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Abstract

It remains challenging to boost statistical power of GWAS to identify more risk
variants or loci that can account for “missing heritability”. Furthermore, since most
identified variants are not in gene coding regions, a biological interpretation of their
function largely lacks. On the other hand, recent biotechnological advances have
made it feasible to experimentally measure the three-dimensional organization of the
genome, including enhancer-promoter interactions in high resolutions. Due to the well
known critical roles of enhancer-promoter interactions in regulating gene expression
programs, such data have been applied to link GWAS risk variants to their putative
target genes, gaining insights into underlying biological mechanisms. However, their
direct use in GWAS association testing is yet to be exploited. Here we propose
integrating enhancer-promoter interactions into GWAS association analysis to both
boost statistical power and enhance interpretability. We demonstrate that, through
an application to two large-scale schizophrenia (SCZ) GWAS summary datasets,
the proposed method could identify some novel SCZ-associated genes and pathways
(containing no significant SNPs). For example, after the Bonferroni correction, for
the larger SCZ dataset with 36,989 cases and 113,075 controls, our method applied
to the gene body and enhancer regions identified 27 novel genes and 11 novel KEGG
pathways to be significant, all missed by the transcriptome-wide association study
(TWAS) approach. We conclude that our proposed method is potentially useful,
complementary to TWAS and other standard gene- and pathway-based methods.
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1 Introduction

Schizophrenia (SCZ) is a chronic and severe mental disorder, impacting 1% of the general
population worldwide, characterized with cognitive impairment and increased mortality
(Sullivan et al., 2012). Previous studies have demonstrated the high heritability of SCZ
(Sullivan et al., 2012). Although more than a hundred loci have been identified from some
recent large genome-wide association studies (GWASSs), the identified genetic variants can
explain only a small proportion of the heritability (Ripke et al., 2013, 2014; Li et al., 2017;
Sullivan et al., 2012). This phenomenon is common for other GWASs on other complex
traits and diseases (Welter et al., 2013; Manolio et al., 2009). Furthermore, the majority of
the identified risk variants are located outside gene coding regions (Maurano et al., 2012),
making it difficult to interpret the underlying biological mechanisms such as their target
genes. Presumably, many risk variants are in regulatory regions, influencing the function
of their target genes that are either nearby or distal (Corradin et al., 2014; Smemo et al.,
2014). An alternative to the most popular single SNP-based analysis is gene-based testing
(Pan, 2009; Wu et al., 2011; Pan et al., 2014; Wang et al., 2017), in which a gene coding
region is extended up to several Kbp to hopefully cover some regulatory elements, e.g.
promoter regions. However, the distance between a target gene and its regulatory elements
can be as far as 2 or 3 Mbp (Krivega and Dean, 2012), while a too large extension of a gene
region to be tested may include too many non-associated SNPs, leading to not only low
statistical power but also difficulties in result interpretation. For example, an identified
gene-trait association may be due to a far away causal SNP, which may not have any
biological function linked to the identified significant gene.

A new approach is to use expression quantitative trait locus (eQTL) data to select
and then weight gene expression-associated SNPs (i.e. eSNPs) in a largely expanded gene
region (e.g. up to 1 Mbp) in transcriptome-wide association studies (TWAS) (Gamazon
et al., 2015; Gusev et al., 2016). However, there are still some shortcomings in TWAS.
For example, due to linkage disequilibrium (LD) or reverse-causal effects, an eSNP of
a gene may not necessarily have a direct biological function on the gene. In addition,
due to low power in detecting trans-effects, TWAS cannot include far away regulatory
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on target transcript levels could be too modest to be detected or estimated accurately
(Corradin et al., 2014). On the other hand, it is known that GWAS risk loci are enriched
in enhancers (Hawkins et al., 2013; Glodzik et al., 2017), implicating their regulatory roles in
disease etiology. Through the overall 3-dimensional structure of chromatin, distal enhancers
can be brought into close proximity of promoters, leading to transcriptional regulation
of the linked genes (Ong and Corces, 2014). Recent biotechnological advances based on
Chromatin Conformation Cature (3C), such as Hi-C (Van Berkum et al., 2010), ChIA-
PET (Li et al., 2012), promoter capture Hi-C (Javierre et al., 2016), have made it feasible
to experimentally measure (Dryden et al., 2014; Burren et al., 2017) or computationally
predict (Cao et al., 2017) nearby or distal enhancer-promoter interactions. Such data have
been used to link GWAS risk loci to their target genes, thus gaining insights into the genetic
basis of complex diseases (Dryden et al., 2014; Martin et al., 2015; Mishra and Hawkins,
2017). In particular, it has been discovered (Rubin et al., 2017) that for 684 autoimmune
disease-associated variants studied and their 2597 target genes, only 14% of the target genes
were the nearest gene to the disease-associated variant, which has been often incorrectly
taken as the putative one in GWAS. Importantly, such data also offer a new opportunity
to be directly used in gene-based association testing for GWAS: when testing on a gene, in
addition to its coding and promoter regions, we can also include its enhancer regions. For
simplicity, throughout this paper, we call an DNA fragment interacting with a promoter as
an enhancer. Finally, since an enhancer may be associated with multiple target genes while
the target genes are often functionally related (Corradin et al., 2014), a pathway analysis of
a set of some functionally related genes may be more powerful than gene-based testing if the
individual gene-trait associations are weak, as widely applied in practice without enhancer-
promoter interaction information (Jia et al., 2010; Wang et al., 2010, 2011; Schaid et al.,
2012; Huang et al., 2016). Our method is applicable to pathway analysis, albeit different
from existing approaches by including the enhancers, in addition to the gene bodies and
possibly promoters of the genes in a pathway.

In this paper, we propose a simple but powerful analysis strategy to integrate enhancer-
promoter interactions with GWAS summary results to identify novel trait-associated genes

and pathways; it can not only boost statistical power for new discoveries by focusing



on enhancer regions enriched with risk variants, but also enhance interpretability of new
discoveries by linking risk variants to their putative target genes. To further explain the
missing heritability and better understand the mechanism of SCZ, we applied our proposed
methods to perform gene- and pathway-based analyses to identify SCZ-associated genes and

pathways.

2 Methods

2.1 Data

Although more than a hundred loci have been identified from some recent large GWASS,
the identified genetic variants can explain only a small proportion of the heritability (Sul-
livan et al., 2012; Ripke et al., 2013, 2014; Li et al., 2017) and most of these loci reside
in relatively uncharacterized non-coding regions of the genome (Ripke et al., 2014). To
further explain the missing heritability and better understand the underlying mechanism
of SCZ, we performed gene- and pathway-based analyses to identify SCZ-associated genes
and pathways by reanalyzing two SCZ GWAS summary datasets: a meta-analyzed SCZ
GWAS dataset with 8,832 cases and 12,067 controls, denoted as SCZ1 (Ripke et al., 2013),
and a more recent and larger one with 36,989 cases and 113,075 controls, denoted as SCZ2
(Ripke et al., 2014).

Although enhancer-promoter interactions are generally believed to be tissue-specific
(Andersson et al., 2014), due to the lack of data and shared enhancer-promoter interactions
across multiple tissues and cell types, we expect and thus demonstrate that enhancer-
promoter interaction data from other tissues might still be useful. For simplicity, we call
any DNA fragment interacting with a promoter as an enhancer. Here we mainly used
two publicly available datasets to determine the enhancers for each target gene based on
its enhancer-promoter interactions: (i) experimentally measured from the MCF-7 cell line
by genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-
PET) (Li et al., 2012), denoted as MCF7 in the following; (ii) computationally predicted
for the brain hippocampus region based on the ENCODE and Roadmap Epigenomic data
(Cao et al., 2017), denoted as Hippo. Given our example application to SCZ and the



relatedness of hippocampus to the neuropathology and pathophysiology of SCZ (Harrison,
2004), we chose the predicted enhancer-promoter interactions for the hippocampus (Cao
et al., 2017). In addition, we also considered two publicly available Hi-C libraries from
mid-gestation developing human cerebral cortex from two zones to determine the enhancers
for each target gene (Won et al., 2016): (i) the cortical and subcortical plate, consisting
primarily of post-mitotic neurons, denoted as CP in the following; (ii) the germinal zone,
containing primarily mitotically active neural progenitors, denoted as GZ in the following.

We defined multiple SNP sets for each gene to be tested as the following. First, we
obtained the genomic coordinates of the SNPs and genes based on the human reference
genome hgl9. Second, we defined two promoter regions of a gene by extending 500 bp
(Andersson et al., 2014) upstream (from its TSS) or downstream (from its TES) of the
gene. Note that, although a promoter region is generally located upstream of a gene,
a gene might have several proximal promoter regions scattered around introns and TES
(Goni et al., 2007). Hence we extended 500 bp both upstream TSS and downstream TES
of each gene to include some possible cis-acting regulatory regions. Third, an enhancer
region of a (target) gene was defined as one interacting with its promoter region (based on
a data source of enhancer-promoter interactions). Note that, depending on the source of
the datasets, such as MCF7 or Hippo, the defined enhancer regions for each target gene
might be different. Fourth, a gene body region was defined as that flanking its TSS and
TES, including both introns and exons, plus its two promoter regions (upstream its TSS
and downstream its TES). Finally, to minimize the effect of collinearity and to reduce the
computational burden, the SNPs were further pruned such that no pairs of SNPs were
highly correlated (with r > 0.95) within a set of the SNPs being tested. For simplicity, we
denote a set of the SNPs inside a gene’s body and enhancer regions as “E+G”, while that
inside a gene’s enhancer regions as “E only” or “E”. We further denote standard gene-based

analysis, which tests a set of the SNPs inside a gene’s body, as “STD”.

2.2 Statistical tests

For a given set of SNPs for a target gene or pathway, to determine whether it is associated

with a GWAS trait, for illustration we applied two popular SNP set-based tests, a burden



test called the Sum or SPU(1) test and a variance-component score test called the SSU
or SPU(2) test, which is equivalent to kernel machine regression (KMR) or SKAT with a
linear kernel (Pan, 2009; Wu et al., 2011; Pan et al., 2014). Briefly, based on a GWAS
summary dataset, for each target gene (or target pathway) we have its Z-score vector
Z = (Zy,...,2Z) for k SNPs in a defined SNP set; for each SNP j, we have the Z-score
Z; = B;/SE; with f; being the estimated (marginal) effect size and SE; its standard error,
The burden test SPU(1) and the variance-component score test SPU(2) are defined as:

SPU(1) = zk: Z; SPU(2) = zk: Z:.
j=1 j=1
Under the null hypothesis Hy that the SNP set (for a gene or a pathway) is not associated
with the trait, SPU(1) and SPU(2) follow an asymptotically (or approximately) normal dis-
tribution and a mixture of chi-squared distributions, respectively. To calculate the p-values,
we need the correlation matrix for Z, which can be estimated by linkage disequilibrium
(LD) among the SNPs based on a reference panel (e.g. the 1000 Genomes Project data)
(Kwak and Pan, 2015; Gusev et al., 2016).

To better illuminate the effects of enhancers, we applied both SPU(1) and SPU(2) to
enhancer regions only (called "E only” or "E”), in addition to “E+G” regions and the
standard gene body regions (called “STD”) respectively. For comparison, we also applied
the TWAS method (Gusev et al., 2016) and its extension based on the (weighted) SPU(2)
(Xuet al., 2017). Note that, since TWAS is equivalent to the weighted SPU(1) test with cis-
eQTL derived weights (with 500 KB extension; Xu et al. (2017)), we applied the weighted
SPU(1) test to represent TWAS. Specifically, the weighted SPU(1) test uses a weighted
sum of the z-scores of the SNPs with eQTL-derived weights to construct its test statistic,
while, as an extension of TWAS, the weighted SPU(2) test is based on a weighted sum
of the squared z-scores of the SNPs. We downloaded four sets of eQTL-derived weights
from the TWAS website: microarray gene expression data measured in blood from 1,245
unrelated subjects from the Netherlands Twin Registry (NTR), microarray expression array
data measured in blood from 1,264 individuals from the Young Finns Study (YFS), RNA-

seq measured in adipose tissue from 563 individuals from the Metabolic Syndrome in Men



study (METSIM), and RNA-seq measured in the dorsolateral prefrontal cortex from 621
individuals from CommonMind Consortium (CMC) (Gusev et al., 2016).

To control multiple testing, we used the Bonferroni correction. For the SCZ1 data, we
analyzed 9127 and 4600 genes for MCF7- and Hippo-defined gene regions, respectively; we
used a slightly more stringent Bonferroni cutoff (0.05/10000 = 5 x 107%). For STD, we
tested on about 22,000 genes with a corresponding Bonferroni-adjusted cutoff. For TWAS,
we applied the Bonferroni correction to each set of the eQTL-derived weights (around a few
thousands), for which we ignored the fact that the four sets of the eQTL-derived weights
were used in TWAS; unless specified otherwise, we took the union of the identified gene
sets of TWAS across the four sets of the weights.

Following Gusev et al. (2016), we evaluated the performance of the methods by first
identifying the significant and novel genes that did not overlap with any genome-wide
significant SNP, both based on the SCZ1 data, then examining the replication rate of
the identified genes that also contained one or more genome-wide significant SNPs in the
larger SCZ2 data. To test for the statistical significance of such a replication rate or an
enrichment, we applied a hypergeometric test with the background probability estimated
from the set of genes being tested. Note that, for a given GWAS dataset, a novel gene is
defined as a significant gene (extended + 500Kbp) that does not include any significant
SNP.

For pathway-based analysis, we extracted the candidate pathways from the KEGG
pathway database (Kanehisa and Goto, 2000) and restricted our analyses to the 191 KEGG
pathways containing between 10 and 200 genes, which is widely adopted in practice for
pathway-based analysis (Network and of the Psychiatric Genomics Consortium, 2015). We
used a stringent Bonferroni cutoff (0.05/500 = 1 x 10~?) for pathway-based analysis. For
comparison, we applied a new method (Wu and Pan, 2018), which extends TWAS from
gene-based to pathway-based analysis. Briefly, we applied the weighted SPU(1) and SPU(2)
tests, in which each of the SNPs in the genes (or their extended regions) belonging to a
pathway is weighted by its estimated cis-effect size on the gene expression based on an

eQTL dataset.



2.3 Data availability

The original SCZ1 and SCZ2 GWAS summary data can be downloaded at the PGC site
https://www.med.unc.edu/pgc/results-and-downloads. The LD reference data can
be obtained from http://www.internationalgenome.org/data; TWAS and eQTL-based
weights can be downloaded at http://gusevlab.org/projects/fusion/. The enhancer-
promoter interaction data can be obtained from Li et al. (2012); Won et al. (2016); Cao
et al. (2017). The related computer scripts, examples, and processed enhancer information
can be downloaded at https://figshare.com/articles/Enhancer_information_and_

related_codes_for_a_new_gene-based_analysis/5995381.

3 Results

3.1 Data summary

Figure 1 shows the distributions of some statistics for the two enhancer-promoter interac-
tion datasets. The MCF7 and Hippo data contained 25,310 and 7,245 pairs of enhancer-
promoter interactions, respectively. On average, for each target gene there were 2.8 and
1.6 enhancer-promoter interactions in the two datasets respectively. Some enhancers (e.g.
168 in the MCF7 data) located on chromosomes different from that of their target genes,
confirming the potential usefulness of enhancer-promoter interaction data. For the MCF7
and Hippo data, the average distances between a target gene and its farthest enhancer were
about 246 Kbp and 99 Kbp, respectively, indicating that the usual practice of extending
a gene body by several Kbp (as in STD) might fail to cover some important regulatory
elements. Furthermore, there were on average about 1.5 (with the MCF7) and 1.3 genes
(with the Hippo) between a target gene and its farthest enhancer, suggesting the pitfall of
the usual practice of assigning an associated SNP to the nearest gene in GWAS. This phe-
nomenon has been confirmed by other researchers as well (Won et al., 2016; Rubin et al.,
2017).

The Kolmogorov-Smirnov test showed that the empirical distribution of the p-values
for SNPs in enhancers was significantly different from that for gene body regions (p-value

< 2.2 x 107'%). Figure 2 depicts the distribution of —log;, p-values for SNPs in enhancers
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Figure 1: Histograms of enhancer-promoter interaction data. In the middle panel, for
better visualization, 12 pairs with distance greater than 1 Mbp are omitted.

and in gene body regions respectively, illustrating that there was an enrichment of small
p-values for SCZ GWAS in enhancers. This phenomenon was more evident for the larger

SCZ2 data.
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Figure 2: Histograms of — log,, p-values for SNPs in enhancers and gene body regions
respectively. The left and right panels are based on the SCZ1 and SCZ2 data respectively.

3.2 Gene-based testing

We first applied the various methods to the SCZ1 data while using the larger (but over-
lapping) SCZ2 data to partially validate the results. First, the numbers of the significant
genes are shown in Table 1. For fair comparisons, we applied the Bonferroni correction for

each method (with possibly different numbers of the genes/SNP sets available) separately.



It appears that our methods and TWAS identified fewer significant genes than that of the
standard gene-based testing, which was likely due to differing numbers of the genes tested:
the former applied to only about 10,000 genes while the latter (STD) to about 22,000 genes.
If we focused on the common set of 5,203 genes that could be analyzed by all methods,
using a common and more stringent cutoff 0.05/10000 = 5 x 107¢, “E + G”, “E only”,
STD, and TWAS identified 29, 20, 26, 38 significant genes, respectively (Supplementary
Figure 1).

To further illustrate the added value of using enhancer information, we generated ran-
dom enhancer regions based on the Hippo data. Specifically, for each gene, we generated
the same number of “enhancer regions” with the same lengths but different start and end
positions as compared to the original enhancers. Both the SPU(1) and SPU(2) tests with
the randomly generated “enhancer regions” plus the gene body identified fewer significant
genes (8 for SPU(1) and 33 for SPU(2)) than those of using the original “E+G” regions
(15 for SPU(1) and 46 for SPU(2)), showcasing that enhancer information indeed added
the value. Note that, since gene body regions may contain some associated SNPs, with
random “enhancer regions” both SPU(1) and SPU(2) could still identify some significant
genes.

Next, we check the novel genes among the significant genes as shown in Table 2; a
novel gene is defined as one that does not cover any genome-wide significant SNP in an
extended gene region £500 Kbp upstream its T'SS and downstream TES. We summarize the
replication rates and their statistical significance by a hypergeometric test in Supplementary
Table 1. SPU(2) applied to “E4+G” based on MCF7 identified 10 novel genes in the SCZ1
data, of which 6 (60%) contained genome-wide significant SNPs in the SCZ2 data (p-value
= 5.9 x 107% by the hypergeometric test), offering a highly significant partial validation on
the identified genes. Even though two significant and novel genes identified by applying
SPU(1) to “E only” with MCF7 (or Hippo) data were not replicated in the SCZ2 data,
SPU(1) is a widely used gene-based test with its well-controlled type I error rates established
by many previous studies (Li and Leal, 2008; Pan, 2009; Kwak and Pan, 2015; Gusev et al.,
2016). In comparison, TWAS and its extension gave a similar replication rate. For example,

the standard TWAS (i.e. SPU(1)) based on CMC identified 6 novel genes in the SCZ1
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data, of which 4 (67%) contained genome-wide significant SNPs in the SCZ2 data (p-value
= 6.5 x 107* by the hypergeometric test). Importantly, Supplementary Table 2 lists the
significant and novel genes identified by analyzing the SCZ1 data, showing that most of the
significant and novel genes (31 out of 37, about 84%) identified by “E only” or “E+G” have
been reported by other studies. Similarly, TWAS and its extension identified 41 significant
and novel genes, of which 34 (about 83%) have been reported by other studies. In addition,
applying SPU(1) and SPU(2) to “E+G” regions identified similar numbers of significant
and novel genes to those of TWAS (i.e. SPU(1) and its extension SPU(2)) with each of the
four sets of eQTL-derived weights. For a fair comparison, we also examined a common set
of 2226 genes that could be analyzed by our methods with MCF7 data, TWAS with CMC-
based weights, and STD. We applied the Bonferoni correction (0.05/2226 ~ 2.2 x 107°).
Supplementary Figure 2 shows that using“E+G” and “E”, TWAS and STD identified 9,
6, 7, and 8 significant and novel genes, respectively. Using “E4+G” and “E only” identified
two (CNOT7 and ACTRY5) and three (SMG6, ANKRD/4, and SH3RF'1) significant and
novel genes that were missed by the other two methods, respectively.

In summary, compared to TWAS and STD, our new methods (“E+G” and “E only”)
identified similar numbers of the significant and novel genes with similar replication rates
for the SCZ1 data. Importantly, our new methods could identify some significant and novel
genes that were missed by both TWAS and STD. Equally, TWAS and its extension could
also identify some significant and novel genes missed by our new methods. When a gene
includes one or several far away enhancer regions with GWAS trait-associated SNPs, we
expect that our new methods will be most useful. On the other hand, if one gene contains
several cis-eQTLs that are not in annotated enhancer regions, we expect that TWAS will
be more powerful than our new methods. In short, our new methods can be useful in using
enhancer information to boost statistical power to identify novel trait-associated genes that
could be missed by other methods.

Having established the potential usefulness of our new method based on the smaller
SCZ1 data, we applied the methods to the larger SCZ2 data to identify significant and
novel genes. For a fair comparison, we mainly focused on the 5,212 genes that could be

analyzed by both our new methods and TWAS, using the same and more stringent cutoff
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Table 2: The numbers of the significant and novel genes identified by analyzing the SCZ1
data. The numbers a/b in each cell indicate the numbers of (a) the significant and novel
genes with no genome-wide significant SNPs within an extended gene region 500 Kbp in
the SCZ1 data; (b) the significant and novel genes that covered one or more genome-wide
significant SNPs within an extended gene region +500 Kbp in the SCZ2 data.

Enhancer Enhancer 4+ Gene body | STD TWAS
MCF7 Hippo | MCE7 Hippo YFS NTR METSIM CMC
# genes | 8589 3363 9127 4600 22842 | 4697 2452 4665 5412
SPU(1) 2/0 2/0 1/1 2/2 4/4 3/3  4/4 3/2 6/4
SPU(2) 10/6 0/0 10/6 12/8 12/10 | 6/3  8/8 9/9 14/11

(0.05/10000 = 5 x 107%). Figure 2 shows the Venn diagram of the identified significant
and novel genes by different methods. Our methods applied to “E4+G” and “E only”,
TWAS and STD identified 46, 30, 44, and 36 significant novel genes, respectively. 6 novel
genes have been identified by both TWAS and our new method, but missed by STD.
For example, MRPLS33 was identified by our methods; it contained 8 SNPs in the gene
body plus 7 SNPs in 3 enhancers, of which the most distant enhancer was about 618 Kbp
away from the gene body. MRPLS33 was reported to be associated with SCZ by Goes
et al. (2015). However, a standard gene-based test with an extension of up to several Kbp
would fail to include some of its enhancers and thus miss its significant association. In
addition, SCZ is associated with impairments in working memory that reflect dysfunction
of dorsolateral prefrontal cortex (DLPFC) circuitry (Kahn and Keefe, 2013; Arion et al.,
2015); it has been shown that MRPL33 for cells dissected from the DLPFC of monkeys
displayed significantly lower expression in SCZ subjects (Arion et al., 2015). Although
TWAS/SPU(1) could not identify gene MRPL33 (p-value = 9.7 x 107%), its extension
SPU(2) could (p-value = 9.3 x 107®). Table 3 highlights 27 significant and novel genes
identified by “E+G”; none of the genes contained any genome-wide significant SNPs in its
extended regions by £500 Kbp in the SCZ2 data; they were also missed by TWAS and its
extension with any of the four eQTL datasets. Twelve genes, such as MED19 and MAN2A1,
have been reported by other independent studies (Goes et al., 2015; Li et al., 2017) as shown
in the GWAS Catalog v1.0 (Welter et al., 2013). For example, gene FAM214A, reported
to be associated with SCZ (Goes et al., 2015), contained 119 SNPs in the gene body plus

106 SNPs in 10 enhancer regions; its most distant enhancer region was about 152 Kbp
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away. The most significant SNP (p-value = 1.1 x 107°) within its E4+G region was located
in an enhancer region, explaining why our new method (when applied to either “E4+G” or
“E only”) could identify this gene while STD (p-value of SPU(1) = 7.8 x 10™*; p-value of
SPU(2) = 8.2 x 1079) failed, confirming GWAS signals in enhancer regions. Table 4 shows
18 significant and novel genes identified by using “E only” regions; all of them were missed
by TWAS, though 11 were also identified by our method applied to “E+G”. Again most
of the genes have been reported to be SCZ-associated by other independent studies (Goes
et al., 2015; Li et al., 2017). Because a gene body may contain many none-associated SNPs,
leading to non-significant gene-based testing, using enhancer regions only identified some
genes that could have been missed by the standard gene-based or “E+4+G”-based testing.
When we focused on all available genes for each method, Supplementary Tables 3-6 list
the significant and novel genes identified by “E+G”- and "E only”-based testing, TWAS,
and STD (with 96, 60, 84 and 92 genes, respectively).

TWAS STD

E+G 4

Figure 3: Venn diagram of the significant and novel genes identified by the different methods
applied to the SCZ2 data. “E4+G” and “E” combine the results (i.e. taking the union) of
using MCF7 and Hippo data, while TWAS combines the results of using YFS-, NTR-,
METSIM- and CMC-based weights.

Using enhancer-promoter interaction data in developing human brain. We
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Table 3: The significant and novel genes identified by our new method applied to “en-
hancer 4+ gene body” regions, but missed by TWAS, with the SCZ2 data. The p-value of
the most significant SNP (“Sig SNP”) in the region and the source database used to con-
struct enhancer-promoter interactions are also shown. The validated gene-trait associations
appeared in the following references: [1] Goes et al. (2015); [2] Li et al. (2017).

Gene CHR # SNPs  SPU(1) SPU(2) Sig SNP  Source Ref STD E
ZBTB/S8 1 11 6.4x107%2 3.7x107% 4.9x10"% Hippo T
RBBP5 1 64 43 %1071 1.3x1077 8.7x10"7 Hippo T T
RBBP5 1 69 1.7x1071 39x107® 87x10"" MCF7 T T
DSTYK 1 147 1.2x107% 4.0x107% 87x107" MCF7 T
HATI1 2 78 42x107% 44x107% 1.9x107% MCF7

MED19 3 15 52x 1071 28 x107% 6.7x107® Hippo [2] T T
UBE2D3 4 183 1.1x107% 15x107° 22x10"% MCF7 T
ZNF66/ 4 54 28x107° 1.8x107% 4.1x10°7 Hippo [1] T
NDFIP2 5 70 2.0x1071 1.2x107% 3.8x107% Hippo T
MAN2A1 5 404 1.3x107' 1.9x107% 1.0x1077 MCF7 [1,2] T
SRP5 6 144 22x1072 4.0x107% 1.5x1077 Hippo T
SLC16A10 6 163 42x107% 9.7x1077 14x10"% MCF7 T
TRAFSIP2-AS1 6 214 1.1x107% 32x1077 1.4x107% MCF7 [1] T T
DDX56 7 37 74x107% 98 x 1077 7.1x 1077 MCF7 [1] T T
LIPC 7 309 3.1x107* 20x107% 52x1077 Hippo [l] T
FAM63B 7 123 32x107%2 15x10% 52x10°" Hippo [1] T
CNOT7 8 51 6.5x1073 2.7x107% 1.1x10"" MCF7 T
DYM 10 759 3.2x107° 1.8x107% 25x107% Hippo T
GSTO1 10 11 28x107% 40x107* 6.2x107% MCF7 T
NDFIP2 13 74 14x107" 24x107% 3.8x10"6 MCF7 T
DOPEY? 14 370 1.4x1072 1.9x1077 6.3x107% Hippo [1] T
FAM214A 15 225  44x107% 1.2x107% 1.1x107% MCF7 [i] T
DNAJAS 16 41 43%x107% 59x1077 28x10"" MCF7 [1] T T
SPG7 16 237 9.9x1072 52x107% 1.1x107" MCF7 [i] T T
C16orf55 16 45 1.8x 107! 1.4x107% 1.1x107" MCF7

SPATA2L 16 50 43x107" 3.0x107% 1.1x1077 MCF7 T
VPS9D1 16 107 77x107% 22x107% 1.1x10°" MCF7 T
CDK5R1 17 12 25x107 1.3x107% 33x10% MCF7

DIRAS1 19 23 1.6 x107% 57x107% 1.1x10"% MCF7 T
DOPEY?2 21 416 59x1072 1.1x1077 63x107¢ MCF7 [1] T
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Table 4: The significant and novel genes identified by our new method applied to enhancer
regions only (“E only”), but missed by TWAS, with the SCZ2 data. The p-value of the
most significant SNP (“Sig SNP”) in the region and the source database used to construct
enhancer-promoter interactions are also shown. The validated gene-trait associations ap-
peared in the following references: [1] Goes et al. (2015); [2] Li et al. (2017).

Gene CHR # SNPs  SPU(1) SPU(2) Sig SNP  Source Ref STD E+G
NOL9 1 2 6.4x 107" 2.8x107% 4.9x107°% Hippo

ZBTB48 1 5 3.1x1071 4.9x107% 49x107% Hippo T
PSMB2 1 3 1.0x10° 23x107% 1.2x107° MCF7

RBBP5 1 11 45x 1072 1.0x107% 8.7x10"" MCF7 T T
MED19 3 5 1.1x107% 26x107% 6.7x10"® Hippo [2] T T
SRP5 6 8 3.3x107% 25x107% 1.5x1077 Hippo T
REVSL 6 48 33x1077 1.0x1077 14x107% MCF7

TRAFSIP2-AS1 6 48 33x1077 1.0x1077 14x10% MCF7 [1] T T
DDX56 7 21 74%x107% 98x 1077 71x1077 MCF7 [1] T T
DEFS 8 9 72x1071 49x107% 1.1 x10"" Hippo

ZNF623 8 46 21x107% 35x107% 1.8x107" MCF7

GNG7 11 3 1.3x1072 3.0x107% 1.1x107% Hippo [1]

FAM214A 15 106 1.6 x107% 4.8 x 1077 1.1x107% MCF7 [1] T
DNAJAS 16 4 88x 107" 89x1077 28x1077 MCF7 [1] T T
SPG7 16 107 65x107! 26x107% 1.1x1077 MCF7 [1] T T
SPATA2L 16 40 48 %1071 1.1x107% 1.1x10"" MCF7 T
VPS9D1 16 89 54x1073% 1.0x107% 1.1x10"" MCF7 T
SLC35A 18 4 1.9x107% 22x107° 3.6 x10~7 Hippo
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applied CP- and GZ-based “E only” and “E+G” testing to both the SCZ1 and SCZ2 data.
Supplementary Tables 7-8 show the numbers of the significant genes identified by analyzing
the SCZ1 and SCZ2 data, respectively. For fair comparisons, we used the Bonferroni
correction for each method separately. Perhaps due to the numbers of the genes being tested
were much smaller here (about 1000), testing with “E+4G” identified fewer significant genes
than that with the MCFEF7 data. This was also true for testing with “E only”. However,
the CP and GZ data indeed provided some useful information. For the SCZ2 data, testing
with CP- or GZ-based “E+G” could identify 52 significant and novel genes, among which
40 were missed by “E+G” with MCF7 or Hippo, “E only” with MCF7 or Hippo, TWAS,
and STD (Supplementary Table 9).

3.3 Pathway-based analysis

We applied the pathway-based methods to the SCZ2 data. We defined a significant gene
as the one identified by applying the SPU(1) and SPU(2) tests to the SCZ2 data with
the gene body regions (i.e. the STD method). For simplicity, we defined a novel pathway
as the one with no known significant gene. Figure 4 shows the Venn diagram of the
identified significant and novel pathways by the different methods. Our methods applied
to “E4G” and “E only”, TWAS, and STD identified 40, 19, 18, and 27 significant and novel
pathways, respectively. Table 5 highlights 11 novel pathways identified by our method with
“E4+G” regions but missed by both TWAS and STD. Pathways NOD-like receptor signaling
(hsa04621) and Pathogenic Escherichia coli infection (hsa05130) have been reported by
others to be associated with SCZ (Szatkiewicz et al., 2014; Wu et al., 2016). Table 6 shows
5 significant and novel pathways identified by using “E only” regions but missed by both
TWAS and STD, of which three were also missed by using “E+4+G” regions. Again, because
the gene bodies in a pathway may contain no or few associated SNPs, leading to non-
significant pathway-based testing, using enhancer regions only identified some pathways
that could be missed by the standard (STD) pathway-based or “E+G”-based testing. In
summary, the pathways in Tables 5 and 6 represent some new discoveries gained by using

enhancer-promoter interaction information.
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TWAS

E+G

STD

Figure 4: Venn diagram of the significant and novel pathways identified by the different
methods applied to the SCZ2 data.

Table 5: The significant and novel pathways identified by our new method applied to

“enhancer + gene body” regions, but missed by TWAS and STD, with the SCZ2 data.

ID Pathway Name # gen  SPU(1) SPU(2) Source
hsa00071 Fatty acid degradation 42 8.5x 101 6.7x10~> Hippo
hsa00511 Other glycan degradation 15  9.7x107® 1.0x 102 Hippo
hsa00534 Glycosaminoglycan biosynthesis 26 3.7x1071 55x107° Hippo
hsa03320 PPAR signaling 66 6.6 x107' 6.9x10~° Hippo
hsa04621 NOD-like receptor signaling 57 4.8 x 107! 2.1 x107° Hippo

1.7x 1072 29x107° MCF7
hsa04960 Aldosterone-regulated sodium reabsorption 40 53x 107" 5.8 x107% Hippo
hsa(04966 Collecting duct acid secretion 25 1.1 x 107! 3.0 x 10~ Hippo
hsa00562 Inositol phosphate metabolism 53 7.0x107! 7.4x107° MCF7
hsa03022 Basal transcription factors 33 3.0x 1072 4.7x1077 MCF7
hsa03450 Non-homologous end-joining 13 12x107' 1.0x10"® MCF7
hsa05130 Pathogenic Escherichia coli infection 52 83 %1071 3.0x10"° MCF7
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Table 6: The significant and novel pathways identified by our new method applied to
enhancer regions only (“E only”), but missed by TWAS and STD, with the SCZ2 data.

ID Pathway Name # gen  SPU(1) SPU(2)  Source
hsa00340 Histidine metabolism 29 2.8x 107! 7.4 x10° Hippo
hsa00380  Tryptophan metabolism 37 1.2x107' 84x10~" Hippo
hsa00740 Riboflavin metabolism 16 1.5x107® 2.4 x10~7 Hippo
hsa03320 PPAR signaling 66  6.8x107° 3.4 x10~* Hippo

hsa03022 Basal transcription factors 33 1.1 x107' 2.6 x10~° MCF7

4 Discussion

It has become increasingly important to measure enhancer-promoter interactions, or more
generally the three-dimensional organization of the human genome, to understand gene
expression regulation. In particular, such data have been used to link GWAS risk loci to
their (putative) target genes, enhancing the interpretation of GWAS discoveries. Since
the target genes may not be the ones nearest to GWAS risk variants, the usual practice
of assigning the gene nearest to a risk variant as the (putative) target gene is generally
problematic. Here we directly incorporate enhancer-promoter interactions into gene-based
association testing for GWAS, which is expected to not only boost statistical power, but
also enhance biological interpretation at the target gene level. In particular, complemen-
tary to the standard gene-based and TWAS approaches, testing with annotated enhancer
regions could identify some significant and novel genes that would be missed by other two
approaches; these novel genes did not contain any significant SNPs inside or near the re-
gions. Our proposed two variants of using gene body and enhancer regions (“E+G”) and
using only enhancer regions (“E only”) are also complementary to each other: in general
“E4+G” is expected to be more powerful by taking advantage of information with gene
body regions, while “E only” is more specific with a focus on enhancers, which might yield
significant results that would be missed by “E+G”. Furthermore, the proposed method
is applicable to pathway-based analysis. For its relative performance as compared to the
standard or TWAS-based pathway analyses, we reach the same conclusions as that for
gene-based testing.

Although it would be ideal to use enhancer-promoter interaction data drawn from a

disease- or trait-related tissue, due to the lack of data and expected commonalities of
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the DNA three-dimensional organizations across multiple tissue and cell types, we mainly
used the data from the tissues not necessarily most relevant to schizophrenia but still
demonstrated their potential usefulness. Nevertheless, we also applied our method to an
enhancer-promoter interaction dataset based on the developing human brain, uncovering
some significant genes that would be missed based on other two datasets. Although the
results confirmed the usefulness of using tissue-specific data, due to varying sensitivities
and specificities of different biotechnologies (e.g. ChIA-PET versus Hi-C, experimental
versus computational), we found that it was useful and complementary to use different
tissue-based datasets. In addition, as in TWAS, we could apply our method to and then
combine the results from multiple tissues, or apply other more powerful and adaptive tests
(Gusev et al., 2016; Xu et al., 2017). The issue with the choice of the tissue or cell type is
similar to that in TWAS: a recent study (Qi et al., 2018) has shown that, for brain-related
traits, using blood cis-eQTL (with larger sample sizes) could gain power over using (smaller)
brain eQTL datasets, while the genetic effects of cis-eQTL are highly correlated between
independent brain and blood samples. Finally, although our application was focused on
schizophrenia, the proposed method is quite general and applicable to other traits based

on either individual-level or summary GWAS data.

Supplemental Data

Supplemental Data include 9 Supplementary Tables and 2 Supplementary Figures.
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