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We propose a method to use artificial neural networks to approximate light scattering by multilayer
nanoparticles. We find the network needs to be trained on only a small sampling of the data in order
to approximate the simulation to high precision. Once the neural network is trained, it can simulate
such optical processes orders of magnitude faster than conventional simulations. Furthermore, the
trained neural network can be used solve nanophotonic inverse design problems by using back-
propogation - where the gradient is analytical, not numerical.

Inverse design problems are pervasive in physics [1–4].
Quantum Scattering Theory [1], photonic devices [2], and
thin film photovoltaic materials [3] are all problems that
require inverse design. A typical inverse design problem
requires optimization in high dimensional space, which
usually involves lengthy calculations. For example, in
photonics, where the forward calculations are well un-
derstood with Maxwell’s equations, solving one instance
of an inverse design problem can often be a substantial
research project.
There are many different ways to solve inverse design

problems, which can be classified into two main cate-
gories: the genetic algorithm [5, 6] (searching the space
step by step), and adjoint method [7] (mathematically re-
versing the equations). For problems with many param-
eters, solving these with genetic algorithms takes a lot of
computation power and time, and this time grows expo-
nentially as the number of parameters increases. On the
other hand, the adjoint method is far more efficient than
the genetic algorithms; however, setting up the adjoint
method often requires a deep knowledge in photonics,
and can be quite non-trivial even with such knowledge.
Neural Networks (NNs) have previously been used to

approximate many physics simulations with high degrees
of precision. Recently Carleo et. al. [8] used NNs to solve
many-body quantum physics problems, and Faber et. al.
[9] used NNs to approximate Density Functional The-
ory. In this paper, we propose a novel method to further
simulate light interaction with nanoscale structures and
solve inverse design problems using Artificial Neural Net-
works. In this method, a neural network is first trained
to approximate a simulation; thus the neural network is
able to map the scattering function into a continuous,
higher order space where the derivative can be found an-
alytically. The ”approximated” gradient of the figure of
merit (FOM) with respect to input parameters is then ob-
tained analytically with standard back-propagation [10].
The parameters are then optimized efficiently with the
gradient descent method. Finally, we compare our per-
formance with the standard gradient free optimization
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method and find our method is orders of magnitude faster
and more effective than traditional methods.
While we focus here on a particular problem of light

scattering from nanoparticles, the approach presented
here can fairly easily be generalized to many other
nanophotonic problems. This approach offers both the
generality present in numerical optimization schemes
(where only the forward calculation must be found), and
the speed of an analytical solution (owing to the use of
an analytical gradient). Conceptually, there are a num-
ber of reasons why the approach used here is useful for a
myriad of branches of physics. After the neural network
is trained, there are three key uses discussed here:

1. Approximate — Once the neural network is trained
to approximate a complex physics simulation (such
as density functional theory or finite difference time
domain simulation), it can approximate the same
computation in orders of magnitude less time.

2. Inverse Design — Once trained, the neural network
can solve inverse-design problems more quickly
than its numerical counterpart, because the gra-
dient can be found analytically instead of numeri-
cally. Furthermore, the series of calculations for in-
verse design can be computed more quickly due to
the faster forward calculation. Finally, the neural
network can search more easily for a global mini-
mum because the space is smoothed in the approx-
imation.

3. Optimization — Similarly to inverse design, the
network can be asked to optimize for a desired
property. This functionality can be implemented
simply by changing the cost function used for the
design and without retraining the neural network.

I. RESULTS

I.1. Neural Networks can learn and approximate

Maxwell Interactions

We evaluate this method by considering the problem
of light scattering from a multi-layer dielectric spherical
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FIG. 1: The neural network architecture has as its inputs the thickness of each layer of the nanoparticle, and as its output the
scattering cross section at different wavelengths of the scattering spectrum. Our actual neural network has four hidden layers.

nanoparticle — Fig. 1. Our goal is to use a Neural Net-
work to approximate this simulation. For definiteness, we
choose a particle that has a lossless silica core (ε = 2.04),
and then alternating lossless T iO2 (ε = 5.913+ .2441

λ2−.0803
)

and lossless silica layers. Specifically, we consider eight
layers between 30nm to 70nm thicknesses per layer. Thus
the smallest particle we consider is 480nm in diameter,
and the largest is 1,120nm.

This problem can be solved analytically or numerically
with the Maxwell equations, though for multiple layers,
the solution becomes involved. The analytical solution
is well known [11]. We used the simulation to gener-
ate 50,000 examples from these parameters with Monte-
Carlo sampling.

Next, we trained the neural network using these ex-
amples. We used a fully connected network, with four
layers and 250 neurons per layer, giving us 239,500 total
parameters. The input was the thickness of each layer
(the materials were fixed), and the output was the spec-
trum sampled at points between 400 to 800 nanometers.
The training error is graphed in Fig. 2a. Once the train-
ing was complete, the weights of the neural network are
fixed and saved into files which can be easily loaded and
used. Next, we began to experiment with applications
and uses of this neural network.

The first application was to test the forward compu-
tation of the network to see how well it approximates
the spectra it was not trained on — for an example see
Fig. 2b. Impressively, the network matches the sharp
peaks and high Q features with much accuracy, even
though the model was only trained with 50,000 examples

— which is equivalent to sampling each layer thickness
between 30-70 nanometers only four times.
To study if the network learned anything about the

system and can produce features it was not trained on, we
also graphed the closest examples in the training set. The
results show that the network is able to match quite well
spectra even outside of the training set. Furthermore,
the results from Fig. 2b visually demonstrate that the
network is not simply interpolating, or averaging together
the closest training spectra. This suggests that the neural
network is not simply fitting to the data, but instead
learning some pattern about the input and output data
such that it can solve problems it had not encountered,
and to some extent generalize the physics of the system.
This method is similar to the well known surrogate

modeling [12], where it creates an approximation to solve
the computationally expensive problem, instead of the
exact solution. However, the result indicates neural net-
works can be very powerful in approximating linear opti-
cal phenomena (such as nanoparticle scattering phenom-
ena shown here).

I.2. Neural Networks solve Nanophontonic Inverse

Design

For inverse design, we want to be able to draw any
arbitrary spectrum, and find the geometry that would
most closely produce this spectrum.
Neural networks are able to solve inverse design prob-

lems efficiently. With the weights fixed, we set the in-
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FIG. 2: a) Training loss for the eight layer case. The loss has sharp declines occasionally, suggesting that the neural network
is ‘learning’ something about the data at each point. b) Comparison of neural network approximation to the real spectrum,
with the closest training examples shown here. One training example is the most similar particle larger than the desired, and
the other is the most similar particle smaller than desired. These results were consistent across many different spectra.

put as a trainable variable and used back-propogation to
train the inputs of the neural network. In simple terms,
we run the NN ‘backwards’. To do this, we fix the output
to the desired output, and let the neural network ‘learn’
the correct inputs. After a few iterations, the neural net-
work suggests a geometry to reproduce the spectrum.

We test this inverse design on the same problem as
above - an eight layer nanoparticle made of alternating
layers of T iO2 and silica. We choose an arbitrary spec-
trum, and have the network learn what inputs would
generate a similar spectrum. We can see an example
optimization in Fig. 3. In order to ensure that we have a
physically realizable spectra, the desired spectrum comes
from a random valid nanoparticle configuration.

We also compare our method to state of the art numer-
ical nonlinear optimization methods. We tested several
techniques, and found that interior-point methods [13]
were most effective for this problem. We then compared
these interior-point methods to our results from the neu-
ral network, shown in Fig. 3. Visually, we can see that
the neural network is able to find a much closer minimum
than the numerical nonlinear optimization method. This
result is consistent across many different spectra, as well
as for particles with different number of layers and ma-
terials.

We found that for few parameters to design over (for
three to five dielectric layers), the numerical solution
presented a more accurate inverse design than the neu-
ral network. However, as more parameters were added
(regimes of five to ten dielectric layers), the numerical
solution quickly became stuck in local minima and was
unable to solve the problem, while the neural network
still performed well and found quite accurate solutions
to inverse design. Thus, for difficult inverse design prob-
lems involving many parameters, neural networks can of-

ten solve inverse design easily. We believe this is because
the optimization landscape is smoothed in the approxi-
mation.
We further studied how the Neural Network behaves

in regions where ε has a strong dependence on ω, such
as the case of J-Aggregates [14]. This material produced
complex and sharp spectra, and it is interesting to study
how well the Neural Network approximated these parti-
cles, particularly for particles that it had not trained on.
Results demonstrated the network was able to behave
fine in these situations — see IV.2.

I.3. Neural Networks can be used as an

optimization tool for broadband and

specific-wavelength scattering

For optimization, we want to be able to give the bound-
ary conditions for a model (for instance how many layers,
how thick of a particle, what materials it could be), and
find the optimal particle to produce σ(λ) as close as pos-
sible to the desired σdesired(λ).
Now that we can design an arbitrary spectrum using

our tool with little effort, we can further use this as an
optimization tool for more difficult problems. Here, we
consider two: how to maximize scattering at a single
wavelength, while minimizing the rest, and how to maxi-
mize scattering across a broad-spectrum, while minimiz-
ing scattering outside of it.
To do this, we fix the weights of the neural network,

and create a cost function that will produce the desired
results. We simply compute the average of the σ(λ) inside
of the range of interest, and compute the average of the
points outside the range, then minimize this ratio.This
cost function J is given by
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FIG. 3: Inverse design for an eight layer nanoparticle. The legend gives the dimensions of the particle, and the blue is the
desired spectrum. The neural network is seen to solve the inverse design much more accurately.

J =
σin

σout

(1)

Ideally, this optimization would be performed using
metals and other materials with plasmonic resonances
[14] in the desired spectrum range. These materials are
well-suited for having sharp, narrow peaks, and as such
can generate spectra that are highly efficient at scattering
at precisely a single wavelength.

Our optimization here uses solely dielectric materials.
By using materials that do not have sharp plasmonic res-
onances, we force the neural network to find a total ge-
ometry that still scatters at a single peak, despite the
underlying materials being unable to. A figure showing
the results of this for a narrow set of wavelengths close
to 465 nanometers can be seen in Fig. 4a.

Next, we consider the case of broadband scattering,
where we want a flat spectrum across a wide array of
wavelengths. In this case, we choose the same J as above
- minimizing the ratio of values inside to outside. After
training the network for a short number of iterations, we
achieve a geometry that will broad-band scatter across
the desired wavelengths. A figure of this can be seen in
Fig. 4b.

I.4. Comparison of Neural Networks with some

conventional Inverse Design Algorithms

As mentioned, we tested several techniques, and found
that interior-point methods [13] were most suited for
nanoparticle inverse design. To compare this numerical
nonlinear optimization method to our neural network,
we use the same cost function for both - namely that of
the mean square distance between points on the spec-
tra. For definiteness, we code both the neural network
and simulation in Matlab. This allows for reasonably fair
comparisons of speed and computation resources.
We train a different neural network on each number of

particle layers from two to ten. The networks’ size in-
creased as we increased the number of layers, and the
training can often require substantial time. However,
once the networks were trained the runtime of these was
significantly less than the forward computation time of
the simulation. We tested this by running 100 spectra,
then finding the average time required for the computa-
tion. These were run on a 2.9 GHz Intel Core i5 pro-
cessor, and all were parrallized onto 2 CPU’s. A plot of
these results is shown in Fig. 5. Once fitting with lines,
it is evident that if the problem becomes complex, the
simulation would struggle to run more than a few layers,
while the neural network would be able to handle more.
Thus, the neural network approach has much to offer to
physics and inverse design even in just speeding up and
approximating simulations.
Next, we looked at the optimization runtime versus
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II. DISCUSSION

The results of this method suggest that it can be easily
used and implemented, even for complex inverse design
problems. The architecture used in the examples above
— a fully connected layer — was chosen without much
optimization, and still performs quite well. Our pre-
liminary testing with other architectures (convolutions,
dropouts, and residual networks) appeared to have fur-
ther promise as well.
Perhaps the two most surprising results were how few

examples it takes for the network to approximate the
simulation, as well as how complex the approximation
can really be. For instance, in the eight layer case the NN
only saw 50,000 examples over eight independent inputs.
This means that on average it sampled only four times
per layer thickness, and yet could reproduce the entire
range of 30-70 nanometer layer thickness continuously.
The approximation was even able to handle quite sharp
features in the spectrum that it otherwise had not seen.
Promising and effective results have been seen by ap-

plying this method to other nanophotonic inverse design
problems. Recently, Dianjing et. al. [15] demonstrated
that by using a bi-directional neural network [16], op-
timization and inverse design can be performed for one
dimensional layers of dielectric mediums. The approach
was to first train the network to approximate the for-
ward simulation, then do a second iteration of training
to further improve the accuracy of the results. By uti-
lizing a second iteration of training, Dianjing et. al [15]
was able to overcome degeneracy problems wherein the
same spectrum can be generated by particles of differ-
ent geometrical arrangements. Overall, this and similar
work is promising to the idea that experimenting with
different architectures, and adding more training data,
can allow these neural networks to be useful for solving
inverse design in many more scenarios.
One clear concern with the method is that we still have

to generate the data for each network, and this takes up
time for each inverse design problem. It is true that gen-
erating the data takes significant effort, but there are two
reasons why this method is still very useful. First, hard-
ware is cheap, and the generation of data can be done
easily in parallel across machines. This is not true for
inverse design. Inverse Design must often be done in a
serial approach as each step gets a little closer to the
optimal, so the time cannot be reduced significantly by
parallel computation. The second reason this method is
highly valuable is because while the forward propagation
is linear in complexity, the optimization is polynomial.
Specifically, by looking at Fig. 5 and Fig. 6, we can see
that the inverse design speed is growing much faster than
the forward runtime. This is important because it means
that for complex simulations, the numerical inverse de-
sign could take an infeasible amount of time, while the
NN forward calculation may not take long; it will simply
have many variables.
This method could be used in many other fields of

computational physics; it would allow us to approximate
physics simulations in fractions of the time. Further-
more, owing to the robustness of back-propogation, this
method allows us to solve many inverse design problems
without having to manually calculate the inverse equa-
tions. Instead, we simply have to write a simulation for
the forward calculation, and then train the model on it
to easily solve the inverse design.

III. METHODS

III.1. Analytically Solving Scattering via the

Transfer Matrix Method

We use the transfer matrix method, described in [17].
We consider a multilayer nanoparticle. Due to spherical
symmetry, we decompose the field into two parts: Trans-
verse Electric (TE) and Transverse Magnetic (TM). Both
these potentials satisfy the Helmholtz equation, and each
scalar potential can be decomposed into a discrete set of
spherical models:

φlm = Rl(r)P
|m|
l (cos θ)eimΦ (2)

For a specific wavelength, because the dielectric constant
is constant within each shell, Rl(r) is a linear combi-
nation of the first and second kind of spherical Bessel
functions within the two respective shells.

Rl(r)|i= Aijl(kir) +Biyl(kir) (3)

We can solve for these coefficients with the transfer ma-
trix of the interface.Thus we can calculate the transfer
matrix of the whole system, by simply telescoping these
solutions to individual interfaces

[

An+1

Bn+1

]

= Mn+1,nMn,n−1...M3,2M2,1

[

A1

B1

]

= M

[

A1

B1

]

(4)
For the first shell, the contribution from the second kind
of Bessel function must be zero because the second kind
of Bessel function is singular at the origin. Thus, A1 = 1,
B1 = 0. The coefficients of the surrounding layer are
given by the transfer matrix element An+1 = M11 and
Bn+1 = M21. To find the coefficients of this surrounding
medium, we write the radical function as a linear combi-
nation of spherical Hankel functions:

Rl(r)|n+1= Cn+1h
1
l (kn+1r) +Dn+1h

2
l (kn+1r) (5)

Here, h1
l (kn+1r) and h2

l (kn+1r) are the outgoing and
incoming waves respectively, using the convention that
fields vary in time as e−iωt. The reflection coefficients rl
are given by:

rl =
Cn+1

Dn+1

=
M11 − iM21

M11 + iM21

(6)
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By solving for the reflection coefficients rl, we can find
the scattered power in each channel:

P sca
l,m=±1 =

λ2

16π
(2l + 1)I0|1− rl|

2 (7)

Lastly, by summing over all channels contributions of the
TE and TM polarization (both of the σ terms), we find
the total scattering cross-section:

σsca =
∑

σ

∞
∑

l=1

λ2

8π
(2l + 1)|1− rσ,l|

2 (8)

For practical reasons, the l summation did not go to ∞.
Instead, before the training data was generated, the or-
der of l was slowly increased until the spectrum had con-
verged and adding more orders would not change the
result. For a typical calculation here, the order ranged
from 4 l terms, to 18 l terms.

III.2. Inverse Design with NN’s

The arrangement of the network was a fully connected
dense feedforward network. This smallest network we
used had four layers, with 100 neurons per layer, which
gave the network around 50,300 parameters. The net-
work size was increased as the number of layers increased,
with the maximum size being four layers with 300 neu-
rons each for the particle with ten alternating layers. The
input to this network was the thickness of each layer of
the particle (with the fixed materials), and the output
was the spectrum sampled at 200 points between 400 to
800 nanometers. We train the network using a batch size
of 100, for around 16,000 epochs on most trials. The
cost function that we use is the mean-square-error be-
tween each point on the spectrum and the 200 dimen-
sional output of the neural network. This cost function
was changed for the training versus the inverse design.

ACKNOWLEDGMENTS

This material is based upon work supported in part by
the National Science Foundation under Grant No. CCF-
1640012, as well as in part supported by the Semicon-
ductor Research Corporation under Grant No. 2016-EP-
2693-B. It is also supported in part by the U. S. Army
Research Laboratory and the U. S. Army Research Of-
fice through the Institute for Soldier Nanotechnologies,
under contract number W911NF-13-D-0001, as well as
in part by the MRSEC Program of the National Science
Foundation under award number DMR - 1419807. The
authors furthermore thank Sam Peurifoy for reviewing
and revising work.

IV. SUPPLEMENTALS

IV.1. Details for the Comparison of Neural

Networks with Inverse Design Algorithms

This section describes the results and details involved
in comparing the inverse design runtimes.
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FIG. 6: Comparison of inverse design runtime versus
complexity of the nanoparticle. The runtime of the
numerical optimization is seen to increase more quickly than
that of the neural network. The simulation is fit with a
power fit (that finds an exponent of 4.5), and the neural
network is fit with a linear fit.

To compare the runtime of the neural network versus
the numerical methods, we first had to train the networks
to a given error threshold as described above. To allow
for approximately the same error threshold even as the
particles became more complex, the size of the Neural
Network was increased as we considered more complex
particles. The two layer particle had 30,000 parameters,
while the four layer had 46,000 and the six layer had
151,000. Note that equivalent performance may possi-
bly be achieved with much fewer parameters, as these
architectures were not heavily optimized.
To establish a robust and comparable ‘accuracy cutoff’

for the increasing complexity of the particles, we looked
at the error rate of the numerical inverse design for the
simulation. We did this because ultimately we wanted
to perform a comparison of the neural network to the
numerical inverse design on equal footing. Thus, we en-
sured that the neural network’s accuracy cutoff during
the training stage was below the error rate for the numer-
ical inverse design. Effectively, we ran the numerical in-
verse design for five different particle configurations with
the same number of layers, then found what the mean
error rate of these tests were. This provided a robust
and comparable ‘accuracy cutoff’ that we could then use
to figure out what the size of the neural network should
be for each nanoparticle.
To get an equal footing comparison — and trying to

not bias our results to any particular choice of optimiza-
tion method — the comparison described here used the
same inverse design optimization function for both the
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the sample space of spectra was much broader, and thus
the results from the network were more attuned for the
optimization. The sharper peaks allowed the network to
find much more optimal configurations of the particle.
These results demonstrate that the network is robust

even with sharp features in the spectrum, and further-
more that even with large sample spaces, the network is
able to function as an optimization tool and create unique
geometries.
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