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Abstract

Community detection, which focuses on clustering nodes or detecting com-
munities in (mostly) a single network, is a problem of considerable practical
interest and has received a great deal of attention in the research com-
munity. While being able to cluster within a network is important, there
are emerging needs to be able to cluster multiple networks. This is largely
motivated by the routine collection of network data that are generated from
potentially different populations. These networks may or may not have node
correspondence. When node correspondence is present, we cluster networks
by summarizing a network by its graphon estimate, whereas when node
correspondence is not present, we propose a novel solution for clustering
such networks by associating a computationally feasible feature vector to
each network based on trace of powers of the adjacency matrix. We illus-
trate our methods using both simulated and real data sets, and theoretical
justifications are provided in terms of consistency.

1 Introduction

A network, which is used to model interactions or communications among a set of agents
or nodes, is arguably among one of the most common and important representations for
modern complex data. Networks are ubiquitous in many scientific fields, ranging from
computer networks, brain networks and biological networks, to social networks, co-authorship
networks and many more. Over the past few decades, great advancement has been made
in developing models and methodologies for inference of networks. There are a range of
probabilistic models for networks, starting from the relatively simple Erdös-Rényi model
[12], stochastic blockmodels and their extensions [15, 17, 6], to infinite dimensional graphons
[28, 13]. These models are often used for community detection, i.e. clustering the nodes in a
network. Various community detection algorithms or methods have been proposed, including
modularity-based methods [21], spectral methods [25], likelihood-based methods [8, 11, 7, 4],
and optimization-based approaches like those based on semidefinite programming [5], etc.

The majority of the work in the community detection literature including the above mentioned
ones focus on finding communities among the nodes in a single network. While this is still
a very important problem with many open questions, there is an emerging need to be
able to detect clusters among multiple network-valued objects, where a network itself is a
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fundamental unit of data. This is largely motivated by the routine collection of populations
or subpopulations of network-valued data objects. Technological advancement and the
explosion of complex data in many domains has made this a somewhat common practice.

There has been some notable work on graph kernels in the Computer Science literature [27, 26].
In these works the goal is to efficiently compute different types of kernel based similarity
measures (or their approximations) between networks. In contrast, we ask the following
statistical questions. Can we cluster networks consistently from a mixture of graphons, when
1) there is node correspondence and 2) when there isn’t? The first situation arises, for
example, when one has a network evolving over time, or multiple instances of a network
between well-defined objects. If one thinks of them as random samples from a mixture of
graphons, then can we cluster them? We propose a simple and general algorithm to address
this question, which operates by first obtaining a graphon estimate of each of the networks,
constructing a distance matrix between those graphon estimates, and then performing
spectral clustering on the distance matrix. We call this algorithm Network Clustering based
on Graphon Estimates (NCGE).

The second situation arises when one is interested in global properties of a network. This
setting is closer to that of graph kernels. Say we have co-authorship networks from Computer
Science and High Energy Physics. Are these different types of networks? There has been a
lot of empirical and algorithmic work on featurizing networks or computing kernels between
networks. But most of these features require expensive computation. We propose a simple
feature based on traces of powers of the adjacency matrix for this purpose which is very
cheap to compute as it involves only matrix multiplication. We cluster the networks based
on these features and call this method Network Clustering based on Log Moments (NCLM).

We provide some theoretical guarantees for our algorithms in terms of consistency, in
addition to extensive simulations and real data examples. The simulation results show that
NCGE clearly outperform the naive yet popular method of clustering (vectorized) adjacency
matrices in various settings. We also show that, in absence of node correspondence, NCLM
is consistently better and faster than methods which featurize networks with different global
statistics and graphlet kernels. We also apply NCLM to separate out a mixed bag of real
world networks, like co-authorship networks form different domains and ego networks.

The rest of the paper is organized as follows. In Section 2 we briefly describe graphon-
estimation methods and other related work. Next, in Section 3 we formally describe our
setup and introduce our algorithms. Section 4.1 contains some theory for these algorithms.
In Section 5 we provide simulations and real data examples. We conclude with a discussion
in Section 6.

2 Related work

The focus of this paper is on 1) clustering networks which have node correspondence based on
estimating the underlying graphon and 2) clustering networks without node correspondence
based on global properties of the networks. In this section we first cite two methods of
obtaining graphon estimates, which we will use in our first algorithm. Second, we cite
existing work that summarizes a network using different statistics and compares those to
obtain a measure of similarity.

A prominent estimator of graphons is the so called Universal Singular Value Thresholding
(USVT) estimator proposed by [9]. The main idea behind USVT is to essentially estimate
the low rank structure of the population matrix by thresholding the singular values of
the observed matrix at an universal cutoff, and then use retained singular values and the
corresponding singular vectors to construct an estimate of the population matrix.

Another recent work [29] proposes a novel, statistically consistent and computationally
efficient approach for estimating the link probability matrix by neighborhood smoothing.

Typically for large networks USVT is a lot more scalable than the neighborhood-smoothing
approach. There are several other methods for graphon estimation, e.g., by fitting a stochastic
blockmodel [24]. These methods can also be used in our algorithm.
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In [10], a graph-based method for change-point detection is proposed, where an independent
sequence of observations are considered. These are generated i.i.d. under the null hypothesis,
whereas under the alternative, after a change point, the underlying distribution changes.
The goal is to find this change point. The observations can be high-dimensional vectors or
even networks, with the latter bearing some resemblance with our first framework. This can
be viewed as clustering the observations into “past” and “future”. We remark here that our
graphon-estimation based clustering algorithm suggests an alternative method for change
point detection in networks, namely by looking at the second eigenvector of the distance
matrix between estimated graphons. Another related work is due to [14] which aims to
extend the classical large sample theory to model network-valued objects.

For comparing global properties of networks, there have been many interesting works that
featurize networks, see, for instance, [3]. In the Computer Science literature, graph kernels
have gained much attention [27, 26]. In these works the goal is to efficiently compute different
types of kernel based similarity measures (exact or approximate) between networks.

3 A framework for clustering networks

Let G be a binary random network or graph with n nodes. Denote by A its adjacency
matrix, which is an n by n symmetric matrix with binary entries. That is, Aij = Aji ∈
{0, 1}, 1 ≤ i < j ≤ n, where Aij = 1 if there is an observed edge between nodes i and j, and
Aij = 0 otherwise. All the diagonal elements of A are structured to be zero (i.e. Aii = 0).
We assume the following random Bernoulli model with

Aij | Pij ∼ Bernoulli(Pij), i < j, (1)

where Pij = P (Aij = 1) is the probability of link formation between nodes i and j. We
denote the link probability matrix as P = ((Pij)). The edge probabilities are often modeled
using the so-called graphons. A graphon f is a nonnegative bounded, measurable symmetric
function f : [0, 1]2 → [0, 1]. Given such an f , one can use the model

Pij = f(ξi, ξj), (2)

where ξi, ξj are i.i.d. uniform random variables on (0, 1). In fact, any (infinite) exchangeable
network arises in this way (by Aldous-Hoover representation [2, 16]).

Our current work focuses on the problem of clustering networks. Unlike in a traditional
setup, where one observes a single network (with potentially growing number of nodes) and
the goal often is to cluster the nodes, here we observe multiple networks and are interested
in clustering these networks viewed as fundamental data units.

3.1 Node correspondence present

A simple and natural model for this is what we call the graphon mixture model for obvious
reasons: there are only K (fixed) underlying graphons f1, . . . , fK giving rise to link probability
matrices Π1, . . . ,ΠK and we observe T networks sampled i.i.d. from the mixture model

Pmix(A) =

K
∑

i=1

qiPΠi
(A), (3)

where the qi’s are the mixing proportions and PP (A) =
∏

u<v P
Auv

uv (1 − Puv)1−Auv is the
probability of observing the adjacency matrix A when the link probability matrix is given by
P . Consider n nodes, and T independent networks Ai, i ∈ [T ], which define edges between
these n nodes. We propose the following simple and general algorithm (Algorithm 1) for
clustering them.
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Algorithm 1 Network Clustering based on Graphon Estimates (NCGE)

1: Graphon estimation. Given A1, . . . , AT , estimate their corresponding link probability
matrices P1, . . . , PT using any one of the ‘blackbox’ algorithms such as USVT ([9]), the

neighborhood smoothing approach by [29] etc. Call these estimates P̂1, . . . , P̂T .

2: Forming a distance matrix. Compute the T by T distance matrix D̂ with D̂ij =

‖P̂i − P̂j‖F , where ‖ · ‖F is the Frobenius norm.

3: Clustering. Apply the spectral clustering algorithm to the distance matrix D̂.

We will from now on denote the above algorithm with the different graphon estimation
(‘blackbox’) approaches as follows: the algorithm with USVT as blackbox will be denoted
by CL-USVT and the one with the neighborhood smoothing method as blackbox will be
denoted by CL-NBS. We will compare these two algorithms with the CL-NAIVE method
which does not estimate the underlying graphon, but clusters vectorized adjacency matrices
directly (in the spirit of [10]).

3.2 Node correspondence absent

We use certain graph statistics to construct a feature vector. The basic statistics we choose
are the trace of powers of the adjacency matrix, suitably normalized and we call them graph
moments:

mk(A) = trace(A/n)k. (4)

These statistics are related to various path/subgraph counts. For example, m2(A) is the
normalized count of the total number of edges, m3(A) is the normalized triangle count of A.
Higher order moments are actually counts of closed walks (or directed circuits).

The reason we use graph moments instead of subgraph counts is that the latter are quite
difficult to compute and present day algorithms work only for subgraphs up to size 5. On
the contrary, graph moments are easy to compute as they only involve matrix multiplication.

While it may seem that this is essentially the same as comparing the eigenspectrum, it is not
clear how many eigenvalues one should use. Even if one could estimate the number of large
eigenvalues using an USVT type estimator, the length is different for different networks. The
trace takes into account the relative magnitudes of the eigenvalues naturally. In fact, we
tried (see Section 5) using the top few eigenvalues as the sole features, but the results were
not as satisfactory as using mk.

We now present our second algorithm (Algorithm 2). In step 2 below we take d to be the
standard Euclidean metric.

Algorithm 2 Network Clustering based on Log Moments (NCLM)

1: Moment calculation. For each network Ai, i ∈ [T ] and a positive integer J , compute
the feature vector gJ(Ai) := (logm1(Ai), logm2(Ai), . . . , logmJ(Ai)).

2: Forming a distance matrix. For some metric d, set D̂ij = d(gJ(Ai), gJ(Aj)).

3: Clustering. Apply the spectral clustering algorithm to the distance matrix D̂.

Note: The rationale behind taking a logarithm of the graph moments is that if we have two
graphs with the same degree density but different sizes, then the degree density will not play
any role in the the distance (which is necessary because the degree density will subdue any
other differences otherwise). The parameter J counts, in some sense, the effective number of
eigenvalues we are using.

4 Theory

We will only mention our main results and discuss some of the consequences here. All the
proofs and further details can be found in the supplementary article [1].
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4.1 Results on NCGE

We can think of D̂ij as estimating Dij = ‖Pi − Pj‖F .

Theorem 4.1. Suppose D = ((Dij)) has rank K. Let V (resp. V̂ ) be the T × K matrix
whose columns correspond to the leading K eigenvectors (corresponding to the K largest-in-

magnitude eigenvalues) of D (resp. D̂). Let γ = γ(K,n, T ) be the K-th smallest eigenvalue

value of D in magnitude. Then there exists an orthogonal matrix Ô such that

‖V̂ Ô − V ‖2
F ≤ 64T

γ2

∑

i

‖P̂i − Pi‖2
F .

Corollary 4.2. Assume for some absolute constants α, β > 0 the following holds for each
i ∈ [T ]:

‖P̂i − Pi‖2
F

n2
≤ Cin

−α(logn)β , (5)

either in expectation or with high probability (≥ 1 − εi,n). Then in expectation or with high
probability (≥ 1 − ∑

i εi,n) we have that

‖V̂ Ô − V ‖2
F ≤ 64CTT

2n2−α(logn)β

γ2
, (6)

where CT = maxi≤i≤T Ci.

If there are K (fixed, not growing with T ) underlying graphons, then the constant CT does
not depend on T . Table 1 reports values of α, β for various graphon estimation procedures
(under assumptions on the underlying graphons, that are described in the supplementary
article [1]).

Table 1: Values of α, β for various graphon estimation procedures.

Procedure USVT NBS Minimax rate

α 1/3 1/2 1
β 0 1/2 1

While it is hard to obtain an explicit lower bound on γ in general, let us consider a simple
equal weight mixture of two graphons to illustrate the relationship between γ and separation
between graphons. Let the distance between the population graphons be dn. Then we have

D = Z

(

0 dn
dn 0

)

ZT , where the i-th row of the binary matrix Z has a single one at position

l if network Ai is sampled from Πl. The nonzero eigenvalues of this matrix are Tnd/2 and
−Tnd/2. Thus in this case γ = Tnd/2. As a result (6) becomes

‖V̂ Ô − V ‖2
F ≤ 256CTn

−α(logn)β

d2
. (7)

Let us look at a more specific case of blockmodels with the same number (= m) of clusters
of equal sizes (= n/m) to gain some insight into d. Let C be a n × m binary matrix
of memberships such that Cib = 1 if node i within a blockmodel comes from cluster b.
Consider two blockmodels Π1 = CB1C

T with B1 = (p − q)Im + qEm and Π2 = CB2C
T

with B2 = (p′ − q′)Im + q′Em, where Im is the identity matrix of order m (here the only
difference between the models come from link formation probabilities within/between blocks,
the blocks remaining the same). In this case

d2 =
‖Π1 − Π2‖2

F

n2
=

1

m
(p− p′)2 +

(

1 − 1

m

)

(q − q′)2.

The bound (6) can be turned into a bound on the proportion of “misclustered” networks,
defined appropriately. There are several ways to define misclustered nodes in the context
of community detection in stochastic blockmodels that are easy to analyze with spectral
clustering (see, e.g., [25, 18]). These definitions work in our context too. For example, if we
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use Definition 4 of [25] and denote by M the set of misclustered networks, then from the
proof of their Theorem 1, we have

|M| ≤ 8mT ‖V̂ Ô − V ‖2
F ,

where mT = maxj=1,...,K(ZTZ)jj is the maximum number of networks coming from any of
the graphons.

4.2 Results on NCLM

We first establish concentration of trace(Ak). The proof uses Talagrand’s concentration
inequality, which requires additional results on Lipschitz continuity and convexity. This
is obtained via decomposing A 7→ trace(Ak) into a linear combination of convex-Lipschitz
functions.

Theorem 4.3 (Concentration of moments). Let A be the adjacency matrix of a random
graph with link-probability matrix P . Then for any k. Let ψk(A) := n

k
√

2
mk(A). Then

P(|ψk(A) − Eψk(A)| > t) ≤ 4 exp(−(t− 4
√

2)2/16).

As a consequence of this, we can show that gJ(A) concentrates around ḡJ(A) :=
(logEm2(A), . . . , logEmJ(A)).

Theorem 4.4 (Concentration of gJ (A)). Let EA = ρS, where ρ ∈ (0, 1), mini,j Sij = Ω(1),

and
∑

i,j Sij = n2. Then ‖ḡJ(A)‖ = Θ(J3/2 log(1/ρ)), and for any 0 < δ < 1 satisfying

δJ log(1/ρ) = Ω(1), we have

P(‖gJ(A) − ḡJ(A)‖ ≥ δJ3/2 log(1/ρ)) ≤ JC1e
−C2n2ρ2J

.

We expect that ḡJ will be a good population level summary for many models. In general,
it is hard to show an explicit separation result for ḡJ . However, in simple models, we can
do explicit computations to show separation. For example, in a two parameter blockmodel
B = (p−q)Im+qEm, with equal block sizes, we have Em2(A) = (p/m+(m−1)q/m)(1+o(1)),
Em3(A) = (p3/m2 + (m− 1)pq2/m2 + (m− 1)(m− 2)q3/6m2)(1 + o(1)) and so on. Thus
we see that if m = 2, then ḡ2 should be able to distinguish between such blockmodels (i.e.
different p, q).

Note: After this paper was submitted, we came to know of a concurrent work [20] that
provides a topological/combinatorial perspective on the expected graph moments Emk(A).
Theorem 1 in [20] shows that under some mild assumptions on the model (satisfied, for
example, by generalized random graphs with bounded kernels as long as the average degree
grows to infinity), Etrace(Ak) = E(# of closed k-walks) will be asymptotic to E(# of closed
k-walks that trace out a k-cycle) plus 1{k even}E(# of closed k-walks that trace out a (k/2+1)-
tree). For even k, if the degree grows fast enough, k-cycles tend to dominate, whereas for
sparser graphs trees tend to dominate. From this and our concentration results, we can
expect NCLM to be able to tell apart graphs which are different in terms the counts of these
simpler closed k-walks. Incidentally, the authors of [20] also show that the expected count of
closed non-backtracking walks of length k is dominated by walks tracing out k-cycles. Thus
if one uses counts of closed non-backtracking k-walks (i.e. moments of the non-backtracking
matrix) instead of just closed k-walks as features, one would expect similar performance on
denser networks, but in sparser settings it may lead to improvements because of the absence
of the non-informative trees in lower order even moments.

5 Simulation study and data analysis

In this section, we describe the results of our experiments with simulated and real data
to evaluate the performance of NCGE and NCLM. We measure performance in terms of
clustering error which is the minimum normalized hamming distance between the estimated
label vector and all K! permutations of the true label assignment. Clustering accuracy is
one minus clustering error.
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Node correspondence present: We provide two simulated data experiments1 for clus-
tering networks with node correspondence. In each experiment twenty 150-node networks
were generated from a mixture of two graphons, 13 networks from the first and the other
7 from the second. We also used a scalar multiplier with the graphons to ensure that the
networks are not too dense. The average degree for all these experiments were around 20-25.
We report the average error bars from a few random runs.

First we generate a mixture of graphons from two blockmodels, with probability matrices
(pi − qi)Im + qiEm with i ∈ {1, 2}. We use p2 = p1(1 + ε) and q2 = q1(1 + ε) and measure
clustering accuracy as the multiplicative error ε is increased from 0.05 to 0.15. We compare
CL-USVT, CL-NBS and CL-NAIVE and the results are summarized in Figure 1(A). We
have observed two things. First, CL-USVT and CL-NBS start distinguishing the graphons
better as ε increases (as the theory suggests). Second, the naive approach does not do a
good job even when ε increases.

Figure 1: We show the behavior of the three algorithms when ε increases, when the underlying
network is generated from (A) a blockmodel, and (B) a smooth graphon.

(A) (B)

In the second simulation, we generate the networks from two smooth graphons Π1 and
Π2, where Π2 = Π1(1 + ε) (here Π1 corresponds to the graphon 3 appearing in Table 1 of
[29]). As is seen from Figure 1(B), here also CL-USVT and CL-NBS outperform the naive
algorithm by a huge margin. Also, CL-NBS is consistently better than CL-USVT, which
shows that the accuracy of the graphon estimation procedure is important (for example,
USVT is known to perform worse as the network becomes sparser).

Node correspondence absent: We show the efficacy of our approach via two sets of
experiments. We compare our log-moment based method NCLM with three other methods.
The first is Graphlet Kernels [26] with 3, 4 and 5 graphlets, denoted by GK3, GK4 and
GK5 respectively. In the second method, we use six different network-based statistics to
summarize each graph; these statistics are the algebraic connectivity, the local and global
clustering coefficients [23], the distance distribution [19] for 3 hops, the Pearson correlation
coefficient [22] and the rich-club metric [30]. We also compare against graphs summarized by
the top J eigenvalues of A/n (TopEig). These are detailed in the supplementary article [1].

For each distance matrix D̂ we compute with NCLM, GraphStats and TopEig, we calculate
a similarity matrix K = exp(−tD̂) where t is chosen as the value, within a range, which
maximizes the relative eigengap (λK(K) − λK+1(K))/λK+1(K). It would be interesting to
have a data dependent range for t.

For each matrix K we calculate the top few eigenvectors, say N many, and do K-means on
them to get the final clustering. We use N = K; however, for GK3, GK4, and GK5, we had
to use a smaller N which boosted their clustering accuracy.

First we construct four sets of parameters for the two parameter blockmodel (also known as
the planted partition model): Θ1 = {p = 0.1, q = 0.05,K = 2, ρ = 0.6}, Θ2 = {p = 0.1, q =

1Code used in this paper is publicly available at https://github.com/soumendu041/
clustering-network-valued-data.
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0.05,K = 2, ρ = 1}, Θ3 = {p = 0.1, q = 0.05,K = 8, ρ = 0.6}, and Θ4 = {p = 0.2, q =
0.1,K = 8, ρ = 0.6}. Note that the first two settings differ only in the density parameter ρ.
The second two settings differ in the within and across cluster probabilities. The first two
and second two differ in K. For each parameter setting we generate two sets of 20 graphs,
one with n = 500 and the other with n = 1000.

For choosing J , we calculate the moments for a large J ; compute a kernel similarity matrix
for each choice of J and report the one with largest relative eigengap between the Kth and
(K + 1)th eigenvalue. We show these plots in the supplementary article [1]. We see that the
eigengap increases and levels off after a point. However, as J increases, the computation
time increases, so there is a trade-off. We report the accuracy of J = 5, whereas J = 8 also
returns the same in 48 seconds.

Table 2: Error of 6 different methods on the simulated networks.

NCLM (J = 5) GK3 GK4 GK5 GraphStats (J = 6) TopEig (J = 5)
Error 0 0.5 0.36 0.26 0.37 0.18

Time (s) 25 14 16 38 94 8

We see that NCLM performs the best. For GK3, GK4 and GK5, if one uses the top two
eigenvectors, and clusters those into 4 groups (since there are four parameter settings), the
errors are respectively 0.08, 0.025 and 0.03. This means that, for clustering, one needs to
estimate the effective rank of the graphlet kernels as well. TopEig performs better than
GraphStats, which has trouble separating out Θ2 and Θ4.

Note: Intuitively one would expect that, if there is node correspondence between the graphs,
clustering based on graphon estimates would work better, because it aims to estimate the
underlying probabilistic model for comparison. However, in our experiments we found that
a properly tuned NCLM matched the performance of NCGE. This is probably because a
properly tuned NCLM captures the global features that distinguish two graphons. We leave
it for future work to compare their performance theoretically.

Real Networks: We cluster about fifty real world networks. We use 11 co-authorship
networks between 15,000 researchers from the High Energy Physics corpus of the arXiv, 11
co-authorship networks with 21,000 nodes from Citeseer (which had Machine Learning in
their abstracts), 17 co-authorship networks (each with about 3000 nodes) from the NIPS
conference and finally 10 Facebook ego networks2. The average degrees vary between 0.2 to
0.4 for co-authorship networks and are around 10 for the ego networks. Each co-authorship
network is dynamic, i.e. a node corresponds to an author in that corpus and this node index
is preserved in the different networks over time. The ego networks are different in that sense,
since each network is the subgraph of Facebook induced by the neighbors of a given central
or “ego” node. The sizes of these networks vary between 350 to 4000.

Table 3: Clustering error of 6 different methods on a collection of real world networks
consisting of co-authorship networks from Citeseer, High Energy Physics (HEP-Th) corpus
of arXiv, NIPS and ego networks from Facebook.

NCLM (J = 8) GK3 GK4 GK5 GraphStats (J = 8) TopEig (J = 30)
Error 0.1 0.6 0.6 0.6 0.16 0.32

Time (s) 2.7 45 50 60 765 14

Table 3 summarizes the performance of different algorithms and their running time to
compute distance between the graphs. We use the different sources of networks as labels, i.e.
HEP-Th will be one cluster, etc. We explore different choices of J , and see that the best
performance is from NCLM, with J = 8, followed closely by GraphStats. TopEig (J in this
case is where the eigenspectra of the larger networks have a knee) and the graph kernels do
not perform very well. GraphStats take 765 seconds to complete, whereas NCLM finishes in
2.7 seconds. This is because the networks are large but extremely sparse, and so calculation
of matrix powers is comparatively cheap.

2https://snap.stanford.edu/data/egonets-Facebook.html
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Figure 2: Kernel matrix for NCLM on 49 real networks.

In Figure 2, we plot the kernel similarity matrix obtained using NCLM on the real networks
(higher the value, more similar the points are). The first 11 networks are from HEP-Th,
whereas the next 11 are from Citeseer. The next 16 are from NIPS and the remaining
ones are the ego networks from Facebook. First note that {HEP-Th, Citeseer}, NIPS and
Facebook are well separated. However, HEP-Th and Citeseer are hard to separate out. This
is also verified by the bad performance of TopEig in separating out the first two (shown in
Section 5). However, in Figure 2, we can see that the Citeseer networks are different from
HEP-Th in the sense that they are not as strongly connected inside as HEP-Th.

6 Discussion

We consider the problem of clustering network-valued data for two settings, both of which
are prevalent in practice. In the first setting, different network objects have node correspon-
dence. This includes clustering brain networks obtained from FMRI data where each node
corresponds to a specific region in the brain, or co-authorship networks between a set of
authors where the connections vary from one year to another. In the second setting, node
correspondence is not present, e.g., when one wishes to compare different types of networks:
co-authorship networks, Facebook ego networks, etc. One may be interested in seeing if
co-authorship networks are more “similar” to each other than ego or friendship networks.

We present two algorithms for these two settings based on a simple general theme: summarize
a network into a possibly high dimensional feature vector and then cluster these feature
vectors. In the first setting, we propose NCGE, where each network is represented using its
graphon-estimate. We can use a variety of graphon estimation algorithms for this purpose.
We show that if the graphon estimation is consistent, then NCGE can cluster networks
generated from a finite mixture of graphons in a consistent way, if those graphons are
sufficiently different. In the second setting, we propose to represent a network using an
easy-to-compute summary statistic, namely the vector of the log-traces of the first few
powers of a suitably normalized version of the adjacency matrix. We call this method
NCLM and show that the summary statistic concentrates around its expectation, and
argue that this expectation should be able to separate networks generated from different
models. Using simulated and real data experiments we show that NCGE is vastly superior
to the naive but often-used method of comparing adjacency matrices directly, and NCLM
outperforms most computationally expensive alternatives for differentiating networks without
node correspondence. In conclusion, we believe that these methods will provide practitioners
with a powerful and computationally tractable tool for comparing network-structured data
in a range of disciplines.
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