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Although social anxiety and depression are common, they are often underdiagnosed and undertreated, in part due to difficulties
identifying and accessing individuals in need of services. Current assessments rely on client self-report and clinician judgment,
which are vulnerable to social desirability and other subjective biases. Identifying objective, nonburdensome markers of these
mental health problems, such as features of speech, could help advance assessment, prevention, and treatment approaches.
Prior research examining speech detection methods has focused on fully supervised learning approaches employing strongly
labeled data. However, strong labeling of individuals high in symptoms or state affect in speech audio data is impractical, in
part because it is not possible to identify with high confidence which regions of a long speech indicate the person’s symptoms
or affective state. We propose a weakly supervised learning framework for detecting social anxiety and depression from
long audio clips. Specifically, we present a novel feature modeling technique named NN2Vec that identifies and exploits the
inherent relationship between speakers’ vocal states and symptoms/affective states. Detecting speakers high in social anxiety
or depression symptoms using NN2Vec features achieves F-1 scores 17% and 13% higher than those of the best available
baselines. In addition, we present a new multiple instance learning adaptation of a BLSTM classifier, named BLSTM-MIL.
Our novel framework of using NN2Vec features with the BLSTM-MIL classifier achieves F-1 scores of 90.1% and 85.44% in
detecting speakers high in social anxiety and depression symptoms.
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1 INTRODUCTION

Social anxiety and depression are common mental health problems. Social anxiety disorder involves an intense
fear of negative evaluation or rejection in social or performance situations. People with this disorder persistently
avoid such situations, or endure them with significant distress, and in some cases experience strong physical
symptoms such as rapid heart rate, nausea, sweating, and even full-blown panic attacks [4, 64]. The disorder
occurs in about 7% of U.S. adults in a given year and in about 11% at some point in their lives [43]. Major depressive
disorder is marked by persistent sadness, loss of interest or pleasure in activities, and other symptoms such as
appetite and psychomotor changes, sleep disturbance, loss of energy, feelings of guilt or worthlessness, and
reduced concentration [4, 64]. It is the leading cause of disability worldwide [17] and increases an individual’s
risk of suicide [32, 58]. About 7% of U.S. adults have the disorder in a given year, and about 14% have it at some
point in their lives [43].

Because there is no objective measure or reliable biomarker of the severity of social anxiety or depression [61],
gold-standard assessments for these disorders remain rooted in client self-report and clinician judgment, risking
a range of subjective biases. Clinician rating scales (e.g., Hamilton Rating Scale for Depression [30]) require
training, practice, and certification for inter-rater reliability [61], and client self-reports (e.g., Social Interaction
Anxiety Scale ,SIAS [57]) rely on clients’ ability and willingness to communicate their thoughts, feelings, and
behaviors when distressed or impaired, which can alter their ability and motivation to self-report [4]. Further,
distress from these disorders is often difficult for others to detect. For example, socially anxious people rate
their own social performance more critically than non-anxious people, even though their actual performance is
not necessarily poorer [1, 71, 87]. This suggests that social anxiety can be salient to the person but not evident
to others. Socially anxious people’s social avoidance and safety behavior to reduce or hide their anxiety [100]
also can limit others’ knowledge of their distress. Thus, relying only on subjective approaches for assessment is
inadequate for reliable diagnosis, which is problematic given the high prevalence of social anxiety and depression
and the vast numbers who receive no help [13]. In the United States, 50% of people with social anxiety and 22%
of people with depression never talk with a provider about their symptoms [95]. Moreover, general practitioners
correctly identify social anxiety and depression in only 24% and 50% of true cases [60, 99].

Health-care providers would benefit from objective indicators of social anxiety and depression symptoms that
require no extensive equipment and are readily accessible and not intrusive or burdensome to complement their
self-report, interview, and other assessment modalities. Indicators of social anxiety and depression symptoms
could improve diagnostic clarity and treatment planning, thereby helping ensure that people receive the most
appropriate interventions. Moreover, symptom indicators that providers can assess remotely could help close
the treatment gap [41] by identifying individuals who may be in need of prevention, assessment, or treatment
resources, which could be delivered in person or via eHealth modalities [90]. People with social anxiety may
otherwise not seek treatment because, for example, they do not know where to find it, or fear discussing their
symptoms with providers [63], and people with depression may not seek treatment in part because they think
they can handle or treat their symptoms on their own or do not view their symptoms as pathological [20].
Furthermore, the ability to remotely detect affective states would help providers monitor instances of high affect
both between sessions and after the end of treatment. The latter is especially important given the high relapse
rates for formerly depressed individuals. Such passive outcome monitoring (e.g., [35]), requiring minimal effort
from the client, could help providers identify when the client is distressed and might benefit from a just-in-time
intervention or prompt providers and clients to consider scheduling a booster session.

Studies have shown that prosodic, articulatory, and acoustic features of speech can be indicative of disorders
such as depression and social anxiety [14, 23, 54, 55, 80, 81, 83, 94], and research on the objective detection and
monitoring of mental disorders based on measurable behavioral signals such as speech audio is proliferating
[15, 16, 24, 26, 86]. State-of-the-art works on detecting mental disorders or emotional states (e.g., anxious vs. calm)
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from audio data use supervised learning approaches, which must be “trained” from examples of the sound to be
detected. In general, learning such classifiers requires annotated data, where the segments of audio containing
the desired vocal event and the segments not containing that event are clearly indicated. We refer to such data as
“strongly labeled.” However, diagnosing mental disorders is a complicated and time consuming procedure that
requires an annotator with a high degree of clinical training. In addition, strong labeling of mental disorders in
speech audio clips is impractical because it is impossible to identify with high confidence which regions of a
conversation or long speech are indicative of disorder. Supervised learning, hence, is a difficult task.

A solution is to collect long speech audio samples from individuals already diagnosed with or high in symptoms
of specific mental disorders from situations that may heighten expression of the symptoms of respective disorders.
This type of data is considered “weakly labeled,” meaning that although they provide information about the
presence or absence of disorder symptoms, they do not provide additional details such as the precise times in the
recording that indicate the disorder, or the duration of those identifying regions. We strove to use weakly labeled
data to: (a) identify speakers high in social anxiety or depression symptoms, and (b) identify speakers’ state affect
(anxious vs. calm). We expected that recordings from individuals high in symptoms would have regions indicative
of those symptoms (i.e., regions present for persons high, but not for persons low, in symptoms). We also expected
that recordings from individuals who reported a peak state of anxiety would have regions indicative of that state
(i.e., regions present for persons with, but not for persons without, peak anxiety).

This approach falls under the general rubric of multiple instance learning (MIL). MIL is a weakly supervised
learning approach in which labels for individual instances are unknown; instead, labels are available for a
collection of instances, usually called “bag.” A positive bag has at least one positive instance (indicating high
symptoms or peak anxiety) and may contain negative instances (label noise), whereas a negative bag contains
negative instances only. In this paper, we break weakly labeled audio clips into several small, contiguous segments,
where the segments are the instances and the audio clip is the bag.

To our knowledge, no previous research has identified individuals high in symptoms of a mental disorder or
detected state anxiety from weakly labeled audio data. The contributions of this paper are:

e We present a novel weakly supervised learning framework for detecting individuals high in symptoms of
two mental disorders (social anxiety and depression) from weakly labeled audio data, adding a practical
complement to health-care providers’ assessment modalities.

e We also use our approach to detect state anxiety, given the importance of determining when a person is
especially anxious, which can help determine when a person would benefit from just-in-time interventions.

e We propose a novel feature modeling technique named NN2Vec (section 3.3) to generate low-dimensional,
continuous, and meaningful representation of speech from long weakly labeled audio data. All existing
techniques (e.g., I-vector, audio words, Emo2Vec) are designed for strongly labeled data; hence, they fail
to meaningfully represent speech due to the significant label noise in weakly labeled audio. NN2Vec
identifies and exploits the inherent relationship between audio states and targeted vocal events. Identifying
individuals high in social anxiety and depression symptoms using NN2Vec achieved on average F-1 scores
17% and 13% higher, respectively, than those of the other techniques (sections 6.1.2, 6.2, and 7).

e MIL adaptation performs significantly better than supervised learning classifiers (where the individual
instance labels are ambiguous), which fall short of generating an optimal solution due to label noise in
weakly labeled data [8]. Studies have shown that emotion or mental disorder can be perceived by the
temporal dynamics across speech states [50, 56, 76, 103]. To generate a sequential deep neural network
solution that comprehends the temporal properties in speech while also being adaptive to noise in weakly
labeled long audio data, we developed a novel MIL adaptation of bidirectional long short term memory
classifier, named BLSTM-MIL (section 4.1).
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e Because no existing dataset contained spontaneous speech labeled with speakers high in social anxiety, we
built a dataset consisting of 3-minute samples of weakly labeled spontaneous speech from 105 participants.
Our approach achieves an F-1 score of 90.1% in detecting speakers high in social anxiety symptoms.
Additionally, our approach achieves an F-1 score of 93.4% in detecting anxious versus calm states based on
participants’ self-reported levels of peak emotion during the speech.

e We analyzed data from a publicly available Distress Analysis Interview Corpus (DAIC-WOZ) database [92]
that contains weak labels of participants’ mental disorder (depressed vs. non-depressed) on 10-15 minute
interviews. Our approach achieves an F-1 score of 85.44% in detecting speakers with depression, which is
33% higher than that of the best state-of-the-art work evaluated on this dataset (section 7).

2 RELATED WORK

Human event detection systems from speech can be split into three parts: feature extraction, modeling, and
classification. Several combinations of features have been investigated for vocal event detection. These features
can be divided into two groups according to their time span: low-level descriptors (LLDs) are extracted for each
small time frame (16-45 ms is typical), such as Mel-frequency cepstral coefficients, energy, zero crossing rate,
pitch, spectral centroid, reduced speech, and reduce vowel space [14, 21, 29, 77, 79, 85]. By contrast, high-level
descriptors (HLDs), such as the mean, standard deviation, quartile, flatness, or skewness, are computed using the
LLDs extracted for the whole audio signal or for an audio segment covering several frames [70, 77, 78, 93].

The modeling stage of an audio analytic system obtains a representation of the speech that reflects the target
event information. It is expected that task performance will improve using input representation that better
understands the speech-to-task relation. Different modeling approaches in the literature use different features.
When dealing with LLDs, different techniques have been borrowed from other speech recognition tasks, such as
supervised and unsupervised subspace learning techniques. Many of these modeling techniques apply windowing
to the speech.

Recent studies on speech signal processing have achieved improved accuracy using the I-vector representation
of speech [25, 39]. The I-vector extraction, originally developed for speaker recognition, consists of two separate
stages: UBM state alignment and I-vector computation. UBM state alignment identifies and clusters the similar
acoustic content (e.g., frames belonging to a phoneme) to allow the following I-vector computation to be less
affected by the phonetic variations between features. However, noise and channel variation could substantially
affect the alignment quality and, thus, the purity of extracted I-vectors. Recent studies on detecting emotion
[53] and depression [69] have used I-vector modeling from strongly labeled speech data. The I-vector technique
estimates the difference between real data and average data. Because majority portions of positive samples in
weakly labeled audio data are actually average data, I-vector computation performs poorly.

Recently the audio-codebook model [65, 72] has been used to represent the audio signal in windows with “audio
words” for vocal event detection. Several studies on text (e.g., word2vec) and language model representations
[5, 27, 59, 74] have used various structures of shallow neural networks (one or two hidden layers) to model
features. A recent study introduced an adaptation of the word2vec [74] approach, named Emo2Vec [76] for vocal
emotion detection, which generates similar feature representations for small frames that appear with similar
context (neighbor frames) for a particular targeted emotion. This paper proposes a new and simple shallow
neural network based feature modeling technique, named NN2Vec, to generate meaningful feature representation
for audio event detection from long weakly labeled audio data. We consider the I-vector, audio-codebook, and
Emo2vec feature modeling techniques as baselines for comparison (sections 6.1.2, 6.2, and 7).

Various types of supervised classifiers have been used for vocal event detection, including hidden markov
models [51], gaussian mixture models [55, 88, 104], support vector machines (SVM) [2, 55, 77], k-nearest neighbor
[73, 77], and many others [68].
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With the recent success of deep learning approaches in speech recognition [31], research on audio event
detection studies is shifting from conventional methods to modern deep learning techniques [7, 49]. Several
studies [36, 40, 75] have used the convolutional neural network (CNN) to identify the presence of vocal events.
The CNN learns filters that are shifted in both time and frequency. Using these filters, the CNN exploits spatially
local correlation by enforcing a local connectivity pattern between neurons of adjacent layers: Each neuron is
connected to only a small region of the input volume. However, conventional CNNss fail to capture long temporal
context information. We consider the CNN as another baseline.

Several studies on detecting emotion and mental disorder from speech [50, 56, 76, 103] have shown that
temporal properties in a speech signal provide important information about emotion and mental disorder and
have used sequential classifiers such as the recurrent neural network (RNN) and the long short term memory
classifier (LSTM). Both the RNN and the LSTM have feedback loops that let them maintain information in
“memory” over time. But the LSTM outperforms the RNN [10], as it does better at avoiding the vanishing gradient
problem and captures longer temporal context information. Given that LSTM performs better for long audio data,
we consider the bidirectional LSTM as a baseline.

Some recent studies [52, 56] have combined a CNN feature extraction architecture with sequential LSTM, an
approach named CNN-LSTM that can learn to recognize and synthesize sequential dynamics in speech. In the
CNN-LSTM, the CNN acts as the trainable feature detector for the spatial signal. It learns features that operate
on a static spatial input (windows) while the LSTM receives a sequence of high-level representations to generate
a description of the content. We consider the CNN-LSTM as a baseline.

Due to the presence of label noise (discussed in section 4.1), conventional neural networks fall short of
generating an optimal solution when trained on weakly labeled data. To generate a deep neural network solution
that captures the temporal properties in speech while also being adaptive to noise, we developed a MIL adaptation
of BLSTM (BLSTM-MIL). Although no study has used weakly supervised learning to identify vocal events in
weakly labeled speech data, several recent studies [37, 46, 47, 89] have detected rare environmental sound events
(e.g., car horn, gun shot, glass break) from weakly labeled audio clips (where the event is a small fraction of a
long environmental audio clip). Two of these studies [46, 47] used MIL approaches, the mi-SVM and the deep
neural network-based MIL (DNN-MIL), for environmental audio event detection. We consider the mi-SVM and
the DNN-MIL as baselines (section 6.1.3 and table 7).

Some recent studies on social anxiety and depression monitoring systems [6, 9, 91] have used smartphone
sensors, text information, call information, and GPS data to understand how depression or social anxiety levels are
associated with an individual’s mobility and communication patterns. To our knowledge, no study has identified
whether a speaker belongs to a high versus low social anxiety group or is experiencing an anxious versus calm
vocal state from audio data. Although two prior studies [97, 98] have found a strong correlation between vocal
pitch (F0) and social anxiety and one study [48] has shown that pitch (F0) and energy are indicative of state
anxiety, we used pitch and energy as two of our LLDs.

No study on the detection of depression from speech audio signals [15, 16, 24, 26, 86] has applied weakly
supervised learning approaches to weakly labeled audio data. These studies have used LLDs [26, 86] such as pitch,
RMS, MFCC, and HNR as features and SVMs [62, 86], hidden Markov models [16], and linear support-vector
regression models [26] as supervised learning classifiers. A depression detection approach evaluated on the
DAIC-WOZ database [92] used I-vector features with an SVM classifier. Recently, another depression detection
study [56] named DepAudioNet evaluated on this database applied a CNN-LSTM classifier using LLD. We consider
the two most recent depression detection approaches evaluated on the DAIC-WOZ dataset [56, 62] as baselines.
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Fig. 1. Conversion of audio signal to sequence of audio words using audio-codebook method

3 FEATURE MODELING

In the following sections, we discuss extracted LLDs from raw audio signal (section 3.1) and use an audio-codebook
approach to map the audio signal to audio words (section 3.2) and our new NN2Vec feature modeling approach
(section 3.3) to reflect the audio information for MIL algorithms. Our novel MIL solution uses NN2Vec with a
new BLSTM-MIL (section 4.1) classifier to detect vocal events from weakly labeled data.

3.1 Audio Features

Our approach segments the audio clips into overlapping windows and extracts a feature set from each window.
Extracted feature sets represent the inherent state of audio from that window. Based on the previous studies on
audio features associated with human vocal event detection (section 2), we considered the LLDs shown in the left
column of table 1, as well as their delta and delta-delta coefficients. Each window is segmented into overlapping
25-ms frames with 10-ms overlap, from which LLDs are extracted. Next, the 8 functionals shown in the right
column of table 1 are applied to extract the audio window representation. In total, 272 features are extracted
from each of the overlapping windows. We evaluated window size from 500 ms to 10 seconds.

Table 1. Low-level descriptive features and high-level functionals; std: standard deviation; var: variance; dim: dimension

Features Functionals
Zero crossing rate & A (2-dim)
Energy & A (2-dim) Min, Max, std,
Spectral centroid & A (2-dim) | var, mean, median,
Pitch & A (2-dim) skew, and kurtosis
MFCC & A (26-dim)

3.2 From Audio to Words
We use the audio-codebook model [65, 72] to represent the audio signal in a window with audio words. The
audio words are not words in the typical, semantic meaning of words, but rather fragments of the audio signal
represented by features. We need robust features to represent the audio state in a window. Inspired by [45],
we use a GMM-based clustering method to generate the audio codebook from the functional representations
mentioned in section 3.1.

To generate the codebook, a GMM-based model is trained on randomly sampled data from the training set.
The resulting clusters form the codebook audio words. Once the codebook is generated, acoustic HLDs within a
certain range of the audio signal are assigned to the closest audio words (GMM cluster centers) in the codebook.
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The discriminating power of an audio-codebook model is governed by the codebook size. The codebook size is
determined by the number of clusters C generated by the GMM. In general, larger codebooks are thought to be
more discriminating, whereas smaller codebooks should generalize better, especially when HLDs extracted from
frames can be distorted with distance, environmental noise, and reverberation, as smaller codebooks are more
robust against incorrect assignments. However, a codebook that is too small is too generic, and, hence, unable to
capture the change in speech states in various small frames. Hence, through the audio-codebook approach, audio
clips are converted to a sequence of audio words.

3.3 NN2Vec Approach

Human emotion or mental states are represented by a sequence of audio states [52, 56, 76], which are represented
by audio words. Our assumption is that regions (subsequences of audio words) indicative of targeted vocal events
(high symptom/disorder classification or state anxiety) are common (occur with high probability) across positive
audio clips, and not present or rarely present (occur with low probability) in negative audio clips. MIL requires
that the feature modeling learn the inherent relation between audio states and vocal events (positive class) and
that the generated feature representations indicate the positive class. Conventional feature modeling (audio word,
I-vector, etc.) techniques cannot learn this relation effectively from weakly labeled long audio clips (section 6.1.2).

To identify and exploit the inherent relationship between audio states and vocal events from weakly labeled
data, we developed a neural network-to-vector conversion (NN2Vec) approach that generates an N dimensional
dense vector representation for each of the audio words. The contributions of NN2Vec are:

o Representational efficiency: Audio word representation relies on the notion of one hot encoded vector,
where an audio word is represented by a sparse vector with a dimension equal to the size of the vocabulary
with a 1 at the index that stands for the word and 0s everywhere else. Hence, the feature representation
dimension is significantly high, which is difficult for a classifier to optimize using limited weakly labeled
data. NN2vec is a shallow neural network model that generates a fixed-length dense vector for each of
the audio words. This means that the model learns to map each discrete audio word representation (0
through the number of words in the vocabulary) into a low-dimensional continuous vector space from their
distributional properties observed in training. This is done by a relatively straightforward optimization
that starts with a more or less random assignment and then progressively reduces the overall error with a
gradient descent method. We evaluated with codebook sizes V from 500 to 5000 and found that the best
NN2Vec dimension N is between 20 and 50, based on V. Hence, compared to high-dimensional sparse
audio word features, NN2Vec features represent audio states with significantly low-dimensional distributed
representation.

e Mapping efficiency: An interesting property of NN2vec vectors is that they not only map the states
of audio (audio words) in a smaller space, but also encode the syntactic relationships between audio
states. NN2Vec vectors are similar for audio states with similar probability of occurring in positive audio
clips. Neural networks typically respond in a similar manner to similar inputs. Generated distributed
representations are designed to take advantage of this; audio states that should result in similar responses
are represented by similar NN2Vec vectors, and audio states that should result in different responses are
represented by quite different NN2Vec vectors. Hence, identification of sequences of states indicative of a
mental disorder should be easier for a weakly supervised classifier.

o Continuity: Representing states in continuous vector space allows powerful gradient-based learning
techniques such as backpropagation to be applied effectively. Previous studies [66, 67] have shown that
distributed representation of input features improves classification performance compared to discrete
representation.
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Fig. 2. NN2Vec fully connected neural network

3.3.1 NN2Vec Vector Generation. This subsection describes our NN2Vec feature generation approach, where
NN2Vec vector representations of audio states are learned by a fully connected neural network. Later sections
discuss how our NN2Vec neural network model learns similar vector representations for audio words with similar
probability of occurring in positive audio clips. Our training set contains (B;,Y;) audio clip-label pairs, where the
ith audio clip is denoted as B; and its corresponding label Y; € {1,0}. We segment these clips into overlapping
windows, s;; (jth window in audio clip B;) and assign an audio word-label pair (w;;, y;;) to each of them. Here,
w;j is the audio word extracted through the audio-codebook approach (section 3.2) from window s;; and y;; = Yj,
label of the respective audio clip. Considering that a codebook size (section 3.2) is V, these audio words w;; are
converted to a V dimensional one-hot encoded vector X;;. Suppose audio word w;; is the /th audio word in the
codebook. Then its one-hot vector representation would be: X;; = [x;jr], where k = 1...V and x;% = 1, only if
k =l and x;jx = 0 otherwise. These one-hot vector-segment level label pairs (X;;, y;;) are our training input set
for the NN2Vec vector generation model.

Figure 2 shows our NN2Vec fully connected neural network. Here, the input layer is V' dimensional, corre-
sponding to one-hot vectors, and the output layer is a 2-dimensional softmax layer. If the hidden layer has N
neurons, generated NN2Vec vectors would be N dimensional. We train the network with (X;;, y;;) pairs from the
training set. The weights between the input layer and the output layer of the NN2Vec network can be represented
by a V' X N matrix W. Each row of W is the N-dimension vector. After training each row r of W is our NN2Vec
vector representation of the rth audio word in the codebook (section 3.2). Through this approach, if two audio
words occur with similar frequency (hence, similar probability) in positive class examples, their corresponding
rows in W, hence generated NN2Vec vectors would be similar.

3.3.2 Learning Vector Representations Through NN2Vec Model. This subsection discusses the approach through
which the NN2Vec model learns similar vector representations for the audio words that occur with similar
probability in a targeted audio event (positive class examples). Figure 3 shows the simplified form of the NN2Vec
network model. Suppose the codebook size (section 3.2) is V and the hidden layer size is N, which means the
generated NN2Vec vector size would be N. All the layers are fully connected layers. The input is a one-hot
encoded vector, which means that for a given input audio word, only one out of V units, {x1, x, ..., xy }, will be
1, and the rest will be 0.

The weights between the input layer and the hidden layer can be represented by a V X N matrix W. Each row
of W is the N-dimensional vector representation v,, of the associated audio word of the input layer. Given an
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audio word wy, x; = 1 and x, = 0 for k' # k, and:

h=Wlx=Wg =0y, (1)

, which is the k row of W to h. v,,, is the vector representation of the input audio word wy .
There is a different weight matrix W' = {w;. j} from the hidden layer to the output layer, which is a N x 2
matrix. Using these weights, we calculate the score u; for each class.

’

T
uj =0, h ()
Here, v;j is the jth column of matrix W'. The NN2Vec architecture uses softmax, a log-linear classification model
to calculate the posterior probability, which is a multinomial distribution.
exp(u;) exp(ijvak)

plcjlwe) = y; = = (3)

2 2
Xo_expluy) X exp(v'cj, T0y,)

Here, y; is the output of the j unit in the output layer (in total 2 classes), v,,, is the vector representation of the
input audio word wj and v;j is the representation of class c;.

Weight updates of this network are performed by backpropagation [33] where the training objective is to
maximize the conditional probability of observing the actual output class co, given the input audio word wy (as
shown in equation 3) with regard to the weights. Here, O denotes output class and I denotes the input audio
word index. The loss function is E = —log p(co|wr), which we want to minimize, and the network prediction
error of jth-output unit e; = g—fj = y; — t; is the derivative of E with regard to the jth output layer unit’s network
input u;. Here t; will only be 1 when the j-th unit is the actual output class, otherwise t; = 0.

Using stochastic gradient descent, the weight-updating equation for hidden layer to output weights (W) is:

’ ’ ld
w " = w7 —n.ej.hy (4)
or
v, "V = ijOZd —n.ej.hforj=1,2 (5)
,where 1 > 0 is the learning rate, h = 051, and v;j is the vector representation of class j. Hence, if y; > t;, then a

portion of the hidden vector & (i.e., v,,,) is subtracted from v;j, making v;j further away from v,,,; if y; < t; (only
when t; = 1;ie, ¢; = cp), then a portion of the hidden vector & (i.e., v,,,) is added to U;O (here, j = O), making
v/co closer to v,,,.
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Moreover, the weight-updating equation for input layer to the hidden layer weights (W) is:

,UWInew — UWIOld _ T]EHT (6)
Here, v,,, is a row of W, the input vector representation of the audio word I, and is the only row of W whose
derivative on the loss function (3—5,) is non-zero, given that inputs of the NN2Vec model are one hot encoded
vectors. Hence, all the other rows of W will remain unchanged after this iteration, because their derivatives are
zero. Also, EH; = Z?zl ej.w;. » Where w; ; 1s the i-th hidden layer unit to j-th output layer unit weight. Hence,
vector EH is the sum of output vectors of all classes (two in our case) weighted by their prediction error e;.
Therefore, equation 6 essentially adds a portion of two output vectors to the input vector of the input audio word.

The movement of the input vector of wy is determined by the prediction error; the larger the prediction error,
the more significant effects an output vector of a class will exert on the movement on the input vector of audio
word. If, in the output layer, the probability of a class ¢; being the output class co is overestimated (y; > t;), then
the input vector of the audio word wy will tend to move farther away from the output vector representation of
class c;; conversely, if the probability of a class c; being the output class co is underestimated (y; < t;), then the
input vector of the audio word w; will tend to move closer to the output vector representation of class c;. If the
probability of class c; is fairly accurately predicted, there will be very small movement on the input vector wy.

As the model parameters update iteratively in each epoch by going through audio word to target class pairs
generated from training data, the effects on the vectors accumulate. The output vector representation of a class c
is moved back and forth by the input vectors of audio words w which occur in that class (¢) in the training data
(equation 5), as if there were physical strings between the vector of ¢ and the vectors of audio words. Similarly, an
input vector of an audio word w can also be considered as being moved by two output vectors (equation 6). The
equilibrium length of each imaginary string is related to the strength of co-occurrence between the associated
audio word and class pair.

Given our proposed NN2Vec is a binary softmax classification model, for an audio word wg, the p(ci|wy) =
1 — p(co|wk ). Here, c; is the positive and ¢, is the negative class. Hence, we can consider that during training an
input vector of an audio word w will be moved by an output vector of positive class c¢;. After many iterations,
the relative positions of the input (for audio words) and output (for class) vectors will eventually stabilize. As
stated before, the relative position or similarity of these input-output vector pairs depends on the frequency of
these pairs in training data, which means the probability of an audio word wy occurs in class ¢; (positive event),
plei|w).

Now, consider two audio words w,, and wy that occur with similar probability in class c;. Their relative vector
representation will be similar compared to an output vector of class c¢;. That means the vector representations of
w, and wg will be similar. Hence, all the audio words that occur with similar probability to occur in positive class
audio clips (in training set), would have similar NN2Vec vector representation through our proposed NN2Vec
model approach.

4  MULTIPLE INSTANCE LEARNING SOLUTION

Our tasks are binary classification tasks where labels are either —1 or 1. MIL is a kind of weakly-supervised
learning. Each sample is in the form of labeled bags, composed of a wide diversity of instances associated with
input features. Labels are attached to the bags, rather than to the individual instances within them. A positive bag
is one that has at least one positive instance (an instance from the target class to be classified). A negative bag
contains negative instances only. A negative bag is thus pure, whereas a positive bag is impure. This assumption
generates an asymmetry from a learning perspective as all instances in a negative bag can be uniquely assigned a
negative label, which cannot be done for a positive bag (which may contain both positive and negative instances).
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We represent the bag-label pairs as (B;, ;). Here, the ith bag is denoted as B;, of size [;, and the jth instance in
the bag as x;; where j € 1...[;. The label for bag i is Y; € {-1, 1}, and the label for instance x;; is y;;. The label
y;; for instances in bag B; can be stated as:

Yi=_1 - y,-jz—IVx,-jeBl- (7)

Y; =1 = yj;; = 1 for at least one x;; € B; (8)

This relation between Y; and y;; is: Y; = max;{y;;}

Hence, the MIL problem is to learn a classification model so that given a new bag B; it can predict the label Y;.

To classify (binary) our weakly labeled data, we break the audio clips into several small contiguous segments.
Considering reasonably-sized segments, it is safe to assume that if an audio is labeled as a positive class (anxious
mental state above 0 based on self-reported peak anxiety during the speech or high symptom/disorder classification
based on screening measure), then at least one of the segments is a positive example, containing a region or pattern
indicative of the positive class. On the contrary, if an audio is labeled as a negative class, none of the segments
will contain a region or pattern indicative of positive class (i.e., hence all segments are negative examples). Hence,
according to the MIL definition, the audio clips can be treated as bags B; and the segments as instances x;; of the
corresponding bag. From the arguments just stated, if the weak information identifies the presence of a positive
class in an audio segment, then the label for the corresponding bag is +1. Otherwise, it is -1.

A variety of MIL algorithms have been proposed in the literature. This paper considers two MIL algorithms as
baselines and presents one novel BLSTM-MIL algorithm for MIL. The first baseline algorithm (miSVM) [3] is
based on Support Vector Machine (SVM). The standard SVM algorithm is modified to work in the MIL domain.
Although a few other formulations of SVM for MIL domain have been proposed [19], the miSVM is the first SVM
formulations for MIL and performs well on a variety of MIL tasks. The second baseline algorithm (DNN-MIL)
[101] is a deep neural network modified for MIL domain. These MIL classifiers [3, 19, 101] extract a feature vector
from each of the segments that are considered to be a representation of an instance. Hence, these classifiers
[3, 19, 101] fail to capture the temporal dynamics of speech states, which is indicative of vocal events [52, 56, 76].
In the following section, we discuss our novel MIL method (section 4.1) based on a long short-term memory
classifier.

4.1 BLSTM-MIL

Comprehension of temporal dynamics of states throughout a speech segment (which contains the region or
pattern indicative of high symptom/disorder classification or state anxiety) requires long-term dependency. The
BLSTM classifier takes sequential inputs where the hidden state of one time step is computed by combining the
current input with the hidden state of the previous time steps. They can learn from current time step data as well
as use relevant knowledge from the past to predict outcomes. Hence, we present a BLSTM-MIL classifier that
uses the temporal information of speech states within an audio segment (which represents an instance) to learn
the instance label.

Our BLSTM-MIL classifier is shown in figure 4. An audio clip is segmented into overlapping windows, and
feature sets (i.e., NN2Vec vectors) are extracted from each of these windows. In this approach, the feature sets
extracted from the windows represent the state of audio from the respective windows. Feature sets from m
consecutive windows comprise an instance x;; of bag B;. For example, the feature set of the kth window of jth
instance x;;, from bag B; is denoted by f;jx, where k = 1...m. Hence, each instance (MIL representation of a
segment) contains representations of audio states (feature sets) as well as their changes (sequence of feature
sets) throughout time. In figure 4, m = 4 with overlapping size 2, which means 4 consecutive feature sets
(representation of audio states of 4 consecutive windows) comprise an instance x;;.
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Fig. 4. Bidirectional LSTM multiple instance learning classifier (BLSTM-MIL)

A sequence of feature sets fjjx, with k = 1...m, for each instance x;; in a bag B; is first fed into the 2-
layer BLSTM network with an activation function (in this paper we use sigmoid activation [84]). Through this
architecture, we can efficiently make use of past features (via forward states) and future features (via backward
states) for a specific time window. Hence, we can capture the forward and backward temporal progression of
audio states within a time window (which represent the instance x;;). The forward and backward passes over the
unfolded network over time are carried out in a similar way to regular network forward and backward passes,
except that we need to unfold the hidden states for all time steps. We do forward and backward propagation for
entire audio clips, and we only need to reset the hidden states to 0 at the beginning of each audio clip.

The last layer of the network is a MIL Max Pooling Layer. The MIL Max Pooling layer takes the instance level
probabilities o;; for instances x;; of a bag B; as input and predicts bag label denoted as Y7, according to the
following equation:

YP =1if mjz_ix 0jj 2 1, or Y{ = —1 otherwise 9)

According to this equation, if at least one of the instance level probabilities is greater than the threshold z, the
predicted bag level would be 1, and -1 otherwise.

The MIL adaptation of BLSTM is trained using backpropagation using the gradients of divergence shown in
equation 10 & 11.

_1 2
Ei = E(lg}i)r(li(ou) —d;) (10)

N
E= ZEi (11)
i=1

Here, d; is the desired output in response to the set of instances from bag B;. d; is set to Y;, the label assigned to
B;.

In BLSTM-MIL training, all the instances x;; of one bag B; are considered as a batch (input), and single gradient
update (updating network parameters) is performed over one batch of samples. During training, once all instances
in a bag have been fed-forward through the network, the weight update for the bag is done with respect to the
instance in the bag for which the output was maximum. The process is continued until the overall divergence E
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falls below a desired tolerance. Because all the instances of one bag are inputted as a batch (during training and
testing) and the number of instances in a batch size can vary, BLSTM-MIL is adaptable to variable size audio clips.
Conventional neural networks (e.g., DNN, CNN) are constrained on fixed size input.

In weakly labeled data, all the instances of a negative bag (training sample) are negative. But in positive training
samples, only a small portion of the instances are positive and the rest are negative (noisy instances). Training
supervised learning neural network classifiers (e.g., DNN, CNN, BLSTM) considers labels of all the instances
of a positive training bag as positive. Due to the significant amount of label noise in positive training samples,
supervised learning neural network approaches fail to achieve an optimal solution.

By contrast, in BLSTM-MIL training (equation 10), if at least one instance of a positive training bag is perfectly
predicted as positive, the error E; on the concerned bag is zero and the weights of the network will not be updated.
Therefore, the BLSTM-MIL network training avoids weight updates due to noisy instances in positive training
samples. Additionally, if all the instances of a negative bag are perfectly predicted as negative, then only the
error E; (equation 10) on the concerned bag is zero and the weights of the network are not updated. Otherwise,
the weights are updated according to the error on the instance whose corresponding actual output is maximal
among all the instances in the bag.

The ideal output of the network in response to any negative instance is 0, whereas for a positive instance it is
1. For negative bags, equation 10 characterizes the worst-case divergence of all instances in the bag from this
ideal output. Minimizing this ensures that the response of the network to all instances from the bag is forced
towards 0. In the ideal case, the system will output 0 in response to all inputs in the bag, and the divergence E;
will become 0.

For positive bags, equation 10 computes the best-case divergence of the instances of the bag from the ideal
output of 1. Minimizing this ensures that the response of the network to at least one of the instances from the
bag is forced towards 1. In the ideal case, one or more of the inputs in the bag will produce an output of 1, and
the divergence E; becomes 0.

Hence, using equations 10 and 9 during training and testing, the MIL adaptation of BLSTM treats negative
training samples as supervised learning approaches do, given that negative samples do not contain noisy labels,
but effectively avoids weight updates due to noisy labels in positive samples.

5 DATASETS

This section describes the weakly labeled audio datasets for our evaluation of high social anxiety and depression.
We discuss the evaluations themselves in sections 6 and 7, respectively.

5.1 Social Anxiety

Because no previous dataset contained sponteneous speech labeled with speakers high in social anxiety, we
built our own dataset from a laboratory-based study of a university student sample. The study was approved
by the University of Virginia Institutional Review Board (IRB protocol 2013-0262-00) and conducted under the
supervision of a licensed clinical psychologist and researcher with expertise in anxiety disorders. Because the
collected audio data contains personal content and potentially identifying characteristics, this dataset cannot be
shared with outside researchers given the need to protect confidentiality.

5.1.1 Participants. A total of 105 participants ranging from 17 to 18 years of age (M = 19.24, SD = 1.84)
completed the study in exchange for course credit or payment. Participants reported their races as 73.8% White,
13.4% Asian, 6.4% Black, 3.7% multiple, and 2.1% other (0.5% declined to answer) and their ethnicities as 90.9%
Non-Hispanic/Latino and 7.0% Hispanic/Latino (2.1% declined to answer).

Participants were selected based on a screening survey at the start of the semester that included the Social
Interaction Anxiety Scale (SIAS) and an item from the Social Phobia Scale (SPS) assessing anxiety about public
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speaking (“I get tense when I speak in front of other people” [57]). We included both measures because the
speech task required participants to have anxiety about public speaking (it is possible to have social anxiety
symptoms from fearing other social situations, such as dating, without fearing public speaking). Participants with
SIAS scores less than or equal to one-quarter of a standard deviation (17 or less) below the mean of a previous
undergraduate sample (M = 19.0, SD = 10.1; [57]) and who rated the public-speaking item as 0 (not at all), 1
(slightly), or 2 (moderately) were invited to join the Low Social Anxiety (Low SA) group; 60 enrolled. Those
scoring greater than or equal to one standard deviation (30 or greater) above the SIAS mean and who rated the
public-speaking item as 3 (very) or 4 (extremely) were invited to join the High Social Anxiety (High SA) group; 45
enrolled. This screening method or directly analogous ones were used in previous studies [11, 12]. The mean
SIAS score for the High SA group (45.9, SD = 10.6) was close to the mean reported for a socially phobic sample
(49.0, SD = 15.6; [34]), suggesting a strong analog sample.

5.1.2 Speech Task. Participants were told researchers are interested in learning how people perceive and
predict their own speaking abilities, utilizing a set of guidelines for effective speaking that the researchers
were developing. Social anxiety was not mentioned and participants did not know why they were invited to
participate (until full debriefing after the study). As part of a larger study, participants were instructed to give an
approximately 3-minute speech to the best of their ability on things they liked and disliked about college or their
hometown in front of a large cassette video camera (to make the recording salient) with a web camera used for
actual recording mounted on top. They were told the speech was being videotaped so that another researcher in
an adjacent room would be able to watch and evaluate their performance. Videotaping was done to make the
cover story as believable as possible and to heighten the participants’ anxiety (following [18]). The present paper
evaluates classification approaches only on these speeches (M length = 3 minutes). Participants were offered 1
minute to prepare their speech. If a participant paused for a significant period of time during the speech, the
experimenter encouraged (but did not force) the person to continue talking for the full time.

5.1.3 State Anxiety Rating. State affect ratings were collected using Qualtrics [82], a web-based survey data
collection tool. Right after the speech, participants were asked to report their peak level of anxiety during the
speech ("How anxious/calm did you feel at peak intensity during the speech?”) on a visual analog scale (VAS).
Participants used the computer mouse to indicate their anxiety from extremely calm (coded as -100) to extremely
anxious (coded as +100), with neither calm nor anxious in the middle; only these three labels were visible. A VAS
was used to minimize the influence that knowledge of one’s prior responses could have on subsequent ratings
(e.g., recalling a previous rating of 70). This was needed because multiple state affect ratings were obtained during
the session as part of the larger study. Only 2 of the 45 High SA participants reported feeling more calm than
anxious (i.e., a negative number); by contrast, 19 of the 60 Low SA participants reported feeling this way.

5.2 Depression

Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) is a public dataset made available as part of the
2016 Audio-Visual Emotion Challenge and Workshop (AVEC 2016) [92]. It contains audio (with transcription) and
video recordings of interviews from 189 participants in English with an animated virtual interviewer operated
via a Wizard-of-Oz paradigm [28]. Each participant was assigned a score on the Patient Health Questionnaire-8,
a self-report of depressive symptoms [44]. As part of the AVEC challenge [92], 142 participants were assigned to
one of two classes: depressed (42) or non-depressed (100); the mean scores were 15.9 and 2.75, respectively. The
present paper uses only the audio data (M length = 12 minutes, range= 10-25 minutes).
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6 EVALUATION: SOCIAL ANXIETY

This section describes our evaluations of NN2Vec and BLSTM-MIL on social anxiety data (section 5.1) for detecting
(a) speakers high in social anxiety symptoms (section 6.1) and (b) state anxiety (section 6.2).

All our evaluations were performed using leave-one-speaker-out cross-validation. To avoid overfitting, we
randomly selected 30% of the audio clips for training the audio word codebook (section 3.2) and 30% of the audio
clips to train the NN2Vec model to generate vector representations (section 3.3) in each evaluation.

6.1 Social Anxiety Group

In this section we discuss the efficiency and applicability of our solution by investigating some key questions.

6.1.1 What are beneficial parameter configurations? There are a number of parameters in our solution. Segment
(which represents an instance in MIL) size is one important parameter. If the segment size is too small, it may
contain only a fraction of the region indicating the positive class. If segment size is too large, the region indicating
the positive class can be only a small fraction of the audio segment, and feature representation and the MIL
classifier may fail to comprehend the indicative patterns.

A grid search over window size (section 3.1) from 500 ms to 10 seconds revealed that 1-second window size
performs better on average.
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Fig. 5. Evaluation for social anxiety with variable segment size

Figure 5 shows our evaluation with various MIL instance segment sizes. As shown in figure 5, the F-1 score
increases from 83.1% to 90.1% as instance segment size increases from 1 second to 13 seconds under the best
parameter configuration. From 13 to 20 seconds the F-1 score is similar and then decreases as segment size
increase further. Thus, the optimal segment instance size is 13 seconds.

Our BLSTM-MIL classifier has two layers with [100, 100] nodes, a 20% dropout rate, and two fully connected
dense layers [20, 1] with sigmoid activation function. In the BLSTM-MIL approach, an instance segment is
comprised of a sequence of NN2Vec vectors, which means that instance segments are sequences of audio states.
BLSTM can learn from the current audio state as well as use relevant knowledge from the past to predict outcomes.
If a region indicating the positive class (high symptom/disorder classification) is smaller than the segment window,
BLSTM can still pass the knowledge through hidden states from one time step to another. Hence, for instance
segment sizes 10 seconds to 20 seconds, our F-1 score is similar (88.88% to 90.1%). But as the segment size
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increases, the regions indicating the positive class decrease more and more relative to the instance segment;
hence, BLSTM-MIL performance starts to decrease.

Table 2. Evaluation for social anxiety with variable audio codebook size

Audio codebook size | F-1 Score | Accuracy

500 77.2 78.9
1000 82.8 84.1
2000 87.9 89.1
2500 88.17 89.1
3000 89.13 90.1
3500 90.1 91

4000 90.1 91

4500 89.1 90

5000 88.17 89.1

Next, we evaluated our solution with various codebook sizes (table 2), setting segment instance size to 13
seconds and window size to 1 second. When we evaluated NN2Vec vector (section 3.3) dimension from 10 to 100,
we found that a vector dimension between 30 to 50 performs better on average for all codebook sizes. Thus, we
extracted 30 dimensional NN2Vec vectors in our evaluation of codebook size. According to this evaluation, with
an audio codebook size of 3500 we achieve the highest performance of an F-1 score of 90.1% and 91% accuracy.

6.1.2 Is NN2Vec Better? We evaluate our BLSTM-MIL implementation (section 4.1) using NN2Vec feature
representation against four baselines: audio words, I-vector, Emo2vec, and raw audio features (section 3.1). Table
3 shows the results.

Table 3. Evaluation for social anxiety with NN2Vec and various feature representations

Feature F-1 Score | Accuracy
NN2Vec 90.1 90
Emo2vec 72.3 77.22
I-vector 74.7 79

Audio word 55.55 68
Raw features 56.82 62.4

The I-vector system is a technique [42] to map the high-dimensional GMM supervector space (generated
from concatenating all the mean values of GMM ) to low-dimensional space called total variability space. The
basic idea of using an I-vector in human event detection [53, 102] is to represent each instance (window) using
concatenated I-vector feature vectors extracted based on event-specific (e.g., emotion) GMM super vectors, and
then to use these in the classifiers. Hence, the first step is event-specific GMM training. Since our audio clips are
weakly labeled, in the positive class audio clips a major proportion of the data does not indicate positive class.
Hence, we cannot generate accurate class or event-specific GMM models using weakly labeled data. As shown in
table 3, the BLSTM-MIL classifier achieves an F-1 score of 74.7% and 79% accuracy using I-vector features.

Our BLSTM-MIL implementation achieves F-1 scores of 56.82% and 55.55% using raw audio features (272 total)
and audio words, respectively. We represent the generated audio words by one hot encoded vector of the size
of the codebook. Hence, the feature dimension from each window for our BLSTM classifier is the size of the
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Table 4. Evaluation for social anxiety with MIL algorithms

Algorithm | F-1 Score | Accuracy
BLSTM-MIL 90.1 90
DNN-MIL 85 88.11
mi-SVM 83.2 85

Table 5. Evaluation for social anxiety with supervised learning algorithms

Algorithm | F-1 Score | Accuracy
BLSTM-MIL 90.1 90
BLSTM 86.66 88.1
CNN-BLSTM 83.5 85.1
CNN 83.5 85.1
DNN 68.3 73

codebook. BLSTM-MIL performance is low with these high-dimensional discrete feature representations, which
do not convey the audio-state-to-class (syntactic) relationship.

Emoz2vec is a feature modeling technique that uses audio words (section 3.2) to generate vectors with the
characteristics that, if two windows appear in a similar context (i.e., similar surrounding windows) for a specific
vocal event (class), then the vectors will be similar. Since our audio clips are weakly labeled, the majority of the co-
occurred windows are common for both positive and negative classes. Hence, generated Emo2vec vectors cannot
convey the audio-state-to-class relationship. Emo2vec feature modeling reduces the feature space significantly.
Hence, Emo2vec performs better than raw audio features and audio words, achieving an F-1 score of 72.3%.

Our NN2Vec approach generates low-dimensional continuous feature representation. NN2Vec vectors generated
from the windows represent the state of audio from the respective windows and convey the audio-state-to-class
(syntactic) relationship in its representation. This representation makes the classification task from weakly labeled
audio clips easier (section 3.3). According to table 3, NN2Vec achieves an F-1 score 17% higher and 12% higher
accuracy than those of the I-vector, the best baseline.

6.1.3  Comparison With MIL Baselines. This section discusses our evaluation of three MIL approaches using
NN2Vec feature representation. Table 4 shows the results.

BLSTM-MIL implementation is similar to the approach described in section 6.1.1. The DNN-MIL classifier has
three layers with [200, 200, 100] nodes and ReLU activation function, a 30% dropout rate, and one fully connected
output dense layer [1] with sigmoid activation function. In this evaluation the mi-SVM implementation of MISVM
toolkit [19] is used as the mi-SVM classifier. Previous studies [96] have shown that DNN-based MIL approaches
perform better than SVM-based implementations. In our evaluation the DNN-MIL approach achieves an F-1 score
of 85%, which is only 2% higher than that of the mi-SVM approach. Our BLSTM-MIL approach achieves an F-1
score 5.6% higher than that of the DNN-MIL approach, the best MIL baseline.

6.1.4 Comparison With Supervised Learning Algorithms. This section compares BLSTM-MIL with supervised
learning approaches using NN2Vec features. We consider as baselines the four most-evaluated supervised learning
algorithms from the recent literature for human vocal event detection: BLSTM, CNN, CNN-BLSTM, and DNN.
Table 5 shows the results. Given that input audio clips have variable lengths and the baselines require fixed-length
input, input sequences were transformed to fixed length by zero padding. The following network parameter
configurations were optimized by performing a grid search of the parameter values.
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The CNN implementation has three convolution layers, each with 200 convolution kernels (temporal extension
of each filter is 4), and ReLU activation function. The CNN uses a 20% dropout rate and max pooling windows of
size 4 and down-scaling factor 2. Two fully connected dense layers [20,1] with sigmoid activation function are
attached, which makes a binary classification decision. The network is trained with the mean squared error loss
function and RMSprop optimization. The CNN implementation achieves an F-1 score of 83.5% and 85.1% accuracy.

The BLSTM classifier has three layers with [100, 100, 100] nodes, a 20% dropout rate, and two fully connected
dense layers [20, 1] with sigmoid activation function. The network is trained with the mean squared error loss
function and RMSprop optimization. Because BLSTM can learn from current audio state as well as use knowledge
from relevant previous states, it performs better than other approaches for weakly labeled data. In our evaluation,
BLSTM is the best baseline approach, achieving an F-1 score of 86.66% and 88.1% accuracy.

The CNN-BLSTM is a serial combination of CNN and BLSTM. Frequency variance in the input signal is reduced
by passing the input through two convolution layers, each with 100 convolution kernels (temporal extension of
each filter is 4), a 20% dropout rate, and ReLU activation function. The network uses max pooling windows of size
4 and down-scaling factor 2. After frequency modeling is performed, the CNN output (higher-order representation
of input features) is passed to the BLSTM layers. Two BLSTM layers [100, 100] and two fully connected layers [20,
1] are stacked at the end of the network architecture for the purpose of encoding long-range variability along the
time axis and making the prediction.

The DNN implementation has three fully connected layers with [300, 300, 100] nodes and ReLU activation
function, a 20% dropout rate, and one fully connected dense layer [1] with sigmoid activation function to make
binary decisions. The DNN implementation achieves an F-1 score of 68.3%.

As shown in table 5, our BLSTM-MIL implementation (similar to section 6.1.1) achieves an F-1 score 3.9%
higher than that of the best baseline (BLSTM) when both algorithms use NN2Vec vectors as features.

Our evaluations in section 6.1.2 and 6.1.4 show that the best baseline feature representation and supervised
learning algorithm used in the literature are I-vector and BLSTM. Combining I-vector with BLSTM achieves an
F-1 score of 71.4% and 76.2% accuracy. Hence, combining NN2Vec vector features with our BLSTM-MIL approach
achieves an F-1 score 20.7% higher than that of the best baseline approach.

6.2 State Anxiety

This section describes our evaluation for detecting state anxiety (anxious vs. calm). We performed a grid search
on the model parameters window size, instance segment size, NN2Vec vector dimension, and audio codebook size
from 500 ms to 10 seconds, 1 second to 30 seconds, 10 to 100, and 500 to 5000, respectively. The best parameter
configuration was window size 1 second, instance segment size 10 seconds, a 30-dimensional NN2Vec vector and
audio codebook size 3500. Our BLSTM-MIL approach using NN2Vec feature representation achieves an F-1 score
of 93.49% and 90.2% accuracy.

Table 6. Evaluation for state anxiety with various feature representations

Feature F-1 Score | Accuracy
NN2Vec 93.49 90.2
I-vector 81.1 77
Emo2vec 81.6 77.8
Audio word 63.2 58.1
Raw features 62.3 57.5

To evaluate the effectiveness of NN2Vec representation for detection of state anxiety, we evaluated our BLSTM-
MIL (section 4.1) implementation using four baseline feature representations. As shown in table 6, I-vector and
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Emo2vec achieve F-1 scores of 81.1% and 81.6%, which are higher than the corresponding scores for these feature
representations in our evaluation for detecting speakers high versus low in social anxiety (table 3). Because labels
in the present evaluation are related to state of speech, a major portion of the audio data indicates anxious vocal
state. Hence, these feature modeling approaches perform better than they did in the previous evaluation (section
6.1.2). NN2Vec feature representation achieves an F-1 score about 12% higher than those of I-vector or Emo2vec.

Table 7. Evaluation for state anxiety with baseline algorithms

Algorithm | F-1 Score | Accuracy
BLSTM-MIL 93.49 90.2
DNN-MIL 87.91 84.8
mi-SVM 85 83.1
BLSTM 90.24 86.31
CNN-BLSTM | 88.86 86.1
CNN 88.86 86.1

DNN 74.2 68

Table 7 shows the results of our evaluation with MIL baselines and supervised learning baselines using NN2Vec
features. BLSTM-MIL achieves an F-1 score 5.9% higher than that of DNN-MIL, the best MIL baseline, and an
F-1 score 3.5% higher than that of BLSTM, the best supervised learning baseline. Many of the participants who
reported feeling more anxious than calm at their peak level of anxiety may have expected to feel anxious for
most of their speech. Because BLSTM stores and transfers prediction outcome-related knowledge from state to
state, BLSTM better detects state anxiety than it does social anxiety group (discussed in section 6.1.4).

As shown in tables 6 and 7, combining Emo2vec, the best feature detection baseline, with BLSTM, the best of
the MIL and supervised learning baselines, achieves an F-1 score of 80.5% and 72.6% accuracy. Hence, combining
NN2Vec features with our BLSTM-MIL approach achieves an F-1 score 14.3% higher than that of the best baseline
approach.

7 EVALUATION: DEPRESSION

This section describes our evaluation of the NN2Vec and BLSTM-MIL approach for detecting depressed speakers on
the DAIC-WOZ dataset (section 5.2). We performed all evaluations using leave-one-speaker-out cross-validation.
To avoid overfitting, we randomly selected 30% of the audio clips for training the audio word codebook (section
3.2) and 30% of the audio clips to train the NN2Vec model (section 3.3) in each evaluation.

We performed a grid search on the model parameters window size, instance segment size, NN2Vec vector
dimension, and audio codebook size from 500 ms to 10 seconds, 1 second to 60 seconds, 10 to 100, and 500 to
10000, respectively. The best parameter configuration was window size 2 seconds, instance segment size 25
seconds, a 20-dimensional NN2Vec vector, and audio codebook size 5000. The BLSTM-MIL classifier has two
layers with [100, 100] nodes, a 20% dropout rate, and two fully connected dense layers [30, 1] with sigmoid
activation function.

We evaluated the performance of our BLSTM-MIL implementation (section 4.1) of NN2Vec against that of
four baseline feature representations. As shown in table 8, our BLSTM-MIL approach using NN2Vec features
achieves an F-1 score of 85.44% and 96.2% accuracy, whereas I-vector and Emo2vec achieve F-1 scores of 70.1%
and 74.3%, respectively. Hence, NN2Vec achieves an F-1 score about 13% higher and 8% higher accuracy than
those of Emo2vec, the best baseline feature representation.

Table 9 shows the results of our evaluation with MIL baselines and supervised learning baselines using NN2Vec
features. Given that our supervised learning baselines require fixed-length input, audio input sequences were
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Table 8. Evaluation for depression with various feature representations

Feature F-1 Score | Accuracy
NN2Vec 85.44 96.7
I-vector 70.1 86.54
Emo2vec 74.3 88.1
Audio word 51.2 79.1
Raw features 52.76 79.66

Table 9. Evaluation for depression with baseline algorithms

Algorithm | F-1 Score | Accuracy
BLSTM-MIL 85.44 96.7
DNN-MIL 76.4 90.64
mi-SVM 66 84.1
BLSTM 77.1 91.4
CNN-BLSTM 71 87.6
CNN 68.8 85.1
DNN 56 80.86

transformed to fixed-length by zero padding. The following network parameter configurations were optimized by
performing a grid search of the parameter values. Our BLSTM-MIL achieves an F-1 score 10.5% higher than that
of DNN-MIL, the best MIL baseline, and an F-1 score 9.7% higher than that of BLSTM, the best supervised learning
baseline. The DNN-MIL classifier has three layers with [300, 300, 200] nodes and ReLU activation function, a
20% dropout rate, and one fully connected output dense layer [1] with sigmoid activation function. The BLSTM
classifier has two layers with [200, 200] nodes, a 20% dropout rate, and two fully connected dense layers [50, 1]
with sigmoid activation function.

We considered two of the most recent depression detection approaches [56, 62] evaluated on the DAIC-WOZ
dataset as baselines. First, using I-vector features and Gaussian Probabilistic Linear Discriminant Analysis (G-
PLDA) as the classifier [62] achieved an F-1 score of 57%. Second, DepAudioNet [56] encodes the temporal clues
in the vocal modality using convolutional layers and predicts the presence of depression using LSTM layers. This
serial combination of the CNN and the LSTM achieved an F-1 score of 52%. Hence, our BLSTM-MIL classifier
using NN2Vec features achieves an F-1 score 33% higher than that of these other approaches.

8 DISCUSSION

Identifying individuals high in social anxiety and depression symptoms using our NN2Vec features achieves
F-1 scores 17% and 13% higher, respectively, than those of the best baselines (I-vector, section 6.1.2; Emo2vec,
table 8). Moreover, combining NN2Vec features with our BLSTM-MIL classifier achieves F-1 scores 20% and
33% higher, respectively, than those of the baselines (section 6.1.4 & 7). Detecting state anxiety using NN2Vec
features achieves an F-1 score 11% higher than that of the best baseline (Emo2vec), and combining these with our
BLSTM-MIL classifier achieves an F-1 score 14% higher than that of the best baseline (section 6.2).

In supervised learning, audio recordings are segmented into small fixed-length windows to train the CNN or
CNN-BLSTM model. The labels of these windows are taken to be the same as the long audio clip-level labels.
Hence, it is assumed that all the small windows in a positive long audio clip indicate high mental disorder
symptoms. This, however, is not an efficient approach as it can result in a significant amount of label noise.
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Mental disorder symptoms in a long audio clip (segmented into a long sequence of windows) may be indicated
by only a few seconds (a small subsequence of windows) of the clip, a fact ignored in assuming the label is strong.
Due to the high label noise and limited training samples, convolution layers fail to generate effective higher-order
representation of input features. To further support our statement, the DepAudioNet [56] approach applying
the CNN-LSTM network using LLDs on the DAIC-WOZ dataset [92] achieved an F-1 score 8% lower than that
obtained from using I-vector features and G-PLDA as the classifier [62] on the same dataset (section 7). By
contrast, NN2Vec vectors map the audio from segmented windows into low-dimensional continuous feature space
encoding the syntactic relationship between audio states (of windows), which facilitates a sequential classifier
like BLSTM to effectively model the temporal properties in the speech signal (section 3.3). Hence, BLSTM and
BLSTM-MIL classifiers perform better.

BLSTM networks are capable of learning and remembering over long sequences of inputs. This means that
if a region (a small subsequence of windows) indicative of the positive class occurs in a long audio clip (long
sequence of windows), BLSTM can pass that knowledge through hidden states. Studies [38] have shown that, as
the sequence of windows becomes much longer for a limited training set, classifier performance starts to decline.
Moreover, in a long positive weakly labeled audio clip, the portion of noise may significantly increase, making
network optimization difficult. Hence, an MIL adaptation of BLSTM (BLSTM-MIL) performs better. In detecting
speakers high in social anxiety symptoms (section 6.1), the window size was 1 second with 500 ms overlapping.
Hence, input sequence size for the baseline BLSTM classifier (section 6.1.4) was 359 for 3-minute audio clips. The
BLSTM-MIL classifier with input sequence size 25 (segment instance size 13) achieved an F-1 score about 4%
higher than that of the best baseline BLSTM.

By contrast, detecting a depressed speaker (section 7) used a 2-second window size with 1 second overlapping.
Hence, the input sequence size for BLSTM was 720 for 12-minute audio clips and achieved an F-1 score of 77.1%.
In this evaluation, the BLSTM-MIL classifier with input sequence size 24 (segment instance size 25) achieved a
10% higher F-1 score. Hence, these evaluations (section 6.1.4 and table 9) show that as the input sequence size
(audio clip length) increases, BLSTM-MIL performs increasingly better than BLSTM.

The ability to identify symptomatic individuals from their audio data represents an objective indicator of
symptom severity that can complement health-care providers’ other assessment modalities and inform treatment.
Moreover, because vocal analysis does not require extensive equipment and is readily accessible (speech is
ubiquitous in natural settings), nonintrusive (it does not require a special wearable monitor), and not burdensome
(it does not require additional assessment time or client responses), it is scalable, which is important given the vast
number of people with social anxiety and depression who receive no help [13]. Additionally, the unique source of
the data (animated virtual clinical interview) for the depression detection study further supports the possibility
of using vocal analysis as a remote assessment tool and one that may eventually be possible to administer via
artificial intelligence. This is especially exciting in light of the difficulty in identifying and disseminating care to
people facing considerable barriers to seeking treatment for social anxiety [63] and depression [20].

Further, the ability to detect state anxiety from audio data for both individuals high and low in social anxiety
symptoms opens new possibilities for assessment, treatment, and prevention. Implementing vocal analysis with
mobile technologies (e.g., smartphones) would give health-care providers an objective marker of clients’ anxiety
as it unfolds outside of the treatment setting, and combining this with other data (e.g., location, actigraphy)
could help clarify the antecedents and consequences of clients’ anxious states. Providers could even collect
such idiographic time series data from clients before treatment to understand each client’s dynamic processes
and personalize treatment from the start [22]. Moreover, pairing passive outcome monitoring with mobile
interventions (e.g., skills training apps) would enable the timely delivery of just-in-time interventions that may
offer relief and efficiently promote skills acquisition and generalization. Along these lines, detecting state anxiety
from audio data may one day be used to identify changes in speech that suggest a person may be transitioning to
a higher-risk state and could benefit from preventive services to avoid the worsening of symptoms.
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The present study has several limitations related to sampling. First, we used an analog sample of people
high versus low in social anxiety symptoms for whom no formal diagnoses of social anxiety disorder had been
established. Second, we analyzed speech audio data from only one situation (a speech stressor task), so future
work would benefit from sampling speech from a wider range of both social and nonsocial situations to determine
the boundaries of the models’ predictive validity. Third, our state anxiety analyses are based on participants’
responses to only one question about that situation (their self-reported peak levels of anxiety during the speech).

Finally, we wish to emphasize that implementation of our approach, even if designed to support health-care
providers, must include the informed consent of clients, who should be allowed to discontinue the monitoring at
any time, and robust privacy protections. It is important to note that our approach does not use the semantics
(transcribed text) of the client’s speech and that the proposed feature extraction is irreversible (section 3.2),
thereby ensuring clients’ privacy. Any feedback provided to the client about increases in symptoms or state
anxiety would ultimately be paired with treatment resources or other services (e.g., interventions) that the client
can use to seek relief. Further, future research is needed to evaluate the feasibility, acceptability, and safety of our
approach before providers implement the approach on a large scale in the community.

9 CONCLUSION

Although depression and social anxiety disorder are highly prevalent, many depressed and socially anxious
people do not receive treatment. Current assessments for these disorders are typically based on client self-
report and clinical judgment and therefore are subject to subjective biases, burdensome to administer, and
inaccessible to clients who face barriers to seeking treatment. Objective indicators of depression and social
anxiety would help advance approaches to identification, assessment, prevention, and treatment. We propose a
weakly supervised learning framework for detecting symptomatic individuals and state affect from long speech
audio data. Specifically, we present a novel feature modeling technique named NN2Vec that identifies and exploits
the inherent relationship between vocal states and symptoms/affective states. In addition, we present a new MIL
adaptation of the BLSTM classifier, named BLSTM-MIL, to comprehend the temporal dynamics of vocal states in
weakly labeled data. We evaluated our framework on 105 participants’ spontaneous audio speech data weakly
labeled with speakers high in social anxiety. Our NN2Vec and BLSTM-MIL approach achieved an F-1 score of
90.1% and 90% accuracy in detecting speakers high versus low in social anxiety symptoms, and an F-1 score of
93.49% and 90.2% accuracy in detecting state anxiety (anxious vs. calm). These F-1 scores are 20.7% and 14.3%
higher, respectively, than those of the best baselines. To our knowledge, this study is the first to attempt such
detection using weakly labeled audio data. Using audio clips from virtual clinical interviews, our approach also
achieved an F-1 score of 85.44% and 96.7% accuracy in detecting speakers high versus low in depressive symptoms.
This F-1 score is 33% higher than those of the two most recent approaches from the literature. Readily accessible,
not intrusive or burdensome, and free of extensive equipment, the NN2Vec and BLSTM-MIL framework is a
scalable complement to health-care providers’ self-report, interview, and other assessment modalities.
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