Enabling Work-Conserving Bandwidth Guarantees for

Multi-Tenant Datacenters via Dynamic Tenant-Queue Binding

Zhuotao Liu*T, Kai Chen*, Haitao Wu?, Shuihai Hu*, Yih-Chun Hu', Yi Wangg, Gong Zhangﬂ
ong Kong University of Science and Technology, TUniversity of Illinois at Urbana-Champaign
*Hong Kong University of Sci d Technology, TUniversity of Illinois at Urbana-Champaig
iGoogle, §Southern University of Science and Technology, YHuawei Future Network Theory Lab
t{z1iu48, yihchun} @illinois.edu, *{kaichen,shuaa} @cse.ust.hk
H{haitaowu} @google.com, ${yw}@ieee.org, I{nicholas.zhang} @huawei.com

Abstract— Today’s cloud networks are shared among many
tenants. Bandwidth guarantees and work conservation are two
key properties to ensure predictable performance for tenant
applications and high network utilization for providers. Despite
significant efforts, very little prior work can really achieve both
properties simultaneously even some of them claimed so.

In this paper, we present QShare, a comprehensive in-network
solution to achieve bandwidth guarantees and work conserva-
tion simultaneously. QShare leverages weighted fair queuing on
commodity switches to slice network bandwidth for tenants,
and solves the challenge of queue scarcity through balanced
tenant placement and dynamic tenant-queue binding. We have
implemented a QShare prototype and evaluated it extensively
via both testbed experiments and simulations. Our results show
that QShare ensures bandwidth guarantees while driving network
utilization to over 91% even under unpredictable traffic demands.

I. INTRODUCTION

Sharing the network of multi-tenant datacenters has been
critical for public clouds. The two primary goals, among
others, are bandwidth guarantees and work conservation.
Bandwidth guarantees ensure predictable lower bound network
performance for tenant applications. Recent studies show
that, without bandwidth guarantees, network performance may
experience over 5x variations, degrading application perfor-
mance [6]. Work conservation enables a tenant to use spare
bandwidth beyond its minimum guarantee to further improve
tenant application performance, and boost provider network
utilization. Given that datacenter traffic is bursty in nature and
that the average network utilization is low [7, 16, 23], work
conservation can deliver over 10x additional bandwidth to a
VM upon its minimum guarantee [21].

However, it is hard to enable both properties simultaneously.
Oktopus [6] and SecondNet [12] achieve bandwidth guaran-
tees, but they are not work-conserving. Seawall [24] achieves
work conservation without offering bandwidth guarantees.

ElasticSwitch [21] takes the first attempt toward achieving
both properties simultaneously. It is an endhost based solution
that first translates per-VM hose-model bandwidth guarantees
into VM-to-VM pair rate limiters (referred as Guarantee Parti-
tioning, GP), and then dynamically allocates spare bandwidth
to these VM pairs to achieve high utilization (referred as Rate
Allocation, RA). However, this approach suffers from two
key challenges: (i) since tenant applications are agnostic to
network operators, it is hard for GP to accurately capture the
real communication patterns among VMs, affecting bandwidth
guarantees; (ii) to detect spare bandwidth, RA needs to probe
the network by increasing rates, which causes a tradeoff

between bandwidth guarantees and work conservation—a con-
servative RA sacrifices work conservation, while an aggressive
RA affects other tenants’ bandwidth guarantees.

Trinity [13] moves one step further to complement Elas-
ticSwitch with a simple in-network support. It uses two
priority queues in switches to segregate and prioritize the
bandwidth guarantee traffic over work conservation traffic, so
that aggressive RA of one tenant does not affect bandwidth
guarantees of others. While Trinity solves the second challenge
of ElasticSwitch, it still suffer from the first challenge shown
above. Further, it incurs other issues such as packet reordering
and starvation due to traffic segregation and priority queuing.

Due to these challenges, prior solutions, essentially, do not
achieve both goals in a sufficient manner. To give some sense,
our testbed experiments show that given unknown communi-
cation pattern and demands, state-of-the-art solutions cannot
achieve sufficiently good work-conversation (given bandwidth
guarantees are satisfied), which, for instance, causes 2x long
FCTs for tenant applications compared with our solution.
Motivated by this, in this paper, we propose QShare, the first
comprehensive in-network solution that addresses all above
challenges to achieve both goals in a sufficient manner. Unlike
Trinity [13] that uses two priority queues to segregate two
traffic types, QShare directly leverages weighted fair queues
(WFQs)! in commodity switches to slice network bandwidth
for tenants. As a result, this enables: (i) bandwidth guarantees
are achieved via proper queue weight configuration and tenant
placement rather than endhost rate limiters, thus eliminating
GP; (ii) network links are driven to full utilization instantly as
long as one tenant has sufficient demand; (iii) no matter how
aggressively a tenant transmits, bandwidth guarantees of other
tenants are not affected as they are served in separate weighted
queues; (iv) no packet reordering or starvation arises.

While promising, QShare introduces a new challenge of
queue scarcity: the number of queues on a commodity switch
port can be less than the number of tenants served by this port
(§VII-C1). To address this challenge, we make the following
observation: although the total number of embedded tenants
associating with a port may be large, during a short time
interval (e.g., a few seconds), the number of concurrent tenants
whose traffic demands exceed their bandwidth guarantees is
small. This is also supported by the measurement results in
production datacenters, where the average link utilization is

I'We note that while WEQ may have been considered in other contexts [17],
this work is the first one to exploit WFQ to enable work-conserving bandwidth
guarantees for cloud network sharing.

low [7, 16, 23]. Thus, to support more tenants with limited
queues, QShare dynamically assigns dedicated queues for
tenants with higher demands than their guarantees, while
serving low-demanded tenants in a shared queue altogether.

QShare is mainly composed of two modules: a balanced
tenant placement module and a dynamic tenant-queue binding
module. The tenant placement module is responsible for
allocating network resources to tenants to provide bandwidth
guarantees. To facilitate the dynamic queue allocation for
embedded tenants, our placement also tries to balance the
usage of switch ports among tenants to avoid overwhelming
certain ports. The tenant-queue binding module then takes
into account the traffic demands of tenants and their payment
factors to dynamically distribute queues among tenants.

We have implemented a prototype of QShare with ~2000
lines of code (C for Linux kernel space and Python for user
space), and evaluated it via extensive testbed experiments and
simulations. Our results suggest that:

e Without affecting bandwidth guarantees, QShare achieves
perfect work conservation given correct prediction on de-
mand trends (not the exact demand), and over 91% link
utilization given completely unpredictable demands.

e Given the above desirable properties, QShare significantly
benefits tenant applications, for instance, by reducing their
flow completion times (FCTs) by up to 50% compared with
ElasticSwitch and Trinity [13, 21].

e Under production datacenter settings, QShare can assign
dedicated queues to ~90% of all embedded tenants even
when the datacenter is fully reserved, yielding at least 3x
throughput gain over guaranteed bandwidth.

II. BACKGROUND AND MOTIVATION
A. Background

Network bandwidth guarantees are preferable properties
in cloud computing to offer tenants predicable performance.
Typically, Hose model is used to model VM bandwidth guar-
antees [8]. Figure 1(a) plots a simple symmetric hose model
for a tenant A’s VMs, and Figure 1(b) shows the required
bandwidth on each link to satisfy A’s guaranteed bandwidth.
Providing accurate bandwidth guarantees for VMs that can use
multiple paths is an open problem since it requires a perfect
load balancer to accurately distribute each VM’s traffic over
multiple paths such that the sum of guarantee on each path
matches the total guaranteed bandwidth. Thus, prior works
for providing bandwidth guarantees either consider tree-based
network topology [6, 12, 21] or confine each tenant’s traffic
within a tree in multi-path network topology [14, 18]. QShare
belongs to the second category since datacenters are often
built redundant paths. QShare, however, can still fully utilize
network bisection bandwidth via balanced tenant placement.

Work conservation is desired for achieving efficient resource
utilization. In the context of multi-tenant datacenters, work
conservation is defined as follows: for any link L in the net-
work, as long as there exists at least one tenant that has packets
to send along link L, L cannot have spare bandwidth [20].

Virtual
Switch

(a) Hose model for B.G. (b) Bandwidth reservation

Fig. 1: Figure 1(a) shows a tenant A’s bandwidth guarantees
defined in a symmetric hose model. Figure 1(b) shows the
reserved bandwidth on each link: Ri=min{Bi1+B2, Bs+Ba};
R2: min{Bg, Bl+BQ+B4}; R3: min{B4, Bl+BQ+B$}.

B. State-of-the-Art Solutions

ElasticSwitch [21] makes the first attempt to achieve work-
conserving bandwidth guarantees. It is an endhost based
solution composed of two modules: a Guarantee Partitioning
(GP) module that divides VM X’s hose-model guarantee into
guarantees to/from each other VM that X communicates with,
and a Rate Allocation (RA) module that tries to assign spare
bandwidth to these VM pairs to achieve high link utilization.
However, it suffers from the following two key challenges.

First, since the VM traffic matrix (TM) of a tenant is typi-
cally agnostic, GP must estimate each VM-pair’s demand via
periodic source-destination VM coordination and throughput
measurement. Whenever the TM changes, GP needs to re-
estimate the TM even if per-VM demand remains the same
(see detailed analysis in §10 of [19]). Given highly dynamic
TM for cloud applications, it is challenging for the GP to
capture the real communication pattern and estimate the TM
correctly, especially considering that tens of thousands of VMs
can produce billions of VM pairs.

Second, RA in ElasticSwitch [21] probes the network by
increasing rates, detects congestion via packets losses or ECN,
and then allocates possible spare bandwidth to VM pairs in
max-min fashion following weighted TCP algorithms [24]
As shown in [13, 21], it has a tradeoff between accurately
providing bandwidth guarantees and being work-conserving:
aggressive RA could affect other tenants’ guarantees whereas
conservative RA ends up with non-trivial bandwidth waste.

Trinity [13] moves one step further to complement the
endhost based ElasticSwitch with simple in-network support.
It exploits two priority queues in switches to segregate and
prioritize the bandwidth guarantee traffic over work conser-
vation traffic. As a result, VMs can aggressively send work
conservation traffic without affecting bandwidth guarantees
of others. Thus, Trinity achieves work conservation in static
context, i.e., the TM is a priori knowledge. However, it still
inherits the challenges of performing GP in dynamic context.
Further, Trinity raises packet reordering and starvation issues
since network packets are served with strict priorities.

We do preform detailed experiments and analysis to quantify
these limitations in §10 of our technical report [19]. Motivated
by this, we propose QShare to address these challenges.

ITII. QSHARE OVERVIEW

QShare offers the first comprehensive in-network solution
to address the above challenges. Instead of using two priority

queues to segregate traffic for two different types, QShare
leverages multiple weighted fair queues (WFQs) to slice
network bandwidth for tenants. This enables QShare to pro-
vide tenant-level bandwidth guarantees and work conservation
(rather than rigid VM pair level as in [13, 21]), thus leaving
tenant applications full flexibility to use its allocated band-
width as needed. Such tenant-level bandwidth guarantees are
also used in [5, 6], but they fail to achieve work conservation.
At the very high level, QShare’s design has two modules:
a balanced tenant placement module and a dynamic tenant-
queue binding module. The placement module first seeks
to provision tenant network to ensure bandwidth guarantees.
Further, it balances the usage of switch queues among tenants
to reduce the stress of performing dynamic queue allocation in
the binding module. The tenant-queue binding module dynam-
ically assigns dedicated queues to tenants whose applications
tend to have higher demands than their guaranteed bandwidth,
and meanwhile serves all low-demanded tenants in a shared
queue. As a result, high-demanded tenants can burst their traf-
fic in arbitrary communicate patterns without affecting other
tenants. This design is the key to avoid the challenging GP
and to eliminate the tradeoff between bandwidth guarantees
and work conservation in the endhost based solutions [13, 21].
A challenge of the binding mechanism is how to assign
dedicated queues to right tenants since traffic demand is
dynamic. QShare addresses the challenge as follows. First,
rather than predicting complete traffic matrix for each tenant
as in [13, 21], QShare’s demand prediction uses only a scalar
metric for each tenant to reduce the stress of prediction.
Second, to improve the worst case performance given inac-
curate prediction and high-demanded tenants are mistakenly
placed in the shared queue, QShare can employ ElasticSwitch
for tenants in the shared queue to achieve moderate work-
conserving bandwidth guarantees in the spirit of ElasticSwitch.
Finally, we perform testbed experiments (§VII-A) to quantify
effects of the binding mechanism: (i) the average utilization
deficit caused by binding errors is less than 9% of the total
capacity; (ii) to achieve good performance, it is sufficient
to perform dynamic binding at more coarse time granularity
(a few seconds) compared with the traffic matrix estimation
performed at the granularity of milliseconds in [13, 21].

IV. BALANCED TENANT PLACEMENT

The goals of tenant placement are (i) provisioning virtual
networks for tenants to satisfy their computation and band-
width guarantees and (ii) balancing the overall switch queue
utilization among tenants. The prior placement algorithms
proposed in [6, 18] aim to maximize the number of accepted
tenant requests, which is an NP-hard problem similar to [8].
However, different from prior algorithms that make greedy
embedding decisions (i.e., embed a tenant immediately once
a feasible option is found), our balanced tenant placement re-
quires global topology investigation, i.e., evaluating all feasible
options before making embedding decisions. Towards this end,
we design our own tenant placement algorithm. Formulated in

Algorithm 1: Balanced Tenant Placement

1 Input: A tenant request with explicit guarantees.
2 Output: The desired TR or an embedding error.

3 layer < 1;

4 while True do

5 TRs < get_TRs_at_layer(layer);

6 for T' € TRs do

7 [feasible, cost] + evaluate TR(T);

8 if feasible then T'R_candidates.add((T, cost));

9 if TR_candidates is empty then

layer < layer + 1;

if layer > n then return False;

12 else

13 | return get_desired_ TR(T'R_candidates)

14 Function: evaluate TR(T):

15 OA < get_optimal _allocation(T);

16 if OA is feasible then return [True, (cp,cq)];
17 else return [False, null];

Algorithm 1, our placement algorithm contains two major parts
(i) TR candidate exploration and (ii) TR candidate election.

A. TR Candidate Exploration

We explain TR candidate exploration in the widely adopted
multi-rooted tree datacenter topology [3, 10]. Given a tenant
request, Algorithm 1 explores the topology from the lowest
layer (hypervisor layer) towards the highest layer (core switch
layer). At each layer, function get TRs at layer (line 5)
obtains all TR options at this layer. A layer-i TR option is
a tree rooted at layer ¢. Its leaves are all servers reachable
from the root using only downward paths. The algorithm
then evaluates these TRs to produce feasible ones, called TR
candidates (line 7). Generally speaking, a TR option is feasible
if it has enough capacity to accommodate the tenant. Function
evaluate TR, detailed in §IV-B, determines such feasibility.
If no TR candidates can be found, the algorithm continues
exploration in the next layer (line 9). Otherwise, it stops
further exploration and returns the desired TR elected from
all candidates (line 13) using the criteria described in §IV-B.
The early return confines tenants at the lowest possible layer
to avoid unnecessary network usage at higher layers. If no TR
candidates can be found after exploring the entire topology
with n layers, the algorithm returns false (line 11), indicating
an embedding error due to the lack of resources.

B. TR Evaluation and Candidate Election

A TR option is feasible if (i) the total available VM slots
from all its servers are enough to hold the tenant’s VMs and
(i) each link of the TR has enough available capacity to satisfy
the tenant’s bandwidth guarantees. Although evaluating the
first rule is simple, the second rule requires more investigation.
In particular, given a TR option, the amounts of bandwidth
required on its links depend on the VM locations inside the
TR. Specifically, consider a symmetric hose model where all
VMs have the same guarantee B. Given a link L of the TR,
removing L breaks the TR into two disjoint components. If m
VMs are in one component and n VMs are in the other one,
the bandwidth required on L is B - min{m, n}. Figure 2 plots
a TR rooted at .S;. For the VM location in Figure 2(a), the link

H1 : i HI i HE i H
(a) Requring B on S1+>H1 (b) Requring 2B on S1+>H1

Fig. 2: Given the TR rooted at S;, the bandwidth required on
its link depends on VM locations inside the TR.

S1+>H; (and S;<>Hs) needs to reserve B (min{B,4 - B})
whereas 2B is required for the VM location in Figure 2(b).

To reduce the total network bandwidth required for embed-
ding the tenant, function get optimal allocation (line 15)
produces the optimal VM location that requires the least band-
width reservation. For homogeneous hose models, the optimal
allocation is produced as follows: (i) find the server H in the
TR with the largest usable VM slots, (ii) allocate as many VMs
as possible to H, (iii) update the remaining network/server
capacity after allocation and (iv) repeat step one until either
all VMs are allocated (indicating feasibility) or all servers in
the TR have been investigated (indicating infeasibility). The
usable VM slots for H in the TR is restricted by both the
available VM slots in H and the available bandwidth on the
path from H to the TR’s root. For instance, in Figure 2, if we
assume the available bandwidth on link S;<>H; is less than
B, the usable VM slots in H; is 0, rather than 4.

If a TR’s optimal allocation is feasible, it becomes a tenant
routing candidate. Then we compute its bandwidth cost ¢; as
the total amount of bandwidth reserved for the tenant on the
TR’s links, and queue allocation cost ¢, as the largest number
of tenants served by any of the TR’s links (line 16).

Each TR candidate is associated with cost combining ¢

and c,. The desired TR (line 13) is the one with least cost.
One strategy for computing cost is assigning more weight to
cq When the datacenter load is light to prefer more balanced
placement whereas assigning more weight to ¢, otherwise to
prefer placement introducing fewer bandwidth cost.
Search Algorithm Complexity. The search complexity for
embedding tenants depends on the layers at which Algorithm 1
returns. In a fattree topology [3], the worse case complexity
(i.e., the algorithm returns at the core switch layer) is O(V%),
where V' is the number of nodes in the network. Thus, although
our algorithm performs comprehensive topology search, its
time complexity is polynomial rather than exponential. For
topologies with higher over-subscription ratios, the complexity
is reduced since the number of TR options at each layer is
smaller. Further, the topology search results can be cached to
achieve long-term efficiency [26].

"UH, H, Hj Hy

V. TENANT-QUEUE BINDING

To support more tenants with limited number of queues,
QShare’s design is inspired by how the working set of a pro-
cess is often much smaller than the total memory it consumes.
Similarly, only tenants whose traffic demands exceed their
bandwidth guarantees need dedicated queues. Thus, there is an
opportunity for QShare to dynamically allocate limited number
of queues to high-demanded tenants. Specifically, QShare

periodically evaluates each tenant and allocates queues among
tenants based on their scores. Each tenant’s score encapsulates
its usage factor (§V-A) and payment factor (§V-B) so as to
prioritize high-demanded and honest tenants.

A. Tenant Demand Trend Prediction

Since prior works [13, 21] rely on Guarantee Partitioning
(GP) to achieve bandwidth guarantees, they need to predict
each tenant’s traffic matrix, i.e., per VM-pair traffic demand.
However, it is challenging to capture VMs’ communication
patterns and predict the traffic matrix since tenant applications
are typically agnostic to cloud operators. On the contrary,
QShare’s tenant-queue binding module only needs to predict
whether a tenant tends to have higher demands than its
guaranteed bandwidth. Thus, rather than using traffic matrix,
QShare proposes to use a scalar metric, usage factor (U-
factor), to indicate a tenant’s network utilization with respect
to its guaranteed bandwidth. We do not claim that U-factor
is the optimal metric for demand prediction. However, it does
greatly reduce the stress of prediction by focusing on tenant-
level demand trend rather than VM-level traffic matrix.

Each tenant’s U-factor is computed per control interval.
Specifically, in each control interval, hypervisors measure the
bandwidth utilization of their hosted VMs. As VMs can have
both inbound and outbound traffic, bi-directional bandwidth
usage is considered. For instance, consider a hypervisor H;
hosting m VMs of a tenant T. Then T’s inbound (outbound)
bandwidth usage U; (U7) measured by H; is the sum of
inbound (outbound) bandwidth usage from all these m VMs.

At the end of each control interval, QShare computes each
tenant’s U-factor. For tenant T, its U-factor U is

max{U?, U?
Ut = min{ max —{ e J}

H;cH Bj

1},)

where H is the set of hypervisors managing T’s VMs and
Bj is T’s guaranteed bandwidth on H;’s network interface.
If H; hosts m VMs from T (provisioned with total N VMs),
then B; = B - min{m, N—m} considering a symmetric and
homogeneous model with per-VM guarantee B.

The design rationale of Equation (1) is as follows. The
innermost max is necessary as the high-demanded VMs may
either send or receive large volumes of traffic. The middle
max is designed to handle many-to-one traffic pattern in which
many remote source VMs are communicating with a few local
destination VMs. Although source hypervisors may measure
small usage since source VMs are bottlenecked by destination
VMs, T’s application is actually high-demanded. Taking the
largest usage among all hypervisors will capture such a traffic
pattern. Finally, the outermost min sets a Ut cap of 1.

B. Tenant Lying Mitigation

Merely using U-factors to allocate queues has problems
when handling dishonest tenants: a tenant can deliberately
request smaller guaranteed bandwidth so as to have high
U-factors. Note that no work-conserving allocation policies
can completely prevent tenants from gaining advantages via

Algorithm 2: Queue Allocation Algorithm

1 Input: The set of embedded tenants 8.
Output: Tenant-queue assignment.

»

Sort the tenants in 8§ decreasingly by their scores;
for T € 8 do
if T has a dedicated queue then continue;
else if 7°s TR has a spare queue then
| enqueue_tenant(T);

N AW

®

else opportunistically _enqueue(T);
9 Update queue allocation state;

10 Queue weight computation;

11 Function: enqueue _tenant(T):
12 for L € T’s TR do
13 | reserved_bandwidth < B - min{m, N —m};

14 Function: opportunistically _enqueue(T):

15 for L € T’s TR do

16 | get_opportunistic_queues_from_LSTs(L);
17 if T’s TR has an opportunistic queue then

18 | enqueue_tenant(T);

lying [20]. To mitigate the problem caused by lying, QShare
proposes to consider payment factors, along with U-factors,
when scoring tenants. Each tenant’s payment factor and its
guaranteed bandwidth are positively correlated such that de-
liberately requesting lower guarantees reduces a tenant’s score
whereas exaggerating guarantees requires higher payment. For
simplicity, QShare assumes that a tenant’s payment factor is
proportional to the total guaranteed bandwidth required by its
hose model.? Thus, given tenant T with N VMs and each VM
requests guaranteed bandwidth B, its payment factor is kN B,
where k is a constant depending on the pricing model.
Simplifying Ut in Equation (1) as min{%—:, 1}, then tenant
T’s score St is computed as follows
ST:kNB-UT:{kU’ ifUr <1 2
kNB, otherwise

k = kNB /B*, where B* is determined by maximizing the
inner max operation of Equation (1).

Using St as the criterion for queue allocation can mitigate
problems caused by lying. On the one hand, as St is bounded
by kNB, deliberately requesting smaller B would result in a
lower cap of ST, which is disadvantageous when competing
with other tenants. On the other hand, deliberately requesting
higher B also has problems since (i) tenant T has to pay more
and (i) its St is determined by T’s real usage rather than
its claimed guarantees if U < 1. Generally, high-demanded
tenants are preferred since St is non-decreasing as bandwidth
usage increases, which is desirable for queue allocation.

C. Dynamic Queue Allocation

We present the queue allocation logic in Algorithm 2. A
tenant is assigned a dedicated queue only if it is assigned a
dedicated queue on each link of its TR. Otherwise, the tenant
will be served in the shared queue on each link of its TR. To

2Payment for computation resources is not considered as QShare focuses
on bandwidth management.

prioritize tenants with higher scores, Algorithm 2 starts queue
allocation from the tenant with the highest score (line 3).

If a tenant 7" currently has a dedicated queue, it continues to
hold the queue for the next control interval (line 5). Otherwise,
Algorithm 2 determines whether allocating 7' a dedicated
queue is possible. To satisfy the condition on line 6, each
link of T°s TR needs to have at least one spare queue. If
positive, function enqueue tenant assigns 7' a queue on each
link L of its TR (line 12). Otherwise, function opportunis-
tically enqueue (line 8) opportunistically finds queues for
T by preempting queues from low-scored tenants (LSTs).
Specifically, on link L without spare queues, the algorithm
obtains an opportunistic queue from a tenant T such that (i)
T’s score is less than T"s score and (i) T’s score is the
smallest among all tenants owning a queue on L (line 16).
If the algorithm finds an available queue, either opportunistic
or unoccupied, for each link of 7”’s TR, we say 7”s TR has an
opportunistic queue (line 17) and enqueue 7. ALI dequeued
tenants are served in shared queues during the next interval.

Queue allocation state is updated after handling 7" (line 9).
Once queue allocations for all tenants are finished, QShare
computes weight for each queue (line 10). For a queue Q; on
link L, its normalized weight is the ratio of reserved bandwidth
in Q; to the total amount of reserved bandwidth on link L.

D. Policy Enforcer

To enforce queue allocation decisions inside network,
QShare needs to perform (i) packet tagging and (ii) network
configuration. Packet tagging is to ensure that packets are
served in correct queues. We use dscp tagging to achieve
this. To avoid ambiguity, the D-tenants (tenants with dedicated
queues) whose TRs share at least one common link cannot
use the same dscp value. D-tenants whose TRs are non-
overlapping can reuse the same dscp value. Since only 64 dscp
values are available, finding the smallest possible number of
dscp values in a legal assignment can be reduced to the k-
coloring of a graph, which is NP-hard [9]. To address the
dscp usage concerns, we analyze the efficiency of a greedy
assignment in large scale datacenters based on production
datacenter settings (see details in §VII-C1).

Network configuration involves configuring the queues on
each link with proper weights and dscp values, which requires
WEFQ configuration on both ports of the link. For edge links
connecting servers and switches, software WFQ is required on
hypervisors. To achieve automation, QShare designs a network
action container to perform configuration in a batch: operations
on different switches are parallelized via multi-threading so
that the marginal configuration latency is negligible [19].

Finally, QShare can run ElasticSwitch-like rate allocation
mechanisms [24] for tenants without dedicated queues to
improve worst-case performance. However, QShare imposes
smaller overhead than ElasticSwitch [21] since it only per-
forms rate allocations for tenants without dedicated queues.

VI. IMPLEMENTATION

The prototype of QShare contains both user-space and
kernel-space programs, as shown in Figure 3. The user-space

Kernel []
Space

Fig. 3: The software implementation of QShare.

programs, executed globally, are responsible for managing the
whole datacenter whereas the kernel-space program, running
on each hypervisor, manages the local hypervisor. Two spaces
interact with each other such that queue allocation decisions
are made based on the distributed measurement reported
by all hypervisors, and meanwhile the allocation decisions
are pushed back to the kernel modules for enforcement on
hypervisors. The implementation has ~2000 lines of code
(Python in user space and C in kernel space).

The user-space programs include tenant placement, queue
allocation and the network action container. The kernel-space
module, built on NetFilter [2], includes tenant traffic monitor,
rate allocation (for tenants in shared queues), software WFQ
(for tenants with dedicated queues) and packet dscp tagging.
On each hypervisor, a user-space deamon (not plotted) based
on Netlink [1] interacts with the kernel module.

Note that implementing a hypervisor that can support all
kinds of VM management is out of this paper’s scope. Our
prototype builds a simple hypervisor that can support QShare-
related operations, such as identifying the VMs of each tenant.

VII. EVALUATION

Our evaluation centers around the following questions:

(i) How does traffic dynamic affect QShare’s performance?
With correct predictions on demand trend (not the exact
demand), QShare achieves perfect work-conserving bandwidth
guarantees: all bandwidth guarantees are satisfied and mean-
while the bottleneck link is fully utilized (§VII-Al). Even
when demand trends are completely unpredictable, QShare
drives the bottleneck link to over 91% utilization (§VII-A2).
(ii) How well can QShare benefit applications? Given the
above desirable properties, QShare benefits tenant applications
by reducing their flow completion times (FCTs) by up to 50%
compared with the state-of-the-art solutions [13, 21] (§VII-B).
(iii) How well can QShare manage large scale datacenters?
Based on observations from production datacenters, we show
that QShare can assign dedicated queues to ~90% of all
tenants in any control interval in fully reserved datacenters.
Thus, QShare offers tenants at least 3x throughput gain over
their guaranteed bandwidth (§VII-C).

Testbed Setup. We build a physical testbed containing 10
servers and each server provisions 10 VM slots, for a total
of 100 VMs. We evenly distribute the servers into two racks
inter-connected by two Pronto-3297 48-port Gigabit switches.

Thus, the topology is 5:1 oversubscribed and the core link is
the bottleneck. Each port supports up to 8 WFQ queues. We
embed multiple tenants in the testbed, with random sizes from
2 to 20 VMs. We develop a client/server program to generate
traffic. The clients initiate long-lived TCP connections to
randomly selected servers and request flow transfers. All VMs
run both the client and server programs.

A. Work-Conserving Bandwidth Guarantees

In this section, we consider how traffic dynamics may affect
QShare’s performance for enabling work-conserving band-
width guarantees. We consider the following two scenarios.
The first case is that a tenant’s demand trend is predictable:
i.e., once a tenant has high traffic demand, this trend continues
for few seconds. Trend predictability is not over-optimistic
since hot spots in production datacenters can last over tens
of seconds [16]. The second case is that the demand trend
is completely unpredictable: i.e., a tenant’s future demands
are independent on its current or previous demands. In both
cases, QShare does not impose any constraint or assumption
on VM communication patterns, i.e., one client can request
flow transfers from arbitrary servers at any time.

To quantify the worst-case performance degradation caused
by traffic unpredictability, we first disable the ElasticSwitch-
like rate allocations for the tenants without dedicated queues,
and allocate them at most their guaranteed bandwidth.

1) Predictable Demand Trend: In this experiment, we con-
sider 10 tenants competing on the core link. Each tenant is
guaranteed 94 Mbps bandwidth on the core link. To generate
traffic, we randomly pick 5 tenants (referred to as T1 to
T5) as high-demanded tenants whose clients request sufficient
flow transfers during our measurement period. The remaining
tenants (referred to as T6 to T10) have insufficient demands
during the measurement period. Low-demanded tenants may
initiate their flow transfers at any time during the measurement
period. We first fix the length of control interval as 4 seconds
and consider other lengths in §VII-A2.

Figure 4(a) plots the runtime core link bandwidth obtained
by each tenant in a 10-second measurement period. During
this period, QShare’s tenant-queue binding algorithm assigns
each of the tenants in T1 to T7 a dedicated queue on the core
link; T8, T9 and T10 are served in a shared queue. When low-
demanded tenants are inactive at the early stage, T1 through
T5 fairly share the entire core link capacity. Later on, low-
demanded tenants T6, T8, T9 and T10 become active. As
T8, T9 and T10 are in the share queue, they all obtain their
guaranteed bandwidth. T1 to T6, each exclusively occupying
a queue, equally share the remaining capacity. At about 8
second, T7 becomes active and fairly shares the core link
with T1 to T5. It is clear that all tenants receive at least
their guaranteed bandwidth regardless of their communication
patterns and other tenants’ demands. Meanwhile, the core link
is always fully utilized. Thus, QShare achieves perfect work-
conserving bandwidth guarantees.

2) Unpredictable Demand Trend: We now consider the
case when tenant demand trend is unpredictable. Since traffic

8
1=

3
1=

N
=
1=

Bandwidth (Mbps)

Core Link Utilization (Mbps)

n
=3
1=

0

A I N
900! e —
7 o~
8 2800
2
=700
c
2600
s
500
1 S a00 -
£ Predictable Demand Trend
5300 | Unpredictable Demand Trend =she= |...]
®
5200
o
100

0

Time (s)

(a) Per-tenant runtime bandwidth utilization given pre-
dictable demand trends.

(b) Aggregate core link utilization
given unpredictable traffic trend.

10 20 40 50 60 2

30 4 6 8
Time (s) Length of Control Interval (seconds)

(c) Average core link utilization with
varying control intervals.

Fig. 4: Figure 4(a) plots runtime bandwidth utilization of each tenant given correct demand trend prediction. QShare achieves
perfect work-conserving bandwidth guarantees in this case. Figure 4(b) plots the aggregate core link utilization given completely
unpredictable demands. Only few under-utilized cases are observed, yielding over 91% average utilization. Figure 4(c) shows the
average core link utilization given different lengths of the control interval.

predictability is only relevant to the tenant-queue binding
module, we mainly focus on the performance of work con-
servation when handling unpredictable demands. To gener-
ate unpredictable traffic demands, each client requests flow
transmissions from randomly selected servers. Flow sizes
are sampled from the empirical datacenter workloads [4].
When the current flow finishes, a client randomly switches
between being active (i.e., requesting a new ow transmission)
or dormant (i.e., sleeping for a random period of time between
0 to 1 second before requesting a new flow transfer).

Figure 4(b) illustrates the runtime core link utilization over
a one-minute measurement period. We measure the aggregated
link utilization from all tenants at the granularity of 0.1
second. As illustrated in Figure 4(b), in spite of unpredictable
demands, under-utilized cases are rare, rendering over 91%
average link utilization (plotted Figure 4(c)). This is because
that QShare does not rely on good TM estimation to achieve
work conservation. Instead, for any D-tenant (tenant with a
dedicated queue), its VMs can burst traffic using arbitrary
communication patterns, allowing them to effectively grab
possible spare bandwidth. As long as one VM pair from all
D-tenants is high-demanded, it can drive the core link to full
utilization. Mathematically, the probability that all VM pairs
from D-tenants have insufficient demands is low. In particular,
assuming each VM pair independently determines to be either
active or dormant with equal probability during a small time
interval, the probability that the core link observes insufficient
demands in the small interval® is (%)N, where N is the number
of VM pairs from all D-tenants. Thus, demand unpredictability
has minor effects on work conservation.

We further plot the average core link utilization for different
lengths of the control interval in Figure 4(c). For predictable
demand trend, QShare achieves perfect work conservation as
long as the length of control interval is comparable with how
long the trend lasts. For unpredictable trend, the utilization
drops slightly as the length of control interval increases.

The takeaway of this evaluation is that to achieve good
work conservation, (i) QShare does not require perfect demand
trend prediction and (ii) it is sufficient to perform tenant-queue

3Given a small interval (e.g., sub-millisecond), a small flow transmission
may be considered as sufficient demand.

allocation at coarse time granularity (e.g., seconds). Thus,
QOShare’s dynamic queue-tenant binding module does not
need to react quickly enough to capture traffic bursts, which
significantly reduces the stress for large scale deployment.

Fairness. The benefits of enabling ElasticSwitch-like rate
allocations for tenants without dedicated queues are two-fold.
First, it improves the link utilization for those under-utilized
cases shown in Figure 4(b). Second, it improves the fairness
for sharing spare bandwidth as both tenants in the shared queue
and tenants with dedicated queues can utilize such bandwidth.

B. Tenant Application Benefits

Given the desirable property in §VII-A, QShare can ben-
efit tenant applications by significantly reducing their flow
completion times (FCTs). In this section, we demonstrate
QShare’s edges over ElasticSwitch [21], Trinity [13] and static
reservation for improving FCTs. Among all embedded tenants,
we consider one tenant T with 10 VMs evenly distributed in
two racks. Tenant T has 94 Mbps guaranteed bandwidth on
the core link. We consider the shuffle phase of MapReduce
jobs where a client requests flow transfers from all servers
(recall that a VM runs both the client and server program).
The flow sizes are sampled from empirically observed traffic
patterns in two deployed datacenter traces [10] and [4]. Each
client requests a new flow once the previous one is finished.

In the experiment, we create different datacenter fabric
loads by varying the guaranteed bandwidth of background
tenants (i.e., the tenants competing with T on the core
link). The load is computed as the ratio of total guaranteed
bandwidth from background tenants to the core link capacity.
The results for using the enterprise datacenter workload [4]
are plotted in Figure 5 (results for using the data-mining
workload [10] are similar and we omit them for brevity).
Because of the efficient resource utilization, QShare greatly
reduces FCTs compared with both ElasticSwitch [21] and
the static bandwidth reservation. Such improvement is even
more significant for smaller fabric loads. In spite of its
improvement over static reservation, ElasticSwitch [21] has
a non-trivial performance degradation from QShare (up to 2x
long FCTs) even if it adopts very aggressive RA to probe
available bandwidth (scarifying bandwidth guarantees [21]).

(a) Overall average FCTs (b) Small flows (<100KB)

2| QShare \ 2| 2 \ 2| \
S8} E'a::'c‘_sw:':h S8} 518 S8}
216 atic Res. i 216} 216 216}
2 2 2 2
14} S14} £14 £14}
D12t S12 &2 12t
2 1| A A A A 2 1} A A A A e 1 A A A A A e 1l A A A A
Eosf Eosf Eos Eos|
o o o =]
206} 206} 206 N—**v 206}
Soat Soat Soa Soat
'S w w 'S
02f 02f 0.2 02f
ol . . ol R . ol . .
0 40 60 80 0 4 60 80 0 40 80 0 4 60 80
Load (%) Load (%) Load (%) Load (%)

(c) Medium flows (d) Large flows (>10MB)

Fig. 5: FCT results for varying fabric loads (some results for static reservation are out of the plot scope). QShare achieves much
smaller FCTs than both static reservation and ElasticSwitch [21] (Trinity [13] has roughly the same FCTs as ElasticSwitch [21]).

We are aware that ElasticSwitch’s performance depends on
parameter settings and system tuning. Our self-implemented
ElasticSwitch prototype uses the default parameter setting in
its paper. We do not further plot the results of Trinity [13]
since ElasticSwitch with aggressive RA has roughly the same
performance with Trinity in terms of bandwidth utilization,
whereas Trinity has reordering and starvation issues.

C. QShare in Large Scale

In this section, we first study the extent of switch queue
scarcity in large scale datacenters. Further, we show QShare’s
benefit for providing tenants more bandwidth than their guar-
antees and improving link utilization efficiency in large scale
datacenters. We consider a three-layer multi-rooted tree topol-
ogy with 1024 servers and 100 VMs per server, for a total
of 100 thousand VMs. The network interface of each server
is 10 Gbps and the switch port capacity is 40 Gbps. The
network topology is constructed based on the k=16 fattree [3]
topology. By disabling certain links and switches, we can
create a topology with different oversubscription ratios.

1) The Extent of Switch Queue Scarcity: Based on mea-
surements in the production datacenters [6, 24], the number
of VMs requested by each tenant follows an exponential dis-
tribution with mean 49. To better represent various bandwidth
requirements from tenants, each VM randomly samples its
required bandwidth from {10, 50, 100, 200, 300} Mbps. In the
experiment, we keep embedding tenants until either network
resources or computation resources are fully reserved, i.e., the
datacenter operates at 100% load. To do a stress test for queue
scarcity, we assign more weight to ¢, in Algorithm 1. We test
three different over-subscription ratios 1:1, 4 :1 and 16 : 1.

The tenant placement results are tabulated in Table I. Over-
all, the extent of queue scarcity is moderate, counterintuitive to
the common assumption [20]. For instance, only ~4% switch
ports are overloaded in the 1 : 1 over-subscribed topology. Two
thirds of the tenants are assigned dedicated queues throughout
their lifetime due to the lack of queue contention, i.e., on
any link of their TRs, the number of competing tenants is
less than 8. ~90% of all tenants can have dedicated queues,
either permanently or opportunistically, in any control interval,
indicating that only a small fraction of tenants need to run rate
allocations on hypervisors. After placement, we analyze the
dscp concern in §V-D. dscp O is reserved for tenants in shared
queues. For each tenant with dedicated queues, we greedily

O.R. || Rny<o || Rnpepag || Rnp>i2 || R || Ry
1:1 96.7 3.26 0 66.7 90.4
4:1 95.1 4.88 0 67.2 90.1
16:1 92.1 7.89 0 66.7 90.6

TABLE I: Tenant placement results in a large scale datacenter.
RN, <9 is the percentage of ports serving less than 9 tenants.
RN, c[9,12) and RN, >12 have similar definitions. R, is the
percentage of tenants permanently assigned a dedicated queue
and Ry, is the percentage of tenants assigned a dedicated queue,
either permanently or opportunistically, in any control interval.
assign it the next non-conflicting dscp value. It turns out that
64 dscp values are sufficient for fully reserved datacenter.

The takeaway for the evaluation is that in reality the problem
of queue scarcity is moderate. By performing dynamic tenant-
queue binding, QShare can effectively address such scarcity.

2) QShare’s Performance in Large Scale: In this sec-
tion, we evaluate QShare’s performance based on large scale
simulations. Due to the scalability of accurately simulating
detailed packet-level commutations involving billions of VM
pairs, our simulator does not further study the performance
of ElasticSwitch [21] and Trinity [13] since both of them
require GP that depends on accurately modeling packet-level
communications. Instead, our simulator focuses on modeling
tenant-level throughput, assuming tenant applications can use
the network with arbitrary communication patterns. The ex-
periment is performed on a 16:1 over-subscribed and fully
reserved datacenter, since it has the highest level of queue
scarcity compared with other settings. We define the inactive
ratio r;,, as the percentage of low-demanded tenants.

Throughput Gain. The throughput gain for a tenant is defined
as the ratio of its actual achieved throughput to its guaranteed
bandwidth. For simplicity, we assume the throughput gain for
tenants in shared queues is 1 (no gain). For a tenant T with
dedicated queues, its bandwidth gain on different links of its
TR may be different since the actual demands on each link
vary. We quantify the throughput gain of T as the smallest
bandwidth gain obtained on any link of its TR. Thus, our
experiment shows the worst-case throughput gain for T when
the link with the smallest bandwidth gain is the bottleneck.

Figure 6(a) illustrates the average throughput gain given
varying inactive ratios. Overall, QShare produces significant
throughput gains (e.g., over 3x for all inactive ratios) over
bandwidth guarantees. The throughput gain increases dramat-
ically (up to ~50) as the inactive ratio increases, demonstrating
that QShare can effectively utilize spare bandwidth.

SecondNet [12], . ElasticSwitch [21], EyeQ [15], . .
Oktopus [6], TIVC [25] || ClovdMirror [18] Trinity [13] GateKeeper [22] || St 1141 | Qlump [11])| QShare
BG Yes Yes Tradeoff [21] Yes Yes Yes Yes
wC No No Tradeoff [21] Yes No Yes Yes
_ Multi-tenant Yes Yes No Yes Yes No Yes
isolation & placement
Application TM estimation; Non-congested
Others None driven Starvation & reordering [13] network core None None None

TABLE II: Property comparison with closely related works. “BG” and “WC” mean bandwidth guarantee and work conservation.

)
3

&
=)

)
S

o

0.2

Static Res.
QShare

o

Throughput (Ngrm. to Static Res.
5]

X

920 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Link utilization (Norm. to link capacity)

(b) Link utilization

1‘0 30 50 70
Inactive ratio (%)

(a) Throughput gain
Fig. 6: QShare’s performance in large scale.

Utilization Efficiency. A direct benefit of work conservation
is that network links are more effectively utilized. Specifically,
consider that tenant T"s throughput gain allows it to receive an
extra 100 Mbps bandwidth besides its guaranteed bandwidth.
This extra bandwidth will distribute among the links of T"s
TR, driving these links to higher utilization. Without loss of
generality, we consider a communication pattern that spreads
T’s throughput gain across T’s links proportionally to T’s
guaranteed bandwidth on these links. As the throughput gain
is obtained as the minimal bandwidth gain among all links, this
distribution will not drive any link to over 100% utilization.
Figure 6(b) plots the CDFs of normalized link utilization
(to the link capability) in the datacenter given r;,=0.5. The
results show that QShare achieves better efficiency in link
utilization than static reservation. For instance, with QShare,
half of the links’ utilization is over ~60% compared with
~25% in static reservation; ~14% links are fully utilized with
QShare compared with 0 percentage in static reservation.

VIII. RELATED WORK

Table II summarizes the properties of closely related work.
SecondNet [12], Oktopus [6], and TIVC [25] provide static,
non work-conserving bandwidth guarantees. EyeQ [15] and
GateKeeper [22] achieve work-conserving bandwidth guaran-
tees only if the network core is congestion-free, which may
be not true for many datacenters [7, 16]. ElasticSwitch [21]
and relies on challenging TM prediction and has a tradeoff
between providing accurate bandwidth guarantees and being
sufficiently work-conserving. Trinity [13] improves Elastic-
Switch’s work-conservation in static context via in-network
priority queuing. However, it inherits the challenge of TM
estimation and further raises starvation and packet reordering
issues. Silo [14] and QJump [11] provide both bandwidth and
in-network latency guarantee, but Silo is not work-conserving
and QJump lacks the tenant placement and isolation.

IX. CONCLUSION

This paper presented QShare, the first comprehensive in-
network solution enabling work-conserving bandwidth guar-

antees in multi-tenant datacenters. At its core, QShare’s tenant
placement module provides accurate bandwidth guarantees,
and its tenant-queue binding module dynamically assigns
high-demanded tenants dedicated switch queues to achieve
work conservation. Our evaluation results show that QShare
improves state-of-the-art solutions in two aspects: (i) it does
not rely on challenging traffic matrix prediction to achieve
good performance and (ii) it eliminates the tradeoff of pro-
viding good bandwidth guarantees and being work conserving
without raising starvation or packet reordering issues.

X. ACKNOWLEDGEMENTS

We want to thank the anonymous reviewers for insightful
comments. This research was partially supported by China
973 Program No.2014CB340300, HK GRF-16203715, ECS-
26200014, CRF-C703615G and NSF CNS-1717313.

REFERENCES

Netlink. http://man7.org/linux/man-pages/man7/netlink.7.html.

The Netfilter Project. http://www.netfilter.org.

M. Al-Fares et al. A scalable, commodity data center network architecture. In
ACM SIGCOMM, 2008.

M. Alizadeh et al. CONGA: Distributed congestion-aware load balancing for
datacenters. In ACM SIGCOMM, 2014.

S. Angel et al. End-to-end performance isolation through virtual datacenters. In
USENIX OSDI, 2014.

H. Ballani et al. Towards predictable datacenter networks. In SIGCOMM, 2011.
T. Benson et al. Network traffic characteristics of data centers in the wild. In ACM
IMC, 2010.

N. G. Duffield et al. A flexible model for resource management in virtual private
networks. In ACM SIGCOMM, 1999.

M. R. Garey et al. Some simplified NP-complete problems. In ACM STOC, 1974.
A. Greenberg et al. VL2: a scalable and flexible data center network. In ACM
SIGCOMM, 2009.

M. P. Grosvenor et al. Queues Don’t Matter When You Can JUMP Them! In
USENIX NSDI, 2015.

C. Guo et al. SecondNet: A data center network virtualization architecture with
bandwidth guarantees. In ACM CoNEXT, 2010.

S. Hu et al. Providing bandwidth guarantees, work conservation and low latency
simultaneously in the cloud. In /EEE INFOCOM, 2016.

K. Jang et al. Silo: Predictable message latency in the cloud. In SIGCOMM, 2015.
V. Jeyakumar et al. EyeQ: Practical network performance isolation at the edge. In
USENIX NSDI, 2013.

S. Kandula et al. The nature of data center traffic: Measurements & analysis. In
ACM IMC, 2009.

G. Kumar et al. Virtualizing traffic shapers for practical resource allocation. In
USENIX HotCloud, 2013.

J. Lee et al. Application-driven bandwidth guarantees in datacenters. In ACM
SIGCOMM, 2014.

Z. Liu et al. Enabling work-conserving bandwidth guarantees for multi-tenant
datacenters via dynamic tenant-eue binding, 2017.

L. Popa et al. FairCloud: Sharing the network in cloud computing.
SIGCOMM, 2012.

L. Popa et al. ElasticSwitch: Practical work-conserving bandwidth guarantees for
cloud computing. In ACM SIGCOMM, 2013.

H. Rodrigues et al. Gatekeeper: Supporting bandwidth guarantees for multi-tenant
datacenter networks. In USENIX WIOV, 2011.

A. Roy et al. Inside the social network’s (datacenter) network. In ACM SIGCOMM,
2015.

A. Shieh et al. Sharing the data center network. In USENIX NSDI, 2011.

D. Xie et al. The only constant is change: Incorporating time-varying network
reservations in data centers. In ACM SIGCOMM, 2012.

Q. Xu et al. Optimization framework for multi-tenant data centers, 2017. US Patent
9813301 B2.

(1]
[2]
3]
[4]
[5]

(6]
(7]

(8]

[9]
[10]

[11]
[12]
[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20] In ACM
[21]
[22]
[23]

[24]
[25]

[26]

