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Abstract— Today’s cloud networks are shared among many
tenants. Bandwidth guarantees and work conservation are two
key properties to ensure predictable performance for tenant
applications and high network utilization for providers. Despite
significant efforts, very little prior work can really achieve both
properties simultaneously even some of them claimed so.

In this paper, we present QShare, a comprehensive in-network
solution to achieve bandwidth guarantees and work conserva-
tion simultaneously. QShare leverages weighted fair queuing on
commodity switches to slice network bandwidth for tenants,
and solves the challenge of queue scarcity through balanced
tenant placement and dynamic tenant-queue binding. We have
implemented a QShare prototype and evaluated it extensively
via both testbed experiments and simulations. Our results show
that QShare ensures bandwidth guarantees while driving network
utilization to over 91% even under unpredictable traffic demands.

I. INTRODUCTION

Sharing the network of multi-tenant datacenters has been

critical for public clouds. The two primary goals, among

others, are bandwidth guarantees and work conservation.

Bandwidth guarantees ensure predictable lower bound network

performance for tenant applications. Recent studies show

that, without bandwidth guarantees, network performance may

experience over 5x variations, degrading application perfor-

mance [6]. Work conservation enables a tenant to use spare

bandwidth beyond its minimum guarantee to further improve

tenant application performance, and boost provider network

utilization. Given that datacenter traffic is bursty in nature and

that the average network utilization is low [7, 16, 23], work

conservation can deliver over 10x additional bandwidth to a

VM upon its minimum guarantee [21].

However, it is hard to enable both properties simultaneously.

Oktopus [6] and SecondNet [12] achieve bandwidth guaran-

tees, but they are not work-conserving. Seawall [24] achieves

work conservation without offering bandwidth guarantees.

ElasticSwitch [21] takes the first attempt toward achieving

both properties simultaneously. It is an endhost based solution

that first translates per-VM hose-model bandwidth guarantees

into VM-to-VM pair rate limiters (referred as Guarantee Parti-

tioning, GP), and then dynamically allocates spare bandwidth

to these VM pairs to achieve high utilization (referred as Rate

Allocation, RA). However, this approach suffers from two

key challenges: (i) since tenant applications are agnostic to

network operators, it is hard for GP to accurately capture the

real communication patterns among VMs, affecting bandwidth

guarantees; (ii) to detect spare bandwidth, RA needs to probe

the network by increasing rates, which causes a tradeoff

between bandwidth guarantees and work conservation—a con-

servative RA sacrifices work conservation, while an aggressive

RA affects other tenants’ bandwidth guarantees.

Trinity [13] moves one step further to complement Elas-

ticSwitch with a simple in-network support. It uses two

priority queues in switches to segregate and prioritize the

bandwidth guarantee traffic over work conservation traffic, so

that aggressive RA of one tenant does not affect bandwidth

guarantees of others. While Trinity solves the second challenge

of ElasticSwitch, it still suffer from the first challenge shown

above. Further, it incurs other issues such as packet reordering

and starvation due to traffic segregation and priority queuing.

Due to these challenges, prior solutions, essentially, do not

achieve both goals in a sufficient manner. To give some sense,

our testbed experiments show that given unknown communi-

cation pattern and demands, state-of-the-art solutions cannot

achieve sufficiently good work-conversation (given bandwidth

guarantees are satisfied), which, for instance, causes 2x long

FCTs for tenant applications compared with our solution.

Motivated by this, in this paper, we propose QShare, the first

comprehensive in-network solution that addresses all above

challenges to achieve both goals in a sufficient manner. Unlike

Trinity [13] that uses two priority queues to segregate two

traffic types, QShare directly leverages weighted fair queues

(WFQs)1 in commodity switches to slice network bandwidth

for tenants. As a result, this enables: (i) bandwidth guarantees

are achieved via proper queue weight configuration and tenant

placement rather than endhost rate limiters, thus eliminating

GP; (ii) network links are driven to full utilization instantly as

long as one tenant has sufficient demand; (iii) no matter how

aggressively a tenant transmits, bandwidth guarantees of other

tenants are not affected as they are served in separate weighted

queues; (iv) no packet reordering or starvation arises.

While promising, QShare introduces a new challenge of

queue scarcity: the number of queues on a commodity switch

port can be less than the number of tenants served by this port

(§VII-C1). To address this challenge, we make the following

observation: although the total number of embedded tenants

associating with a port may be large, during a short time

interval (e.g., a few seconds), the number of concurrent tenants

whose traffic demands exceed their bandwidth guarantees is

small. This is also supported by the measurement results in

production datacenters, where the average link utilization is
1We note that while WFQ may have been considered in other contexts [17],

this work is the first one to exploit WFQ to enable work-conserving bandwidth
guarantees for cloud network sharing.





queues to segregate traffic for two different types, QShare

leverages multiple weighted fair queues (WFQs) to slice

network bandwidth for tenants. This enables QShare to pro-

vide tenant-level bandwidth guarantees and work conservation

(rather than rigid VM pair level as in [13, 21]), thus leaving

tenant applications full flexibility to use its allocated band-

width as needed. Such tenant-level bandwidth guarantees are

also used in [5, 6], but they fail to achieve work conservation.

At the very high level, QShare’s design has two modules:

a balanced tenant placement module and a dynamic tenant-

queue binding module. The placement module first seeks

to provision tenant network to ensure bandwidth guarantees.

Further, it balances the usage of switch queues among tenants

to reduce the stress of performing dynamic queue allocation in

the binding module. The tenant-queue binding module dynam-

ically assigns dedicated queues to tenants whose applications

tend to have higher demands than their guaranteed bandwidth,

and meanwhile serves all low-demanded tenants in a shared

queue. As a result, high-demanded tenants can burst their traf-

fic in arbitrary communicate patterns without affecting other

tenants. This design is the key to avoid the challenging GP

and to eliminate the tradeoff between bandwidth guarantees

and work conservation in the endhost based solutions [13, 21].

A challenge of the binding mechanism is how to assign

dedicated queues to right tenants since traffic demand is

dynamic. QShare addresses the challenge as follows. First,

rather than predicting complete traffic matrix for each tenant

as in [13, 21], QShare’s demand prediction uses only a scalar

metric for each tenant to reduce the stress of prediction.

Second, to improve the worst case performance given inac-

curate prediction and high-demanded tenants are mistakenly

placed in the shared queue, QShare can employ ElasticSwitch

for tenants in the shared queue to achieve moderate work-

conserving bandwidth guarantees in the spirit of ElasticSwitch.

Finally, we perform testbed experiments (§VII-A) to quantify

effects of the binding mechanism: (i) the average utilization

deficit caused by binding errors is less than 9% of the total

capacity; (ii) to achieve good performance, it is sufficient

to perform dynamic binding at more coarse time granularity

(a few seconds) compared with the traffic matrix estimation

performed at the granularity of milliseconds in [13, 21].

IV. BALANCED TENANT PLACEMENT

The goals of tenant placement are (i) provisioning virtual

networks for tenants to satisfy their computation and band-

width guarantees and (ii) balancing the overall switch queue

utilization among tenants. The prior placement algorithms

proposed in [6, 18] aim to maximize the number of accepted

tenant requests, which is an NP-hard problem similar to [8].

However, different from prior algorithms that make greedy

embedding decisions (i.e., embed a tenant immediately once

a feasible option is found), our balanced tenant placement re-

quires global topology investigation, i.e., evaluating all feasible

options before making embedding decisions. Towards this end,

we design our own tenant placement algorithm. Formulated in

Algorithm 1: Balanced Tenant Placement

1 Input: A tenant request with explicit guarantees.
2 Output: The desired TR or an embedding error.

3 layer ← 1;
4 while True do
5 TRs ← get TRs at layer(layer);
6 for T ∈ TRs do
7 [feasible, cost] ← evaluate TR(T);
8 if feasible then TR candidates.add((T, cost));

9 if TR candidates is empty then
10 layer ← layer + 1;
11 if layer > n then return False;
12 else
13 return get desired TR(TR candidates)

14 Function: evaluate TR(T ):
15 OA ← get optimal allocation(T );
16 if OA is feasible then return [True, (cb, cq)];
17 else return [False, null];

Algorithm 1, our placement algorithm contains two major parts

(i) TR candidate exploration and (ii) TR candidate election.

A. TR Candidate Exploration

We explain TR candidate exploration in the widely adopted

multi-rooted tree datacenter topology [3, 10]. Given a tenant

request, Algorithm 1 explores the topology from the lowest

layer (hypervisor layer) towards the highest layer (core switch

layer). At each layer, function get TRs at layer (line 5)

obtains all TR options at this layer. A layer-i TR option is

a tree rooted at layer i. Its leaves are all servers reachable

from the root using only downward paths. The algorithm

then evaluates these TRs to produce feasible ones, called TR

candidates (line 7). Generally speaking, a TR option is feasible

if it has enough capacity to accommodate the tenant. Function

evaluate TR, detailed in §IV-B, determines such feasibility.

If no TR candidates can be found, the algorithm continues

exploration in the next layer (line 9). Otherwise, it stops

further exploration and returns the desired TR elected from

all candidates (line 13) using the criteria described in §IV-B.

The early return confines tenants at the lowest possible layer

to avoid unnecessary network usage at higher layers. If no TR

candidates can be found after exploring the entire topology

with n layers, the algorithm returns false (line 11), indicating

an embedding error due to the lack of resources.

B. TR Evaluation and Candidate Election

A TR option is feasible if (i) the total available VM slots

from all its servers are enough to hold the tenant’s VMs and

(ii) each link of the TR has enough available capacity to satisfy

the tenant’s bandwidth guarantees. Although evaluating the

first rule is simple, the second rule requires more investigation.

In particular, given a TR option, the amounts of bandwidth

required on its links depend on the VM locations inside the

TR. Specifically, consider a symmetric hose model where all

VMs have the same guarantee B. Given a link L of the TR,

removing L breaks the TR into two disjoint components. If m
VMs are in one component and n VMs are in the other one,

the bandwidth required on L is B ·min{m,n}. Figure 2 plots

a TR rooted at S1. For the VM location in Figure 2(a), the link





Algorithm 2: Queue Allocation Algorithm

1 Input: The set of embedded tenants S.
2 Output: Tenant-queue assignment.

3 Sort the tenants in S decreasingly by their scores;
4 for T ∈ S do
5 if T has a dedicated queue then continue;
6 else if T’s TR has a spare queue then
7 enqueue tenant(T);

8 else opportunistically enqueue(T);
9 Update queue allocation state;

10 Queue weight computation;

11 Function: enqueue tenant(T):
12 for L ∈ T’s TR do
13 reserved bandwidth ← B ·min{m,N −m};

14 Function: opportunistically enqueue(T):
15 for L ∈ T’s TR do
16 get opportunistic queues from LSTs(L);

17 if T’s TR has an opportunistic queue then
18 enqueue tenant(T);

lying [20]. To mitigate the problem caused by lying, QShare

proposes to consider payment factors, along with U-factors,

when scoring tenants. Each tenant’s payment factor and its

guaranteed bandwidth are positively correlated such that de-

liberately requesting lower guarantees reduces a tenant’s score

whereas exaggerating guarantees requires higher payment. For

simplicity, QShare assumes that a tenant’s payment factor is

proportional to the total guaranteed bandwidth required by its

hose model.2 Thus, given tenant T with N VMs and each VM

requests guaranteed bandwidth B, its payment factor is kNB,

where k is a constant depending on the pricing model.

Simplifying UT in Equation (1) as min{U∗

B∗
, 1}, then tenant

T’s score ST is computed as follows

ST = kNB ·UT =

{

k̃U∗, if UT < 1

kNB, otherwise
(2)

k̃ = kNB/B∗, where B∗ is determined by maximizing the

inner max operation of Equation (1).

Using ST as the criterion for queue allocation can mitigate

problems caused by lying. On the one hand, as ST is bounded

by kNB, deliberately requesting smaller B would result in a

lower cap of ST, which is disadvantageous when competing

with other tenants. On the other hand, deliberately requesting

higher B also has problems since (i) tenant T has to pay more

and (ii) its ST is determined by T’s real usage rather than

its claimed guarantees if UT < 1. Generally, high-demanded

tenants are preferred since ST is non-decreasing as bandwidth

usage increases, which is desirable for queue allocation.

C. Dynamic Queue Allocation

We present the queue allocation logic in Algorithm 2. A

tenant is assigned a dedicated queue only if it is assigned a

dedicated queue on each link of its TR. Otherwise, the tenant

will be served in the shared queue on each link of its TR. To
2Payment for computation resources is not considered as QShare focuses

on bandwidth management.

prioritize tenants with higher scores, Algorithm 2 starts queue

allocation from the tenant with the highest score (line 3).

If a tenant T currently has a dedicated queue, it continues to

hold the queue for the next control interval (line 5). Otherwise,

Algorithm 2 determines whether allocating T a dedicated

queue is possible. To satisfy the condition on line 6, each

link of T ’s TR needs to have at least one spare queue. If

positive, function enqueue tenant assigns T a queue on each

link L of its TR (line 12). Otherwise, function opportunis-
tically enqueue (line 8) opportunistically finds queues for

T by preempting queues from low-scored tenants (LSTs).

Specifically, on link L without spare queues, the algorithm

obtains an opportunistic queue from a tenant T̃ such that (i)
T̃ ’s score is less than T ’s score and (ii) T̃ ’s score is the

smallest among all tenants owning a queue on L (line 16).

If the algorithm finds an available queue, either opportunistic

or unoccupied, for each link of T ’s TR, we say T ’s TR has an

opportunistic queue (line 17) and enqueue T . ALl dequeued

tenants are served in shared queues during the next interval.

Queue allocation state is updated after handling T (line 9).

Once queue allocations for all tenants are finished, QShare

computes weight for each queue (line 10). For a queue Qi on

link L, its normalized weight is the ratio of reserved bandwidth

in Qi to the total amount of reserved bandwidth on link L.

D. Policy Enforcer

To enforce queue allocation decisions inside network,

QShare needs to perform (i) packet tagging and (ii) network

configuration. Packet tagging is to ensure that packets are

served in correct queues. We use dscp tagging to achieve

this. To avoid ambiguity, the D-tenants (tenants with dedicated

queues) whose TRs share at least one common link cannot

use the same dscp value. D-tenants whose TRs are non-

overlapping can reuse the same dscp value. Since only 64 dscp
values are available, finding the smallest possible number of

dscp values in a legal assignment can be reduced to the k-

coloring of a graph, which is NP-hard [9]. To address the

dscp usage concerns, we analyze the efficiency of a greedy

assignment in large scale datacenters based on production

datacenter settings (see details in §VII-C1).

Network configuration involves configuring the queues on

each link with proper weights and dscp values, which requires

WFQ configuration on both ports of the link. For edge links

connecting servers and switches, software WFQ is required on

hypervisors. To achieve automation, QShare designs a network

action container to perform configuration in a batch: operations

on different switches are parallelized via multi-threading so

that the marginal configuration latency is negligible [19].

Finally, QShare can run ElasticSwitch-like rate allocation

mechanisms [24] for tenants without dedicated queues to

improve worst-case performance. However, QShare imposes

smaller overhead than ElasticSwitch [21] since it only per-

forms rate allocations for tenants without dedicated queues.

VI. IMPLEMENTATION

The prototype of QShare contains both user-space and

kernel-space programs, as shown in Figure 3. The user-space
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Fig. 3: The software implementation of QShare.

programs, executed globally, are responsible for managing the

whole datacenter whereas the kernel-space program, running

on each hypervisor, manages the local hypervisor. Two spaces

interact with each other such that queue allocation decisions

are made based on the distributed measurement reported

by all hypervisors, and meanwhile the allocation decisions

are pushed back to the kernel modules for enforcement on

hypervisors. The implementation has ∼2000 lines of code

(Python in user space and C in kernel space).

The user-space programs include tenant placement, queue

allocation and the network action container. The kernel-space

module, built on NetFilter [2], includes tenant traffic monitor,

rate allocation (for tenants in shared queues), software WFQ

(for tenants with dedicated queues) and packet dscp tagging.

On each hypervisor, a user-space deamon (not plotted) based

on Netlink [1] interacts with the kernel module.

Note that implementing a hypervisor that can support all

kinds of VM management is out of this paper’s scope. Our

prototype builds a simple hypervisor that can support QShare-

related operations, such as identifying the VMs of each tenant.

VII. EVALUATION

Our evaluation centers around the following questions:

(i) How does traffic dynamic affect QShare’s performance?

With correct predictions on demand trend (not the exact

demand), QShare achieves perfect work-conserving bandwidth

guarantees: all bandwidth guarantees are satisfied and mean-

while the bottleneck link is fully utilized (§VII-A1). Even

when demand trends are completely unpredictable, QShare

drives the bottleneck link to over 91% utilization (§VII-A2).

(ii) How well can QShare benefit applications? Given the

above desirable properties, QShare benefits tenant applications

by reducing their flow completion times (FCTs) by up to 50%
compared with the state-of-the-art solutions [13, 21] (§VII-B).

(iii) How well can QShare manage large scale datacenters?

Based on observations from production datacenters, we show

that QShare can assign dedicated queues to ∼90% of all

tenants in any control interval in fully reserved datacenters.

Thus, QShare offers tenants at least 3× throughput gain over

their guaranteed bandwidth (§VII-C).

Testbed Setup. We build a physical testbed containing 10
servers and each server provisions 10 VM slots, for a total

of 100 VMs. We evenly distribute the servers into two racks

inter-connected by two Pronto-3297 48-port Gigabit switches.

Thus, the topology is 5:1 oversubscribed and the core link is

the bottleneck. Each port supports up to 8 WFQ queues. We

embed multiple tenants in the testbed, with random sizes from

2 to 20 VMs. We develop a client/server program to generate

traffic. The clients initiate long-lived TCP connections to

randomly selected servers and request flow transfers. All VMs

run both the client and server programs.

A. Work-Conserving Bandwidth Guarantees

In this section, we consider how traffic dynamics may affect

QShare’s performance for enabling work-conserving band-

width guarantees. We consider the following two scenarios.

The first case is that a tenant’s demand trend is predictable:

i.e., once a tenant has high traffic demand, this trend continues

for few seconds. Trend predictability is not over-optimistic

since hot spots in production datacenters can last over tens

of seconds [16]. The second case is that the demand trend

is completely unpredictable: i.e., a tenant’s future demands

are independent on its current or previous demands. In both

cases, QShare does not impose any constraint or assumption

on VM communication patterns, i.e., one client can request

flow transfers from arbitrary servers at any time.

To quantify the worst-case performance degradation caused

by traffic unpredictability, we first disable the ElasticSwitch-

like rate allocations for the tenants without dedicated queues,

and allocate them at most their guaranteed bandwidth.

1) Predictable Demand Trend: In this experiment, we con-

sider 10 tenants competing on the core link. Each tenant is

guaranteed 94 Mbps bandwidth on the core link. To generate

traffic, we randomly pick 5 tenants (referred to as T1 to

T5) as high-demanded tenants whose clients request sufficient

flow transfers during our measurement period. The remaining

tenants (referred to as T6 to T10) have insufficient demands

during the measurement period. Low-demanded tenants may

initiate their flow transfers at any time during the measurement

period. We first fix the length of control interval as 4 seconds

and consider other lengths in §VII-A2.

Figure 4(a) plots the runtime core link bandwidth obtained

by each tenant in a 10-second measurement period. During

this period, QShare’s tenant-queue binding algorithm assigns

each of the tenants in T1 to T7 a dedicated queue on the core

link; T8, T9 and T10 are served in a shared queue. When low-

demanded tenants are inactive at the early stage, T1 through

T5 fairly share the entire core link capacity. Later on, low-

demanded tenants T6, T8, T9 and T10 become active. As

T8, T9 and T10 are in the share queue, they all obtain their

guaranteed bandwidth. T1 to T6, each exclusively occupying

a queue, equally share the remaining capacity. At about 8
second, T7 becomes active and fairly shares the core link

with T1 to T5. It is clear that all tenants receive at least

their guaranteed bandwidth regardless of their communication

patterns and other tenants’ demands. Meanwhile, the core link

is always fully utilized. Thus, QShare achieves perfect work-

conserving bandwidth guarantees.

2) Unpredictable Demand Trend: We now consider the

case when tenant demand trend is unpredictable. Since traffic
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varying control intervals.

Fig. 4: Figure 4(a) plots runtime bandwidth utilization of each tenant given correct demand trend prediction. QShare achieves
perfect work-conserving bandwidth guarantees in this case. Figure 4(b) plots the aggregate core link utilization given completely
unpredictable demands. Only few under-utilized cases are observed, yielding over 91% average utilization. Figure 4(c) shows the
average core link utilization given different lengths of the control interval.

predictability is only relevant to the tenant-queue binding

module, we mainly focus on the performance of work con-

servation when handling unpredictable demands. To gener-

ate unpredictable traffic demands, each client requests flow

transmissions from randomly selected servers. Flow sizes

are sampled from the empirical datacenter workloads [4].

When the current flow finishes, a client randomly switches

between being active (i.e., requesting a new ow transmission)

or dormant (i.e., sleeping for a random period of time between

0 to 1 second before requesting a new flow transfer).

Figure 4(b) illustrates the runtime core link utilization over

a one-minute measurement period. We measure the aggregated

link utilization from all tenants at the granularity of 0.1

second. As illustrated in Figure 4(b), in spite of unpredictable

demands, under-utilized cases are rare, rendering over 91%
average link utilization (plotted Figure 4(c)). This is because

that QShare does not rely on good TM estimation to achieve

work conservation. Instead, for any D-tenant (tenant with a

dedicated queue), its VMs can burst traffic using arbitrary

communication patterns, allowing them to effectively grab

possible spare bandwidth. As long as one VM pair from all

D-tenants is high-demanded, it can drive the core link to full

utilization. Mathematically, the probability that all VM pairs

from D-tenants have insufficient demands is low. In particular,

assuming each VM pair independently determines to be either

active or dormant with equal probability during a small time

interval, the probability that the core link observes insufficient

demands in the small interval3 is ( 1
2
)N, where N is the number

of VM pairs from all D-tenants. Thus, demand unpredictability

has minor effects on work conservation.

We further plot the average core link utilization for different

lengths of the control interval in Figure 4(c). For predictable

demand trend, QShare achieves perfect work conservation as

long as the length of control interval is comparable with how

long the trend lasts. For unpredictable trend, the utilization

drops slightly as the length of control interval increases.

The takeaway of this evaluation is that to achieve good

work conservation, (i) QShare does not require perfect demand

trend prediction and (ii) it is sufficient to perform tenant-queue
3Given a small interval (e.g., sub-millisecond), a small flow transmission

may be considered as sufficient demand.

allocation at coarse time granularity (e.g., seconds). Thus,

QShare’s dynamic queue-tenant binding module does not

need to react quickly enough to capture traffic bursts, which

significantly reduces the stress for large scale deployment.

Fairness. The benefits of enabling ElasticSwitch-like rate

allocations for tenants without dedicated queues are two-fold.

First, it improves the link utilization for those under-utilized

cases shown in Figure 4(b). Second, it improves the fairness

for sharing spare bandwidth as both tenants in the shared queue

and tenants with dedicated queues can utilize such bandwidth.

B. Tenant Application Benefits

Given the desirable property in §VII-A, QShare can ben-

efit tenant applications by significantly reducing their flow

completion times (FCTs). In this section, we demonstrate

QShare’s edges over ElasticSwitch [21], Trinity [13] and static

reservation for improving FCTs. Among all embedded tenants,

we consider one tenant T with 10 VMs evenly distributed in

two racks. Tenant T has 94 Mbps guaranteed bandwidth on

the core link. We consider the shuffle phase of MapReduce

jobs where a client requests flow transfers from all servers

(recall that a VM runs both the client and server program).

The flow sizes are sampled from empirically observed traffic

patterns in two deployed datacenter traces [10] and [4]. Each

client requests a new flow once the previous one is finished.

In the experiment, we create different datacenter fabric

loads by varying the guaranteed bandwidth of background

tenants (i.e., the tenants competing with T on the core

link). The load is computed as the ratio of total guaranteed

bandwidth from background tenants to the core link capacity.

The results for using the enterprise datacenter workload [4]

are plotted in Figure 5 (results for using the data-mining

workload [10] are similar and we omit them for brevity).

Because of the efficient resource utilization, QShare greatly

reduces FCTs compared with both ElasticSwitch [21] and

the static bandwidth reservation. Such improvement is even

more significant for smaller fabric loads. In spite of its

improvement over static reservation, ElasticSwitch [21] has

a non-trivial performance degradation from QShare (up to 2×
long FCTs) even if it adopts very aggressive RA to probe

available bandwidth (scarifying bandwidth guarantees [21]).
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Fig. 5: FCT results for varying fabric loads (some results for static reservation are out of the plot scope). QShare achieves much
smaller FCTs than both static reservation and ElasticSwitch [21] (Trinity [13] has roughly the same FCTs as ElasticSwitch [21]).

We are aware that ElasticSwitch’s performance depends on

parameter settings and system tuning. Our self-implemented

ElasticSwitch prototype uses the default parameter setting in

its paper. We do not further plot the results of Trinity [13]

since ElasticSwitch with aggressive RA has roughly the same

performance with Trinity in terms of bandwidth utilization,

whereas Trinity has reordering and starvation issues.

C. QShare in Large Scale

In this section, we first study the extent of switch queue

scarcity in large scale datacenters. Further, we show QShare’s

benefit for providing tenants more bandwidth than their guar-

antees and improving link utilization efficiency in large scale

datacenters. We consider a three-layer multi-rooted tree topol-

ogy with 1024 servers and 100 VMs per server, for a total

of 100 thousand VMs. The network interface of each server

is 10 Gbps and the switch port capacity is 40 Gbps. The

network topology is constructed based on the k=16 fattree [3]

topology. By disabling certain links and switches, we can

create a topology with different oversubscription ratios.

1) The Extent of Switch Queue Scarcity: Based on mea-

surements in the production datacenters [6, 24], the number

of VMs requested by each tenant follows an exponential dis-

tribution with mean 49. To better represent various bandwidth

requirements from tenants, each VM randomly samples its

required bandwidth from {10, 50, 100, 200, 300} Mbps. In the

experiment, we keep embedding tenants until either network

resources or computation resources are fully reserved, i.e., the

datacenter operates at 100% load. To do a stress test for queue

scarcity, we assign more weight to cq in Algorithm 1. We test

three different over-subscription ratios 1 : 1, 4 : 1 and 16 : 1.

The tenant placement results are tabulated in Table I. Over-

all, the extent of queue scarcity is moderate, counterintuitive to

the common assumption [20]. For instance, only ∼4% switch

ports are overloaded in the 1 : 1 over-subscribed topology. Two

thirds of the tenants are assigned dedicated queues throughout

their lifetime due to the lack of queue contention, i.e., on

any link of their TRs, the number of competing tenants is

less than 8. ∼90% of all tenants can have dedicated queues,

either permanently or opportunistically, in any control interval,

indicating that only a small fraction of tenants need to run rate

allocations on hypervisors. After placement, we analyze the

dscp concern in §V-D. dscp 0 is reserved for tenants in shared

queues. For each tenant with dedicated queues, we greedily

O. R. RNL<9 RNL∈[9,12] RNL>12 RND
RNI

1 : 1 96.7 3.26 0 66.7 90.4

4 : 1 95.1 4.88 0 67.2 90.1

16 : 1 92.1 7.89 0 66.7 90.6

TABLE I: Tenant placement results in a large scale datacenter.
RNL<9 is the percentage of ports serving less than 9 tenants.
RNL∈[9,12] and RNL>12 have similar definitions. RND

is the
percentage of tenants permanently assigned a dedicated queue
and RNI

is the percentage of tenants assigned a dedicated queue,
either permanently or opportunistically, in any control interval.

assign it the next non-conflicting dscp value. It turns out that

64 dscp values are sufficient for fully reserved datacenter.

The takeaway for the evaluation is that in reality the problem

of queue scarcity is moderate. By performing dynamic tenant-

queue binding, QShare can effectively address such scarcity.

2) QShare’s Performance in Large Scale: In this sec-

tion, we evaluate QShare’s performance based on large scale

simulations. Due to the scalability of accurately simulating

detailed packet-level commutations involving billions of VM

pairs, our simulator does not further study the performance

of ElasticSwitch [21] and Trinity [13] since both of them

require GP that depends on accurately modeling packet-level

communications. Instead, our simulator focuses on modeling

tenant-level throughput, assuming tenant applications can use

the network with arbitrary communication patterns. The ex-

periment is performed on a 16:1 over-subscribed and fully

reserved datacenter, since it has the highest level of queue

scarcity compared with other settings. We define the inactive

ratio rin as the percentage of low-demanded tenants.

Throughput Gain. The throughput gain for a tenant is defined

as the ratio of its actual achieved throughput to its guaranteed

bandwidth. For simplicity, we assume the throughput gain for

tenants in shared queues is 1 (no gain). For a tenant T with

dedicated queues, its bandwidth gain on different links of its

TR may be different since the actual demands on each link

vary. We quantify the throughput gain of T as the smallest

bandwidth gain obtained on any link of its TR. Thus, our

experiment shows the worst-case throughput gain for T when

the link with the smallest bandwidth gain is the bottleneck.

Figure 6(a) illustrates the average throughput gain given

varying inactive ratios. Overall, QShare produces significant

throughput gains (e.g., over 3× for all inactive ratios) over

bandwidth guarantees. The throughput gain increases dramat-

ically (up to ∼50) as the inactive ratio increases, demonstrating

that QShare can effectively utilize spare bandwidth.



SecondNet [12],

Oktopus [6], TIVC [25]
CloudMirror [18]

ElasticSwitch [21],

Trinity [13]

EyeQ [15],

GateKeeper [22]
Silo [14] QJump [11] QShare

BG Yes Yes Tradeoff [21] Yes Yes Yes Yes

WC No No Tradeoff [21] Yes No Yes Yes

Multi-tenant

isolation & placement
Yes Yes No Yes Yes No Yes

Others None
Application

driven

TM estimation;

Starvation & reordering [13]

Non-congested

network core
None None None

TABLE II: Property comparison with closely related works. “BG” and “WC” mean bandwidth guarantee and work conservation.
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Fig. 6: QShare’s performance in large scale.

Utilization Efficiency. A direct benefit of work conservation

is that network links are more effectively utilized. Specifically,

consider that tenant T’s throughput gain allows it to receive an

extra 100 Mbps bandwidth besides its guaranteed bandwidth.

This extra bandwidth will distribute among the links of T’s

TR, driving these links to higher utilization. Without loss of

generality, we consider a communication pattern that spreads

T’s throughput gain across T’s links proportionally to T’s

guaranteed bandwidth on these links. As the throughput gain

is obtained as the minimal bandwidth gain among all links, this

distribution will not drive any link to over 100% utilization.

Figure 6(b) plots the CDFs of normalized link utilization

(to the link capability) in the datacenter given rin=0.5. The

results show that QShare achieves better efficiency in link

utilization than static reservation. For instance, with QShare,

half of the links’ utilization is over ∼60% compared with

∼25% in static reservation; ∼14% links are fully utilized with

QShare compared with 0 percentage in static reservation.

VIII. RELATED WORK

Table II summarizes the properties of closely related work.

SecondNet [12], Oktopus [6], and TIVC [25] provide static,

non work-conserving bandwidth guarantees. EyeQ [15] and

GateKeeper [22] achieve work-conserving bandwidth guaran-

tees only if the network core is congestion-free, which may

be not true for many datacenters [7, 16]. ElasticSwitch [21]

and relies on challenging TM prediction and has a tradeoff

between providing accurate bandwidth guarantees and being

sufficiently work-conserving. Trinity [13] improves Elastic-

Switch’s work-conservation in static context via in-network

priority queuing. However, it inherits the challenge of TM

estimation and further raises starvation and packet reordering

issues. Silo [14] and QJump [11] provide both bandwidth and

in-network latency guarantee, but Silo is not work-conserving

and QJump lacks the tenant placement and isolation.

IX. CONCLUSION

This paper presented QShare, the first comprehensive in-

network solution enabling work-conserving bandwidth guar-

antees in multi-tenant datacenters. At its core, QShare’s tenant

placement module provides accurate bandwidth guarantees,

and its tenant-queue binding module dynamically assigns

high-demanded tenants dedicated switch queues to achieve

work conservation. Our evaluation results show that QShare

improves state-of-the-art solutions in two aspects: (i) it does

not rely on challenging traffic matrix prediction to achieve

good performance and (ii) it eliminates the tradeoff of pro-

viding good bandwidth guarantees and being work conserving

without raising starvation or packet reordering issues.
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