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Abstract—This paper describes a unifying optimization frame-
work to share backhaul network resources across different
operators and wireless platforms. The architecture we consider,
named LayBack, requires introducing a unifying Software De-
fined Network (SDN) orchestrator, sited where their respective
traffic streams meet: at the wireless network backhaul. The work
we present proposes a scalable decomposition of the resource
allocation problem across different layers and time-scales.

I. INTRODUCTION
Today there is only very limited statistical multiplexing

(sharing) of spectrum resources across wireless operators and
technologies [1], [2]. There have been efforts in wireless
standards [3], [4] and in academic research [5] to define
architectures aimed at changing the status quo, e.g., enabling
resource sharing only among individual LTE cells [6], [7] but
they generally have had limited impact. To a large degree this
is due to (4) the lack of a flexible and effective signaling infras-
tructure across the wireless access network, and (i7) the lack
of a practical optimization framework that could accommodate
signaling delays incurred between different network entities.
To address these issues, we propose a five layers backhaul
network architecture, named LayBack, aimed at extending the
notion of software defined networking (SDN) to the dynamic
adaptation of wireless resources across different operators and
platforms. The LayBack (see Sec. II), comprise: the devices
layer, the radio node (e.g., eNB, WiFi AP) layer, the gateway
layer (e.g., small cell gateways, CRAN), the SDN switching
layer, and the SDN backhaul layer (e.g., legacy enhanced
packet core (EPC) controlled by SDN applications).

The key idea is extending the benefits of SDN from the
realms of the wired backhaul, to the wireless edge, through a
unifying SDN orchestrator, providing a flexible and integrated
signalling infrastructure that can work across operators and
an evolving set of wireless platforms and standards. To fulfill
this vision, this paper introduces a formulation of a multi-
timescale optimization decomposing the resource allocation
into layers so that the orchestrator can centrally control all
the resources, while distributing the decision making pro-
cesses, to quickly and dynamically react to the needs of
the network end users. This decomposition also allows the
decentralized implementations which is essential to serve 5G
dense networks. The proposed framework is inspired by the
body of work on Network Utility Maximization (NUM) and
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the signaling framework of Lagrangian exchanges in standard
dual decompositions that we briefly review next.

The seminal paper of Kelly et al. in 1997 [8] introduces
the concept of NUM to solve the problem of rate allocation
in a network with link capacity constraints. This work is
followed by extensive amount of efforts which often lie at the
intersection between distributed optimization and stochastic
network theory; comprehensive surveys can be found in [9]-
[11]. A reverse engineering process over former network
protocols is also motivated with NUM approach to cast them
as optimization problems and gain insights on their efficient
performances, or lack thereof. For instance, the work of L.
Tassiulas and A. Ephremides [12], [13] on Queue-length Max-
imum Weight (QMW) scheduling, paved the way for several
other researchers who extended the condition under which
throughput optimality can be established, or other performance
guarantees can be met [14], [15]. In particular, in terms of
delay, QMW scheduling is not guaranteed to carry optimal
performance [16], leading to the investigation of variations of
the algorithm that enhance its delay performances in general
multi-hop networks [17] or provide better guarantees [18],
[19]. A common feature motivating the decomposition via
the NUM formulation is that a centralized optimal scheduler
can be impractical, because managing the decoupled networks
constraints requires a lot of information. Often, in the decom-
position of NUM problems [20], [21] the so-called time-scale
separation assumption is invoqued, stating that the session
interval T is much larger than the convergence time 7). of the
local resource allocation policy [11]. Under this assumption, in
the decomposition one can ignore the convergence of the local
control. Several decentralized scheduling algorithms based on
queue lengths (e.g. [22]-[24]) rely on this principle.

In this work, we abstract away how the actual physical
layer resources (i.e. spectrum and power) granted at the radio
node layer (eNB, WiFi AP) provides a dynamic allocation of
the rate, and focus on the management of an abstract total
rate Z resource at the backhaul, which is indirectly tied to
the redistribution of the physical layer channel resources. The
SDN operates by keeping the queues logically separated at
each eNB, while the shared resource Z trickles down from
the orchestrator to the operator, from the operator to the GWs
and, finally, from the GWs to the eNBs. In the decomposi-
tion of the associated QMW utility over the layers of the



architecture, we consider realistic network latencies, which
make the time-scales separation assumption unrealistic. The
works that remove the time-scale separation assumption are
divided in two classes: 1) those that use intermediate iterates
as decisions and assume continuous underlying flows [25],
[26] and 2) those that propose a multi-time scale approach
across different layers of the protocol stack [27], [28]. In
[25], the authors show that a (-fairness utility function can
be maximized, while guaranteeing system stability, under the
assumptions that the number of users per class follows a
recurrent Markov Chain. We follow a similar rationale as
that in [25] for the intermediate decisions. However, since we
are not considering a proper utility function, but rather the
implicit one that corresponds to the optimal QMW policy,
convergence remains an open issue at this point'. Like in
the second class of works, we consider multi-time scales
but those correspond to different layers of the architecture
rather than to different allocation problems that take place in
different layers of the conventional protocol stack. To illustrate
what the Layback architecture could enable, our specific goal
in this paper is to focus on the the benefits obtained by
sharing the backhaul resources dynamically. In addition to
considering different time-scales across the different Layback
layers, we also incorporate an economic constraint in the
allocation across different operators, which is enforced via
the Lyapunov drift plus penalty: a method introduced in [29],
[30], and extensively used in recent years for dynamic control.
Numerical results suggest that the proposed approach can
effectively minimize delays, by enabling a flexible resource
redistribution of backhaul resources across different operators.
The rest of the paper is organized as follows. In Section II,
we give an overview of the LayBack architecture. In Section
I, we present the formulated optimization procedure. In
Section IV, we provide numerical examples to illustrate the
benefits of the design. The conclusions are in Section V.

II. A BRIEF OVERVIEW OF THE LAYBACK ARCHITECTURE

We briefly review the five layers in the LayBack architec-
ture. The wireless end devices layer encompasses the hetero-
geneous mobile wireless end devices. The radio access nodes
(RAN) layer includes e.g., evolved NodeB (eNB) in LTE
or an access point (AP) in Wi-Fi. The gateway (GW) layer
encompasses the network entities between the radio node layer
and the backhaul (core) entities, e.g., entities of the legacy
enhanced packet core. For instance, the GW layer may include
the gateways of small cell deployments, or the Base Band
Units (BBUs) of a cloud radio access network. The work in
[31] introduced the concept of Smart Gateways and discussed
the possibility of sharing bandwidth between operators to
improve uplink throughput and efficiency. The SDN switching
layer consists of SDN switches that flexibly interconnect
the RAN layer with the SDN backhaul (core) layer. Radio
nodes operating in a non-C-RAN environment (such as macro

'Even though we have some preliminary results on the convergence
properties, these are omitted due to space constraints.
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Fig. 1: High level diagram of LayBack architecture. The three
illustrated layers are controlled by the SDN orchestrator (Sec. II).

cell eNBs) process the baseband signals locally and connect
directly to the backhaul (core) layer network gateways via
the SDN switching layer. The backhaul (core) network layer
comprises technology-specific network elements, such as the
Evolved Packet Core (EPC) which supports the connectivity
of LTE eNBs. The unifying SDN orchestrator in LayBack
has three main tasks: 1) it creates a common platform for
coordinating among all the wireless service operators and
heterogeneous network technologies across its layers; 2) it
maintains the current topology information of the entire net-
work and tracks the network capabilities; 3) it enables each
of the layers to flexibly reconfigure the network by allocating
resources in response to their time-varying needs, while main-
taining long term performance requirements that define the
service guarantees. This is possible since networks maintained
by different operators communicate their requirements and
reconfiguration capabilities to the SDN orchestrator. The goal
of the remainder of this paper is to showcase how one can
embed the NUM decomposition methodology in the SDN
centralized management framework.
III. OPTIMIZATION FRAMEWORK

We consider a network with O distinct operators, indexed
by o = 1,2,...,0. Each operator manages a set of Smart-
Gateways (GWs) G, indexed by g € G,. In turn, each GW g
manages a set of e-NodeBs (eNBs), indexed by n € Ng. Let

us also define the set N £ Uooz1 Uyeg, Ny of all the eNBs
)

and the set G £ Ug—1 Go- The queues of each eNB n € N
are denoted by @,, and their dynamics are

Qn[t + 1] = [Qn[t] - Zn[t]]+ + an[t + 1] (H

where a,[t] and z,[t] represent, respectively, the exogenous
packets arrival process and service rate at the backhaul level
that is granted to the nth eNB, during the ¢-th slot. Also,
[]* denotes projection onto nonnegative orthant ([y]T =
max(,0)). This service rate z,[t] is a function of the
spectrum and power resources allocated for the transmission
between ¢ and ¢+ 1 to the specific eNB as well as its channel
state. For now let’s assume perfect channel state information
is available, an assumption that we will relax later. We define
an optimization problem where its input is queue lengths that
accumulated in eNBs and output is optimal service rates.
Therefore, we do not focus on the physical layer transmission
details such as fading, path-loss and noise in the channel
between devices layer and eNB layer where optimization is
limited with layers shown in Fig. 1.

Before introducing our time scale decomposition, we start
from the centralized optimization we wish to emulate, and the



logical steps that decompose the problem in layers via the
Lagrange decomposition. If the SDN orchestrator, having full
control of the total service rate denoted by Z, could allocate
it directly the eNBs, the optimization:

max Z Un(z,) st Z 20 <Z, 0< 2, < Qult] Vn e N
# neN neN 2

where we use QMW policy as objective function with
Un (zn) = Qnlt]zn for the sake of illustrating the decomposi-
tion technique. For further implementation, the utility should
include channel state w where it should be formulated as
> f(Qn[t], w, z[n]) when f is a known function of the queue,
channel state information and service rate. With the QMW
policy, the maximization in (2) leads to the minimization
of long term average total queue length, which also results
in the minimization of the end-to-end delay in the network
(a consequence of Little’s theorem [32] for the simplified
scenario of continious flows and infinite queue backlogs [33]).
There are two issues with solving (2): 1) the idea of having
the SDN allocate its network resources at the eNB level
does not scale; 2) without any long term constraints, some
operators may hoard on backhaul resources. In order to create
multiple layers to distribute the decision making processes,
we rewrite the maximization in (2) introducing variables that,
for the sake of solving (2), are slack variables. As we will
see, the additional variables represent actual network decisions
in the distributed and time-decomposed implementation of
the centralized scheduler. In particular, let us denote by x,
the portion of the wireless service rate Z that is distributed
to operator o. Each operator o = 1,...,O redistributes the
resources, by giving a portion y, of x, to each of its GWs
g € G,. Similarly, each GW g redistributes the resources, by
giving a portion z, of y, to each of its eNBs n € N. If all
these assignments could happen at the same time-scale indexed
by ¢, distributing the constraints at each layer, the optimization
could be solved as follows:

o o
max. Xgu; (zo:t) st Zx(, <Z (3)
with U* (z,;t) being the optimal value of the subproblem:
max Z L{ (yg;t) s.t. Z Yg < T, 4
Yo geg, 9€9,

and Uy (y,;t) being the optimal value of

maxZQn[t}zn s.t. ZZ” <yg, 0< 2z, <Qult] Vn € N,.
* neN, neN,
&)

It is important however to remark that the allocation of x to
solve (3) needs to respect an “economic” constraint across
the operators, that defines a contractual service obligation
and prevents any operator from gaming the system (i.e.,
consistently acquiring more resources than what it paid for).
This constraint on the long-run average of the decisions x is:

lim sup — Zxo < Z, (6)

T—o00 T

where, for consistency of the problem, it is necessary to have
Zoozl Z, < Z. At the same time, by having an inequality
constraint, we are not forced to assign resources to an operator
that would be wasted if there is not sufficient uplink demand.

We use the idea of virtual queues, following the Lyapunov
drift-plus-penalty approach [29] to encode the constraint in
(6), and we modify the objective in (3) into:

o 19
;u; (20it) = 37 ; Ooft]o- (M)
After deciding x[t], the virtual queues ©,’s are updated as:
Oolt + 1) = [O[t] + (wot] — Zo)] " ®)

where Z, is the fixed average maximum resource limitation.
The parameter V represents the “flexibility” of the constraint
in (6), e.g., the higher V' the more inclined we are to tem-
porarily violate the constraint. The next subsection serves as a
basis to tackle the problem at different timescales, imposed by
the network infrastructure, which will be discussed in III-B. It
is however easier to derive them in the ideal static case first,
given that the expressions in the dynamic case will have the
same form, albeit having a different meaning.

A. Iterative solution via gradient descent

We will omit the time index ¢ to ease the notation. Dual
objective function of the subproblem (3) can be written as

@1 (4g Ay i Q) 2 Ay, yyFmax > (Q ©)

Zo neN,

and we introduce the Lagrangian dual variable Az for the
constraint in (3), the Lagrangian dual variables {\;, : 0 =

., O} for the constraints in (4) and the Lagrangian dual
variables {)\, : g € G} for the constraints in (5). Then,
unfolding all the constraints, we obtain (14) and following
a cascade of primal dual decompositions (see [20]), the opti-
mization can be solved via the sequence of projected gradient
descent updates:

+
AU l/\(m (k)( Zargmax@(z, ))] (10)

Xo, V
+
>\§512+1): /\(k) a To _Zargmaxqb ()\;’Z),yg) (12)

9€Go Yg

+
yékﬂ) = ygk) Jraff) (argmin b, (ygk),)\yg) — /\$O> ] (13)

Ayg

where a’s denote step sizes. The bottom layer optimization
in (9) can be solved with the Algorithm 1, while solution for
general utility is shown in [34]. We note that to ensure the
convergence of the decomposition, the updates in (10)—(13)
have to be read as follows: to reach the optimal Az, the SDN
orchestrator needs to perform a sufficient number of iterations
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D4(Az,70;Q)

D3(20,A2,;Q)

o]
. () . -
n)'\nzn Az Z + E nﬂlcz;x </\Z - VO) T, + r)I\l:(I)l Az, To + g nqlaxf)\%yg + I)I\lyl;l D1 (yg, Ay, Q)

o=1

@3 (Aay Y95 Q)

(14)
9€G, Yo

in (10). However, before computing one iteration of (10), the
operator layer below should perform a sufficient number of
iterations of (11) upon receiving the Lagrangian Az, and so
on. Unless a value can be computed in closed form in one
shot, each update that includes the solution of an optimization
problem (i.e., it has an argmax or argmin term in the update)
requires a sufficient number of gradient descent updates at the
lower level to approximate the solution of the subproblem.
Therefore, the indices k& in (10)—(13) are not associated with
the same time scale. If the computation at each layer and the
communication delays among layers were all negligible, we
would be in the time-scale separation regime. However, this is
not possible in a real system, since latencies play an important
role and the framework we are about to explain explicitly
takes these latencies into consideration. We also note that in
this decomposition model, there is no sharing of information
among the operators, which makes the model more practical.

Algorithm 1: Solution of (9)

Input : y,,{Q, : n € Ny}

Output: )\;g

if >, cn, @n = yy then
Find the permutation 7 = {m; : i = 1,... [N} to
sort the queues Q such that 1 > j = Q,, < Qﬂj;
Find i* = inf{i : 3%, Qr, > yy}; .
Zry = Qn, fOr j <i*, 2o =yg = >0 Q)

Zq; = 0 for j > 4%, )\;g = Qnr,.;
else
‘ Zn = Qn Yn € Ny, Ay = 0;
end

Let us start by considering the optimization at the bottom
layer as the one that operates at the minimum latency, i.e., the
time difference between the time indexes ¢ and ¢ + 1 is the
Round Trip Time (RTT) between GW and eNB Tﬁ (considered
equal, for simplicity, for all GWs and eNBs), since it is the one
closest to devices and to the information regarding traffic. To
map all the time instants into integer values of ¢ it is convenient
to normalize all times with respect to 75 (i.e., we set 7§ =
1). Denoting with L and P - L the minimum refresh times
for the GWs decisions y and for the operators decisions x,
respectively, time ¢ can be written according to a poly-phase
decomposition as

t=mP+pL+4, meNO<p<P-1,0<¢<L-1

where P- L > P-L and L > L are selected refresh times.

B. Stochastic optimization and temporal decomposition

Since the different layers cannot communicate instanta-
neously, the parameters of the queues change dynamically
underneath. Clearly, the objectives of the optimization have
to be defined in such a way that they stay constant while
the bottom layer changes stochastically from one state to the
other. The proposed framework can be seen as a special case
of stochastic gradient descent where the network dynamics,
via the queues evolution, impose the sequence of training
samples’ updates. In particular, the SDN orchestrator operates
its optimization at every time instant ¢ = mPL, performing

o O,[m]z, .
mgxz v + *Z E{U; (zo; (mP+p) L)}
o=1

o
s.t.z T, < Z
o=1

with U} (z,; (mP + p) L) equal to the optimal value of the
problem solved at the operator layer below:

L-1

1 *
H?lgxgg: I ; E{Uy (yg; (mP +p)L+ )}

s.t. Z Yg < To

9€Go

(16)

and Uy (yg; (mP + p)L + £) being the optimal values of the
optimization in (5) for ¢ = (mP + p)L + ¢. The updates
derived in (10)—(13) will then be used to update the decisions
x every PL and the decisions y every L, as if convergence to
the solution of a static problem has been achieved in the time
horizons of length PL and L, respectively. By introducing
K; as the number of iterations of each update in layer ¢ =
1,...,4, respectively starting from the bottom, we can derive
the following relations:

a7
(18)

PL > max { K4 (K3 K2 (Ki +70) +78) , PL}
L > max {K, (K +79),L},

where 7'8 and 7'8 are, respectively, the RTTs between SDN
and operators, and between operators and GWs (see also Fig.
2). The inequalities in (17)—(18) indicate that, if we want to act
fast, e.g., reduce P and L (possibly to the minimum refresh
times) we need to perform fewer iterations. Vice versa, if we
want to perform more iterations, we have to be willing to act
slower in updating the decisions  and y.

In numerical section, we consider a fixed design for P, L,
and K;, 7 =1,...,4, and explore the performance. Note that,
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Fig. 2: Illustration of the dynamics of the multi-timescale optimization framework within context of LayBack infrastructure: the optimal
policy to minimize end-to-end delay is decoupled into multiple layers of sub-problems, with faster timescale at the lower LayBack layers.

the impact of the choice of the K;, ¢ = 1,...,4 has not been
fully addressed in the literature, where these parameters are
implicitly predetermined in the formulations studied. If we
look at the static problem, as a “surrogate” for the dynamic
problem (up to the next decision), increasing the number
of iterations and delaying future decisions can guarantee a
better accuracy for a static scenario; however, the ability
of the algorithm to incorporate new dynamic information is
compromised. That trade-off just described creates another
optimization issue which is the subject of our future research
and not in the scope of this paper.

IV. EVALUATION

In this section, we show the effectiveness of the proposed
method in handling demand peaks (i.e., high traffic hours)
across different operators by multiplexing resources dynami-
cally. The bottleneck of the proposed approach is that, due to
network latencies, high level decisions cannot be instantaneous
and if one of the operators experiences a demand peak right
after the other, the first of the event creates a response lag in
addressing the subsequent events. In our experiments we test
different values of the parameter V' in (7). Our baselines are: 1)
absence of the LayBack orchestrator, e.g. fixed allocation for
z, (labeled “no LB” in the plots) and 2) a centralized optimal
scheduler with no latency and no long term constraints limiting
operators (labeled “QMW?” in the plots). The parameters in
Fig. 2 are set to Ky = 10, Ky = 1,K3 = 5, K, = 1,75 =
100, Tg = 10, which correspond to 1s and 100ms for an RTT
between GWs and eNBs of 10ms latency, respectively. L and
PL are set to 20 and 200 respectively. For all the updates
« = 0.4. For numerical stability, the computation of A} " uses

the following queues’ normalization ZQﬁ %‘7', which
ne n

does not alter the solution. The network has the following
parameters: O = 2,|G,| =2V o,|[Ny| =10V g € G, Z, =
100Mbps, Y 0, Z = 200Mbps. The aggregate rate demand for
each operator is kept constant at 80Mbps, except for a peak
of 10s duration of 160Mbps, for each operator. Operator 1
experiences the peak in demand rate at time ¢ = 10s, whereas

for Operator 2 the peak happens at time ¢t = (10+ At)s. At all
times, the traffic is homogeneous across the same operator’s
eNBs. For the selected time parameters and a packet size
of 12.5 KBytes, the scenario just described corresponds to
a process a,[t] in (1) as Pois(0.4) in normal conditions
and Pois(0.8) when the demand peak occurs. In Fig. 3, we
show three different simulations over time for different values
of At: for At = 0 traffic is perfectly balanced, hence no
redistribution across operators is enabled, for At = 15s the
aforementioned overshadowing effect can be seen in the delay

Overall allocated rate (Mbps)
[--Op 1 Demand -~ Op 2 Demand]

Avg queue per eNB (KB)
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Fig. 3: Aggregate rate allocation for the two operators for different
values of V' and when no sharing across operators is enabled
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Fig. 4: Average aggregate queue size at each operator for different
time distances between demand peaks.

to which the system for V' = 100 responds to the demand
peak for Operator 2. Finally for At = 30s, there is enough
time for our decomposition to redistribute the resources and
have both operators benefit from sharing. The phenomenon
just described is summarized in Fig. 4, where we plotted the
time average queue size (over the whole simulation time) vs.
the interval At that separates the two demand peaks. Notice
how for small values of V' (e.g V = 1) sharing is limited and
performances are not significantly different from the absence
of SDN orchestration. As V increases, we enable sharing,
and when the demand peaks are sufficiently separated, we can
guarantee smaller average queues for both operators, closing
the gap with the optimal curves for the centralized solution.
The shadowing effect described for small At is evident since
Operator 1 has a smaller average queue size than in the
centralized optimization, where it is not prioritized because
there is no lag in responding to events occurring later.

V. CONCLUSIONS

Leveraging the primal dual decomposition and Lyapunov
drift techniques we showed that an SDN centralized man-
agement model can be decomposed and become scalable.
Numerical experiments validated our approach. This work will
be followed by details of the LayBack architecture along with
convergence and stability analysis of the algorithm.
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