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Abstract

We propose a novel approach to Bayesian analysis that is provably robust to outliers in
the data and often has computational advantages over standard methods. Our technique
is based on splitting the data into non-overlapping subgroups, evaluating the posterior
distribution given each independent subgroup, and then combining the resulting measures.
The main novelty of our approach is the proposed aggregation step, which is based on
the evaluation of a median in the space of probability measures equipped with a suitable
collection of distances that can be quickly and efficiently evaluated in practice. We present
both theoretical and numerical evidence illustrating the improvements achieved by our
method.

Keywords: Big data, geometric median, distributed computing, parallel MCMC, Wasser-
stein distance

1. Introduction

Contemporary data analysis problems pose several general challenges. One is resource
limitations: massive data require computer clusters for storage and processing. Another
problem occurs when data are severely contaminated by “outliers” that are not easily iden-
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tified and removed. Following Box and Tiao (1968), an outlier can be defined as “being an
observation which is suspected to be partially or wholly irrelevant because it is not generated
by the stochastic model assumed.” While the topic of robust estimation has occupied an
important place in the statistical literature for several decades and significant progress has
been made in the theory of point estimation, robust Bayesian methods are not sufficiently
well-understood.

Our main goal is to take a step towards solving these problems, proposing a general Bayesian
approach that is

(i) provably robust to the presence of outliers in the data without any specific assumptions
on their distribution or reliance on preprocessing;

(ii) scalable to big data sets through allowing computational algorithms to be implemented
in parallel for different data subsets prior to an efficient aggregation step.

The proposed approach consists in splitting the sample into disjoint parts, implementing
Markov chain Monte Carlo (MCMC) or another posterior sampling method to obtain draws
from each “subset posterior” in parallel, and then using these draws to obtain weighted
samples from the median posterior (or M-Posterior), a new probability measure which is a
(properly defined) median of a collection of subset posterior distributions. We show that,
despite the loss of “interactions” among the data in different groups, the final result still
admits strong guarantees; moreover, splitting the data gives certain advantages in terms of
robustness to outliers.

In particular, we demonstrate that the M-Posterior is a probability measure centered at the
“robust” estimator of the unknown parameter, the associated credible sets are often of the
same “width” as the credible sets obtained from the usual posterior distribution and admit
strong “frequentist” coverage guarantees (see Section 3.2 for exact statements).

The paper is organized as follows: Section 1.1 contains an overview of the existing literature
and explains the goals that we aim to achieve in this work. Section 2 introduces the
mathematical background and key facts used throughout the paper. Section 3 describes the
main theoretical results for the median posterior. Section 4 presents details of algorithms,
implementation, and numerical performance of the median posterior for several models. The
simulation study and analysis of data examples convincingly show the robustness properties
of the median posterior. In particular, we have used M-Posterior for scalable nonparametric
Bayesian modeling of joint dependence in the multivariate categorical responses collected
by the General Social Survey (gss.norc.org). Proofs that are omitted in the main text
are contained in the supplementary material.

1.1 Discussion of Related Work

A. Dasgupta remarks that (see the discussion following the work by Berger, 1994): “Exactly
what constitutes a study of Bayesian robustness is of course impossible to define.” The
popular definition which also indicates the main directions of research in this area is due to
Berger (1994): “Robust Bayesian analysis is the study of the sensitivity of Bayesian answers
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to uncertain inputs. These uncertain inputs are typically the model, prior distribution, or
utility function, or some combination thereof.” Notable works on robustness of Bayesian
procedures to model misspecification include Doksum and Lo (1990) and Hoff (2007) that
investigate methods based on conditioning on partial information, as well as a more recent
paper by Miller and Dunson (2015) who introduced the notion of the “coarsened” posterior;
however, its behavior in the presence of outliers is not explicitly addressed. Outliers are
typically accommodated by either employing heavy-tailed likelihoods (e.g., Svensen and
Bishop, 2005) or by attempting to identify and remove them as a first step (as in Box
and Tiao, 1968 or Bayarri and Berger, 1994). The common assumption in the Bayesian
literature is that the distribution of the outliers can be modeled (e.g., using a t-distribution,
contamination by a larger variance parametric distribution, etc). In this paper, we instead
bypass the need to place a model on the outliers and do not require their removal prior
to analysis; similar approach has previously been advocated by Hooker and Vidyashankar
(2014). We base inference on the median posterior, whose robustness can be formally and
precisely quantified in terms of concentration properties around the true delta measure
under the potential influence of outliers and contaminations of arbitrary nature.

Also relevant is the recent progress in scalable Bayesian algorithms. Most methods designed
for distributed computing share a common feature: they efficiently use the data subset
available to a single machine and combine the “local” results for “global” learning, while
minimizing communication among cluster machines (Smola and Narayanamurthy, 2010). A
wide variety of optimization-based approaches are available for distributed learning (Boyd
et al., 2011); however, the number of similar Bayesian methods is limited. One of the
reasons for this limitation is that Bayesian approaches typically require an approximation
to the full posterior distribution instead of just a point estimate of parameters.

Several major approaches exist for scalable Bayesian learning in a distributed setting. The
first approach independently evaluates the likelihood for each data subset across multiple
machines and returns the likelihoods to a “master” machine, where they are appropriately
combined with the prior using conditional independence assumptions of the probabilistic
model. These two steps are repeated at every MCMC iteration (see Smola and Narayana-
murthy, 2010; Agarwal and Duchi, 2012). This approach is problem-specific and involves
extensive communication among machines. The second approach uses a so-called stochastic
approximation (SA) and successively learns “noisy” approximations to the full posterior dis-
tribution using data in small mini-batches. A group of methods based on this approach uses
sampling-based techniques to explore the posterior distribution through modified Hamilto-
nian or Langevin dynamics (e.g., Welling and Teh, 2011; Ahn et al., 2012; Korattikara
et al., 2013). Unfortunately, these methods fail to accommodate discrete-valued parameters
and multimodality. Another subgroup of methods uses deterministic variational approxi-
mations and learns the variational parameters of the approximated posterior through an
optimization-based approach (see Wang et al., 2011; Hoffman et al., 2013; Broderick et al.,
2013). Although these techniques often have excellent predictive performance, it is well
known (Bishop, 2006) that variational methods tend to substantially underestimate poste-
rior uncertainty and provide a poor characterization of posterior dependence, while lacking
theoretical guarantees.
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Our approach instead falls in a class of methods which avoid extensive communication
among machines by running independent MCMC chains for each data subset and obtain-
ing draws from subset posteriors. These subset posteriors can be combined in a variety of
ways. Some of these methods simply average draws from each subset (Scott et al., 2013).
Other alternatives use an approximation to the full posterior distribution based on kernel
density estimates (Neiswanger et al., 2013) or the so-called Weierstrass transform (Wang
and Dunson, 2013). These methods have limitations related to the dimension of the param-
eter, moreover, their applicability and theoretical justification are restricted to parametric
models. Unlike the method proposed below, none of the aforementioned algorithms are
provably robust. Another closely related method is the so-called WASP (Srivastava et al.,
2015b). It is scalable but still lacks robustness guarantees.

Our work was inspired by recent multivariate median-based techniques for robust estimation
developed in Minsker (2015) (see also Hsu and Sabato, 2013; Alon et al., 1996; Lerasle and
Oliveira, 2011; Nemirovskĭı and David, 1983 where similar ideas were applied in different
frameworks).

2. Preliminaries

We proceed by recalling key definitions and facts which will be used throughout the paper,
followed by the definition of the M-Posterior distribution in Section 2.4.

2.1 Notation

In what follows, ‖ · ‖2 denotes the standard Euclidean distance in R
p and 〈·, ·〉

Rp the asso-
ciated dot product.

Given a totally bounded metric space (Y, d), the packing number M(ε,Y, d) is the maximal
number N such that there exist N disjoint d-balls B1, . . . , BN of radius ε contained in Y,

i.e.,
N⋃
j=1

Bj ⊆ Y.

Let {pθ, θ ∈ Θ} be a family of probability density functions on R
p. Let l, u : Rp 7→ R+ be

two functions such that l(x) ≤ u(x) for every x ∈ R
p and d2(l, u) :=

∫
Rp

(
√
u−

√
l)2(x)dx <∞.

A bracket [l, u] consists of all functions g : Rp 7→ R such that l(x) ≤ g(x) ≤ u(x) for all
x ∈ R

p. For A ⊆ Θ, the bracketing number N[ ](ε,A, d) is defined as the smallest number

N such that there exist N brackets [li, ui], i = 1, . . . , N satisfying {pθ, θ ∈ A} ⊆
N⋃
i=1

[li, ui]

and d(li, ui) ≤ ε for all 1 ≤ i ≤ N .

For y ∈ Y, δy denotes the Dirac measure concentrated at y. In other words, for any Borel-
measurable B, δy(B) = I{y ∈ B}, where I{·} is the indicator function.

We will say that k : Y × Y 7→ R is a kernel if it is a symmetric, positive definite function.
Assume that (H, 〈·, ·〉

H
) is a reproducing kernel Hilbert space (RKHS) of functions f : Y 7→
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R. Then k is a reproducing kernel for H if for any f ∈ H and y ∈ Y, 〈f, k(·, y)〉
H
= f(y)

(see Aronszajn, 1950 for details).

For a square-integrable function f ∈ L2(R
p), f̂ stands for its Fourier transform. For x ∈ R,

bxc denotes the largest integer not greater than x.

Finally, given two nonnegative sequences {an} and {bn}, we write an . bn if an ≤ Cbn
for some C > 0 and all n. Other objects and definitions are introduced in the course of
exposition when necessity arises.

2.2 Generalizations of the Univariate Median

Let Y be a normed space with norm ‖ · ‖, and let µ be a probability measure on (Y, ‖ · ‖)
equipped with Borel σ-algebra. Define the geometric median of µ by

x∗ = argmin
y∈Y

∫

Y

(‖y − x‖ − ‖x‖)µ(dx).

In this paper, we focus on the special case when µ is a uniform distribution on a finite
collection of atoms x1, . . . , xm ∈ Y, so that

x∗ = medg(x1, . . . , xm) := argmin
y∈Y

m∑

j=1

‖y − xj‖. (1)

The geometric median exists under rather general assumptions; for example, if Y is a
Hilbert space (this case will be our main focus; more general conditions were obtained by
Kemperman, 1987). Moreover, it is well-known that in this situation x∗ ∈ co(x1, . . . , xm)—

the convex hull of x1, . . . , xm (meaning that there exist nonnegative αj , j = 1 . . .m,
m∑
j=1

αj =

1 such that x∗ =
m∑
j=1

αjxj).

Another useful generalization of the univariate median is defined as follows. Let (Y, d) be a
metric space with metric d, and x1, . . . , xk ∈ Y. Define B∗ to be the d-ball of minimal radius
such that it is centered at one of {x1, . . . , xm} and contains at least half of these points.
Then the median med0(x1, . . . , xm) of x1, . . . , xm is the center of B∗. In other words, let

ε∗ := inf
{
ε > 0 : ∃j = j(ε) ∈ {1, . . . ,m} and I(j) ⊂ {1, . . . ,m} such that (2)

|I(j)| > m

2
and ∀i ∈ I(j), d(xi, xj) ≤ 2ε

}
,

j∗ := j(ε∗), where ties are broken arbitrarily, and set

x∗ = med0(x1, . . . , xm) := xj∗ . (3)

We will say that x∗ is the metric median of x1, . . . , xm. Note that x∗ always belongs to
{x1, . . . , xm} by definition. Advantages of this definition are its generality (only metric
space structure is assumed) and simplicity of numerical evaluation since only the pairwise
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distances d(xi, xj), i, j = 1, . . . ,m are required to compute the median. This construction
was previously employed by Nemirovskĭı and David (1983) in the context of stochastic
optimization and is further studied by Hsu and Sabato (2013). A closely related notion of
the median was used by Lopuhaa and Rousseeuw (1991) under the name of the “minimal
volume ellipsoid” estimator.

Finally, we recall an important property of the median (shared both by medg and med0)
which states that it transforms a collection of independent, “weakly concentrated” estima-
tors into a single estimator with significantly stronger concentration properties. Given q, α
such that 0 < q < α < 1/2, define a nonnegative function ψ(α, q) via

ψ(α, q) := (1− α) log
1− α

1− q
+ α log

α

q
. (4)

The following result is an adaptation of Theorem 3.1 in (Minsker, 2015):

Theorem 1

a Assume that (H, ‖ · ‖) is a Hilbert space and θ0 ∈ H. Let θ̂1, . . . , θ̂m ∈ H be a collection
of independent random variables. Let κ be a constant satisfying 0 ≤ κ < 1

3 . Suppose
ε > 0 is such that for all j, 1 ≤ j ≤ b(1− κ)mc+ 1,

Pr
(
‖θ̂j − θ0‖ > ε

)
≤ 1

7
. (5)

Let θ̂∗ = medg(θ̂1, . . . , θ̂m) be the geometric median of {θ̂1, . . . , θ̂m}. Then

Pr
(
‖θ̂∗ − θ0‖ > 1.52ε

)
≤
[
e
(1−κ)ψ

(

3/7−κ
1−κ

,1/7
)]−m

.

b Assume that (Y, d) is a metric space and θ0 ∈ Y. Let θ̂1, . . . , θ̂m ∈ Y be a collection of
independent random variables. Let κ be a constant satisfying 0 ≤ κ < 1

3 . Suppose
ε > 0 is such that for all j, 1 ≤ j ≤ b(1− κ)mc+ 1,

Pr
(
d(θ̂j , θ0) > ε

)
≤ 1

4
. (6)

Let θ̂∗ = med0(θ̂1, . . . , θ̂m). Then

Pr
(
d(θ̂∗, θ0) > 3ε

)
≤
[
e
(1−κ)ψ

(

1/2−κ
1−κ

,1/4
)]−m

.

Proof See Section A.1 in the appendix.

Remark 2 While we require κ < 1/3 above for clarity and to keep the constants small, we
prove a slightly more general result that holds for any κ < 1/2.
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Theorem 1 implies that the concentration of the geometric median of independent estimators
around the “true” parameter value improves geometrically fast with respect to the number
of such estimators, while the estimation rate is preserved, up to a constant. In our case, the
role of θ̂j ’s will be played by posterior distributions based on disjoint subsets of observations,
viewed as elements of the space of signed measures equipped with a suitable distance.

Parameter κ allows taking corrupted observations into account: if the initial sample contains
not more than bκmc outliers (of arbitrary nature), then at most bκmc estimators amongst
{θ1, . . . , θm} can be affected but their median remains stable, still being close to the unknown
θ0 with high probability. To clarify the notion of “robustness” that such a statement
provides, assume that θ̂1, . . . , θ̂m are consistent estimators of θ0 based on disjoint samples
of size n/m each. If n

m → ∞, then κm
n → 0, hence the breakdown point of the estimator θ̂∗

is 0 is general. However, it is able to handle a number of outliers that grows like o(n) while
preserving consistency, which is the best one can hope for without imposing any additional
assumptions on the underlying distribution, parameter of interest or nature of the outliers.

Let us also mention that the the geometric median of a collection of points in a Hilbert space
belongs to the convex hull of these points. Thus, one can think about “downweighing” some
observations (potential outliers) and increasing the weight of others, and geometric median
gives a way to formalize this approach. The median med0 defined in (3) corresponds to the
extreme case when all but one weight are equal to 0. Its potential advantage lies in the
fact that its evaluation requires only the knowledge of pairwise distances d(θ̂i, θ̂j), i, j =
1, . . . ,m, see (2).

2.3 Distances Between Probability Measures

Next, we discuss the special family of distances between probability measures that will be
used throughout the paper. These distances provide the necessary structure to define and
evaluate medians in the space of measures, as discussed above. Since one of our goals was
to develop computationally efficient techniques, we focus on distances that admit accurate
numerical approximation.

Assume that (X, ρ) is a separable metric space, and let F = {f : X 7→ R} be a collection of
real-valued functions. Given two Borel probability measures P,Q on X, define

‖P −Q‖F := sup
f∈F

∣∣∣∣
∫

X

f(x)d(P −Q)(x)

∣∣∣∣ . (7)

Important special cases include the situation when

F = FL := {f : Θ 7→ R s.t. ‖f‖L ≤ 1}, (8)

where ‖f‖L := sup
x1 6=x2

|f(x1)−f(x2)|
ρ(x1,x2)

is the Lipschitz constant of f .

It is well-known (Dudley, 2002, Theorem 11.8.2) that in this case ‖P − Q‖FL
is equal to

the Wasserstein distance (also known as the Kantorovich-Rubinstein distance)

dW1,ρ(P,Q) = inf
{
Eρ(X,Y ) : L(X) = P, L(Y ) = Q

}
, (9)
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where L(Z) denotes the law of a random variable Z and the infimum on the right is taken
over the set of all joint distributions of (X,Y ) with marginals P and Q.

Another fruitful structure emerges when F is a unit ball in a Reproducing Kernel Hilbert
Space (H, 〈·, ·〉

H
) with a reproducing kernel k : X× X 7→ R. That is,

F = Fk := {f : X 7→ R, ‖f‖H :=
√

〈f, f〉
H
≤ 1}. (10)

Let Pk := {P is a probability measure,
∫
X

√
k(x, x)dP (x) < ∞}, and assume that P,Q ∈

Pk. Theorem 1 proven by Sriperumbudur et al. (2010) implies that the corresponding
distance between measures P and Q takes the form

‖P −Q‖Fk
=

∥∥∥∥
∫

X

k(x, ·)d(P −Q)(x)

∥∥∥∥
H

. (11)

It follows that P 7→
∫
X
k(x, ·)dP (x) is an embedding of Pk into the Hilbert space H which

can be seen as an application of the “kernel trick” in our setting. The Hilbert space structure
allows one to use fast numerical methods to approximate the geometric median, see Section
4 below.

Remark 3 Note that when P and Q are discrete measures (e.g., P =
N1∑
j=1

βjδzj and Q =

N2∑
j=1

γjδyj ), then

‖P −Q‖2Fk
=

N1∑

i,j=1

βiβjk(zi, zj)+ (12)

N2∑

i,j=1

γiγjk(yi, yj)− 2

N1∑

i=1

N2∑

j=1

βiγjk(zi, yj).

In this paper, we will only consider characteristic kernels, which means that ‖P −Q‖Fk
= 0

if and only if P = Q. It follows from Theorem 7 in Sriperumbudur et al. (2010) that a
sufficient condition for k to be characteristic is its strict positive definiteness: we say that
k is strictly positive definite if it is bounded, measurable, and such that for all non-zero
signed Borel measures ν ∫∫

X×X

k(x, y)dν(x)dν(y) > 0.

When X = R
p, a simple sufficient criterion for the kernel k to be characteristic follows from

Theorem 9 in Sriperumbudur et al. (2010):

Proposition 4 Let X = R
p, p ≥ 1. Assume that k(x, y) = φ(x − y) for some bounded,

continuous, integrable, positive-definite function φ : Rp 7→ R.

1. Let φ̂ be the Fourier transform of φ. If |φ̂(x)| > 0 for all x ∈ R
p, then k is character-

istic;
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2. If φ is compactly supported, then k is characteristic.

Remark 5 It is important to mention that in practical applications, we often deal with
empirical measures based on a collection of MCMC samples from the posterior distribution.
A natural question is the following: if P and Q are probability measures on R

D and Pm,
Qn are their empirical versions, what is the size of the error

em,n :=
∣∣∣‖P −Q‖Fk

− ‖Pm −Qn‖Fk

∣∣∣?

For i.i.d samples, a useful and favorable fact is that em,n often does not depend on D: under
weak assumptions on kernel k, em,n has an upper bound of order m−1/2 + n−1/2 (that is,
limm,n→∞ Pr

(
em,n ≥ C(m−1/2 + n−1/2)

)
can be made arbitrarily small by choosing C big

enough, see Corollary 12 in Sriperumbudur et al., 2009). On the other hand, the bound
for the (stronger) Wasserstein distance is not dimension-free and is of order m−1/(D+1) +
n−1/(D+1). Similar error rates hold for empirical measures based on samples from Markov
chains used to approximate invariant distributions, including MCMC samples (see Boissard
and Le Gouic, 2014 and Fournier and Guillin, 2015).

If X is a separable Hilbert space with dot product 〈·, ·〉
X
and P1, P2 are probability measures

with ∫

X

‖x‖XdPi(x) <∞, i = 1, 2,

it will be useful to assume that the class F is chosen such that the distance between the
measures is lower bounded by the distance between their means, namely

∥∥∥∥
∫

X

xdP1(x)−
∫

X

xdP2(x)

∥∥∥∥
X

≤ C‖P1 − P2‖F (13)

for some absolute constant C > 0. Clearly, this holds if F contains the set of continuous
linear functionals L = {x 7→ 〈u, x〉

X
, u ∈ X, ‖u‖X ≤ 1/C}, since

∥∥∥∥
∫

X

xdPi(x)

∥∥∥∥
X

= sup
‖u‖X≤1

∫

X

〈x, u〉
X
dPi(x), i = 1, 2.

In particular, this is true for the Wasserstein distance dW1,ρ(·, ·) defined with respect to the
metric ρ such that ρ(x, y) ≥ c1‖x − y‖X. Next, we will state a simple sufficient condition
on the kernel k(·, ·) for (13) to hold for the unit ball Fk.
Proposition 6 Let X be a separable Hilbert space, k0 : X×X 7→ R - a characteristic kernel,
and define

k(x, y) := k0(x, y) + 〈x, y〉
X
.

Then k is characteristic and satisfies (13) with C = 1.

Proof Let H1 and H2 be two reproducing kernel Hilbert spaces with kernels k1 and k2
respectively. It is well-known (e.g., Aronszajn, 1950) that the space corresponding to kernel
k = k1 + k2 is

H = {f = f1 + f2, f1 ∈ H1, f2 ∈ H2}

9
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with the norm ‖f‖2
H
= inf{‖f1‖2H + ‖f2‖2H, f1 + f2 = f}. Hence, the unit ball of H contains

the unit balls of H1 and H2, so that for any probability measures P,Q

‖P −Q‖Fk
≥ max

(
‖P −Q‖Fk1

, ‖P −Q‖Fk2

)
,

which easily implies the result.

The kernels of the form k(x, y) = k0(x, y)+〈x, y〉
X
will prove especially useful in the situation

when the parameter of interest is finite-dimensional (see Section 3.2 for details).

Finally, we recall the definition of the well-known Hellinger and total variation distances.
Assume that P and Q are probability measures on R

D which are absolutely continuous
with respect to Lebesgue measure with densities p and q respectively. Then the Hellinger
distance between P and Q is given by

h(P,Q) :=

√
1

2

∫

RD

(√
p(x)−

√
q(x)

)2
dx.

The total variation distance between two probability measures defined on a σ-algebra B is

‖P −Q‖TV = sup
B∈B

|P (B)−Q(B)|.

We are ready to introduce the median posterior (or M-Posterior) distribution.

2.4 Construction of the M-Posterior Distribution

Let {Pθ, θ ∈ Θ} be a family of probability distributions over R
D indexed by Θ. Suppose

that for all θ ∈ Θ, Pθ is absolutely continuous with respect to Lebesgue measure dx on R
D

with dPθ(·) = pθ(·)dx. In what follows, we equip Θ with a metric (that we will refer to as
the “Hellinger metric”)

ρ(θ1, θ2) := h(Pθ1 , Pθ2), (14)

and assume that the metric space (Θ, ρ) is separable.

Let k be a characteristic kernel defined on Θ×Θ. Kernel k defines a metric on Θ via

ρk(θ1, θ2) := ‖k(·, θ1)− k(·, θ2)‖H =
(
k(θ1, θ1) + k(θ2, θ2)− 2k(θ1, θ2)

)1/2
, (15)

where H is the RKHS associated to k. We will assume that (Θ, ρk) is separable. Note that
the Hellinger metric ρ(θ1, θ2) is a particular case corresponding to the kernel

kH(θ1, θ2) :=
〈√

pθ1 ,
√
pθ2
〉
L2(dx)

.

All subsequent results apply to this special case. While this is a natural metric for the prob-
lem, the disadvantage of kH(·, ·) is that it is often difficult to evaluate numerically. Instead,
we will consider metrics ρk that are dominated by ρ (this is formalized in assumption 1).
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Let X1, . . . , Xn be i.i.d. RD-valued random vectors defined on a probability space (Ω,B, P )
with unknown distribution P0 := Pθ0 for some θ0 ∈ Θ. Bayesian inference of P0 requires
specifying a prior distribution Π over Θ (equipped with the Borel σ-algebra induced by
ρ). The posterior distribution given the observations Xn := {X1, . . . , Xn} is a random
probability measure on Θ defined by

Πn(B|Xn) :=

∫
B

∏n
i=1 pθ(Xi)dΠ(θ)

∫
Θ

∏n
i=1 pθ(Xi)dΠ(θ)

for all Borel measurable sets B ⊆ Θ. It is known (see Ghosal et al., 2000) that under rather
general assumptions the posterior distribution Πn contracts towards θ0, meaning that

Πn(θ ∈ Θ : ρ(θ, θ0) ≥ εn|Xn) → 0

almost surely or in probability as n→ ∞ for a suitable sequence εn → 0.

One of the questions that we address can be formulated as follows: what happens if some
observations in Xn are corrupted, e.g., if Xn contains outliers of arbitrary nature and mag-
nitude? Even if there is only one outlier, the usual posterior distribution might concentrate
most of its mass far from the true value θ0.

We proceed with a general description of our proposed algorithm for constructing a robust
version of the posterior distribution. Let 1 ≤ m ≤ n/2 be an integer. Divide the sample Xn
into m disjoint groups G1, . . . , Gm of size |Gj | ≥ bn/mc each:

{X1, . . . , Xn} =

m⋃

j=1

Gj , Gi ∩Gl = ∅ for i 6= j, |Gj | ≥ bn/mc, j = 1 . . .m.

A good choice of m efficiently exploits the available computational resource while ensuring
that the groups Gjs are sufficiently large.

Let Π be a prior distribution over Θ, and let
{
Π(j)(·) := Π|Gj |(·|Gj), j = 1, . . . ,m

}

be the family of subset posterior distributions depending on disjoint subgroups Gj , j =
1, . . . ,m:

Π|Gj |(B|Gj) :=

∫
B

∏
i∈Gj

pθ(Xi)dΠ(θ)

∫
Θ

∏
i∈Gj

pθ(Xi)dΠ(θ)
.

Define the M-Posterior as

Π̂n,g := medg(Π
(1), . . . ,Π(m)), (16)

or

Π̂n,0 := med0(Π
(1), . . . ,Π(m)), (17)

11
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where the medians medg(·) and med0(·) are evaluated with respect to ‖ · ‖FL
or ‖ · ‖Fk

introduced in Section 2.2 above. Note that Π̂n,g and Π̂n,0 are always probability measures:
indeed, due to the aforementioned properties of a geometric median, there exists α1 ≥
0, . . . , αm ≥ 0,

m∑
j=1

αj = 1 such that Π̂n,g =
m∑
j=1

αjΠ
(j), and Π̂n,0 ∈ {Π(1)(·), . . . ,Π(m)(·)} by

definition.

While Π̂n,g and Π̂n,0 possess several nice properties (such as robustness to outliers), in
practice they often overestimate the uncertainty about θ0, especially when the number of
groups m is large: indeed, if for example θ ∈ R and Bernstein-von Mises theorem holds,
then each Π|Gj |(·|Gj) is “approximately normal” with covariance m

n I
−1(θ0) (here, I(θ0) is

the Fisher information). However, the asymptotic covariance of the posterior distribution
based on the whole sample is 1

nI
−1(θ0).

To overcome this difficulty, we propose a modification of our approach where the random

measures Π
(j)
n are replaced by the stochastic approximations Π|Gj |,m(·|Gj), j = 1, . . . ,m of

the full posterior distribution. To this end, define the “stochastic approximation” based on
the subsample Gj as

Π|Gj |,m(B|Gj) :=

∫
B

(∏
i∈Gj

pθ(Xi)
)m

dΠ(θ)

∫
Θ

(∏
i∈Gj

pθ(Xi)
)m

dΠ(θ)
, (18)

where we assume that pmθ (·) is an integrable function for all θ. In other words, Π|Gj |,m(·|Gj)
is obtained as a posterior distribution given that each data point from Gj is observed

m times. While each of Π|Gj |,k(·|Gj) might underestimate uncertainly, the median Π̂stn,g
(or Π̂st

n,0) of these random measures yields credible sets with much better coverage. This
approach shows good performance in numerical experiments. One of our main results
(see Section 3.2) provides a justification for this observation, albeit, under rather strong
assumptions and for the parametric case.

3. Theoretical Analysis

We proceed with a discussion of the theoretical guarantees for the M-Posterior, starting
with the contraction rates and robustness properties.

3.1 Convergence of Posterior Distribution and Robust Bayesian Inference

Our first result establishes the “weak concentration” property of the posterior distribution
around the true parameter. Let δ0 := δθ0 be the Dirac measure supported on θ0 ∈ Θ.
Recall the following version of Theorem 2.1 in Ghosal et al. (2000) (we state the result for
the Wasserstein distance dW1,ρ(Πn(·|Xl), δ0) rather than the closely related contraction rate
of the posterior distribution). Here, the Wasserstein distance is evaluated with respect to
the “Hellinger metric” ρ(·, ·) defined in (14).

12
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Theorem 7 Let Xl = {X1, . . . , Xl} be an i.i.d. sample from P0. Assume that εl > 0 and
Θl ⊂ Θ are such that for some constant C > 0

(1) the packing number satisfies logM(εl,Θl, ρ) ≤ lε2l ,

(2) Π(Θ \Θl) ≤ exp(−lε2l (C + 4)),

(3) Π

(
θ : −P0

(
log

pθ
p0

)
≤ ε2l , P0

(
log

pθ
p0

)2

≤ ε2l

)
≥ exp(−Clε2l ).

Then there exists R = R(C) and a universal constant K̃ such that

Pr
(
dW1,ρ(δ0,Πl(·|Xl)) ≥ Rεl + e−K̃lε

2
l

)
≤ 1

lε2l
+ 4e−K̃lε

2
l . (19)

Proof The proof closely mimics the argument behind Theorem 2.1 in (Ghosal et al., 2000).
For reader’s convenience, details are outlined in Section A.2 of the appendix.

Conditions of Theorem 7 are standard assumptions guaranteeing that the resulting posterior
distribution contracts to the true parameter θ0 at the rate εn. Note that the bounds for the
distance dW1,ρ(δ0,Πl(·|Xl) slightly differ from the contraction rate itself: indeed, we have

dW1,ρ(δ0,Πl(·|Xl)) ≤ εl +

∫

h(Pθ,P0)≥εl

dΠl(·|Xl),

hence to obtain the inequality dW1,ρ(δ0,Πl(·|Xl)) . εl, we usually require
∫

h(Pθ,P0)≥εl
dΠl(·|Xl) .

εl, which adds an extra logarithmic factor in the parametric case.

Combination of Theorems 7 and 1 immediately yields the corollary for Π̂n,0. Let H be the
reproducing kernel Hilbert space with the reproducing kernel

kH(θ1, θ2) =
1

2

〈√
pθ1 ,

√
pθ2
〉
L2(dx)

.

Let f ∈ H and note that, due to the reproducing property and Cauchy-Schwarz inequality,
we have

f(θ1)− f(θ2) = 〈f, kH(·, θ1)− kH(·, θ2)〉H
≤ ‖f‖

H

∥∥kH(·, θ1)− kH(·, θ2)
∥∥
H
= ‖f‖

H
ρ(θ1, θ2). (20)

Therefore, Fk ⊆ FL and ‖P − Q‖Fk
≤ ‖P − Q‖FL

, where Fk and FL were defined in
(10) and (8) respectively, and the underlying metric structure is given by ρ. In particular,
convergence with respect to ‖ · ‖FL

implies convergence with respect to ‖ · ‖Fk
.

Corollary 8 Let X1, . . . , Xn be an i.i.d. sample from P0, and assume that Π̂n,g is defined
with respect to the norm ‖ · ‖FL

as in (17) above. Set l := bn/mc, assume that conditions
of Theorem 7 hold, and, moreover, that εl satisfies

1

lε2l
+ 4e−(1+K/2)lε2l /2 <

1

7
.

13
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Then

Pr
(∥∥∥δ0 − Π̂n,g

∥∥∥
FkH

≥ 1.52
(
Rεl + e−K̃lε

2
l

))
≤
[
eψ(3/7,1/7)

]−m
< 1.27−m.

Proof It is enough to apply part (a) of Theorem 1 with κ = 0 to the independent random
measures Πn(·|Gj), j = 1, . . . ,m. Note that the “weak concentration” assumption (29) is
implied by (19).

Once again, note the exponential improvement of concentration as compared to Theorem
7. It is easy to see that a similar statement holds for the median Π̂n,0(·) defined in (17)
(even for the stronger Wasserstein distance dW1,ρ(δ0, Π̂n,0)), modulo changes in constants.

Remark 9 The case when the sample Xn = {X1, . . . , Xn} contains bκmc outliers (which
can be completely arbitrary vectors in R

D) for some κ < 1/3 can be handled similarly. In
most examples throughout the paper, we state the results for the case κ = 0 for simplicity,
keeping in mind that the generalization is a trivial corollary of Theorem 1. For example, if
we allow bκmc outliers in the setup of Corollary 8, the resulting bounds becomes

Pr
(∥∥∥δ0 − Π̂n,g

∥∥∥
FkH

≥ 1.52
(
Rεl + e−K̃lε

2
l

))
≤
[
e
(1−κ)ψ

(

3/7−κ
1−κ

,1/7
)]−m

.

While the result of the previous statement is promising, numerical approximation and sam-
pling from the “robust posterior” Π̂n,g is often problematic due to the underlying geometry
defined by the Hellinger metric, and the associated distance ‖ · ‖FkH

is hard to estimate in
practice. Our next goal is to derive similar guarantees for the M-Posterior evaluated with
respect to the computationally tractable family of distances discussed in Section 2.3 above.

To transfer the conclusions of Theorem 7 and Corollary 8 to the case of other kernels
k(·, ·) and associated metrics ρk(·, ·), we need to guarantee the existence of tests versus the
complements of the balls in these distances. Such tests can be obtained from comparison
inequalities between distances.

Assumption 1 There exists γ > 0, r(θ0) > 0 and C̃(θ0) > 0 satisfying

d(θ, θ0) ≥ C̃(θ0)ρ
γ
k(θ, θ0) whenever d(θ, θ0) ≤ r(θ0),

where d is the Hellinger distance or the Euclidean distance (in the parametric case).

Remark 10 When d is the Euclidean distance, we will impose an additional mild assump-
tion guaranteeing existence of test versus the complements of the balls (for the Hellinger
distance, this is always true, see Ghosal et al., 2000). Namely, we will assume that for
every n and every pair θ1, θ2 ∈ Θ, there exists a test φn := φn(X1, . . . , Xn) such that for
some γ > 0 and a universal constant K > 0

EPθ1
φn ≤ e−Knd

2(θ1,θ2),

sup
d(θ,θ2)<d(θ1,θ2)/2

EPθ
(1− φn) ≤ e−Knd

2(θ1,θ2). (21)

14
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Below, we provide examples of kernels satisfying the stated assumption.

Example 1 (Exponential families) Let {Pθ, θ ∈ Θ ⊆ R
p} be of the form

dPθ
dx

(x) := pθ(x) = exp
(
〈T (x),Θ〉

Rp −G(θ) + q(x)
)
,

where 〈·, ·〉
Rp is the standard Euclidean dot product. Then the Hellinger distance can be

expressed as (Nielsen and Garcia, 2011)

h2(Pθ1 , Pθ2) = 1− exp
(
− 1

2

(
G(θ1) +G(θ2)− 2G

(θ1 + θ2
2

)))
.

If G(θ) is convex and its Hessian D2G(θ) satisfies D2G(θ) � A uniformly for all θ ∈ Θ and
some symmetric positive definite operator A : Rp 7→ R

p , then

h2(Pθ1 , Pθ2) ≥ 1− exp

(
− 1

8
(θ1 − θ2)

TA(θ1 − θ2)

)
,

hence assumption 1 holds with d being the Hellinger distance, γ = 1, C̃ = 1√
2
and r(θ0) ≡ 1

for

k(θ1, θ2) := exp

(
−1

8
(θ1 − θ2)

TA(θ1 − θ2)

)
.

For finite-dimensional models, we will be especially interested in kernels k(·, ·) such that the
associated metric ρk(·, ·) is bounded by the Euclidean distance. The following proposition
gives a sufficient condition for this to hold.

Assume that kernel k(·, ·) satisfies conditions of Proposition 4 (in particular, k is character-
istic). Recall that by Bochner’s theorem, there exists a finite nonnegative Borel measure ν
such that k(θ) =

∫
Rp

ei〈x,θ〉dν(x).

Proposition 11 Assume that
∫
Rp

‖x‖22dν(x) <∞. Then there exists Dk > 0 depending only

on k such that for all θ1, θ2,

ρk(θ1, θ2) ≤ Dk ‖θ1 − θ2‖2 .

Proof For all z ∈ R, |eiz − 1− iz| ≤ |z|2
2 , implying that

ρ2k(θ1, θ2) = ‖k(·, θ1)− k(·, θ2)‖2H
= 2k(0)− 2k(θ1 − θ2) = 2

∫

Rp

(1− ei〈x,θ1−θ2〉)dν(x)

≤
∫

Rp

〈x, θ1 − θ2〉2Rp dν(x) ≤ ‖θ1 − θ2‖22
∫

Rp

‖x‖22dν(x).
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Moreover, the result of the previous proposition clearly remains valid for kernels of the form

k̃(θ1, θ2) = k(θ1 − θ2) + c 〈θ1, θ2〉Rp , (22)

where c > 0 and k satisfies the assumptions of proposition 11. For such a kernel, we have
the obvious lower bound ρk̃(θ1, θ2) ≥

√
c ‖θ1 − θ2‖2 , hence ρk̃ is equivalent (in the strong

sense) to the Euclidean distance.

We are ready to state our main result for convergence with respect to the RKHS-induced
distance ‖ · ‖Fk

.

Theorem 12 Assume that conditions of Theorem 7 hold with ρ being the Hellinger or the
Euclidean distance, and that assumption 1 is satisfied. In addition, let prior Π be such that

DW
k :=

∫

Θ
ρWk (θ, θ0)dΠ(θ) <∞

for a sufficiently large W (it follows from the proof that W = 4
3 +

4+2C
3K̃

is sufficient, with C

and K̃ being the constants from the statement of Theorem 7). Then there exists a sufficiently
large R = R(θ0, γ) > 0 and an absolute constant K̃ such that

Pr
(
‖δ0 −Πl(·|Xl)‖Fk

≥ Rε
1/γ
l +Dke

−K̃lε2l /2
)
≤ 1

lε2l
+ 4e−K̃lε

2
l . (23)

Proof The result essentially follows from the combination of Theorem 7 and assumption
1, see Section A.3 for details.

Theorem 12 yields the “weak” estimate that is needed to obtain the stronger bound for the
M-Posterior distribution Π̂n,g. This is summarized in the following corollary:

Corollary 13 Let X1, . . . , Xn be an i.i.d. sample from P0, and assume that Π̂n,g is defined
with respect to the distance ‖·‖Fk

as in (17) above. Let l := bn/mc. Assume that conditions
of Theorem 12 hold, and, moreover, εl is such that

1

lε2l
+ 4e−K̃lε

2
l <

1

7
.

Then

Pr
(∥∥δ0 − Π̂n,g

∥∥
Fk

≥ 1.52
(
Rε

1/γ
l +Dke

−K̃lε2l /2
))

≤ 1.27−m. (24)

Proof It is enough to apply parts (a) and (b) of Theorem 1 with κ = 0 to the independent
random measures Π|Gj |(·|Gj), j = 1, . . . ,m. Note that the “weak concentration” assump-
tion (28) is implied by (23).

Note that if Θ ⊆ R
p and kernel k(·, ·) is of the form (22), the previous corollary together

with proposition 6 imply that

Pr
(∥∥θ∗ − θ0

∥∥
2
≥ 1.52R

c
εl

)
≤ 1.27−m,

where θ∗ =
∫
Θ θdΠ̂n,g(θ) is the mean of Π̂n,g. In other words, this shows that the M-Posterior

mean is the robust estimator of θ0.
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3.2 Bayesian Inference Based on Stochastic Approximation of the Posterior
Distribution

As we have already mentioned in Section 2.4, when the number of disjoint subgroups m
is large, the resulting M-Posterior distribution is “too flat”, which results in large credible
sets and overestimation of uncertainty. Clearly, the source of the problem is the fact that
each individual random measure Π|Gj |(·|Gj), j = 1, . . . ,m is based on sample of size l ' n

m
which can be much smaller than n.

One way to reduce the variance of each subset posterior distribution is to repeat each
observation in Gj m times (although other alternatives, such as bootstrap, are possible;
for instance, bootstrap-related techniques have been investigated by Kleiner et al. (2014)
in the frequentist setting), G̃j = {Gj , . . . , Gj}︸ ︷︷ ︸

m times

. Formal application of the Bayes rule in this

situation yields a collection of new measures on the parameter space:

Π|Gj |,m(B|Gj) :=

∫
B

(∏
i∈Gj

pθ(Xi)
)m

dΠ(θ)

∫
Θ

(∏
i∈Gj

pθ(Xi)
)m

dΠ(θ)
,

where we have assumed that pθ(·) is integrable. Here,
(∏

i∈Gj
pθ(Xi)

)m
can be viewed as

an approximation of the full data likelihood. We call the random measure Π|Gj |,m(·|Gj) the
j-th stochastic approximation to the full posterior distribution.

Of course, such a “correction” negatively affects coverage properties of the credible sets
associated with each measure Π|Gj |(·|Gj). However, taking the median of stochastic approx-
imations yields improved coverage of the resulting M-Posterior distribution. The main goal
of this section is to establish an asymptotic statement in spirit of a Bernstein-von Mises the-
orem for the M-Posterior based on stochastic approximations Π|Gj |,m(B|Gj), j = 1, . . . ,m.

We will start by showing that under certain assumptions the upper bounds for the con-
vergence rates of Π|Gj |,m(·|Gj) towards δ0 are the same as for Π|Gj |(·|Gj), the “standard”
posterior distribution given Gj .

For A ⊆ Θ, let N[ ](u,A, d) be the bracketing number of {pθ, θ ∈ A} with respect to the

distance d(l, u) :=
∫

RD

(√
l(x)−

√
u(x)

)2
dx, and let

H[ ](u;A) := logN[ ](u,A, d)

be the bracketing entropy. In what follows, B(θ0, r) := {θ ∈ Θ : h(Pθ, Pθ0) ≤ r} denotes
the “Hellinger ball” of radius r centered at θ0.

Theorem 14 (Wong et al., 1995, Theorem 1) There exist constants cj , j = 1, . . . , 4
and ζ > 0 such that if

√
2ζ∫

ζ2/28

H
1/2
[ ]

(
u/c3;B(θ0, ζ

√
2)
)
du ≤ c4

√
lζ2,

17
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then

P


 sup
θ:h(Pθ,P0)≥ζ

l∏

j=1

pθ
p0

(Xj) ≥ e−c1lζ
2


 ≤ 4e−c2lζ

2
.

In particular, one can choose c1 = 1/24, c2 = (4/27)(1/1926), c3 = 10 and c4 = (2/3)5/2/512.

In “typical” parametric problems (Θ ⊆ R
p), the bracketing entropy can be bounded as

H[ ](u;B(θ0, r)) ≤ C1 log(C2r/u), whence the minimal ζ that satisfies conditions of Theorem

14 is of order ζ '
√

1
l . In particular, it is easy to check (e.g., using Theorem 2.7.11 in van der

Vaart and Wellner, 1996) that this is the case when

(a) there exists r0 > 0 such that

h (Pθ, Pθ0) ≥ K1‖θ − θ0‖2

whenever h (Pθ, Pθ0) ≤ r0, and

(b) there exists α > 0 such that for θ1, θ2 ∈ B(θ0, r0),

|pθ1(x)− pθ2(x)| ≤ F (x) ‖θ1 − θ2‖α2

with
∫
RD F (x)dx <∞.

Application of theorem 14 to the analysis of “stochastic approximations” yields the following
result.

Theorem 15
Let εl > 0 be such that conditions of Theorem 14 hold with ζ := εl, and

(a) for some C > 0

Π

(
θ : −P0

(
log

pθ
p0

)
≤ ε2l , P0

(
log

pθ
p0

)2

≤ ε2l

)
≥ exp(−Clε2l ),

(b) k is a positive-definite kernel that satisfies assumption 1 for the Hellinger distance for
some C̃(θ0) and γ > 0.

Then there exists R̃ = R̃(C, C̃, γ) > 0 such that

Pr
(
‖δ0 −Πl,m(·|Xl)‖Fk

≥ R̃ε
1/γ
l + e−mlε

2
l

)
≤ 1

lε2l
+ 4e−c2C̃

2R̃2γ lε2l .

Proof See Section A.4 in the appendix.

Remark 16 Note that for the kernel k(·, ·) of the form (22), assumption 1 reduces to the
inequality between the Hellinger and Euclidean distances.
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As before, Theorem 1 combined with the “weak concentration” inequality of Theorem 15
gives stronger guarantees for the median Π̂st

n,g (or its alternative Π̂stn,0) of

Π|G1|,m(·|G1), . . . ,Π|Gm|,m(·|Gm).

Exact statement is very similar in spirit to Corollary 13.

Our next goal is to obtain the result describing the asymptotic behavior of the M-Posterior
distribution Π̂stn,0 in the parametric case. We start with a result that addresses each in-
dividual stochastic approximation Π|Gj |,m(·|Gj), j = 1, . . . ,m. Assume that Θ ⊆ R

p has
non-empty interior. For θ ∈ Θ, let

I(θ) := Eθ0

[
∂

∂θ
log pθ(X)

(
∂

∂θ
log pθ(X)

)T]

be the Fisher information matrix (we are assuming that it is well-defined). We will say that
the family {Pθ, θ ∈ Θ} is differentiable in quadratic mean (see Chapter 7 in van der Vaart,
2000 for details) if there exists ˙̀

θ0 : RD 7→ R
p such that

∫

RD

(√
pθ0+h −

√
pθ0 −

1

2
hT ˙̀

θ0
√
pθ0

)2

= o(‖h‖22)

as h→ 0; usually, ˙̀
θ(x) =

∂
∂θ log pθ(x). Next, define

∆l,θ0 :=
1√
l

l∑

j=1

I−1(θ0) ˙̀θ0(Xj).

We will first state a preliminary result for each individual “subset posterior” distribution:

Proposition 17 Let X1, . . . , Xl be an i.i.d. sample from Pθ0 for some θ0 in the interior of
Θ. Assume that

(a) the family {Pθ, θ ∈ Θ} is differentiable in quadratic mean;

(b) the prior Π has a density (with respect to the Lebesgue measure) that is continuous and
positive in the neighborhood of θ0;

(c) conditions of Theorem 14 hold with ζ = C√
l
for some C > 0 and l large enough.

Then for any integer m ≥ 1,
∥∥∥∥Πl,m(·|X1, . . . , Xl)−N

(
θ0 +

∆l,θ0√
l
,

1

l ·mI−1(θ0)

)∥∥∥∥
TV

→ 0

in Pθ0-probability as l → ∞.

Proof The proof follows standard steps (e.g., Theorem 10.1 in van der Vaart, 2000), where
the existence of tests is substituted by the inequality of Theorem 14. See Section A.5 in the
appendix for details.

The implication of this result for the M-Posterior is the following: if k is the kernel of
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type (22), for sufficiently regular parametric families (differentiable in quadratic mean, with
“well-behaved” bracketing numbers, satisfying assumption 1 for the Euclidean distance with
γ = 1) and regular priors, then

(a) the M-Posterior is well approximated by a normal distribution centered at the “robust”
estimator θ∗ of unknown θ0;

(b) the estimator θ∗ is a center of the confidence set of level 1.15−m and diameter of order√
m
n (same as we would expect for this level for the usual posterior distribution -

however, the bound for the M-Posterior holds for finite sample sizes).

This is formalized below:

Theorem 18

(a) Let k be the kernel of type (22), and suppose that the assumptions of Proposition 17
hold. Moreover, let the prior Π be such that

∫
Rp ‖θ‖22dΠ(θ) < ∞. Then for any fixed

m ≥ 1, ∥∥∥∥Π̂
st
n,0 −N

(
θ∗,

1

n
I−1(θ0)

)∥∥∥∥
TV

→ 0 as n→ ∞,

in Pθ0-probability when n→ ∞, where θ∗ is the mean of Π̂st
n,0.

(b) Assume that conditions (a), (b) of Theorem 15 hold with

εl &
1√
l
'
√
m

n

and γ = 1. Then for all n ≥ n0 and R̄ large enough,

Pr
(
‖θ∗ − θ0‖2 ≥ R̄

(
εl + e−mlε

2
l

))
≤ 1.15−m.

Proof (a) It is easy to see that convergence in total variation norm, together with an
assumption that the prior distribution satisfies

∫

Rp

‖θ‖22dΠ(θ) <∞,

implies that the expectations converge in Pθ0-probability as well:

∥∥∥∥
∫

Θ
θ

(
dΠl,m(θ|Xl)− dN

(
θ0 +

∆l,θ0√
l
,

1

l ·mI−1(θ0)

)
(θ)

)∥∥∥∥
2

→ 0 as l → ∞.

Together with an observation that the total variation distance betweenN(µ1,Σ) andN(µ2,Σ)

is bounded by the multiple of ‖µ1 − µ2‖2, it implies that we can replace θ0 +
∆l,θ0√

l
by the

mean

θ̄l,m(X1, . . . , Xl) :=

∫

Θ
θdΠl,m(θ|Xl),
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in other words, the conclusion of Proposition 17 can be stated as
∥∥∥∥Πl,m(·|Xl)−N

(
θ̄l,m,

1

l ·mI−1(θ0)

)∥∥∥∥
TV

→ 0 as l → ∞,

in Pθ0-probability. Now assume that m = bnl c is fixed, and let n, l → ∞. As before, let
G1, . . . , Gm be disjoint groups of i.i.d. observations from Pθ0 of cardinality l each. Recall

that, by the definition (3) of med0(·), Πst
n,0 = Πl,m(·|Xl∗) for some l∗ ≤ m, and θ∗ := θl∗,m

is the mean of Πst
n,0. Clearly, we have

∥∥∥∥Π
st
n,0 −N

(
θ∗,

1

l ·mI−1(θ0)

)∥∥∥∥
TV

≤

max
j=1,...,m

∥∥∥∥Πl,m(·|Gj)−N

(
θ̄l,m(Gj),

1

l ·mI−1(θ0)

)∥∥∥∥
TV

→ 0 as n→ ∞. (25)

(b) Let εl ≥ C
√

1
l where C large enough so that

1

lε2l
+ 4e−c2C̃

2R̃2lε2l ≤ 1

4
,

where c2, R̃ are the same as in Theorem 15. Applying Theorem 15, we get

Pr
(
‖δθ0 −Πl,m(·|Xl)‖Fk

≥ R̃εl + e−mlε
2
l

)
≤ 1

4
.

By part (b) of Theorem 1,
∥∥∥Π̂st

n,0 − δθ0

∥∥∥
Fk̃

≤ 3
(
R̃εl + e−mlε

2
l

)

with probability ≥ 1 − 1.15−m. Since kernel k̃ is of the type (22), proposition (6) implies
that

‖θ∗ − θ0‖2 ≤
∥∥∥Π̂st

n,0 − δθ0

∥∥∥
Fk̃

, (26)

and the result follows.

In particular, for m = A log(n) and εl '
√

m
n , we obtain the bound

Pr

(
‖θ∗ − θ0‖2 ≥ R̄

√
A log n

n

)
≤ n−A.

for some constant R̄ independent of m. Note that θ∗ itself depends on m, hence this bound
is not uniform, and holds only for a given confidence level 1− n−A.

It is convenient to interpret this (informally) in terms of the credible sets: to obtain the
credible set with “frequentist” coverage level ≥ 1 − n−A, pick m = A log n and use the
(1− n−A) - credible set of the M-Posterior Π̂st

n,0.
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Algorithm 1 Evaluating the geometric median of probability distributions via Weiszfeld’s
algorithm

Input:

1. Discrete measures Q1, . . . , Qm;

2. The kernel k(·, ·) : Rp × R
p 7→ R;

3. Threshold ε > 0;

Initialize:

1. Set w
(0)
j := 1

m
, j = 1 . . .m;

2. Set Q
(0)
∗ := 1

m

m∑

j=1

Qj ;

repeat

Starting from t = 0, for each j = 1, . . . ,m:

1. Update w
(t+1)
j =

‖Q
(t)
∗ −Qj‖

−1
Fk

m∑

i=1
‖Q

(t)
∗ −Qi‖

−1
Fk

; (apply (12) to evaluate ‖Q
(t)
∗ −Qi‖Fk

);

2. Update Q
(t+1)
∗ =

m∑

j=1

w
(t+1)
j Qj ;

until ‖Q
(t+1)
∗ −Q

(t)
∗ ‖Fk

≤ ε;

Return: w∗ := (w
(t+1)
1 , . . . , w

(t+1)
m ).

4. Numerical Algorithms and Examples

In this section, we consider examples and applications in which comparisons are made for
the inference based on the usual posterior distribution and on the M-Posterior. One of
the well-known and computationally efficient ways to find the geometric median in Hilbert
spaces is the famous Weiszfeld’s algorithm, introduced in Weiszfeld (1936). Details of
implementation are described in Algorithms 1 and 2. Algorithm 1 is a particular case of
Weiszfeld’s algorithm applied to subset posterior distributions and distance ‖ · ‖Fk

, while
Algorithm 2 shows how to obtain an approximation to M-Posterior given the samples from
Πn,m(·|Gj), j = 1 . . .m. Note that the subset posteriors Πn,m(·|Gj) whose “weights” w∗,j in
the expression of the M-Posterior are small (in our case, smaller than 1/(2m)) are excluded
from the analysis. Our extensive simulations show the empirical evidence in favor of this
additional thresholding step.

Detailed discussion of convergence rates and acceleration techniques for Weiszfeld’s method
from the viewpoint of modern optimization can be found in Beck and Sabach (2013). For al-
ternative approaches and extensions of Weiszfeld’s algorithm, see Bose et al. (2003), Ostresh
(1978), Overton (1983), Chandrasekaran and Tamir (1990), Cardot et al. (2012), Cardot
et al. (2013), among other works.

In all numerical simulations below, we use stochastic approximations and the corresponding
M-Posterior Π̂st

n,g, unless noted otherwise. The posterior Π̂st
n,0 based on the metric median

is mainly of theoretical interest, while numerical results obtained for it are typically inferior
compared to the geometric median, so we do not discuss them further.
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Algorithm 2 Approximating the M-Posterior distribution

Input:

1. Samples {Zj,i}
Sj

i=1 ∼ Πn,m(·|Gj), j = 1 . . .m (see equation (18));

Do:

1. Qj := 1
Sj

Sj∑

i=1

δZj,i
, j = 1 . . .m - empirical approximations of Πn,m(·|Gj).

2. Apply Algorithm 1 to Q1, . . . , Qm; return w∗ = (w∗,1 . . . w∗,m);

3. For j = 1, . . . ,m, set w̄j := w∗,jI{w∗,j ≥ 1
2m

}; define ŵ∗
j := w̄j/

∑m
i=1 w̄i.

Return: Π̂st
n,g :=

∑m
i=1 ŵ

∗
i Qi.

Before presenting the results of numerical analysis, let us remark on two important compu-
tational aspects.

Remark 19

(a) The number of subsets m appears as a “free parameter” entering the theoretical guar-
antees for M-Posterior. One interpretation of m (in terms of the credible sets) is given in
the end of Section 3.2. Our results also imply that partitioning the data into m = 2k + 1
subsets guarantees robustness to the presence of k outliers of arbitrary nature.

In many applications, m is dictated by the sample size and computational resources (e.g., the
number of available machines). In Section A.6, we describe a heuristic approach to selection
of m that shows good practical performance. As a rule of a thumb, we recommend choosing
m .

√
n as larger values of m lead to an M-Posterior that overestimates uncertainty. This

heuristic is supported by the numerical results presented below.

(b) It is easy to get a general idea regarding the potential improvement in computational
time complexity achieved by the M-Posterior. Given the data set Xn = {X1, . . . , Xn} of
size n, let t(n) be the running time of the algorithm (e.g., MCMC) that outputs a single
observation from the posterior distribution Πn(·|Xn). If the goal is to obtain S samples from
the posterior, then the total running time is O (S · t(n)). Let us compare this time with the
running time needed to obtain S samples from the M -posterior given that the algorithm is
running on m machines in parallel. In this case, we need to generate O (S) samples from
each of m subset posteriors, which is done in time O

(
S · t

(
n
m

))
, where S is typically large

and m � n. According to Theorem 7.1 in Beck and Sabach (2013), Weiszfeld’s algorithm
approximates the M-Posterior to degree of accuracy ε in at most O(1/ε) steps, and each of
these steps has complexity O(S2) (which follows from (12)), so that the total running time
is

O

(
S · t

( n
m

)
+
S2

ε

)
. (27)

The term S2

ε can be refined in several ways via application of more advanced optimization
techniques (see the aforementioned references). If, for example, t(n) ' nr for some r ≥ 1,
then S

m · t
(
n
m

)
' 1

m1+rSn
r which should be compared to S · nr required by the standard

approach.
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To give a specific example, consider an application of (27) in the context of Gaussian process
(GP) regression. If n is the number of training samples, then GP regression has O(n3) +
O(Sn2) asymptotic time complexity to obtain S samples from the posterior distribution
of GP (Rasmussen and Williams, 2006, Algorithm 2.1). Assuming we have access to m
machines, the time complexity to obtain S samples from M-Posterior in GP regression is

O
((

n
m

)3
+ S

(
n
m

)2
+ S2

ε

)
. If for example S = cn for some c > 0 and m2 < nε, we get

O(m2) improvement in running time.

(c) In many cases, replacing the “subset posterior” by the stochastic approximation does not
result in increased sampling complexity: indeed, the log-likelihood in the sampling algorithm
for the subset posterior is simply multiplied by m to obtain the sampler for the stochastic
approximation. We have included the description of a modified Dirichlet mixture model in
the supplementary material as an illustration.

4.1 Numerical Analysis: Simulated Data
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Figure 1: Effect of the outlier on empirical coverage of (1-α)100% credible intervals (CIs).
The x-axis represents the outlier magnitude. The y-axis represents the empirical
coverage computed from 50 simulation replications. The dotted horizontal lines
show the theoretical frequentist coverage.

This section demonstrates the effect of magnitude of an outlier on the posterior distribution
of the mean parameter µ. We empirically show that M-Posterior of µ is a robust alternative
to the overall posterior. To this end, we used the simplest univariate Gaussian model
{Pµ = N (µ, 1), µ ∈ R}.

We simulated 25 data sets containing 200 observations each. Each data set xi = (xi,1, . . . , xi,200)
contained 199 independent observations from the standard Gaussian distribution (xi,j ∼
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N (0, 1) for i = 1, . . . , 25 and j = 1, . . . , 199). The last entry in each data set, xi,200, was an
outlier, and its value increased linearly for i = 1, . . . , 25: xi,200 = imax(|xi,1|, . . . , |xi,199|).
The index of outlier was unknown to every sampling algorithm. The true variance of obser-
vations was fixed at 1 and was assumed to be known. The algorithms for sampling from the
subset and overall posterior distributions of µ were implemented using Stan language (Car-
penter et al., 2016) based on Stan’s default Gaussian prior on µ. We used two likelihoods for
the data, one was the standard Gaussian likelihood and the other was a (more robust) Stu-
dent’s t-distribution likelihood with 3 degrees of freedom (t3). We generated 1000 samples
from each posterior distribution Π200(·|xi) for i = 1, . . . , 25. Settingm = 10 in Algorithm 1,
we generated 1000 samples from every subset posterior Π200,10(·|Gj,i), j = 1, . . . , 10 to form
the empirical measures Qj,i; here, ∪10

j=1Gj,i = xi. Using these Qj,is, Algorithm 2 generated

10000 samples from the M-Posterior Π̂st
2000,g(·|xi) for each i = 1, . . . , 25. This process was

replicated 50 times.
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Figure 2: Calibration of uncertainty quantification of M-Posterior. The x-axis represents
the outlier magnitude that increases from 1 to 25. The y-axis represents the
relative difference between M-Posterior and overall posterior CI lengths. A value
close to 0 represents that the M-Posterior CIs are well-calibrated.

We used Consensus MCMC (Scott et al., 2013) and WASP (Srivastava et al., 2015a) as
representative methods for scalable MCMC approach, and compared their performance
with M-Posterior. Across 50 simulation replications with the Gaussian and t3 likelihood,
we estimated the empirical coverage of (1-α)100% credible intervals (CIs) for the “consensus
posterior”, WASP, the overall posterior, and the M-Posterior for α = 0.2, 0.15, 0.10, and
0.05. The empirical coverages of M-Posterior’s CIs showed robustness to magnitude of
the outlier in the Gaussian likelihood model. On the contrary, performance of the WASP,
consensus posterior and overall posterior deteriorated fairly quickly across all α’s leading to
0% empirical coverage as magnitude of the outlier increased from i = 1 to i = 25 (Figure
1). When the more robust t3 likelihood was used, empirical coverages of CIs computed
using the four methods were close to their theoretical values for all four α’s. We compared
uncertainty quantification of the M-Posterior with that of the overall posterior using relative
lengths of their CIs, with zero value corresponding to identical lengths and a positive value
to wider CIs of the M-Posterior. We found that widths of CIs for both posteriors were

25



Minsker et al.

Relative magnitude of the outlier

P
o
s
te

ri
o
r 

c
o
n
fi
d
e
n
c
e
 l
e
ve

l 
(1

−
α
)

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25

l

l

l
l

ll

l
l

l

l
l

l

l

l

l
l

l

ll

l

l
l

l

l

l

llll
l

lll
l

lllllll
l

llllllll

 α = 0.2

5 10 15 20 25

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l
l

l
l

l

l

ll

l

l

llllllll
l

llllllllllllllll

 α = 0.15

5 10 15 20 25

l

l

ll

l
l

l

l

l

ll

l

l

l

l

l

ll

ll

l

l

l

l

l

lllllllllllllllllllllllll

 α = 0.1

5 10 15 20 25

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

ll

l

l

l

lllllllllllllllllllllllll

 α = 0.05

M−Posterior (without Stochastic Approximation) M−Posterior (with Stochastic Approximation)l l

Figure 3: Effect of stochastic approximation on empirical coverage of (1-α)100% CIs. The
x-axis represents the outlier magnitude that increases from 1 to 25. The y-axis
represents the fraction of times the CIs of M-Posteriors with and without stochas-
tic approximation include the true mean over 50 replications. The horizontal lines
(in violet) show the theoretical frequentist coverage.
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Figure 4: Effect of stochastic approximation on the length of (1-α)100% CIs. The x-axis
represents the outlier magnitude that increases from 1 to 25. The y-axis repre-
sents the differences in the lengths of the CIs of M-Posteriors without and with
stochastic approximation.

fairly similar for i = 1, . . . , 25, with M-Posterior’s CIs being slightly wider in absence of
large outliers (Figure 2).

Stochastic approximation was important for proper calibration of uncertainty quantification.
The empirical coverages of (1-α)100% CIs of the M-Posterior without stochastic approxima-
tion overcompensated for uncertainty at all levels of α (Figure 3). Similarly, lengths of the
CIs of M-Posterior without stochastic approximation are wider than those with stochastic
approximation (Figure 4). Both these observations showed that stochastic approximation
led to shorter CIs for M-Posterior that had empirical coverages close to their theoretical
values.

The number of subsets m had an effect on credible interval length of the M-Posterior. We
modified the simulation above and generated 1000 observations x, with the last 10 obser-
vations in x being outliers with value xj = 25max(|x1|, . . . , |x990|), j = 991, . . . , 1000. The
simulation setup was replicated 50 times. M-Posteriors were obtained form = 16, 18, . . . , 40, 50, 60.
Across all values of m, M-Posterior’s CI was compared to the CI of the overall posterior
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Figure 5: (a) Effect of m on the length of (1-α)100% CIs. The x-axis represents different
choices of m. The y-axis represents the relative difference between M-Posterior
and overall posterior CI lengths (median across all 25 outlier magnitudes and 50
replications). (b) Computation time to estimate overall posterior and M-Posterior
(M) with m = 10 and m = 20 in real data analysis.

after removing the outliers; the relative difference of M-Posterior and the overall posterior
CI lengths decreases for m ≥ 22 > 2k, where k = 10 is the number of outliers, remains
stable as m increases to m = 38, and grows for larger values of m (Figure 5a). This demon-
strates that inference based on M-Posterior was not too sensitive to the choice of m for a
wide range of values.

4.2 Real Data Analysis: General Social Survey

The General Social Survey (GSS; gss.norc.org) has collected responses to questions about
evolution of American society since 1972. We selected data for 9 questions from different
social topics: “happy” (happy), “Bible is a word of God” (bible), “support capital punish-
ment” (cap), “support legalization of marijuana” (grass), “support premarital sex” (pre),
“approve bible prayer in public schools” (prayer), “expect US to be in world war in 10
years” (uswar), “approve homosexual sex relations” (homo), “support abortion” (abort).
These questions were in the survey since 1988 and their answers were converted to two
levels: yes or no. Missing data were imputed based on the average, resulting in a data set
with approximately 28,000 respondents.

We use a Dirichlet process (DP) mixture of product multinomial distributions, probabilistic
parafac (p-parafac), to model the multivariate dependence among the 9 questions. Let
ck ∈ {yes, no} represent the response to kth question, k = 1, . . . , 9, then πc1,...,c9 is the joint
probability of response c = (c1, . . . , c9) for the 9 questions. Using πc1,...,c9 , we estimated
the joint probability of response to two questions πci,cj for every i and j in {1, . . . , 9}; see
Section 6 of the supplementary material for the p-parafac generative model and sampling
algorithms. The GSS data were randomly split into 10 test and training data sets. Samples
from the overall posteriors of πci,cj s were obtained using the Gibbs sampling algorithm of
Dunson and Xing (2009). We chosem as 10 and 20 and estimated M-Posteriors for πci,cj s in
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four steps: training data were randomly split intom subsets, samples from subset posteriors
were obtained after modifying the original sampler using stochastic approximation, weights
of subsets posteriors were estimated using Algorithm 2, and atoms with estimated weights
below 1

2m were removed.

M-Posterior had similar uncertainty quantification as the overall posterior while being more
efficient. M-Posterior was at least 10 (m = 20) and 8 times (m = 10) faster than the overall
posterior and it used less than 25% of the memory resources required by the overall posterior
(Figure 5b). The lengths of credible intervals for πci,cj s obtained using the overall posterior
and the two M-Posteriors were very similar, but the overall posterior’s coverage of the
maximum likelihood estimators for πci,cj s obtained from the test data was worse than that
of the two M-Posteriors (Table 1).

Empirical Coverage of (1-α)100% Credible Intervals

α 0.05 0.10 0.15 0.20

Overall Posterior 0.56 (0.10) 0.52 (0.01) 0.49 (0.02) 0.46 (0.02)
M-Posterior (m = 10) 0.71 (0.02) 0.65 (0.04) 0.62 (0.04) 0.60 (0.04)
M-Posterior (m = 20) 0.74 (0.03) 0.70 (0.03) 0.66 (0.03) 0.63 (0.03)

Length of (1-α)100% Credible Intervals (in 10−2)

α 0.05 0.10 0.15 0.20

Overall Posterior 1.20 (0.12) 1.08 (0.11) 1.00 (0.10) 0.95 (0.10)
M-Posterior (m = 10) 1.70 (0.13) 1.54 (0.12) 1.43 (0.11) 1.35 (0.10)
M-Posterior (m = 20) 1.88 (0.11) 1.70 (0.10) 1.59 (0.09) 1.49 (0.09)

Table 1: Empirical coverage and lengths of (1-α)100% credible intervals. The results are
averaged across all joint probabilities πci,cj s and 10 folds of cross-validation. Monte
Carlo errors are in parentheses.
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Appendix A. Proofs.

A.1 Proof of Theorem 1

We will prove a slightly more general result:

Theorem 20

a Assume that (H, ‖ · ‖) is a Hilbert space and θ0 ∈ H. Let θ̂1, . . . , θ̂m ∈ H be a collection of
independent random variables. Let the constants α, q, γ be such that 0 < q < α < 1/2,
and 0 ≤ γ < α−q

1−q . Suppose ε > 0 is such that for all j, 1 ≤ j ≤ b(1− γ)mc+ 1,

Pr
(
‖θ̂j − θ0‖ > ε

)
≤ q. (28)

Let θ̂∗ = medg(θ̂1, . . . , θ̂m) be the geometric median of {θ̂1, . . . , θ̂m}. Then

Pr
(
‖θ̂∗ − θ0‖ > Cαε

)
≤
[
e
(1−γ)ψ

(

α−γ
1−γ

,q
)]−m

,

where Cα = (1− α)
√

1
1−2α .

b Assume that (Y, d) is a metric space and θ0 ∈ Y. Let θ̂1, . . . , θ̂m ∈ Y be a collection
of independent random variables. Let the constants q, γ be such that 0 < q < 1

2 and

0 ≤ γ < 1/2−q
1−q . Suppose ε > 0 are such that for all j, 1 ≤ j ≤ b(1− γ)mc+ 1,

Pr
(
d(θ̂j , θ0) > ε

)
≤ q. (29)

Let θ̂∗ = med0(θ̂1, . . . , θ̂m). Then

Pr
(
d(θ̂∗, θ0) > 3ε

)
≤ e

−m(1−γ)ψ
(

1/2−γ
1−γ

,q
)

.

To get the bound stated in the paper, take q = 1
7 and α = 3

7 in part (a) and q = 1
4 in part

b.

We start by proving part a. To this end, we will need the following lemma (see lemma 2.1
in Minsker, 2015):

Lemma 21 Let H be a Hilbert space, x1, . . . , xm ∈ H and let x∗ be their geometric median.
Fix α ∈

(
0, 12
)
and assume that z ∈ H is such that ‖x∗ − z‖ > Cαr, where

Cα = (1− α)

√
1

1− 2α

and r > 0. Then there exists a subset J ⊆ {1, . . . ,m} of cardinality |J | > αm such that for
all j ∈ J , ‖xj − z‖ > r.
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Assume that event E :=
{
‖θ̂∗ − θ0‖ > Cαε

}
occurs. Lemma 21 implies that there exists a

subset J ⊆ {1, . . . ,m} of cardinality |J | ≥ αk such that ‖θ̂j − θ0‖ > ε for all j ∈ J , hence

Pr(E) ≤Pr




m∑

j=1

I
{
‖θ̂j − θ0‖ > ε

}
> αm


 ≤

Pr




b(1−γ)mc+1∑

j=1

I
{
‖θ̂j − θ0‖ > ε

}
> (α− γ)m

b(1− γ)mc+ 1

b(1− γ)mc+ 1


 ≤

Pr




b(1−γ)mc+1∑

j=1

I
{
‖θ̂j − θ0‖ > ε

}
>
α− γ

1− γ

(
b(1− γ)mc+ 1

)

 .

If W has Binomial distribution W ∼ B(b(1− γ)mc+ 1, q), then

Pr

( b(1−γ)mc+1∑

j=1

I
{
‖θ̂j − θ0‖ > ε

}
>
α− γ

1− γ

(
b(1− γ)mc+ 1

))
≤

Pr

(
W >

α− γ

1− γ

(
b(1− γ)mc+ 1

))

(see Lemma 23 in Lerasle and Oliveira, 2011 for a rigorous proof of this fact). Chernoff
bound (e.g., Proposition A.6.1 in van der Vaart and Wellner, 1996), together with an obvious
bound b(1− γ)mc+ 1 > (1− γ)m, implies that

Pr

(
W >

α− γ

1− γ

(
b(1− γ)mc+ 1

))
≤ exp

(
−m(1− γ)ψ

(
α− γ

1− γ
, q

))
.

To establish part b, we proceed as follows: let E1 be the event

E1 = {more than a half of events d(θ̂j , θ0) ≤ ε, j = 1 . . .m occur}.

Assume that E1 occurs. Then we clearly have ε∗ ≤ ε, where ε∗ is defined in equation (2.2)
of the paper: indeed, for any θj1 , θj2 such that d(θ̂ji , θ0) ≤ ε, i = 1, 2, triangle inequality

gives d(θj1 , θj2) ≤ 2ε. By the definition of θ̂∗, inequality d(θ̂∗, θ̂j) ≤ 2ε∗ ≤ 2ε holds for at

least a half of {θ̂1, . . . , θ̂m}, hence, it holds for some θ̂j̃ with d(θ̂j̃ , θ0) ≤ ε. In turn, this

implies (by triangle inequality) d(θ̂∗, θ0) ≤ 3ε. We conclude that

Pr
(
d(θ̂∗, θ0) > 3ε

)
≤ Pr(E1).

The rest of the proof repeats the argument of part a since

Pr(Ec1) = Pr




m∑

j=1

I
{
d(θ̂j , θ0) > ε

}
≥ m

2


 ,

where Ec1 is the complement of E1.
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A.2 Proof of Theorem 7

By the definition of Wasserstein distance dW1 ,

dW1,ρ(δ0,Πl(·|Xl)) =
∫

Θ
ρ(θ, θ0)dΠl(θ|X1, . . . , Xl). (30)

(recall that ρ is the Hellinger distance). Let R be a large enough constant to be determined
later. Note that the Hellinger distance is uniformly bounded by 1. Using (30), it is easy to
see that

dW1,ρ(δ0,Πl(·|Xl)) ≤ Rεl +

∫

ρ(θ,θ0)≥Rεl

dΠl(·|Xl). (31)

To this end, it remains to estimate the second term in the sum above. We will follow the
proof of Theorem 2.1 in Ghosal et al. (2000). Bayes formula implies that

Πl(θ : ρ(θ, θ0) ≥ Rεl|Xl) =
∫

ρ(θ,θ0)≥Rεl

∏l
i=1

pθ
p0
(Xi)dΠ(θ)

∫
Θ

∏l
i=1

pθ
p0
(Xi)dΠ(θ)

.

Let

Al =

{
θ : −P0

(
log

pθ
p0

)
≤ ε2l , P0

(
log

pθ
p0

)2

≤ ε2l

}
.

For any C1 > 0, Lemma 8.1 Ghosal et al. (2000) yields

Pr





∫

Θ

l∏

i=1

pθ
p0

(Xi)dQ(θ) ≤ exp
(
− (1 + C1)lε

2
l

)


 ≤ 1

C2
1 lε

2
l

.

for every probability measure Q on the set Al. Moreover, by the assumption on the prior
Π,

Π(Al) ≥ exp
(
−Clε2l

)
.

Consequently, with probability at least 1− 1
C2

1 lε
2
l
,

∫

Θ

l∏

i=1

pθ
p0

(Xi)dΠ(θ) ≥ exp
(
− (1 + C1)lε

2
l

)
Π(Al) ≥ exp(−(1 + C1 + C)lε2l ).

Define the event Bl =

{∫
Θ

l∏
i=1

pθ
p0
(Xi)dΠ(θ) ≤ exp

(
− (1 + C1 + C)lε2l

)}
.

Let Θl be the set satisfying conditions of Theorem 3.1. Then by Theorem 7.1 in Ghosal
et al. (2000), there exist test functions φl := φl(X1, . . . , Xl) and a universal constant K
such that

EP0φl ≤ 2e−Klε
2
l , (32)

sup
θ∈Θl,h(Pθ,P0)≥Rεl

EPθ
(1− φl) ≤ e−KR

2·lε2l ,
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where KR2 − 1 > K.

Note that

Πl(θ : ρ(θ, θ0) ≥ Rεl|X1, . . . , Xl) = Πl(θ : ρ(θ, θ0) ≥ Rεl|X1, . . . , Xl)(φl + 1− φl).

For the first term,

EP0

[
Πl(θ : ρ(θ, θ0) ≥ Rεl|X1, . . . , Xl) · φl

]
≤ EP0φl ≤ 2e−Klε

2
l . (33)

Next, by the definition of Bl, we have

Πl(θ : ρ(θ, θ0) ≥ Rεl|Xl)(1− φl) =∫
ρ(θ,θ0)≥Rεl

∏l
i=1

pθ
p0
(Xi)dΠ(θ)(1− φl)

∫
Θ

∏l
i=1

pθ
p0
(Xi)dΠ(θ)

(I{Bl}+ I{Bc
l })

≤ I{Bl}+ e(1+C1+C)lε2l

∫

ρ(θ,θ0)≥Rεl

l∏

i=1

pθ
p0

(Xi)dΠ(θ)(1− φl). (34)

To estimate the second term of last equation, note that

EP0

∫

ρ(θ,θ0)≥Rεl

l∏

i=1

pθ
p0

(Xi)dΠ(θ)(1− φl) ≤

EP0

( ∫

θ∈Θ\Θl

l∏

i=1

pθ
p0

(Xi)dΠ(θ)(1− φl) +

∫

{Θl∩ρ(θ,θ0)≥Rεl}

l∏

i=1

pθ
p0

(Xi)dΠ(θ)(1− φl)

)
≤

Π(Θ\Θl) +

∫

{Θl∩ρ(θ,θ0})≥Rεl

EP0

(
l∏

i=1

pθ
p0

(Xi)dΠ(θ)(1− φl)

)
≤ (35)

e−lε
2
l (C+4) + e−KR

2·lε2l ≤ 2e−lε
2
l (C+4)

for R ≥
√
(C + 4)/K. Set C1 = 1 and note that I{Bl} = 1 with probability P (Bl) ≤ 1/lε2l .

It follows from (33), (34) and (35) and Chebyshev’s inequality that for any t > 0

Pr
(
Πl(θ : ρ(θ, θ0) ≥ Rεl|Xl) ≥ t

)
≤ Pr(Bl) +

2e−Klε
2
l

t
+

2 exp
(
−2lε2l

)

t

≤ 1

lε2l
+

2e−Klε
2
l

t
+

2 exp
(
−2lε2l

)

t
.

Finally, for a constant K̃ = min(K/2, 1) and t = e−K̃lε
2
l , we obtain

Pr
(
Πl(θ : ρ(θ, θ0) ≥ Rεl|Xl) ≥ t

)
≤ 1

lε2l
+ 2e−Klε

2
l /2 + 2 exp

(
−lε2l

)

≤ 1

lε2l
+ 4e−K̃lε

2
l ,

which yields the result.
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A.3 Proof of Theorem 12

From equation (20) in the paper and proceeding as in proof of Theorem 7, we get that

‖δ0 −Πl(·|Xl)‖Fk
≤ Rε

1/γ
l +

∫

ρk(θ,θ0)≥Rε1/γl

ρk(θ, θ0)dΠl(·|Xl).

By Hölder’s inequality,
∫

ρk(θ,θ0)≥Rε1/γl

ρk(θ, θ0)dΠl(·|Xl) ≤



∫

Θ

ρwk (θ, θ0)dΠl(·|Xl)



1/w



∫

ρk(θ,θ0)≥Rε1/γl

dΠl(·|Xl)




1/q

with w > 1 and q = w
w−1 .

Define the event

Bl =





∫

Θ

l∏

i=1

pθ
p0

(Xi)dΠ(θ) ≥ exp
(
− (1 + C1 + C)lε2l

)


 .

Following in the proof of Theorem 3.1, we note that Pr(Bl) ≥ 1 − 1
C2

1 lε
2
l
(where constants

C,C1 are the same as in the proof of Theorem 7). Also, note that

EP0

[∫

Θ
ρwk (θ, θ0)

l∏

i=1

pθ
p0

(Xi)dΠ(θ)

]
=

∫

Θ
ρwk (θ, θ0)dΠ(θ)

Hence, with probability ≥ 1− e−K̃lε
2
l ,

∫

Θ
ρwk (θ, θ0)

l∏

i=1

pθ
p0

(Xi)dΠ(θ) ≤ eK̃lε
2
l

∫

Θ
ρwk (θ, θ0)dΠ(θ),

where K̃ = min(K/2, 1) is the same universal constant as in the proof of Theorem 7. Writing



∫

Θ

ρwk (θ, θ0)dΠl(·|Xl)



1/w

=

[∫
Θ ρ

w
k (θ, θ0)

∏l
i=1

pθ
p0
(Xi)dΠ(θ)

∫
Θ

∏l
i=1

pθ
p0
(Xi)dΠ(θ)

]1/w
,

we deduce that with probability ≥ 1− e−K̃lε
2
l − 1

lε2l
(where we set C1 := 1),



∫

Θ

ρwk (θ, θ0)dΠl(·|Xl)



1/w

≤ e
2+C+K̃

w
lε2l

[∫

Θ
ρwk (θ, θ0)dΠ(θ)

]1/w
.
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By Theorem 7.1 in Ghosal et al. (2000), there exist test functions φl := φl(X1, . . . , Xl) and
a universal constant K such that

EP0φl ≤ 2e−Klε
2
l ,

sup
θ∈Θl,d(θ,θ0)≥R̃εl

EPθ
(1− φl) ≤ e−KR̃

2·lε2l ,

where KR̃2−1 > K and d(·, ·) is the Hellinger or Euclidean distance. It immediately follows
from Assumption 3.4 that

{
θ : ρ(θ, θ0) ≥ C̃0(θ0)R

γεl

}
⊇
{
θ : ρk(θ, θ0) ≥ Rε

1/γ
l

}
,

hence the test functions φl (for R̃ := C̃0(θ0)R
γ) satisfy

EP0φl ≤ 2e−Klε
2
l , (36)

sup
θ∈Θl,ρk(θ,θ0)≥Rε1/γl

EPθ
(1− φl) ≤ e−KR

2·lε2l .

Repeating the steps of the proof of Theorem 7, we see that if R is chosen large enough, then
∫

ρk(θ,θ0)≥Rε1/γl

dΠl(·|Xl) ≤ e−K̃lε
2
l

with probability ≥ 1 − 1
lε2l

− 4e−K̃lε
2
l . Combining the bounds, we obtain that, for w :=

4
3 + 4+2C

3K̃
, with probability ≥ 1− 1

lε2l
− 5e−K̃lε

2
l ,

∫

ρ(θ,θ0)≥Rε1/γl

ρk(θ, θ0)dΠl(·|Xl) ≤ e−K̃lε
2
l /2

[∫

Θ
ρwk (θ, θ0)dΠ(θ)

]1/w
,

hence the result follows.

A.4 Proof of Theorem 15

The proof strategy is similar to Theorem 7. Note that

dW1,ρ(δ0,Πn,m(·|Xl)) ≤ Rεl +

∫

h(Pθ,P0)≥Rεl

dΠl(·|Xl), (37)

where h(·, ·) is the Hellinger distance.

Let El := {θ : h(Pθ, P0) ≥ Rεl}. By the definition of Πn,m, we have

Πn,m(El|Xl) =

∫
El

(∏l
j=1

pθ
p0
(Xj)

)m
dΠ(θ)

∫
Θ

(∏l
j=1

pθ
p0
(Xj)

)m
dΠ(θ)

. (38)
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To bound the denominator from below, we proceed as before. Let

Θl =

{
θ : −P0

(
log

pθ
p0

)
≤ ε2l , P0

(
log

pθ
p0

)2

≤ ε2l

}
.

Let Bl be the event defined by

Bl :=





∫

Θl

(
l∏

i=1

pθ
p0

(Xi)

)m
dQ(θ) ≤ exp(−2mlε2l )




,

where Q is a probability measure supported on Θl. Lemma 8.1 in Ghosal et al. (2000)
yields that Pr(Bl) ≤ 1

lε2l
for any Q, in particular, for the conditional distribution Π(·|Θl).

We conclude that

∫

Θ




l∏

j=1

pθ
p0

(Xj)



m

dΠ(θ) ≥ Π(Θl) exp(−2mlε2l ) ≥ exp(−(2m+ C)lε2l ).

To estimate the numerator in (38), note that if Theorem 3.10 holds for γ = εl, then it also
holds for γ = Lεl for any L ≥ 1. This observation implies that

sup
θ∈El




l∏

j=1

pθ
p0

(Xj)



m

≤ e−c1R
2mlε2l

with probability ≥ 1− 4e−c2R
2lε2l , hence

∫

El




l∏

j=1

pθ
p0

(Xj)



m

dΠ(θ) ≤ e−c1R
2mlε2l

with the same probability. Choose R = R(C) large enough so that c1mR
2 ≥ 3m + C.

Putting the bounds for the numerator and denominator of (38) together, we get that with
probability ≥ 1− 1

lε2l
− 4e−c2R

2lε2l ,

Πn,m(El|Xl) ≤ e−mlε
2
l .

The result now follows from (37).

A.5 Proof of Proposition 17

The proof follows a standard pattern: on the first step, we show that it is enough to consider
the posterior obtained from the prior restricted to a large compact set, and then proving
the theorem for the prior with compact support. The second part mimics the classical
argument exactly (e.g., see van der Vaart, 2000).
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To show that one can restrict the prior to the compact set, it is enough to establish that
for R large enough and El := {θ : ‖θ − θ0‖ ≥ R√

l
},

Πn,m(El|Xl) =

∫
El

(∏l
j=1

pθ
p0
(Xj)

)m
dΠ(θ)

∫
Θ

(∏l
j=1

pθ
p0
(Xj)

)m
dΠ(θ)

(39)

can be made arbitrarily small. This follows from the inclusion

El ⊆
{
θ : h(Pθ, Pθ0) ≥ C̃

R√
l

}

(due to the assumed inequality between Hellinger and Euclidean distances) and the bounds
for the numerator and the denominator of (39) established in the proof of Theorem 15.

A.6 Selection of the optimal number of subsets m

The following heuristic approach picks the median among the candidate M -posteriors.
Namely, start by evaluating the M-Posterior for each m in the range of candidate values
[m1,m2]:

Π̂gn,m1 := medg(Π
(1)
n , . . . ,Π

(m1)
n ),

Π̂gn,m1+1 := medg(Π
(1)
n , . . . ,Π

(m1+1)
n ),

...

Π̂gn,m2 := medg(Π
(1)
n , . . . ,Π

(m2)
n )

and choose m∗ ∈ [m1,m2] such that

Π̂gn,m∗
= med0

(
Π̂gn,m1

, Π̂gn,m1+1, . . . , Π̂
g
n,m2

)
, (40)

where med0 is the metric median defined in (3) in Section 2.2.
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