and output
sizes for Hadoop mappers. Other studies also show similar
data reduction [7], [9]. We further support this argument by
running TPC-DS queries using the setup in Section IV and
looking at the proportion of time jobs spend in the initial
stage. On average, the map tasks account for 97% of total task
runtime. These map tasks read inputs and filter out much of the
data because of the SELECT statement and predicates in the
WHERE clause. Such selectively is common amongst database
queries and makes them good candidates for acceleration using
data migration.

B. Migrating inputs to memory yields significant benefits

We run the SWIM workload [2] to showcase the potential
benefits of migrating job input data into memory. The SWIM
workload is a popular trace driven workload based on produc-
tion jobs at Facebook. The workload is described in detail in
Section IV. Job inputs are stored in the Hadoop Distributed
File System (HDFS). We evaluate the effects of storing HDFS
files on a hard disk drive (HDD), on a solid state drive (SSD),
or in memory (RAM). The HDFS block size is set to 64MB.

Figure 1 shows histograms for the time it takes a mapper
task to read an entire HDFS input block. Reads from RAM
(Figure Ic) are, on average, 160x faster than those from HDD
(Figure 1a). This is because HDDs have lower sequential
throughput and in addition, their performance is severely
impacted by concurrent reads. Figure 2 shows a CDF of
mapper task runtimes. Average task runtime for tasks that read
from RAM is 23x smaller than for those reading from HDD.
While significant, the speedup for task runtime is smaller than
the speedup for HDFS block reads because tasks have other
overheads unrelated to reading data.
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Fig. 1: On average, HDFS block reads from RAM are 160x
faster than reads from HDD, and 7x faster than reads from
SSD.
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Fig. 2: Reading from RAM leads to a large speedup for mapper
tasks

One approach to accelerate reads and reduce the negative ef-
fects of concurrency is to use SSDs. While HDFS block reads
from SSD are faster than those from HDD, Figures 1b and lc
show that reading from RAM is still 7x faster. Similarly, task
runtimes (Figure 2) are lower when reading from RAM rather
than SSD. These results suggest that regardless of whether
cold job input data is stored on HDDs or SSDs, migrating the
data into memory is key to maximizing performance.



C. Conditions favorable for timely migration are present in
production workloads

To maximize the performance benefit delivered by data
migration, two conditions need to be met. First, migration
should be timely, that is, it should be possible to migrate
data before it is accessed. Second, there should be enough
available memory to hold the migrated data while it waits to be
accessed. With the support of a popular Google trace [28], we
argue that both conditions hold in practice. The trace reports
resource usage for over 12,000 servers during a month-long
period. These resources include CPUs, memory, and disks.
The trace also logs events such as the submission, scheduling,
and termination of jobs and tasks.

1) Why timely migration is achievable today: Whether a
block of data can be timely migrated depends on three factors:
the amount of time available for migration, the amount of 10
resources available for migration and the size of the data to
be migrated.

For the rest of the paper, we use the term lead-time to refer
to the amount of time available for migration. More precisely,
lead-time for a task is the time between the earliest moment
when migration can be triggered (usually job submission time)
and the moment when the data is accessed by the task. Lead-
time for a job is the time between job submission and the
start of the first task in the job. Note that our definition of job
lead-time is a lower bound since not all tasks in a job may
start simultaneously.

Sources of lead-time The most important sources of
lead-time in big data frameworks are queueing time and
platform overheads.

Current systems queue tasks while they wait for the re-
sources needed by the tasks to become available. Some sys-
tems queue tasks at the scheduler level [36] while others have
queues at the node level [27]. In both cases, the rationale is to
obtain high cluster utilization and resource packing efficiency
by having tasks ready for execution and by having a diverse
pool of task resource requirements to draw from. Our insight
is that task queueing time can be leveraged for migrating data.
For the Google workload, the mean and median job queueing
times are 8.8 and 1.8 seconds respectively. For the purpose of
this calculation job queueing time and lead-time are identical.

Per-platform overheads provide additional lead-time for
migration. The most important source is inherent in the design
of a large number of schedulers today. Centralized schedulers
rely on a heartbeat mechanism to react to cluster changes
and schedule new tasks. For scalability, heartbeat intervals are
in the order of seconds. For example, the default heartbeat
interval in Hadoop is 3 seconds. In addition to heartbeats,
shipping binaries to workers [39] and JVM warm-up costs [21]
can further increase lead-time.

Lead-time is sufficient As stated above, jobs in the
Google workload take on average 8.8 seconds to be scheduled.
Whether this lead-time is enough for data migration depends
on the amount of IO that jobs perform. The Google trace
reports task runtime as well as the time tasks spent blocked
on disk IO. For each job in the trace, we sum the disk 10
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Fig. 3: For 81% of jobs in the Google trace, the lead-time is
sufficient for migration.
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Fig. 4: Disk bandwidth utilization over a 24 hour period for
servers in the Google workload. We plot individual timelines
for 10 servers, and the mean utilization for 40 servers. There
is abundant residual bandwidth that can be exploited for data
migration.

time for all its tasks. We then compare the lead-time for each
job with the disk IO time. This comparison assumes the disk
IO is served by one disk on a single machine. However, disk
IO for a job may be parallelized across multiple disks and
machines so more data could be migrated within the lead-
time. Figure 3 shows the ratio between the time spent reading,
and the lead-time. For 81% of jobs, the lead-time is greater
than the read-time meaning there is enough time to migrate
their entire inputs into memory. Note that this is despite the
fact that we are using a lower bound on a job’s lead-time. In
addition to the 81%, other jobs whose input can only partially
be migrated into memory may still benefit from migration by
having some of their tasks sped up.

Sufficient disk bandwidth for timely migration Our
previous example showed that the lead-time was sufficient
for a large number of jobs in the Google trace assuming a
migration speed equal to that at which the mapper would
process the data. In practice, migration can proceed faster. It
is not limited by the compute rate since it happens before the
data is accessed. Migration for a task may share disk resources
with foreground reads and writes. Nevertheless, we argue that
there is sufficient residual disk bandwidth in today’s clusters
to allow efficient migration.

The Google trace provides the time spent on 1O for each
individual tasks during intervals that are up to 5 minutes



long. Starting from this we derive disk utilization numbers for
servers. We assume that the IO time for a task is uniformly
distributed over the whole interval. We compute the disk
utilization for a server at l-second granularity. The disk
utilization for a server for interval [T'—1s, T'] is the sum of disk
IO time for that interval for all tasks that run on that server
and have an interval window that includes [T —1s, T']. Finally,
we average server disk utilization over 5-minute windows.

Figure 4 shows the disk utilization for a number of servers
in the Google cluster[28] for a 24h period. The behavior of
these servers is representative of the other servers in the trace.
At any point during the 24h period, the mean disk utilization
of 40 randomly chosen servers is at most 5%. For all 12,000+
servers, the mean disk utilization during the 24h period is
3.1%; and 1.3% for the entire month the trace covers. This
shows that current clusters are heavily over-provisioned for 10
and this allows ample opportunity for migration. Prior work
on a small academic cluster also shows that disks are often
under-utilized [13].

2) There is enough memory to store migrated data:
After data is migrated, it should remain in memory until
it is accessed. Insufficient memory would result in skipped
migrations or wasted work due to evictions. We perform a
worst-case analysis to argue that modern servers have plenty
of memory to serve migration. The Google trace shows that at
on average 10 tasks run on a server at a time. Assuming the
latest generation dual-socket CPUs, the number of tasks on a
server at a given time is unlikely to be greater than 50. Further,
assume that each of the 50 tasks is a mapper and each mapper
reads a large 256MB HDFS block. This means that 12.5GB of
RAM is sufficient to hold the migrated data for the maximum
number of tasks that can run concurrently. This is a small
amount of memory for today’s servers which are provisioned
with hundreds of GB of RAM. Another study’s analysis of two
private workloads [S] draws similar conclusions that there is
sufficient RAM to keep a significant portion of the working
set in RAM.

ITII. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design and implementation deci-
sions behind Ignem, our system for cold data migration. In the
design discussion, we address several questions that arise when
performing migration and we explain the rationale behind
our design decisions. We believe our choices allow Ignem to
perform migration effectively while being fault-tolerant and
scalable. We then discuss how we implemented Ignem on
top of HDFS, a widely popular, state-of-the-art big data file
system.

A. Design

Ignem uses a master-slave architecture. The master is re-
sponsible for communicating with jobs and determining what
data needs to be migrated. The slaves control how and when
data is migrated into memory. Files are partitioned into blocks
and are stored on the slaves. Slaves have only a block-level
view of the data while the master has complete mappings of

files to blocks and of blocks to slaves. This design is consistent
with that of several of today’s big data file systems [33], [16],
[20].

The migration process is initiated when a client sends the
Ignem master a list of files that a job will soon need to read.
A client is any code that can send a request to Ignem. The
master maps the files to blocks stored on the slaves and sends
each slave the corresponding list of blocks. Each slave then
independently reads the data blocks from disk to memory and
manages when data is evicted from memory.

1) How can Ignem schedule migration work efficiently?
How can it avoid disk contention and which migrations should
it prioritize?: Starting migration right after job submission
can be suboptimal for two reasons. First, not all migration
may be equally beneficial. Second, it can result in poor disk
performance when migrations for several jobs are performed
concurrently.

Ignem slaves put incoming migration work into a queue
before handling it. While the natural strategy is to migrate
the queued blocks in a FIFO order, Ignem slaves prioritize
migration for blocks belonging to jobs with smaller input
sizes. This allows Ignem to improve the performance of more
jobs. This prioritization also increases the likelihood of fully
migrating a job’s input during its lead-time. If two jobs have
exactly the same input size we use job submission time
as a tie-breaker. Prioritization in Ignem does not preempt
the migration of a block once it has begun. To avoid disk
bandwidth degradation due to concurrent reads, each slave
only migrates one block at a time.

Ignem’s migration is work-conserving, i.e. it does not delay
pending migrations if there are no ongoing migrations. This
ensures that Ignem exploits lead-time efficiently and keeps the
disk well utilized.

2) How can Ignem deal with data replication?: Data repli-
cation is widely used in big data file systems. Each block
of data is replicated on several servers for failure resilience.
When performing migration for a replicated block the question
is which and how many of the replicas to migrate to memory.
Migrating several replicas wastes resources but provides ad-
ditional opportunities for a task to execute on a server where
its input data was migrated.

Ignem’s approach is to randomly choose only one replica
to migrate. This is based on the fact that network bandwidth
is not a bottleneck in current data-centers [25]. Thus, even
when a task cannot be scheduled on the server where its input
was migrated, it can still efficiently read the block over the
network. Ignem allows a task to specify locality preferences
with respect to migrated blocks. This is a straightforward
extension to current big data file systems because they provide
APIs to allow tasks to query input locations and specify disk-
based locality preferences.

3) How can Ignem avoid wasting disk bandwidth when
migrating?: Migration may waste disk bandwidth in two
cases. First, this can occur if the data that is migrated is never
read. Ignem only migrates data for known future reads so this
is not a concern in the common case. Job failures can lead



to migrated data being never read and we will explain later
how Ignem deals with this. Second, under memory pressure,
a migrated block could be evicted to make room for a new
block. Ignem avoids this by not evicting data before it is used.
The following discussion argues why we adopt this policy.

Ignem employs the Do not harm rule [8] which states that
a block of data A should never be evicted from memory in
order to make room for a block B that will be read later than
A. Keeping A results in a sure hit in memory for A, and a
potential hit/miss for B. Evicting A would result in a sure
miss for A without any guarantee for B. Therefore keeping A
is guaranteed to be at least as good as evicting it. In practice,
it is hard to infer the order in which migrated blocks will
be read because several tasks run concurrently on a server
and their runtimes may differ. In this case, the Do not harm
rule provides a conservative approach, assuming that A will be
read first and thus ensures a performance improvement without
wasting disk bandwidth.

4) How does Ignem avoid memory leaks in its migration
buffer?: For each migrated data block, a slave maintains a
reference list of job IDs for jobs that are expected to read the
block. A job ID is appended to this list when the slave receives
a command to migrate the block. When a job is completed,
the job submitter issues an evict instruction that causes the job
ID to be removed from the reference list. The evict instruction
is sent via the Ignem master and it is processed in a similar
manner to the migration instruction. A block is kept in memory
as long as its reference list is non-empty and is evicted when
it becomes empty. Evicting data as soon as no future accesses
are expected gives Ignem a low memory footprint.

In the case that a job fails or is terminated before it issues the
evict instruction, the reference lists containing this job’s input
blocks still need to be cleaned. When a memory occupancy
threshold is reached for the migration buffer, the slave queries
the cluster scheduler to check if the job is still running. If the
slave does not receive a confirmation that the job is still active,
it removes the job from all block reference lists. This cleanup
mechanism helps ensure that Ignem keeps data in memory
only for jobs that are still running.

As a performance optimization to keep memory usage low,
we also allow Ignem to implicitly remove a job from a block’s
reference list as soon as the job reads the block of data. This
causes data to be evicted sooner if the reference list becomes
empty. A job can opt into this implicit eviction mode when
the job submitter issues the migration instruction.

5) How can Ignem achieve failure resilience?: Ignem is
resilient to failures. When the master fails, a new master can
quickly be started and it starts handling new requests. If just
the master process fails, it can be restarted on the same server
and no further failure handling is required. If the server itself
fails, we launch the master on a different server. Clients know
how to reach the master by reading the IP address and port
of the master from a small configuration file placed on each
server in the cluster. After the new master is launched, we
update this configuration file and broadcast it to all servers.
A backup master can also be kept active at all times, and

have its address pre-listed in the configuration file. When
the master fails, Ignem loses its state about which blocks
are in memory, so eviction commands cannot be directed to
the appropriate slaves. Ignem slaves purge the reference lists
for all in-memory blocks when the master fails so as to be
consistent with the new masters empty state. The failure of
the master only results in a temporary performance loss for
those jobs whose migration had already begun.

For slave failures, we adopt resilience mechanisms similar
to those for slaves in HDFS. If only the slave process fails,
it can be restarted on the same server. All data that has been
migrated into memory is discarded. This causes a temporary
loss of performance, but after being restarted, the slaves can
handle new migration commands successfully. There is no
memory leak when slaves fail because the operating system
automatically cleans up the blocks in memory when a slave
process is terminated. If the entire server fails, the file system
removes the server from the namespace map. The Ignem
master queries the file system to get the locations of blocks
so it will receive an updated view with only live locations for
replicas of each block.

6) Can Ignem scale?: Ignem has a master-slave architec-
ture similar to HDFS, which has been shown to scale to
thousands of servers [33]. The Ignem master only has to handle
migration requests from job launchers, map these requests
to blocks, and send migration instructions to slaves. These
operations have a very small computational load compared
to what other centralized components such as the Hadoop
NameNode or Yarn ResourceManager already handle at scale.

In order to reduce RPC communication overheads, Ignem
sends migration commands between the master and slaves in
batches. To enable Ignem to handle more clients and slaves,
requests from clients to the master and commands from the
master to slaves can be processed in parallel by multiple
threads. The amount of extra memory required by Ignem at
every slave is negligible and consists of no more than 1KB
per block.

B. Implementation

We implemented Ignem as an extension of the Hadoop Dis-
tributed File System (HDFS). Ignem is backward compatible
with HDFS and therefore it can be easily deployed in real-
world settings. Though the rest of this section discusses Ignem
in the context of HDFS, the design principles behind it can
be applied in other file systems. We implemented the Ignem
master within the HDFS NameNode, and the Ignem slave
within the DataNode.

1) Migration mechanism at the slaves: HDFS has the
capability for users to explicitly lock files in memory. We build
on top of this to migrate inputs into memory. The slaves use
the mmap and mlock system calls to read a file in memory.
First, mmap maps a portion of the file to part of the virtual
address space of the slave process. The mlock call then locks
the mapped region into RAM, preventing that memory from
being paged out. The mlock causes data to be read from disk.
When data is no longer needed the munmap system call is



used to evict the data from memory. The input data is read-
only so there is no need to write back anything to disk once
data is evicted from memory.

While is it possible to migrate data onto the slave’s heap,
this would require changing the IO path of future reads to
access data from the slave’s heap instead of just opening a
file. The system calls above migrate data into the buffer cache
where it is accessible to other processes. This also avoids
double buffering.

2) Memory management: Ignem limits the amount of mi-
grated data to a configurable maximum threshold. If this mi-
gration memory buffer is full, migration commands are queued
until buffer space is available or until they are discarded due
to missed reads.

Each slave has a hash-map that maps a job’s ID to the
list of blocks migrated for the job. This hash-map allows
Ignem to efficiently locate the blocks that need to have their
reference lists modified. A job ID can be removed from a
block’s reference list explicitly via the eviction command when
the job completes, or implicitly when the job reads the data
block. Reads calls in HDFS carry the job ID so Ignem slaves
can extract the job ID and independently perform this implicit
eviction without contacting the Ignem master. A job chooses
whether or not to enable implicit eviction when the migration
command is issued.

3) Modifying applications to use Ignem: Before a job is
submitted to a system such as Yarn, a piece of code we call
the job-submitter is run to configure the job. Configuring a
job involves specifying which classes will be run and setting
the job’s input and output paths. The job-submitter is the best
place to insert the migration call because it is the first element
in a job’s lifecycle.

Inside the job-submitter one can create an instance of the file
system client (DFSClient). The DFSClient is used to perform
namespace operations such as opening, closing, creating and
deleting files. We extended the DFSClient in HDFS with a
migrate method whose main argument is a list of files to be
migrated or evicted. Extra arguments are used to select the
operation to perform, and whether eviction will be explicit or
implicit. The DFSClient communicates with the Ignem master
(which is part of the NameNode) via Remote Procedure Calls
(RPC).

Some MapReduce applications such as Sort have simple
job-submitters where the list of input files is easily accessi-
ble. Such applications can be easily modified to use Ignem
by adding a call to the migrate method on the DFSClient.
Frameworks like Hive have more complex job-submitters that
submit a sequence of MapReduce jobs for different stages of
the query. Modifying Hive was more involved with regards
to creating the list of files to be migrated, but the API to
Ignem is still a single function call. The change to Hive is a
one-off change to the framework. All queries that run on the
framework then get their inputs migrated transparently.

IV. EVALUATION

In this section, we evaluate our prototype of Ignem. We
study the benefits or migrating cold data using a workload
derived from a Facebook trace, two standalone MapReduce
jobs, and several Hive queries. Each job requires only a few
lines of code to enable it to use Ignem’s migration service.
We first describe our hardware and software setup, and our
workloads; then we present experimental results.

A. Hardware setup and software configuration

Hardware setup - We run our experiments on an 8 server
cluster. All servers run HDFS DataNodes processes, which we
extended to implement Ignem slaves. In addition to being a
slave, one server also runs the HDFS NameNode and Yarn Re-
sourceManager. The NameNode and ResourceManager have
very little computation load given the size of our cluster so
we can run them on a worker without any significant impact on
the worker’s performance. The Ignem master is implemented
as part of the NameNode.

Each server has a 1TB HDD drive, 128GB of RAM and
a Xeon E5-1650 CPU with 6 cores and 12 hyperthreads. We
have a 10Gbps network between the servers.

File system configurations - Most of our experiments
involve three configurations of the file system. The first two
configurations use default HDFS with Ignem disabled. In the
first configuration, all input data is stored on disk while in the
second configuration we force all inputs into RAM using the
vmtouch tool [3]. We call this second configuration HDF'S-
Inputs-in-RAM. Vmtouch is run after input files are generated
and it locks all DataNode files in memory. Vmtouch does not
affect the outputs of jobs. Finally, we also run the workloads
on Ignem. For all configurations, we flush the buffer cache
before running jobs to ensure the inputs are on disk unless we
have explicitly locked them in memory using vmtouch.

B. Workloads

The workloads we use in this paper all consist of MapRe-
duce jobs that use HDFS as the underlying file system. All
the jobs use Apache Tez [29] as the execution engine.

1) SWIM workload: The SWIM workload [10] is a trace-
based workload derived from a production Hadoop cluster at
Facebook. The trace reports the input, shuffle and output data
sizes of the jobs that ran on the production cluster. The arrival
times for jobs are also provided. We scale down the data sizes
and inter-job arrival times. We evaluate Ignem using the first
200 jobs in the SWIM trace. We scale down the sizes of job
inputs to adjust for our smaller cluster. The total input size
for all 200 jobs after scaling is 170GB. We also reduce the
inter-job arrival time by 50%.

85% of jobs in our workload read 64MB or less and the
largest jobs read up to 24GB. The abundance of short jobs
and a heavy tail is a feature in other cluster traces too [4]. We
chose this workload because it is realistic and it also provides
a challenging scenario for Ignem. On one hand, the short
jobs read very little data so optimizing reads has a limited
impact on their durations. On the other hand, the large jobs



Absolute Duration (s) | Speedup w.r.t HDFS Absolute Duration (s) | Speedup w.r.t HDFS
FDFS o e TS o —
Ignem 12.7 12% Ignem 4.03 38%
HDFS-Inputs-in-RAM 114 21% HDFS-Inputs-in-RAM 0.28 96%

TABLE I: Despite counting in fixed overheads unrelated to
reading input, Ignem significantly improves the average job
duration by 12%. It realizes 60% of the upper bound benefit.
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Fig. 5: Reduction in mean job duration for jobs, binned by
input data size. Ignem speeds up small,medium and large jobs
by 8.8%, 7.7% and 25% respectively

in the tail read so much data that there is unlikely enough
time to migrate the whole input. Despite these challenges, our
evaluation shows Ignem still provides significant speedup for
jobs in this workload.

2) Standalone MapReduce jobs: To evaluate the benefits
of migration in a more controlled setting, we also run sort
and wordcount jobs by themselves. The sort experiment uses
a 40GB dataset of random text. For wordcount, we vary the
input size from 1 GB to 12 GB to study how the benefits of
migration relate to the input size of a job and the available
lead-time. We generate the wordcount input by concatenating
a 400MB online text corpus [1] onto itself multiple times until
we reach the target input size.

3) Hive queries: Lastly, we evaluate Ignem’s benefits on
several queries from the TPC-DS benchmark [24] using Hive.
We added a hook into the Hive framework to enable it to
instruct Ignem to migrate query inputs into memory. The hook
is invoked when Hive finishes compiling each query.

C. SWIM Experimental results

1) Ignem significantly improves job duration in the SWIM
workload: Table 1 shows the average job duration for jobs
in the SWIM trace. When the SWIM workload is run with
all input data in memory, the average job duration is 21%
lower than when inputs are on disk. This 21% is an upper
bound for what any cold data migration scheme could do. As
we stated above, the SWIM workload leaves little room for
improvement. Despite this, Ignem provides a speedup of 12%.
This is nearly 60% of the upper bound.

TABLE II: Mapper tasks in the SWIM workload run 2.6x
faster when Ignem is used. The speedup is amplified further
for mappers because they have less fixed overheads that are
not related to reading inputs.
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Fig. 6: Ignem significantly reduces block read durations,
benefitting even blocks that are not migrated

2) Larger jobs are more sensitive to read optimization:
While Table I shows the overall performance over the whole
workload, we also investigate how Ignem performs for differ-
ent sized jobs. We divided our jobs into three bins by input
size. Figure 5 shows the reduction in relative average job
duration for each bin. For small jobs, Ignem provides an 8.8%
speed up. Its performance is very close to that of HDF'S-Inputs-
in-RAM which means Ignem can usually migrate all inputs
for these small jobs. The same is true for medium-sized jobs
(64-512MB) and Ignem improves their duration by 7.7%. The
fact that HDFS-Inputs-in-RAM’s speedup drops for medium
sizes jobs is an inadvertent artifact of our workload having
few medium sized jobs and some of these jobs having high
computational overhead. The computational overhead limits
the job level speedup we can observe. In general though, jobs
with a larger input size should experience a larger speedup
when the inputs are in RAM. For the large jobs that read more
than 512MB, having inputs in memory reduces their duration
by nearly 60% on average. Ignem reduces the duration of these
jobs by 25%. Even though Ignem cannot migrate the entire
inputs of these jobs in time, the portion that is migrated has a
large pay-off since IO is a more significant part of these jobs.

3) Task level gains are even more significant: Ignem’s gains
at the job level are diluted by parts of the job that cannot
be improved by faster reads, such as shuffling, reducing and
writing outputs. In this section, we zoom in to look at the
speedup for map tasks since only these tasks read the input
data and therefore are directly accelerated by Ignem. Table II
shows Ignem improves average task duration by nearly 40%.
Though this may not translate to an equally large gain for the
jobs these tasks belong to, resources in the cluster are occupied
by map-tasks for much less time. This allows more work to
be packed into the cluster.

The lowest level of granularity we instrument are HDFS
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Fig. 7: A comparison of the memory usage of Ignem vs. a
hypothetical scheme that performs migration instantaneously.
The memory footprint of Ignem is 2.6x lower on average, yet
Ignem can provide 60% of the benefit the hypothetical scheme.

block reads. Figure 6 shows a 40% reduction in the average
block read time, which is similar to the benefit at the task
level. These two numbers are similar because mapper tasks
in the SWIM workload spend most of their time reading and
perform very little computation. In Figure 6, we observe a
large reduction in the block read duration for about 60% of
blocks when using Ignem. This means roughly 60% of blocks
are successfully migrated and read from memory by tasks.
The rest of the block reads do not experience a large speedup
because Ignem did not have enough lead-time to migrate
them. However, there is still an improvement even for these
blocks that are not migrated because Ignem reduces the disk
contention these blocks experience by moving disk IO that
would otherwise contend with these blocks earlier.

4) Ignem provides good performance while using very little
memory: Figure 7 shows the relative frequency for the amount
of memory used per server to store blocks migrated into
memory. The histograms only show samples when memory
usage is non-zero, in order to exclude times when the cluster
is idle. We compare Ignem to a hypothetical scheme which
can migrate and evict data instantaneously. The hypothetical
scheme migrates the input when the job is submitted and
evicts it when the job completes. This scheme cannot be
implemented in practice because it is impossible to migrate
data instantaneously. However, we use it a comparison point
because it theoretically would provide the upper bound for
speedup like HDFS-Inputs-in-RAM does. Ignem uses 2.6x
less memory than the hypothetical scheme, but it is still able
to provide 60% of the speedup that the hypothetical scheme
would give.

Absolute Duration (s)

Speedup w.r.t HDFS

HDFS 147
Ignem 114 22%
HDFS-Inputs-in-RAM 75 49%

TABLE III: Sort workload results
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Fig. 8: Relative job durations for wordcount with different
input sizes

5) Prioritizing smaller jobs helps Ignem perform well:
Ignem slaves keep a queue of blocks waiting to be migrated.
Instead of processing this queue in FIFO order, Ignem pri-
oritizes migrating blocks for smaller jobs. When we disable
prioritization, Ignem provides 2% less speedup w.r.t HDFS.
This is nearly a 15% reduction in the benefit from Ignem in
for this workload.

D. Sort workload

As shown in Table III, when its inputs are all in RAM the
sort job runs nearly 2x faster. This highlights how important
reads are, even for jobs that have significant computation and
write a lot of data. While the buffer cache can absorb writes,
reads will block on disk IO unless the data has been migrated
into memory earlier. Though there is not enough lead-time to
migrate the entire input into RAM, Ignem migrates part of it
and reduces the job duration by 22%.

E. How the benefits of migration relate to input size and lead-
time

Figure 8 shows the duration of the Wordcount with varying
input sizes. When the data size is small the speedup from
having inputs in RAM is smaller because reading makes up
only a small part of the job. The speedup increases as reads
become a larger part of the job. The speedup then plateaus
when non-read activities start increasing at the same rate as
the read time.

When the data size is small, Ignem can migrate the whole
input into memory and matches the performance of HDFS-
Inputs-in-RAM. Ignem keeps up until the input is too large
to migrate within the lead-time. For our wordcount job, this
occurs after 2GB. More generally the inflection point depends



on the disk bandwidth and how much lead-time there is.
Beyond this point, the relative speed-up from migration starts
to decrease. Ignem still migrates the same amount of data, but
this becomes a smaller fraction of the total input. A migration
scheme that can infer the Ignem speed-up curve for different
jobs can potentially use this information to prioritize jobs
which will benefit more.

FE. The effects of lead-time. Introducing delay can speed up a
Jjob.

To determine how more lead-time would affect the speedup,
we artificially insert some lead-time into the wordcount job.
Before modification, the minimum lead-time for all blocks is
10s. We insert an additional 10s of lead-time into the jobs
and plot these results in Figure 8 with the label Ignem+10s.
We add lead-time by putting the wordcount job submitter to
sleep just after the migration call, but before the job submitter
finishes submitting the job. In a more natural setting, the extra
lead-time may be from queueing delay at the scheduler. The
sleep time is counted in the job duration.

When the input size is 1GB, Ignem+10s is 20% worse
than HDFS due to the sleep period. However, at 2GB, the
speedup from migration outweighs the extra 10s. Ignem+10s
is now better than HDFS though not as fast as Ignem without
the sleep. As the data size grows, Ignem+10s should be able
to migrate more data because of the larger lead-time. This
moves the minimum point in its speed-up curve further right.
Surprisingly though, at 4GB, Ignem+10s outperforms Ignem.
It seems counter-intuitive that adding time to a job reduces
its duration. This happens because Ignem is more efficient
at reading data from disk than the wordcount job itself. As
described in Section III-A1, Ignem schedules migration so that
only one block is read at a time, thereby avoiding high read-
concurrency which degrades disk bandwidth. It is an intriguing
concept that one can add delay to a system, perform work
more efficiently during the delay and make up for more than
the delay introduced, and so provide an overall speedup. This
concept can be applied to other systems.

G. Hive

Finally, we augmented the Hive framework to use Ignem.
In Figure 9a, Ignem improves query runtime by up to 34%
for query #3, and by 20% on average. To accelerate all these
queries, we only had to make a one-off modification in the
Hive framework itself.

The gains from Ignem are less pronounced for queries 82,
25 & 29 in Figure 9a because these queries have a larger
input size, as shown in Figure 9b. Eliminating disk reads has
a larger impact when the input size is large but the amount of
data that Ignem can migrate within the lead-time becomes a
smaller fraction of the input size, which leads to a lower speed
up. This is consistent with our discussion in Section IV-E.
However, Ignem can still deliver significant speed up under
these difficult circumstances.
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Fig. 9: Hive query durations and their respective input sizes.
Queries in both figures are sorted by input size.

V. RELATED WORK

Pacman [5] leverages the all-or-nothing property of data-
parallel workloads to implement a coordinated caching scheme
that improves job runtime. The key insight is that a job
is sped up only when the inputs of all tasks running in
parallel are cached. Pacman works well for iterative workloads
that read the same input repeatedly but cannot improve the
performance of jobs that read singly-accessed blocks. This
is because Pacman is purely a caching scheme and lacks
any data migration capabilities. Nevertheless, the authors of
Pacman acknowledge that 30% of all tasks in their workloads
read singly-accessed blocks and Pacman cannot improve their
performance. Ignem is complementary to Pacman in that
it specifically targets performance improvements for singly-
accessed blocks via migration.

A number of HDFS-based systems incorporate limited
forms of data migration. HPMR [32] improves job perfor-
mance by migrating a block from a remote rack to a server in
the rack where the task processing the block is likely to exe-
cute. Thus, HMPR is complementary to Ignem. Triple-H [19]
implements several data placement policies that distribute data
over the tiers in a heterogeneous storage system composed of
RAM, SSD, and HDD. The goal of the policies is to improve
performance and load balancing. Triple-H also implements
an eviction/promotion manager which evicts cold data from
RAM and promotes hot data to RAM. Data is labeled hot or



cold based on past access counts. In contrast, Ignem tackles
the problem of migrating cold data into RAM. Aqueduct [23]
uses a control-theoretical approach to statistically guarantee a
bound on the amount of impact on foreground work during a
data migration, while still accomplishing the data migration in
as short a time as possible. It does so by dynamically adjusting
the speed of data migration guided by periodic measurements
of the storage systems performance as perceived by the client
applications. Aqueduct is complementary to Ignem. Aqueduct
deals with how fast migration should proceed but assumes a
migration plan is provided as input. In contrast, Ignem deals
with creating such a migration plan.

A number of parallel file systems incorporate read-
ahead prefetching, a very restricted form of data migration.
GPFES [30], Lustre [31], Panache [14] as well as the Zebra
Striped Network File System [18] perform prefetching for
large files but only once the file has already been accessed
sequentially. Recent work has shown that parallel file systems
can also be made to serve the needs of data-parallel appli-
cations [6], [34] but no additional improvements have been
proposed to the read-ahead prefetching scheme. HPMR [32]
also performs prefetching after access but differs in that it
starts the prefetch from the end of a block. In contrast to these
solutions, Ignem migrates blocks before they are accessed
making full use of the jobs’ lead-time.

VI. CONCLUSION

This paper demonstrates that migrating cold data can deliver
significant benefits for applications that use big data file
systems. We first present analytic evidence that conditions
in production clusters are favorable for migration. There
is sufficient lead-time and residual bandwidth to migrate a
significant amount of data before jobs start reading.

We then design and build Ignem to demonstrate that the
potential speedup can be realized in practice. Ignem success-
fully migrates data and delivers large benefits across several
workloads described in Section IV. Ignem reduces the average
job duration in the SWIM workloads by 12%, and the average
task duration by 38%. A sort job runs 20% faster under Ignem
and wordcount jobs experience a speedup of up to 30%.

Beyond Ignem, our evaluation results demonstrate that the
input stage of jobs is an attractive target for optimization.
Ignem is only one point in a broad space that is yet to be
explored thoroughly. Exploring different alternatives to some
of our design decisions can produce further improvements.
The experiments we ran with all inputs in RAM show that
there is indeed room for further optimization.
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