Session E5: Privacy-Preserving Analytics

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Use Privacy in Data-Driven Systems

Theory and Experiments with Machine Learnt Programs

Anupam Datta
Carnegie Mellon University

Piotr Mardziel

Carnegie Mellon University

ABSTRACT

This paper presents an approach to formalizing and enforcing a
class of use privacy properties in data-driven systems. In contrast
to prior work, we focus on use restrictions on proxies (i.e. strong
predictors) of protected information types. Our definition relates
proxy use to intermediate computations that occur in a program,
and identify two essential properties that characterize this behavior:
1) its result is strongly associated with the protected information
type in question, and 2) it is likely to causally affect the final out-
put of the program. For a specific instantiation of this definition,
we present a program analysis technique that detects instances of
proxy use in a model, and provides a witness that identifies which
parts of the corresponding program exhibit the behavior. Recogniz-
ing that not all instances of proxy use of a protected information
type are inappropriate, we make use of a normative judgment or-
acle that makes this inappropriateness determination for a given
witness. Our repair algorithm uses the witness of an inappropriate
proxy use to transform the model into one that provably does not
exhibit proxy use, while avoiding changes that unduly affect classi-
fication accuracy. Using a corpus of social datasets, our evaluation
shows that these algorithms are able to detect proxy use instances
that would be difficult to find using existing techniques, and subse-
quently remove them while maintaining acceptable classification
performance.

CCS CONCEPTS

« Security and privacy — Privacy protections;

KEYWORDS

privacy; use privacy; proxy; causal analysis

1 INTRODUCTION

Restrictions on information use occupy a central place in privacy
regulations and legal frameworks [28, 54, 61, 62]. We introduce the
term use privacy to refer to privacy norms governing information
use. A number of recent cases have evidenced that inappropriate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10...$15.00
https://doi.org/http://dx.doi.org/10.1145/3133956.3134097

Matt Fredrikson
Carnegie Mellon University

1193

Gihyuk Ko

Carnegie Mellon University

Shayak Sen

Carnegie Mellon University

information use can lead to violations of both privacy laws [68]
and user expectations [16, 19], prompting calls for technology to
assist with enforcement of use privacy requirements [53]. In or-
der to meet these regulatory imperatives and user expectations,
companies dedicate resources toward compliance with privacy poli-
cies governing information use [53, 57]. A large body of work has
emerged around use privacy compliance governing the explicit
use of protected information types (see Tschantz et al. [64] for a
survey). Such methods are beginning to see deployment in major
technology companies like Microsoft [58].

In this paper, we initiate work on formalizing and enforcing a
richer class of use privacy restrictions—those governing the use of
protected information indirectly through proxies in data-driven sys-
tems. Data-driven systems include machine learning and artificial
intelligence systems that use large swaths of data about individuals
in order to make decisions about them. The increasing adoption
of these systems in a wide range of sectors, including advertising,
education, healthcare, employment, and credit, underscores the
critical need to address use privacy concerns [53, 57].

We start with a set of examples to motivate these privacy con-
cerns and identify the key research challenges that this paper will
tackle to address them. In 2012, the department store Target drew
flak from privacy advocates and data subjects for using the shopping
history of their customers to predict their pregnancy status and
market baby items based on that information [19]. While Target in-
tentionally inferred the pregnancy status and used it for marketing,
the privacy concern persists even if the inference were not explic-
itly drawn. Indeed, the use of health condition-related search terms
and browsing history—proxies (i.e., strong predictors) for health
conditions—for targeted advertising have been the basis for legal
action and public concern from a privacy standpoint [16, 44, 68].
Similar privacy concerns have been voiced about the use of personal
information in the Internet of Things [40, 49, 52, 67].

Use privacy To address these threats, this paper articulates the
problem of protecting use privacy in data-driven systems.

Use privacy constraints restrict the use of protected information types
and some of their proxies in data-driven systems.

Setting A use privacy constraint may require that health infor-
mation or its proxies not be used for advertising. Indeed there are
calls for this form of privacy constraint [17, 46, 53, 68]. In this paper,
we consider the setting where a data-driven system is audited to
ensure that it complies with such use privacy constraints. The audit-
ing could be done by a trusted data processor who is operating the
system or by a regulatory oversight organization who has access
to the data processors’ machine learning models and knowledge of

Session E5: Privacy-Preserving Analytics

the distribution of the dataset. In other words, we assume that the
data processor does not act to evade the detection algorithm, and
provides accurate information. This trusted data processor setting
is similar to the one assumed in differential privacy [25].

In this setting, it is impossible to guarantee that data processors
with strong background knowledge are not able to infer certain
facts about individuals (e.g., their pregnancy status) [21]. Even in
practice, data processors often have access to detailed profiles of
individuals and can infer sensitive information about them [19,
66]. Use privacy instead places a more pragmatic requirement on
data-driven systems: that they simulate ignorance of protected
information types (e.g., pregnancy status) by not using them or
their proxies in their decision-making. This requirement is met if
the systems (e.g., machine learning models) do not infer protected
information types or their proxies (even if they could) or if such
inferences do not affect decisions.

Recognizing that not all instances of proxy use of a protected in-
formation type are inappropriate, our theory of use privacy makes
use of a normative judgment oracle that makes this inappropri-
ateness determination for a given instance. For example, while
using health information or its proxies for credit decisions may be
deemed inappropriate, an exception could be made for proxies that
are directly relevant to the credit-worthiness of the individual (e.g.,
her income and expenses).

Proxy use A key technical contribution of this paper is a formal-
ization of proxy use of protected information types in programs.
Our formalization relates proxy use to intermediate computations
obtained by decomposing a program. We begin with a qualitative
definition that identifies two essential properties of the interme-
diate computation (the proxy): 1) its result perfectly predicts the
protected information type in question, and 2) it has a causal affect
on the final output of the program.

In practice, this qualitative definition of proxy use is too rigid for
machine learning applications along two dimensions. First, instead
of demanding that proxies are perfect predictors, we use a standard
measure of association strength from the quantitative information
flow security literature to define an e-proxy of a protected informa-
tion type; here € € [0, 1] with higher values indicating a stronger
proxy. Second, qualitative causal effects are not sufficiently infor-
mative for our purpose. Instead we use a recently introduced causal
influence measure [14] to quantitatively characterize influence. We
call it the &-influence of a proxy where § € [0, 1] with higher values
indicating stronger influence. Combining these two notions, we
define a notion of (e, §)-proxy use.

We arrive at this program-based definition after a careful exami-
nation of the space of possible definitions. In particular, we prove
that it is impossible for a purely semantic notion of intermediate
computations to support a meaningful notion of proxy use as char-
acterized by a set of natural properties or axioms (Theorem 1). The
program-based definition arises naturally from this exploration by
replacing semantic decomposition with decompositions of the pro-
gram. An important benefit of this choice of restricting the search
for intermediate computations to those that appear in the text of
the program is that it supports natural algorithms for detection and
repair of proxy use. Our framework is parametric in the choice of a
programming language in which the programs (e.g., machine learnt

1194

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

models) are expressed and the population to which it is applied.
The choice of the language reflects the level of white-box access
that the analyst has into the program.

Detection We instantiate our definition to a simple program-
ming language that contains conditionals, arithmetic and logical
operations, and decompositions that involve single variables and
associative arithmetic. For example, decompositions of linear mod-
els include additive sets of linear terms, and decision forests include
subtrees, and sets of decision trees. For this instantiation of the def-
inition, we present a program analysis technique that detects proxy
use in a model, and provides a witness that identifies which parts
of the corresponding program exhibit the behavior (Algorithm 4).
Our algorithm assumes access to the text of a program that com-
putes the model, as well as a dataset that has been partitioned into
analysis and validation subsets. The algorithm is program-directed
and is directly inspired by the definition of proxy use. We prove
that the algorithm is complete relative to our instantiation of the
proxy use definition — it identifies every instance of proxy use in
the program (Theorem 3) and outputs witnesses (i.e. intermediate
computations that are the proxies). We provide three optimizations
that leverage sampling, pre-computation, and reachability to speed
up the detection algorithm.

Repair If a found instance of proxy use is deemed inappropriate,
our repair algorithm (Algorithm 5) uses the witness to transform
the model into one that provably does not exhibit that instance of
proxy use (Theorem 4), while avoiding changes that unduly affect
classification accuracy. We leverage the witnesses that localize
where in the program a violation occurs in order to focus repair
there. To repair a violation, we search through expressions local to
the violation, replacing the one which has the least impact on the
accuracy of the model and at the same time reduces the association
or influence of the violation to below the (¢, §) threshold.

Evaluation We empirically evaluate our proxy use definition,
detection and repair algorithms on four real datasets used to train
decision trees, linear models, and random forests. Our evaluation
demonstrates the typical workflow for practitioners who use our
tools for a simulated financial services application. It highlights
how they help them uncover more proxy uses than a baseline
procedure that simply eliminates features associated with the pro-
tected information type. For three other simulated settings on real
data sets—contraception advertising, student assistance, and credit
advertising—we find interesting proxy uses and discuss how the
outputs of our detection tool could aid a normative judgment oracle
determine the appropriateness of proxy uses. We evaluate the per-
formance of the detection algorithm and show that, in particular
cases, the runtime of our system scales linearly in the size of the
model. We demonstrate the completeness of the detection algo-
rithm by having it discover artificially injected violations into real
data sets. Finally, we evaluate impact of repair on model accuracy,
in particular, showing a graceful degradation in accuracy as the
influence of the violating proxy increases.

Closely related work The emphasis on restricting use of in-
formation by a system rather than the knowledge possessed by
agents distinguishes our work from a large body of work in pri-
vacy (see Smith [59] for a survey). The privacy literature on use

Session E5: Privacy-Preserving Analytics

restrictions has typically focused on explicit use of protected infor-
mation types, and not on proxy use (see Tschantz et al. [64] for a
survey and Lipton and Regan [46]). Recent work on discovering
personal data use by black-box web services focuses mostly on
explicit use of protected information types by examining causal
effects [2, 16, 27, 35-37, 43, 44, 47, 69, 71]); some of this work also
examines associational effects [43, 44]. Associational effects capture
some forms of proxy use but not others as we argue in Section 3.

In a setting similar to ours of a trusted data processor, differential
privacy [25] protects against a different type of privacy harm. For
a computation involving data contributed by a set of individuals,
differential privacy minimizes any knowledge gains by an adversary
that are caused by the contribution of a single individual. This
requirement, however, says nothing about what information types
about an individual are actually used by the data processor, the
central concern of use privacy.

Lipton and Regan’s notion of “effectively private" captures the
idea that a protected feature is not explicitly used to make decisions,
but does not account for proxy use [46]. Prior work on fairness has
also recognized the importance of dealing with proxies in machine
learning systems [22, 29, 63]. However treatments of proxy use
considered there do not match the requirements of use privacy.
We elaborate on this point in Section 3. In Section 7, we provide a
more detailed comparison with related work highlighting that use
privacy enhancing technology (PET) complements existing work
on PETs. It is not meant to supplant other PETs geared toward
restricting data collection and release. While the results of this
paper represent significant progress toward enabling use privacy,
as elaborated in Section 8, a host of challenging problems remain
open.

Contributions
tions:
[

In summary, we make the following contribu-

An articulation of the problem of protecting use privacy in
data-driven systems. Use privacy restricts the use of pro-
tected information types and some of their proxies (ie.,
strong predictors) in automated decision-making systems
(81, 2).
A formal definition of proxy use—a key building block for
use privacy—and an axiomatic basis for this definition (§3).
An algorithm for detection and tracing of an instantiation of
proxy use in a machine learnt program, and proof that this
algorithm is sound and complete (§4).
A repair algorithm that provably removes violations of the
proxy use instantiation in a machine learning model that are
identified by our detection algorithm and deemed inappro-
priate by a normative judgment oracle (§5).
An implementation and evaluation of our approach on pop-
ular machine learning algorithms applied to real datasets
(§6).

An extended version[13] of this paper includes additional evalu-
ation and further details on the datasets employed.

2 USE PRIVACY

We use the Target example described earlier in the paper to mo-
tivate our notion of use privacy. Historically, data collected in a

1195

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

context of interaction between a retailer and a consumer is not ex-
pected to result in flows of health information. However, such flow
constraints considered in significant theories of privacy (e.g., see
Nissenbaum [51]) cannot be enforced because of possible statistical
inferences. In particular, prohibited information types (e.g., preg-
nancy status) could be inferred from legitimate flows (e.g., shopping
history). Thus, the theory of use privacy instead ensures that the
data processing systems “simulate ignorance” of protected informa-
tion types (e.g., pregnancy status) and their proxies (e.g., purchase
history) by not using them in their decision-making. Because not
all instances of proxy use of a protected information type are in-
appropriate, our theory of use privacy makes use of a normative
judgment oracle that makes this inappropriateness determination
for a given instance.

We model the personal data processing system as a program p.
The use privacy constraint governs a protected information type Z.
Our definition of use privacy makes use of two building blocks: (1)
a function that given p, Z, and a population distribution P returns
a witness w of proxy use of Z in a program p (if it exists); and (2)
a normative judgment oracle O(w) that given a specific witness
returns a judgment on whether the specific proxy use is appropriate
(TRUE) or not (FALSE).

DerFINITION 1 (USE PRIVACY). Given a program p, protected in-
formation type Z, normative judgment oracle O, and population
distribution ‘P, use privacy in a program p is violated if there exists a
witness w in p of proxy use of Z in P such that O(w) returns FALSE.

In this paper, we formalize the computational component of
the above definition of use privacy, by formalizing what it means
for an algorithm to use a protected information type directly or
through proxies (§3) and designing an algorithm to detect proxy
uses in programs (§4). We assume that the normative judgment
oracle is given to us and use it to identify inappropriate proxy uses
and then repair them (§5). In our experiments, we illustrate how
such an oracle would use the outputs of our proxy use analysis and
recommend the repair of uses deemed inappropriate by it (§6).

This definition cleanly separates computational considerations
that are automatically enforceable and ethical judgments that re-
quire input from human experts. This form of separation exists also
in some prior work on privacy [33] and fairness [23].

3 PROXY USE: A FORMAL DEFINITION

We now present an axiomatically justified, formal definition of
proxy use in data-driven programs. Our definition for proxy use
of a protected information type involves decomposing a program
to find an intermediate computation whose result exhibits two
properties:

e Proxy: strong association with the protected type

e Use: causal influence on the output of the program

In § 3.1, we present a sequence of examples to illustrate the

challenge in identifying proxy use in systems that operate on data
associated with a protected information type. In doing so, we will
also contrast our work with closely-related work in privacy and
fairness. In §3.2, we formalize the notions of proxy and use, prelimi-
naries to the definition. The definition itself is presented in §3.3 and
§3.4. Finally, in §3.5, we provide an axiomatic characterization of the
notion of proxy use that guides our definitional choices. We note

Session E5: Privacy-Preserving Analytics

that readers keen to get to the detection and repair mechanisms
may skip §3.5 without loss of continuity.

3.1 Examples of Proxy Use

Prior work on detecting use of protected information types [15,
30, 44, 63] and leveraging knowledge of detection to eliminate
inappropriate uses [30] have treated the system as a black-box.
Detection relied either on experimental access to the black-box [15,
44] or observational data about its behavior [30, 63]. Using a series
of examples motivated by the Target case, we motivate the need to
peek inside the black-box to detect proxy use.

Example 3.1. (Explicit use, Fig. 1a) A retailer explicitly uses preg-
nancy status from prescription data available at its pharmacy to
market baby products.

This form of explicit use of a protected information type can
be discovered by existing black-box experimentation methods that
establish causal effects between inputs and outputs (e.g., see [15,
44)).

Example 3.2. (Inferred use, Fig. 1b) Consider a situation where
purchase history can be used to accurately predict pregnancy sta-
tus. A retailer markets specific products to individuals who have
recently purchased products indicative of pregnancy (e.g., a1, az €
purchases).

This example, while very similar in effect, does not use health
information directly. Instead, it infers pregnancy status via associ-
ations and then uses it. Existing methods (see [30, 63]) can detect
such associations between protected information types and out-
comes in observational data.

Example 3.3. (No use, Fig. 1c) Retailer uses some uncorrelated
selection of products (a1, n1 € purchases) to suggest ads.

In this example, even though the retailer could have inferred
pregnancy status from the purchase history, no such inference was
used in marketing products. As associations are commonplace, a
definition of use disallowing such benign use of associated data
would be too restrictive for practical enforcement.

Example 3.4. (Masked proxy use, Fig. 1d) Consider a more in-
sidious version of Example 3.2. To mask the association between
the outcome and pregnancy status, the company also markets baby
products to people who are not pregnant, but have low retail en-
gagement, so these advertisements would not be viewed in any
case.

While there is no association between pregnancy and outcome in
both Example 3.3 and Example 3.4, there is a key difference between
them. In Example 3.4, there is an intermediate computation based
on aspects of purchase history that is a predictor for pregnancy
status, and this predictor is used to make the decision, and therefore
is a case of proxy use. In contrast, in Example 3.3, the intermediate
computation based on purchase history is uncorrelated with preg-
nancy status. Distinguishing between these examples by measuring
associations using black box techniques is non-trivial. Instead, we
leverage white-box access to the code of the classifier to identify
the intermediate computation that serves as a proxy for pregnancy
status. Precisely identifying the particular proxy used also aids the

1196

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

f | A function
(X, Ayp | Amodel, which is a function .4 used for prediction,
operating on random variables X, in population P
X | A random variable
p | A program
(X,p)p | A syntactic model, which is a program p, operating
on random variables X
[p1/X]p2 | A substitution of p; in place of X in py
X | A sequence of random variables

Table 1: Summary of notation used in the paper

normative decision of whether the proxy use is appropriate in this
setting.

3.2 Notation and Preliminaries

We assume individuals are drawn from a population distribution
‘P, in which our definitions are parametric. Random variables
W,X,Y,Z,... are functions over P, and the notation W € W
represents that the type of random variable is W : P — W. An
important random variable used throughout the paper is X, which
represents the vector of features of an individual that is provided to a
predictive model. A predictive model is denoted by (X, A)p, where
A is a function that operates on X. For simplicity, we assume that P
is discrete, and that models are deterministic. Table 1 summarizes
all the notation used in this paper, in addition to the notation for
programs that is introduced later in the paper.

3.2.1 Proxies. A perfect proxy for a random variable Z is a ran-
dom variable X that is perfectly correlated with Z. Informally, if
X is a proxy of Z, then X or Z can be interchangeably used in any
computation over the same distribution. One way to state this is to
require that Pr(X = Z) = 1, i.e. X and Z are equal on the distribu-
tion. However, we require our definition of proxy to be invariant
under renaming. For example, if X is 0 whenever Z is 1 and vice
versa, we should still identify X to be a proxy for Z. In order to
achieve invariance under renaming, our definition only requires
the existence of mappings between X and Z, instead of equality.

DEFINITION 2 (PERFECT PROXY). A random variable X € X is
a perfect proxy for Z € Z if there exist functions f : X — Z,g:
Z — X, such thatPr(Z = (X)) =Pr(g(Z) =X) = 1.

While this notion of a proxy is too strong in practice, it is useful
as a starting point to explain the key ideas in our definition of
proxy use. This definition captures two key properties of proxies,
equivalence and invariance under renaming.

Equivalence Definition 2 captures the property that proxies ad-
mit predictors in both directions: it is possible to construct a pre-
dictor of X from Z, and vice versa. This condition is required to
ensure that our definition of proxy only identifies the part of the
input that corresponds to the protected attribute and not the input
attribute as a whole. For example, if only the final digit of a zip code
is a proxy for race, the entirety of the zip code will not be identified
as a proxy even though it admits a predictor in one direction. Only
if the final digit is used, that use will be identified as proxy use.

Session E5: Privacy-Preserving Analytics

nt
W ady v ¥ ad;
medical
records purchases
No¢
m. ady %‘ ady
(a) Explicit Use (b) Use via proxy

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

ﬂ‘ ad1

o Tetail eng.
©w— highe ads

oy e adg purchases

1oV o ad
purchases % . —*a

< retail eng.
%' ady high ads

(c) No use (d) Masked use via proxy

Figure 1: Examples of models (decision trees) used by a retailer for offering medicines and for selecting advertisements to
show to customers. The retailer uses pregnancy status, past purchases, and customer’s level of retail engagement. Products
aj and a; are associated with pregnancy (e.g., prenatal vitamins, scent-free lotions) whereas products n; and n; are associated
with a lack of pregnancy (e.g., alcohol, camping gear); all four products are equally likely. Retail engagement, (high or low),
indicating whether the customer views ads or not, is independent of pregnancy.

The equivalence criterion distinguishes benign use of associ-
ated information from proxy use as illustrated in the next example.
For machine learning in particular, this is an important pragmatic
requirement; given enough input features one can expect any pro-
tected class to be predictable from the set of inputs. In such cases,
the input features taken together are a strong associate in one di-
rection, and prohibiting such one-sided associates from being used
would rule out most machine learnt models.

Example 3.5. Recall that in Figure 1, a1, az is a proxy for preg-
nancy status. In contrast, consider Example 3.3, where purchase
history is an influential input to the program that serves ads. Sup-
pose that the criteria is to serve ads to those with aj, n; in their
purchase history. According to Definition 2, neither purchase his-
tory or aj, nj are proxies, because pregnancy status does not predict
purchase history or aj, n1. However, if Definition 2 were to allow
one-sided associations, then purchase history would be a proxy
because it can predict pregnancy status. This would have the unfor-
tunate effect of implying that the benign application in Example 3.3
has proxy use of pregnancy status.

Invariance under renaming This definition of a proxy is in-
variant under renaming of the values of a proxy. Suppose that a
random variable evaluates to 1 when the protected information type
is 0 and vice versa, then this definition still identifies the random
variable as a proxy.

3.2.2 Influence. Our definition of influence aims to capture the
presence of a causal dependence between a variable and the output
of a function. Intuitively, a variable x is influential on f if it is
possible to change the value of f by changing x while keeping the
other input variables fixed.

DEFINITION 3. For a function f(x,y), x is influential if and only
if there exists values x1, x2, y, such that f(x1,y) # f(x2,v).

In Figure 1a, pregnancy status is an influential input of the sys-
tem, as just changing pregnancy status while keeping all other
inputs fixed changes the prediction. Influence, as defined here, is
identical to the notion of interference used in the information flow
literature.

3.3 Definition

We use an abstract framework of program syntax to reason about
programs without specifying a particular language to ensure that

1197

our definition remains general. Our definition relies on syntax
to reason about decompositions of programs into intermediate
computations, which can then be identified as instances of proxy
use using the concepts described above.
Program decomposition We assume that models are represented
by programs. For a set of random variables X, (X, p)p denotes the
assumption that p will run on the variables in X. Programs are
given meaning by a denotation function [[-]x that maps programs
to functions. If (X, p)p, then [p] is a function on variables in X,
and [p](X) represents the random variable of the outcome of p,
when evaluated on the input random variables X. Programs sup-
port substitution of free variables with other programs, denoted by
[p1/X]p2, such that if p; and p, programs that run on the variables
X and X, X, respectively, then [p1/X]pz is a program that operates
on X.

A decomposition of program p is a way of rewriting p as two
programs p; and py that can be combined via substitution to yield
the original program.

DEFINITION 4 (DECOMPOSITION). Given a program p, a decompo-
sition (p1, X, p2) consists of two programs p1, p2, and a fresh variable
X, such that p = [p1/X]pa.

For the purposes of our proxy use definition we view the first
component p; as the intermediate computation suspected of proxy
use, and py as the rest of the computation that takes in p; as an
input.

DEFINITION 5 (INFLUENTIAL DECOMPOSITION). Given a program
p, a decomposition (p1, X, p2) is influential iff X is influential in p,.

Main definition

DEFINITION 6 (PROXY USE). A program (X, p)p has proxy use of
Z if there exists an influential decomposition (p1, X, p2) of (X, p)p,
and [p1](X) is a proxy for Z.

Example 3.6. In Figure 1d, this definition would identify proxy
use using the decomposition (p1, U, p2), where ps is the entire tree,
but with the condition (a1, a2 € purchases) replaced by the variable
U. In this example, U is influential in p,, since changing the value
of U changes the outcome. Also, we assumed that the condition
(a1, a2 € purchases) is a perfect predictor for pregnancy, and is
therefore a proxy for pregnancy. Therefore, according to our def-
inition of proxy use, the model in 1d has proxy use of pregnancy
status.

Session E5: Privacy-Preserving Analytics

3.4 A Quantitative Relaxation

Definition 6 is too strong in one sense and too weak in another.
It requires that intermediate computations be perfectly correlated
with a protected attribute, and that there exists some input, however
improbable, in which the result of the intermediate computation is
relevant to the model. For practical purposes, we would like to cap-
ture imperfect proxies that are strongly associated with an attribute,
but only those whose influence on the final model is appreciable. To
relax the requirement of perfect proxies and non-zero influence, we
quantify these two notions to provide a parameterized definition.
Recognizing that neither perfect privacy nor perfect utility are prac-
tical, the quantitative definition provides a means for navigating
privacy vs. utility tradeofTs.

e-proxies We wish to measure how strongly a random variable
X is a proxy for a random variable Z. Recall the two key require-
ments from the earlier definition of a proxy: (i) the association
needs to be capture equivalence and measure association in both
directions, and (ii) the association needs to be invariant under re-
naming of the random variables. The variation of information metric
dvar(X,Z) = H(X|Z) + H(Z|X) [12] is one measure that satisfies
these two requirements. The first component in the metric, the
conditional entropy of X given Z, H(X|Z), measures how well X
can be predicted from Z, and H(Z|X) measures how well Z can be
predicted from X, thus satisfying the requirement for the metric
measuring association in both directions. Additionally, one can
show that conditional entropies are invariant under renaming, thus

satisfying our second criteria. To obtain a normalized measure in
dvar (X, Z)
H(X, Z)

the measure being 1 implies perfect proxies, and 0 implies statistical

independence. Interestingly, this measure is identical to normal-
ized mutual information [12], a standard measure that has also
been used in prior work in identifying associations in outcomes of
machine learning models [63].

[0, 1], we choose 1 — as our measure of association, where

DEFINITION 7 (PROXY ASSOCIATION). Given two random variables
X and Z, the strength of a proxy is given by normalized mutual
information,

def

d(x,z) & - HXI2) + HEZIX)

H(X,Z)
where X is defined to be an e-proxy for Z if d(X,Z) > e.

We do not present the complexity of association computation
independently of detection as we rely on pre-computations to re-
duce the amortized runtime of the entire detection algorithm. The
complexity as part of our detection algorithm is discussed in Ap-
pendix D.2.

d-influential decomposition Recall that for a decomposition
(p1, X, p2), in the qualitative sense, influence is interference which
implies that there exists x, x1, xz, such that [[p2] (x, x1) # [p2] (x, x2).
Here x1, x2 are values of p1, that for a given x, change the outcome of
p2. However, this definition is too strong as it requires only a single
pair of values x1, x2 to show that the outcome can be changed
by p1 alone. To measure influence, we quantify interference by
using Quantitative Input Influence (QII), a causal measure of input
influence introduced in [14]. In our context, for a decomposition

1198

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

(p1, X, p2), the influence of p; on py is given by:
(p1.p2) = Bx xedp Pr (o2l (X [p1] (X)) # [l (X, [p1](X))) -

Intuitively, this quantity measures the likelihood of finding ran-
domly chosen values of the output of p; that would change the
outcome of py. Note that this general definition allows for proba-
bilistic models though in this work we only evaluate our methods
on deterministic models.

The time complexity of influence computation as part of our
detection algorithm can be found in Appendix D.2, along with
discussion on estimating influence.

DEFINITION 8 (DECOMPOSITION INFLUENCE). Given a decomposi-

tion (p1, X, p2), the influence of the decomposition is given by the QII
of X on pa. A decomposition (p1, X, p2) is defined to be d-influential
ifi(p1,p2) > 6.
(e,8)-proxy use Now that we have quantitative versions of the
primitives used in Definition 6, we are in a position to define quan-
titative proxy use (Definition 9). The structure of this definition is
the same as before, with quantitative measures substituted in for
the qualitative assertions used in Definition 6.

DEFINITION 9 ((€, §)-PROXY USE). A program (X, p)p has (€, 5)-
proxy use of random variable Z iff there exists a §-influential decom-

position (p1, X, p2), such that [p](X) is an e-proxy for Z.

This definition is a strict relaxation of Definition 6, which reduces
to (1, 0)-proxy use.

3.5 Axiomatic Basis for Definition

We now motivate our definitional choices by reasoning about a
natural set of properties that a notion of proxy use should satisfy.
We first prove an important impossibility result that shows that no
definition of proxy use can satisfy four natural semantic properties
of proxy use. The central reason behind the impossibility result is
that under a purely semantic notion of function composition, the
causal effect of a proxy can be made to disappear. Therefore, we
choose a syntactic notion of function composition for the definition
of proxy use presented above. The syntactic definition of proxy use
is characterized by syntactic properties which map very closely to
the semantic properties.

PropeRTY 1. (Explicit Use) IfZ is an influential input of the model
(X, Z}, Ayp, then ({X, Z}, A)p has proxy use of Z.

This property identifies the simplest case of proxy use: if an
input to the model is influential, then the model exhibits proxy use
of that input.

PROPERTY 2. (Preprocessing) If a model {{X, X}, A)p has proxy

use of random variable Z, then for any function f such thatPr (f(X) = X) =

1, let A’ (x) = A(x, f(x)). Then, (X, A”)p has proxy use of Z.

This property covers the essence of proxy use where instead of
being provided a protected information type explicitly, the program
uses a strong predictor for it instead. This property states that
models that use inputs explicitly and via proxies should not be
differentiated under a reasonable theory of proxy use.

ProOPERTY 3. (Dummy) Given (X, A)p, define A’ such that for
all x,x’, A’ (x,x") o A(x), then (X, A)p has proxy use for some Z
iff ({X, X}, A")p has proxy use of Z.

Session E5: Privacy-Preserving Analytics

This property states that the addition of an input to a model that
is not influential, i.e., has no effect on the outcomes of the model,
has no bearing on whether a program has proxy use or not. This
property is an important sanity check that ensures that models
aren’t implicated by the inclusion of inputs that they do not use.

PROPERTY 4. (Independence) If X is independent of Z in P, then
(X, A)p does not have proxy use of Z.

Independence between the protected information type and the
inputs ensures that the model cannot infer the protected informa-
tion type for the population P. This property captures the intuition
that if the model cannot infer the protected information type then
it cannot possibly use it.

While all of these properties seem intuitively desirable, it turns
out that these properties can not be achieved simultaneously.

THEOREM 1. No definition of proxy use can satisfy Properties 1-4
simultaneously.

See Appendix A for a proof of the impossibility result and a
discussion. The key intuition behind this result is that Property 2
requires proxy use to be preserved when an input is replaced with a
function that predicts that input via composition. However, with a
purely semantic notion of function composition, after replacement,
the proxy may get canceled out. To overcome this impossibility
result, we choose a more syntactic notion of function composition,
which is tied to how the function is represented as a program, and
looks for evidence of proxy use within the representation.

We now proceed to the axiomatic justification of our definition
of proxy use. As in our attempt to formalize a semantic definition,
we base our definition on a set of natural properties given below.
These are syntactic versions of their semantic counterparts defined
earlier.

PROPERTY 5. (Syntactic Explicit Use) If X is a proxy of Z, and X
is an influential input of ({X, X}, p)p, then ({X, X}, p)p has proxy
use.

PROPERTY 6. (Syntactic Preprocessing) If{{X, X}, p1)p has proxy

use of Z, then for any py such thatPr ([p2](X) = X) = 1,(X, [p2/X]p1)p

has proxy use of Z.

PROPERTY 7. (Syntactic Dummy) Given a program (X, p)p, (X, p)p
has proxy use for some Z iff ({X, X}, p)p has proxy use of Z.

PROPERTY 8. (Syntactic Independence) If X is independent of Z,
then (X, p)p does not have proxy use of Z.

Properties 5 and 6 together characterize a complete inductive
definition, where the induction is over the structure of the program.
Suppose we can decompose programs p into (p1, X, p2) such that
p = [p1/X]p2. Now if X, which is the output of p1, is a proxy
for Z and is influential in p,, then by Property 5, p; has proxy
use. Further, since p = [p1/X]p2, by Property 6, p has proxy use.
This inductive definition where we use Property 5 as the base
case and Property 6 for the induction step, precisely characterizes
Definition 6. Additionally, it can be shown that Definition 6 also
satisfies Properties 7 and 8. Essentially, by relaxing our notion
of function composition to a syntactic one, we obtain a practical
definition of proxy use characterized by the natural axioms above.

1199

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Algorithm 1 Detection for expression programs.

Require: association (d), influence(:) measures
procedure PROXYDETECT(p, X, Z, €, §)
P—g
for each subprogram p; appearing in p do
for each program p, such that [pa/u]p; = p do
if i(p1,p2) = 8 Ad([p1](X), Z) > € then
P« PU{(p1,p2)}

return P

4 DETECTING PROXY USE

In this section, we present an algorithm for identifying proxy use of
specified variables in a given machine-learning model (Algorithm 1,
Appendix B contains a more formal presentation of the algorithm
for the interested reader). The algorithm is program-directed and
is directly inspired by the definition of proxy use in the previous
section. We prove that the algorithm is complete in a strong sense —
it identifies every instance of proxy use in the program (Theorem 3).
We also describe three optimizations that speed up the detection
algorithm: sampling, reachability analysis, and contingency tables.

4.1 Environment Model

The environment in which our detection algorithm operates is
comprised of a data processor, a dataset that has been partitioned
into analysis and validation subsets, and a machine learning model
trained over the analysis subset. We assume that the data processor
does not act to evade the detection algorithm, and the datasets
correspond to a representative sample from the population we wish
to test proxy use with respect to. Additionally, we assume that
information types we wish to detect proxies of are also part of the
validation data. We discuss these points further in Section 8.

For the rest of this paper we focus on an instance of the proxy use
definition, where we assume that programs are written in the simple
expression language shown in Figure 2. However, our techniques
are not tied to this particular language, and the key ideas behind
them apply generally. This language is rich enough to support
commonly-used models such as decision trees, linear and logis-
tic regression, Naive Bayes, and Bayesian rule lists. Programs are
functions that evaluate arithmetic terms, which are constructed
from real numbers, variables, common arithmetic operations, and
if-then-else (ite(:, -,)) terms. Boolean terms, which are used as con-
ditions in ite terms, are constructed from the usual connectives
and relational operations. Finally, we use A-notation for functions,
i.e., Ax.e denotes a function over x which evaluates e after replac-
ing all instances of x with its argument. Details on how machine
learning models such as linear models, decision trees, and random
forests are translated to this expression language are discussed in
Appendix B.2 and consequences of the choice of language and de-
composition in that language are further discussed in more detail
in Section 8.

Distributed proxies Our use of program decomposition pro-
vides for partial handling of distributed representations, the idea
that concepts can be distributed among multiple entities. In our
case, influence and association of a protected information type can
be distributed among multiple program points. First, substitution

Session E5: Privacy-Preserving Analytics

(aexp) := R | var | op({aexp), . .., (aexp))
| ite((bexp), (aexp), (aexp))

(bexp) ::= T | F |~ (bexp)
| op((bexp), ..., {bexp))
| relop({aexp), (aexp))

(prog) ::= Avary,...,vary . {(aexp)

Figure 2: Syntax for the language used in our analysis.

(denoted by [p1/X]p2) is defined to replace all instances of vari-
able X in py with the program p;. If there are multiple instances
of X in py, they are still describing a single decomposition and
thus the multiple instances of p; in p; are viewed as a single proxy.
Further, implementations of substitution can be (and is in our im-
plementation) associativity-aware: programs like x1 + x2 + x3 can
be equivalent regardless of the order of the expressions in that they
can be decomposed in exactly the same set of ways. If a proxy is dis-
tributed among x; and x3, it will still be considered by our methods
because x1 + (x2 + x3) is equivalent to (x1 + x3) + x2, and the sub-
expression xj + x3 is part of a valid decomposition. Allowing such
equivalences within the implementation of substitution partially
addresses the problem that our theory does not respect semantic
equivalence, which is a necessary consequence of Theorem 1.

4.2 Analyzing Proxy Use

Algorithm 1 describes a general technique for detecting (e, §)-proxy
use in expression programs. In addition to the parameters and ex-
pression, it takes as input a description of the distribution governing
the feature variables X and Z. In practice this will nearly always
consist of an empirical sample, but for the sake of presentation we
simplify here by assuming the distribution is explicitly given. In
Section D.2, we describe how the algorithm can produce estimates
from empirical samples.

The algorithm proceeds by enumerating sub-expressions of the

given program. For each sub-expression e appearing in p, PROXYDETECT

computes the set of positions at which e appears. If e occurs mul-
tiple times, we consider all possible subsets of occurrences as po-
tential decompositions. It then iterates over all combinations of
these positions, and creates a decomposition for each one to test for
(e, 8)-proxy use. Whenever the provided thresholds are exceeded,
the decomposition is added to the return set. This proceeds until
there are no more subterms to consider. While not efficient in the
worst-case, this approach is both sound and complete with respect
to Definition 9.

THEOREM 2 (DETECTION SOUNDNESS). Any decomposition (p1,p2)
returned by PRoxYDETECT(p, X, €, 8) is a decomposition of the input
program p and had to pass the €, thresholds, hence is a (€, §)-proxy
use.

THEOREM 3 (DETECTION COMPLETENESS). Every decomposition
which could be a (e, §)-proxy use is enumerated by the algorithm.
Thus, if (p1,p2) is a decomposition of p with 1(p1,p2) > d and
d([p1](X), Z) > e, it will be returned by PRoxYDETECT(p, X, €, §).

Our detection algorithm considers single terms in its decompo-
sition. Sometimes a large number of syntactically different prox-
ies with weak influence might collectively have high influence. A
stronger notion of program decomposition that allows a collection

1200

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

of multiple terms to be considered a proxy would identify such a
case of proxy use but will have to search over a larger space of
expressions. Exploring this tradeoff between scalability and richer
proxies is an important topic for future work.

The detection algorithm runs in time O (|p| ¢ (|D| + k |D|)) where
|D] is the size of a dataset employed in the analysis, ¢ is the num-
ber of decompositions of a program, k is the maximum number of
elements in the ranges of all sub-programs (|D| in the worst case),
and |p| is the number of sub-expressions of a program. The number
of decompositions varies from O (|p|) to O (2|P|) depending on
the type of program analyzed. Details can be found in Appendix D
along with more refined bounds for several special cases.

5 REMOVING PROXY USE VIOLATIONS

In this section we present a repair algorithm for removing viola-
tions of (€, §)-Proxy Use in a model. Our approach has two parts:
first (Algorithm 2) is the iterative discovery of proxy uses via the
PrRoxYDETECT procedure described in the previous section and sec-
ond (Algorithm 3) is the repair of the ones found by the oracle to
be violations. We describe these algorithms informally here, and
Appendix C contains formal descriptions of these algorithms. The
iterative discovery procedure guarantees that the returned program
is free of violations (Algorithm 5). Our repair procedures operate
on the expression language, so they can be applied to any model
that can be written in the language. Further, our violation repair
algorithm does not require knowledge of the training algorithm
that produced the model. The witnesses of proxy use localize where
in the program violations occur. To repair a violation we search
through expressions local to the violation, replacing the one which
has the least impact on the accuracy of the model that at the same
time reduces the association or influence of the violation to below
the (e, §) threshold.

At the core of our violation repair algorithm is the simplifica-
tion of sub-expressions in a model that are found to be violations.
Simplification here means the replacement of an expression that
is not a constant with one that is. Simplification has an impact on
the model’s performance hence we take into account the goal of
preserving utility of the machine learning program we repair. We
parameterize the procedure with a measure of utility v that informs
the selection of expressions and constants for simplification. We
briefly discuss options and implementations for this parameter later
in this section.

The repair procedure (Algorithm 3) works as follows. Given
a program p and a decomposition (p1, p2), it first finds the best
simplification to apply to p that would make (p1, p2) no longer a
violation. This is done by enumerating expressions that are local
to p1 in py (Line 3). Local expressions are sub-expressions of p; as
well as p; itself and if p; is a guard in an if-then-else expression,
then local expressions of p; also include that if-then-else’s true
and false branches as well as their sub-expressions. Each of the
local expressions corresponds to a decomposition of p into the local
expression p; and the context around it p;. For each of these local
decompositions we discover the best constant, in terms of utility,
to replace p; with (Line 4). We then make the same simplification
to the original decomposition (p1, p2), resulting in (p’, p;') (Line 5)

Session E5: Privacy-Preserving Analytics

Algorithm 2 Witness-driven repair.

Require: association (d), influence (1), utility (v) measures, oracle
©)
procedure REPAIR(p, X, Z, €,)
P « {d € ProxYDETECT(p, X, Z, €,0) :
if P # 0 then
(p1,p2) < element of P
p’ «— PROXYREPAIR(p, (p1,P2), X, Z, €,)
return RepAIR(p, X, Z, €, §)
else
return p

not O(d)}

Algorithm 3 Local Repair.

Require: association (d), influence (1), utility (v) measures
1: procedure PROXYREPAIR(p, (p1,p2), X, Z, €,5)
2 Ref}
3 for each subprogram p; of p; do
4: r* « Optimal constant for replacing p;
5: U py) < (p1,p2) with r* subst. for p;
6 if «(p7’,py) < 6 v d([p;'](X),Z) < € then
7 R« RU[u/r*]p;

8: return argmax,: . v (p*)

Using this third decomposition we check whether making the sim-
plification would repair the original violation (Line 6), collecting
those simplified programs that do. Finally, we take the best simpli-
fication of those found to remove the violation (Line 8). Details on
how the optimal constant is selected is described in Appendix C.1.
Two important things to note about the repair procedure. First,
there is always at least one subprogram on Line 3 that will fix the
violation, namely the decomposition (p1, p2) itself. Replacing p;
with a constant in this case would disassociate it from the sensitive
information type. Secondly, the procedure produces a model that
is smaller than the one given to it as it replaces a non-constant
expression with a constant. These two let us state the following:

THEOREM 4. Algorithm 2 terminates and returns a program that
does not have any (e, §)-Proxy Use violations (instances of (€, 5)-
Proxy Use for which oracle returns false).

6 EVALUATION

In this section we empirically evaluate our definition and algo-
rithms on several real datasets. In particular, we simulate a finan-
cial services application and demonstrate a typical workflow for a
practitioner using our tools to detect and repair proxy use in deci-
sion trees and linear models (§6.1). We highlight that this workflow
identifies more proxy uses over a baseline procedure that simply
removes features associated with a protected information type. For
three other simulated settings on real data sets—contraception ad-
vertising, student assistance, and credit advertising—we describe
our findings of interesting proxy uses and demonstrate how the
outputs of our detection tool would allow a normative judgment
oracle to determine the appropriateness of proxy uses (§6.2). In §6.3,
by injecting violations into real data sets so that we have ground
truth, we evaluate the completeness of our algorithm, and show a

1201

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

graceful degradation in accuracy as the influence of the violating
proxy increases.

Models and Implementation Our implementation currently
supports linear models, decision trees, random forests, and rule lists.
Note that these model types correspond to a range of commonly-
used learning algorithms such as logistic regression, support vector
machines [10], CART [6], and Bayesian rule lists [45]. Also, these
models represent a significant fraction of models used in practice in
predictive systems that operate on personal information, ranging
from advertising [9], psychopathy [38], criminal justice [4, 5], and
actuarial sciences [32, 34]. Our prototype implementation was writ-
ten in Python, and we use scikit-learn package to train the models
used in the evaluation. The benchmarks we describe later in this
section were recorded on a Ubuntu Desktop with 4.2 GHz Intel
Core i7 and 32GB RAM.

6.1 Example Workflow

A financial services company would like to expand its client base
by identifying potential customers with high income. To do so, the
company hires an analyst to build a predictive model that uses
age, occupation, education level, and other socio-economic features
to predict whether an individual currently has a “high” or “low”
income. This practice is in line with the use of analytics in the
financial industry that exploit the fact that high-income individuals
are more likely to purchase financial products [70].

Because demographic data is known to correlate with marital
status [50], the data processor would like to ensure that the trained
model used to make income predictions does not effectively infer
individuals’ marital status from the other demographic variables
that are explicitly used. In this context, basing the decision of which
clients to pursue on marital status could be perceived as a privacy vi-
olation, as other socio-economic variables are more directly related
to one’s interest and eligibility in various financial services.

To evaluate this scenario, we trained an income prediction model
from the UCI Adult dataset which consists of roughly 48,000 rows
containing economic and demographic information for adults de-
rived from publicly-available U.S. Census data. One of the features
available in this data is marital status, so we omitted it during
training, and later used it when evaluating our algorithms. In this
scenario, we act as the oracle in order to illustrate the kind of
normative judgments an analyst would need to make as an oracle.

After training a classifier on the preprocessed dataset, we found
a strong proxy for marital status in terms of an expression involving
relationship status. Figure 3 visualizes all of the expressions mak-
ing up the model (marked as o), along with their association and
influence measures. In decision trees, sub-expressions like these
coincide with decompositions in our proxy use definition; each
sub-expression can be associated with a decomposition that cuts
out that sub-expression from the tree, and leaves a variable in its
place. The connecting lines in the figure denote the sub-expression
relationship. Together with the placement of points on the influence
and association scales, this produces an overview of the decision
tree and the relationship of its constituent parts to the sensitive
attribute.

On further examination the relationship status was essentially
a finer-grained version of marital status. While not interesting

Session E5: Privacy-Preserving Analytics

maximal —
relationship < 0.5

@® exps.

€ / association (nmi)

2I_8 2I_6
d / influence [probability]

T T
2—12 2—1()

Figure 3: The association and influence of the expres-
sions composing a decision tree trained on the UCI Adult
dataset. Narrow lines designate the sub-expression relation-
ship. Shaded area designates the feasible values for associa-
tion and influence between none, and maximal. Marker size
denotes the relative size of the sub-expressions pictured.

€ / association (nmi)

O

d / influence [probability]

'2—12 2—10'

Figure 4: Decision tree trained on the UCI Adult dataset
but with the relationship attribute removed (e), and the re-
paired version (+) of the same tree. Dark area in the upper-
left designates the thresholds used in repair.

in itself, this occurrence demonstrates an issue with black-box
use of machine learning without closely examining the structure
of the data. In particular, one can choose to remove this feature,
and the model obtained after retraining will make predictions
that have low association with marital status. However, one sub-
model demonstrated relatively strong proxy use (¢ = 0.1, = 0.1):
age < 31 and sex = 0 and capital_loss < 1882.50 (labeled A in
Figure 4). This demonstrates that simply removing a feature does
not ensure that proxies are removed. When the model is retrained,
the learning algorithm might select new computations over other
features to embed in the model, as it did in this example. Also, note
that the new proxy combines three additional features. Eliminating
all of these features from the data could impact model performance.
Instead we can use our repair algorithm to remove the proxy: we
designate the unacceptable €, § thresholds (the darkest area in Fig-
ure 4) and repair any proxies in that range. The result is the decision
tree marked with + in the figure. Note that this repaired version
has no sub-expressions in the prohibited range and that most of
the tree remains unchanged (the e and + markers largely coincide).

1202

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

6.2 Other Case Studies

We now briefly discuss interesting examples for proxy use from
other case studies, demonstrating how our framework aids norma-
tive use privacy judgments.

Targeted contraception advertising We consider a scenario in
which a data processor wishes to show targeted advertisements for
contraceptives to females. We evaluated this scenario using data
collected for the 1987 National Indonesia Contraceptive Survey [1],
which contains a number of socio-economic features, including
feature indicating whether the individual’s religious beliefs were Is-
lam. A decision tree trained on this dataset illustrates an interesting
case of potential use privacy via the following proxy for religion:
ite(educ < 4 Anchild < 3 Aage < 31,n0, yes). This term predicts
that women younger than 31, with below-average education back-
ground and fewer than four children will not use contraception. In
fact, just the “guard” term educ < 4 alone is more closely associated
with religion, and its influence on the model’s output is nearly as
high. This reveals a surprising association between education levels
and religion leading to a potentially concerning case of proxy use.

Student assistance A current trend in education is the use of
predictive analytics to identify students who are likely to benefit
from certain types of interventions [31, 39]. We look at a scenario
where a data processor builds a model to predict whether a sec-
ondary school student’s grades are likely to suffer, based on a range
of demographic features, social information, and academic infor-
mation. To evaluate this scenario, we trained a model on the UCI
Student Alcohol Consumption dataset [11], with alcohol use as the
sensitive feature. Our algorithm found the following proxy for al-
cohol use: studytime < 2. This finding suggests that this instance
of proxy use can be deemed an appropriate use, and not a privacy
violation, as the amount of time a student spends studying is clearly
relevant to their academic performance.

Credit advertisements We consider a situation where a credit
card company wishes to send targeted advertisements for credit
cards based on demographic information. In this context, the use
of health status for targeted advertising is a legitimate privacy
concern [18]. To evaluate this scenario, we trained a model to
predict interest in credit cards using the PSID dataset. From this,
we trained two models: one that identifies individuals with student
loans and another that identifies individuals with existing credit
cards as the two groups to be targeted. The first model had a number
of instances of proxy use. One particular subcomputation that was
concerning was a subtree of the original decision tree that branched
on the number of children in the family. This instance provided
negative outcomes to individuals with more children, and may be
deemed inappropriate for use in this context. In the second model,
one proxy was a condition involving income income < 33315. The
use of income in this context is justifiable, and therefore this may
be regarded as not being a use privacy violation.

6.3 Detection and Repair

For the remainder of the section we focus on evaluating the per-
formance and efficacy of the detection and repair algorithms. We
begin by exploring the impact of the dataset and model size on the
detection algorithm’s runtime.

Session E5: Privacy-Preserving Analytics

103
102

10!

10°

real runtime [s]

400 600
dataset size [count]

Figure 5: Worst-case detection algorithm run-time (average
of 5 runs) as a function of input dataset size. Influence and
association computed on each decomposition (hence worst-
case). The models are decision tree(c), random forest(+), and
logistic regression(X) trained on the UCI Adult dataset.

1.0
0.9
0.8
0.7
0.6

05 L ; ; ; ;

accuracy [ratio]

influence [probability]

Figure 6: Repaired accuracy vs. influence of proxy during re-
pair of a synthetic proxy inserted into random positions of a
decision tree trained on the UCI Student Alcohol Consump-
tion dataset. Accuracy is agreement to non-repaired model.
The synthetic modelis a (1.0)-proxy for alcohol use, inserted
into a decision tree predicting student grade. Repair is con-
figured for (0.01,0.01)-proxy use removal. Note that other
proxies (if they exist) are not repaired in this experiment.

Figure 5 demonstrates the runtime of our detection algorithm
on three models trained on the UCI Adult dataset vs. the size of the
dataset used for the association and influence computations. The
algorithm here was forced to compute the association and influence
metrics for each decomposition (normally influence can be skipped
if association is below threshold) and thus represents a worst-case
runtime. The runtime for the random forest and decision tree scales
linearly in dataset size due to several optimizations. The logistic
regression does not benefit from these and scales quadratically.
Further, runtime for each model scales linearly in the number of
decompositions , but logistic regression models contain an expo-
nential number of decompositions as a function of their size.

To determine the completeness of our detection algorithm we
inserted a proxy in a trained model to determine whether we can
detect it. To do this, we used the UCI Student Alcohol Consump-
tion dataset to train two decision trees: one to predict students’
grades, and one to predict alcohol consumption. We then inserted
the second tree into random positions of the first tree thereby in-
troducing a proxy for alcohol consumption. We observed that in

1203

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

each case, we were able to detect the introduced proxy. While not
interesting in itself due to our completeness theorem, we used this
experiment to explore how much utility is actually lost due to re-
pair. We evaluate our repair algorithm on a set of similar models
with inserted violations of various influence magnitude. The results
can be seen in Figure 6. We can see that the accuracy (i.e., ratio of
instances that have agreement between repaired and unrepaired
models) falls linearly with the influence of the inserted proxy. This
implies that repair of less influential proxies will incur a smaller
accuracy penalty than repair of more influential proxies. In other
words, our repair methods do not unduly sacrifice accuracy when
repairing only minor violations.

A point not well visible in this figure is that occasionally repair
incurs no loss of utility. This is due to our use of the scikit-learn
library for training decision trees as it does not currently support
pruning unnecessary nodes. Occasionally such nodes introduce
associations without improving the model’s accuracy. These nodes
can be replaced by constants without loss. We have also observed
this in some of our case studies.

7 RELATED WORK
7.1 Definition

Minimizing disclosures In the computer science literature, pri-
vacy has been thought of as the ability to protect against unde-
sired flows of information to an adversary. Much of the machinery
developed in cryptography, such as encryption, anonymous com-
munication, private computation, and database privacy have been
motivated by such a goal. Differential privacy [25] is one of the main
pillars of privacy research in the case of computations over data
aggregated from a number of individuals, where any information
gained by an adversary observing the computation is not caused by
an individual’s participation. However, none of these technologies
cover the important setting of individual-level data analytics, where
one may want to share some information while hiding others from
adversaries with arbitrary background knowledge. This absence is
with good reason, as in the general case it is impossible to prevent
flows of knowledge from individual-level data, while preserving
the utility of such data, in the presence of arbitrary inferences that
may leverage the background knowledge of an adversary [21]. In
this work, we do not attempt to solve this problem either.

Nevertheless, the setting of individual level data analytics is per-
vasive, especially in the case of predictive systems that use machine
learning. Since these systems are largely opaque, even developers
do not have a handle on information they may be inadvertently
using via inferences. Therefore, in this work, we make the case
for proxy use restrictions in data driven systems and develop tech-
niques to detect and repair violations of proxy use. Restrictions
on information use, however do not supplant the need for other
privacy enhancing technologies geared for restricting information
collection and disclosure, which may be useful in conjunction with
the enforcement of use restrictions. For example, when machine
learning models are trained using personal data, it is desirable
to minimize disclosures pertaining to individuals in the training
set, and to reduce the use of protected information types for the
individuals the models are applied to.

Session E5: Privacy-Preserving Analytics

Identifying explicit use The privacy literature on use restric-
tions has typically focused on explicit use of protected information
types, not on proxy use (see Tschantz et al. [64] for a survey and
Lipton and Regan [46]). Recent work on discovering personal data
use by black-box web services focuses mostly on explicit use of
protected information types by examining causal effects [16, 44];
some of this work also examines associational effects [43, 44]. As-
sociational effects capture some forms of proxy use but not others
as we argued in Section 3.

7.2 Detection and Repair Models

Our detection algorithm operates with white-box access to the
prediction model. Prior work requires weaker access assumptions.

Access to observational data Detection techniques working
under an associative use definition [30, 63] usually only require
access to observational data about the behavior of the system.

Access to black-box experimental data Detection techniques
working under an explicit use definition of information use [16, 44]
typically require experimental access to the system. This access
allows the analyst to control some inputs to the system and observe
relevant outcomes.

The stronger white-box access level allows us to decompose the
model and trace an intermediate computation that is a proxy. Such
traceability is not afforded by the weaker access assumptions in
prior work. Thus, we explore a different point in the space by giving
up on the weaker access requirement to gain the ability to trace
and repair proxy use.

Trameér et al. [63] solve an important orthogonal problem of
efficiently identifying populations where associations may appear.
Since our definition is parametric in the choice of the population,
their technique could allow identifying relevant populations for
further analysis using our methods.

Repair Removal of violations of privacy can occur at different
points of the typical machine learning pipeline. Adjusting the train-
ing dataset is the most popular approach, including variations that
relabel only the class attribute [48], modify entire instances while
maintaining the original schema [30], and transform the dataset
into another space of features [24, 72]. Modifications to the train-
ing algorithm are specific to the trainer employed (or to a class of
trainers). Adjustments to Naive Bayes [7] and trainers amiable to
regularization [42] are examples. Several techniques for produc-
ing differentially-private machine learning models modify trained
models by perturbing coefficients [3, 8]. Other differentially-private
data analysis techniques [26] instead perturb the output by adding
symmetric noise to the true results of statistical queries. All these
repair techniques aim to minimize associations or inference from
the outcomes rather than constrain use.

8 DISCUSSION

Beyond strict decomposition Theorem 1 shows that a defini-
tion satisfying natural semantic properties is impossible. This result
motivates our syntactic definition, parameterized by a program-
ming language and a choice of program decomposition. In our
implementation, the choice of program decomposition is strict. It
only considers single terms in its decomposition. However, proxies

1204

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

may be distributed across different terms in the program. As dis-
cussed in Section 4.1, single term decompositions can also deal with
a restricted class of such distributed proxies. Our implementation
does not identify situations where each of a large number of syntac-
tically different proxies have weak influence but together combine
to result in high influence. A stronger notion of program decompo-
sition that allows a collection of multiple terms to be considered a
proxy would identify such a case of proxy use.

The choice of program decomposition also has consequences
for the tractability of the detection and repair algorithms. The
detection and repair algorithms presented in this paper currently
enumerate through all possible subprograms in the worst case.
Depending on the flexibility of the language chosen and the model®
being expressed there could be an exponentially large number of
subprograms, and our enumeration would be intractable.

Important directions of future work are therefore organized
along two thrusts. The first thrust is to develop more flexible notions
of program decompositions that identify a wide class of proxy uses
for other kinds of machine learning models, including deep learning
models that will likely require new kinds of abstraction techniques
due to their large size. The second thrust is to identify scalable
algorithms for detecting and repairing proxy use for these flexible
notions of program decompositions.

Data and access requirements Our definitions and algorithms
require (i) a specification of which attributes are protected, (ii) entail
reasoning using data about these protected information types for
individuals, and (iii) white box access to models and a representative
dataset of inputs. Obtaining a complete specification of protected
information types can be challenging when legal requirements and
privacy expectations are vague regarding protected information
types. However, in many cases, protected types are specified in laws
and regulations governing the system under study (e.g., HIPAA,
GDPR), and also stated in the data processor’s privacy policies.
Further, data about protected information types is often not
explicitly collected. Pregnancy status, for example, would rarely
find itself as an explicit feature in a purchases database (though it
was the case in the Target case). Therefore, to discover unwanted
proxy uses of protected information types, an auditor might need to
first infer the protected attribute from the collected data to the best
extent available to them. Though it may seem ethically ambiguous
to perform a protected inference in order to (discover and) prevent
protected inferences, it is consistent with the view that privacy
is a function of both information and the purpose for which that
information is being used [65]2. In our case, the inference and use
of protected information by an auditor has a different (and ethically
justified) purpose than potential inferences in model being audited.
Further, protected information has already been used by public
and private entities in pursuit of social good: affirmative action
requires the inference or explicit recording of minority membership,
search engines need to infer suicide tendency in order to show
suicide prevention information in their search results[60], health
conditions can potentially be detected early from search logs of
affected individuals [56]. Supported by law and perception of public

1 Though deep learning models can be expressed in the example language presented in
this paper, doing so would result in prohibitively large programs.
2This principle is exemplified by law in various jurisdictions including the PIPEDA
Act in Canada [54], and the HIPAA Privacy Rule in the USA [55].

Session E5: Privacy-Preserving Analytics

good, we think it justified to expect system owners be cooperative
in providing the necessary information or aiding in the necessary
inference for auditing.

Finally, in order to mitigate concerns over intellectual prop-
erty due to access requirements for data and models, the analyst
will need to be an internal auditor or trusted third party; exist-
ing privacy-compliance audits (Sen et al. [58]) that operate under
similar requirements could be augmented with our methods.

Normative judgments Appropriateness decisions by the ana-
lyst will be made in accordance with legal requirements and ethical
norms. Operationally, this task might fall on privacy compliance
teams. In large companies, such teams include law, ethics, and
technology experts. Our work exposes the specific points where
these complex decisions need to be made. In our evaluation, we ob-
served largely human-interpretable witnesses for proxies. For more
complex models, additional methods from interpretable machine
learning might be necessary to make witnesses understandable.

Another normative judgment is the choice of acceptable ¢,
parameters. Similar to differential privacy, the choice of parameters
requires identifying an appropriate balance between utility and
privacy. Our quantitative theory could provide guidance to the
oracle on how to prioritize efforts, e.g., by focusing on potentially
blatant violations (high €, § values).

9 CONCLUSION

We develop a theory of use privacy in data-driven systems. Distinc-
tively, our approach constrains not only the direct use of protected
information types but also their proxies (i.e. strong predictors),
unless allowed by exceptions justified by ethical considerations.
We formalize proxy use and present a program analysis tech-
nique for detecting it in a model. In contrast to prior work, our
analysis is white-box. The additional level of access enables our
detection algorithm to provide a witness that localizes the use to a
part of the algorithm. Recognizing that not all instances of proxy
use of a protected information type are inappropriate, our theory of
use privacy makes use of a normative judgment oracle that makes
this appropriateness determination for a given witness. If the proxy
use is deemed inappropriate, our repair algorithm uses the witness
to transform the model into one that does not exhibit proxy use.
Using a corpus of social datasets, our evaluation shows that these
algorithms are able to detect proxy use instances that would be
difficult to find using existing techniques, and subsequently remove
them while maintaining acceptable classification performance.

Acknowledgments We would like to thank Amit Datta, Sophia
Kovaleva, and Michael C. Tschantz for their thoughtful discussions
throughout the development of this work. We thank our shepherd
Aylin Caliskan and anonymous reviewers for their numerous sug-
gestions that improved this paper.

This work was developed with the support of NSF grants CNS-1704845,
CNS-1064688 as well as by DARPA and the Air Force Research Laboratory
under agreement number FA8750-15-2-0277. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes not
withstanding any copyright notation thereon. The views, opinions, and/or
findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of DARPA, the Air Force Research
Laboratory, the National Science Foundation, or the U.S. Government.

1205

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

REFERENCES

[1] 2013. Indonesia - National Contraceptive Prevalence Survey 1987. (2013). http://
microdata.worldbank.org/index. php/catalog/1398/study-description (Accessed
Nov 11, 2016).

Paul Barford, Igor Canadi, Darja Krushevskaja, Qiang Ma, and S. Muthukrishnan.
2014. Adscape: Harvesting and Analyzing Online Display Ads. In Proceedings
of the 23rd International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, 597-608.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. 2014. Private Empirical
Risk Minimization: Efficient Algorithms and Tight Error Bounds. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014. 464-473.

Richard Berk and Justin Bleich. 2014. Forecasts of Violence to Inform Sentencing
Decisions. Journal of Quantitative Criminology 30, 1 (2014), 79-96.

Richard A. Berk, Susan B. Sorenson, and Geoffrey Barnes. 2016. Forecasting
Domestic Violence: A Machine Learning Approach to Help Inform Arraignment
Decisions. Journal of Empirical Legal Studies 13, 1 (2016), 94-115.

Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5-32.

Toon Calders and Sicco Verwer. 2010. Three naive Bayes approaches for
discrimination-free classification. Data Mining and Knowledge Discovery 21,
2 (2010), 277-292.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. 2011. Differen-
tially Private Empirical Risk Minimization. Journal of Machine Learning Research
12 (2011), 1069-1109.

David Maxwell Chickering and David Heckerman. 2000. A Decision Theoretic
Approach to Targeted Advertising. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI'00). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 82-88.

Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach.
Learn. 20, 3 (Sept. 1995), 273-297.

Paulo Cortez and Alice Maria Goncalves Silva. 2008. Using data mining to
predict secondary school student performance. Technical Report, Department of
Computer Science, University of Camerino. (2008).

Thomas M Cover and Joy A Thomas. 2012. Elements of information theory. John
Wiley & Sons.

Anupam Datta, Matthew Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak
Sen. 2017. Use Privacy in Data-Driven Systems: Theory and Experiments with
Machine Learnt Programs. arXiv preprint arXiv:1705.07807 (2017).

Anupam Datta, Shayak Sen, and Yair Zick. 2016. Algorithmic Transparency via
Quantitative Input Influence: Theory and Experiments with Learning Systems.
In Proceedings of IEEE Symposium on Security & Privacy 2016.

A. Datta, M.C. Tschantz, and A. Datta. 2015. Automated Experiments on Ad
Privacy Settings: A Tale of Opacity, Choice, and Discrimination. In Proceedings
on Privacy Enhancing Technologies (PoPETs 2015). 92-112.

Amit Datta, Michael Carl Tschantz, and Anupam Datta. 2015. Automated Experi-
ments on Ad Privacy Settings: A Tale of Opacity, Choice, and Discrimination. In
Proceedings on Privacy Enhancing Technologies (PoPETs). De Gruyter Open.
Wendy Davis. 2016. FTC’s Julie Brill Tells Ad Tech Companies To Improve
Privacy Protections. (2016). http://www.mediapost.com/publications/article/
259210/ftcs-julie-brill-tells-ad-tech-companies-to-impro.html Accessed Nov 11,
2016.

Pam Dixon and Robert Gellman. 2014. The Scoring of America:
How Secret Consumer Scores Threaten Your Privacy and Your Future.
(2014). http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF-
Scoring-of- America- April2014-fs.pdf Accessed: 2016-11-05.

Charles Duhigg. 2012. How Companies Learn Your Secrets. (2012). http://
www.nytimes.com/2012/02/19/magazine/shopping-habits.html (Accessed Aug
13, 2016).

Olive Jean Dunn. 1959. Estimation of the Medians for Dependent Variables. The
Annals of Mathematical Statistics 30, 1 (03 1959), 192-197.

Cynthia Dwork. 2006. Differential Privacy. In Automata, Languages and Program-
ming, 33rd International Colloguium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, P (Lecture Notes in Computer Science), Vol. 4052. Springer, 1-12.
Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness Through Awareness. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference (ITCS ’12). ACM, New York, NY, USA,
214-226.

C.Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. 2012. Fairness Through
Awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (ITCS 2012). 214-226.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. 2011. Fairness Through Awareness. Computing Research Repository (CoRR)
(2011).

Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography
Conference. Springer, 265-284.

[2

=
2

(1]

[12

(13

[14

[16

(17]

(18]

=
X2

[20]

[21

[22

[23

S
=)

[25

Session E5: Privacy-Preserving Analytics

[26

[27]

[28

[29

[30

[31

[32]

[33

[34]

[35]

[36]

[37]

[38]

[39

[40]

[41

[42]

[43]

[44]

[45]

[46

[47]

[48]

[49

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing Noise to Sensitivity in Private Data Analysis. In TCC. 265-284.

Steven Englehardt, Christian Eubank, Peter Zimmerman, Dillon Reisman,
and Arvind Narayanan. 2014. Web Privacy Measurement: Scientific prin-
ciples, engineering platform, and new results. Manuscript posted at http:
//randomwalker.info/publications/WebPrivacyMeasurement.pdf. (June 2014).
Accessed Nov. 22, 2014.

European Commission. 2016. General Data Protection Regulation (GDPR). Regu-
lation (EU) 2016/679, L119. (May 2016).

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’15). ACM, New York, NY, USA, 259-268.
Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD).

Nicole Freeling. 2016. How Big Data is helping students graduate on time.
(2016). https://www.universityofcalifornia.edu/news/how-big-data-helping-
students-graduate-time (Accessed Nov 11, 2016).

Edward W. Frees, Richard A. Derrig, and Glenn Meyers. 2014. Predictive Modeling
Applications in Actuarial Science. Cambridge University Press.

Deepak Garg, Limin Jia, and Anupam Datta. 2011. Policy auditing over incom-
plete logs: theory, implementation and applications. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS).

Adrian Gepp, J. Holton Wilson, Kuldeep Kumar, and Sukanto Bhattacharya. 2012.
A Comparative Analysis of Decision Trees Vis-a-vis Other Computational Data
Mining Techniques in Automotive Insurance Fraud Detection. Journal of Data
Science 10, 3 (2012), 537-561.

Saikat Guha, Bin Cheng, and Paul Francis. 2010. Challenges in Measuring Online
Advertising Systems. In Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement (IMC ’10). ACM, New York, NY, USA, 81-87.

Aniko Hannak, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Krish-
namurthy, David Lazer, Alan Mislove, and Christo Wilson. 2013. Measuring
Personalization of Web Search. In Proceedings of the 22nd International Conference
on World Wide Web (WWW ’13). ACM, New York, NY, USA, 527-538.

Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wilson.
2014. Measuring Price Discrimination and Steering on E-commerce Web Sites.
In Proceedings of the 2014 Conference on Internet Measurement Conference (IMC
’14). ACM, New York, NY, USA, 305-318.

Robert Hare. 2003. Manual For the Revised Psychopathy Checklist. Multi-Health
Systems.

Benjamin Harold. 2016. The Future of Big Data and Analytics in K-12 Education.
(12016).

Andrew Hilts, Christopher Parsons, and Jeffrey Knockel. 2016. Every Step You
Fake: A Comparative Analysis of Fitness Tracker Privacy and Security. (2016).
https://openeffect.ca/fitness-tracker-privacy-and-security/ Accessed Nov 11,
2016.

Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random
Variables. J. Amer. Statist. Assoc. 58, 301 (March 1963), 13-30.

Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. 2011. Fairness-aware
learning through regularization approach. In Proceedings of the Workshop on
Privacy Aspects of Data Mining.

Mathias Lécuyer, Guillaume Ducoffe, Francis Lan, Andrei Papancea, Theofilos
Petsios, Riley Spahn, Augustin Chaintreau, and Roxana Geambasu. 2014. XRay:
Enhancing the Web’s Transparency with Differential Correlation. In Proceed-
ings of the 23rd USENIX Conference on Security Symposium (SEC’14). USENIX
Association, Berkeley, CA, USA, 49-64.

Mathias Lecuyer, Riley Spahn, Yannis Spiliopolous, Augustin Chaintreau, Roxana
Geambasu, and Daniel Hsu. 2015. Sunlight: Fine-grained Targeting Detection
at Scale with Statistical Confidence. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security (CCS ’15). ACM, New York,
NY, USA, 554-566.

Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan.
2015. Interpretable classifiers using rules and Bayesian analysis: Building a better
stroke prediction model. Ann. Appl. Stat. 9, 3 (09 2015), 1350-1371.

Richard J. Lipton and Kenneth W. Regan. 2016. Making Public Information Secret.
(2016). https://rjlipton. wordpress.com/2016/05/20/making-public-information-
secret/ Accessed Aug 13, 2016.

Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. 2016. Dependence
Makes You Vulnerable: Differential Privacy Under Dependent Tuples. In Network
and Distributed System Security Symposium (NDSS). The Internet Society.

Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. 2011. k-NN As an
Implementation of Situation Testing for Discrimination Discovery and Preven-
tion. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

Teena Maddox. 2016. The Dark Side of Wearables. (2016). http:
//www .techrepublic.com/article/the-dark-side-of-wearables-how-theyre-

1206

[50

(51]
[52]

[53

o
=

[55]

[56

[57

[59

[60

[61

[62

[63

[64

(65

[66

[67

[68

[69

[70

[71

(72

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

secretly-jeopardizing-your-security-and-privacy/ Accessed Nov 11, 2016.
Sumaria Mohan-Neill, Indira Neill Hoch, and Meng li. 2014. An Analysis of Us
Household Socioeconomic Profiles Based on Marital Status and Gender. Journal
of Economics and Economic Education Research 3 (9 2014).

Helen Nissenbaum. 2009. Privacy in Context: Technology, Policy, and the Integrity
of Social Life. Stanford University Press.

Helen Nissenbaum and Heather Patterson. 2016. A Value for n-Person Games.
In Quantified: Biosensing Technologies in Everyday Life. MIT Press, 80-100.

The President’s Council of Advisors on Science and Technology. 2014. Big Data
and Privacy: A Technological Perspective. Technical Report. Executive Office of
the President.

Office of the Privacy Commissioner of Canada. 2015. PIPEDA legislation and
regulations. (2015). https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-
canada/the-personal-information- protection-and-electronic-documents-act-
pipeda/ Accessed May 15, 2017.

Office for Civil Rights. 2003. Summary of the HIPAA Privacy Rule. OCR Privacy
Brief, U.S. Department of Health and Human Services. (2003).

John Paparrizos, Ryen W. White, and Eric Horvitz. 2016. Screening for Pancreatic
Adenocarcinoma Using Signals From Web Search Logs: Feasibility Study and
Results. Journal of Oncology Practice 12, 8 (2016), 737-744. https://doi.org/
10.1200/JOP.2015.010504 PMID: 27271506.

Frank Pasquale. 2015. The Black Box Society: The Secret Algorithms That Control
Money and Information. Harvard University Press, Cambridge, MA, USA. http:
//www .hup.harvard.edu/catalog.php?ishn=9780674368279

Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Tsai, and
Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big Data Systems.
In Proceedings of the 2014 IEEE Symposium on Security and Privacy (SP '14). IEEE
Computer Society, Washington, DC, USA, 327-342.

Geoffrey Smith. 2015. Recent Developments in Quantitative Information Flow
(Invited Tutorial). In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS) (LICS ’15). IEEE Computer Society, Washington,
DC, USA, 23-31.

S.E. Smith. 2015. How do search engines respond when you Google ‘suicide’?
(2015). https://www.dailydot.com/via/germanwings-suicide-hotline/ Accessed
May 15, 2017.

Daniel J. Solove. 2006. A Taxonomy of Privacy. University of Pennsylvania Law
Review 154, 3 (Jan. 2006), 477-560.

Hugo Teufel III. 2008. Privacy Policy Guidance Memorandum: The Fair In-
formation Practice Principles: Framework for Privacy Policy at the Depart-
ment of Homeland Security. Memorandum Number: 2008-01. (Dec. 2008).
https://www.dhs.gov/xlibrary/assets/privacy/privacypolicyguide; 008-01.pdf
Florian Tramér, Vaggelis Atlidakis, Roxana Geambasu, Daniel J. Hsu, Jean-Pierre
Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. 2015. Discovering Un-
warranted Associations in Data-Driven Applications with the FairTest Testing
Toolkit. CoRR abs/1510.02377 (2015).

Michael Carl Tschantz, Anupam Datta, and Jeannette M. Wing. 2012. Formalizing
and Enforcing Purpose Restrictions in Privacy Policies. In Proceedings of the 2012
IEEE Symposium on Security and Privacy. Washington, DC, USA, 176-190.
Michael Carl Tschantz, Anupam Datta, and Jeannette M. Wing. 2012. Formalizing
and Enforcing Purpose Restrictions in Privacy Policies. In IEEE Symposium on
Security and Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA.
176-190.

Joseph Turow. 2011. The Daily You: How the New Advertising Industry Is Defining
Your Identity and Your Worth. Yale University Press.

J. Turow. 2017. The Aisles Have Eyes: How Retailers Track Your Shopping, Strip
Your Privacy, and Define Your Power. Yale University Press.

Findings under the Personal Information Protection and Electronic
Documents Act (PIPEDA). 2014. Use of sensitive health informa-
tion for targeting of Google ads raises privacy concerns. (2014).
https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/
investigations-into-businesses/2014/pipeda-2014-001/ (Accessed May 15,
2017).

Thomas Vissers, Nick Nikiforakis, Nataliia Bielova, and Wouter Joosen. 2014.
Crying wolf? On the price discrimination of online airline tickets. In 7th Work-
shop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2014). https:
//lirias.kuleuven.be/handle/123456789/454872"

Siva Viswanathan. 2010. Business Intelligence and Predictive Analytics for
Financial Services: The Untapped Potential of Soft Information. In Digits: Center
for Digital Innovation, Technology, and Strategy “Research in Practice” Paper Series.
Robert H. Smith School of Business, University of Maryland.

Craig E. Wills and Can Tatar. 2012. Understanding what they do with what they
know. In Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society.
New York, NY, USA, 13-18. http://doi.acm.org/10.1145/2381966.2381969

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013.
Learning Fair Representations. In Proceedings of the Internetional Conference on
Machine Learning.

Session E5: Privacy-Preserving Analytics

A PROOF OF THEOREM 1

Theorem 1. No definition of proxy use can satisfy Properties 1-4
simultaneously.

Proor. Proofby contradiction. Assume that a definition of proxy
use satisfies all four properties. Let X, Y, and Z be uniform binary
random variables, such that Pr(Y = X & Z) = 1,but X, Y and Z
are pairwise independent. By (explicit use of proxy), the model
A(Y,Z) = Y & Z has proxy use of Z. By (dummy), the model
A’(Y,Z,X) = Y ®Z has proxy use of Z. Choose f(x,z) = x®z. By
our assumption earlier, Pr (Y = f(X, Z)) = 1. Therefore, by (prepro-
cessing), the model A" (Z,X) = A’(f(X, Z), Z,X) has proxy use
of Z. Note that A" (Z,X) = X®Z & Z = X. Therefore, by (dummy),
A’ (X) = X has proxy use of Z. But, by (independence), A’" does
not have proxy use of Z. Therefore, we have a contradiction. O

The key intuition behind this result is that Property 2 requires
proxy use to be preserved when an input is replaced with a function
that predicts that input via composition. However, with a purely
semantic view of function composition, the causal effect of the
proxy can disappear. The particular example of this observation we
use in the proof'is Y @ Z, where Z is the protected information type.
This function has proxy use of Z. However, if X @ Z is a perfect
predictor for Y, then the example can be reducedto X @ Z & Z = X,
which has no proxy use of Z. To overcome this impossibility result,
we choose a more syntactic notion of function composition, which
is tied to how the function is represented as a program, and looks
for evidence of proxy use within the representation.

B ALGORITHM FOR DETECTION

In this section we provide technical details about the detection
algorithm skipped from the main body of the paper. In particular, we
formally define the decomposition used in the implementation, how
machine learning models are translated to the term language, and
how associational tests mitigate spurious results due to sampling.

B.1 Decomposition

Before we present the formal algorithm for detection, we need to
develop notation for precisely denoting decompositions. Decompo-
sition follows naturally from the subterm relation on expressions.
However, as identical subterms can occur multiple times in an ex-
pression, care must be taken during substitution to distinguish
between occurrences. For this reason we define substitution po-
sitionally, where the subterm of expression e = op(ey, ..., e,) at
position g, written e|q, is defined inductively:

op(eq,...,en) ifg=¢€
_J eily ifg=ig’ A1<i<n
Op(el,...,en)|q - Op(eil,---,eik) ifq: {il,-n,ik}
L otherwise

We denote g as ‘positional indicator’. Specifically, q has the syntax
of the following.

(@) == €| Kq) [{ir, .., ik}

We then define the term obtained by substituting s in e at position g,
written e[s]q, to be the term where e[s]qlq = s, and e[s]gly = g
for all ¢’ that are not prefixed by q. For a sequence of positions

q1,...,qn and terms si,. .., sy, we write e[s1,...,Snlq,,....q, t0

1207

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Algorithm 4 Detection for expression programs.

Require: association (d), influence(:) measures
procedure PROXYDETECT(p, X, Z, €, §)

P—g
for each term e appearing in p do
p1 — Ax1,...,xpn.€
Qe lqlplg=el
for eachk € [1,...,10[], (q1,--.,qx) € QO do
P2 & Axt, .. xp,uplulg, .. qe

if i(p1,p2) = 86 Ad([p1](X), Z) > € then
P < PU{(p1,p2)}
end if
end for
end for
return P

ite (xp < 1,
ite(xs < 0,0,1),

0)))

Figure 7: Decision tree and corresponding expression pro-
gram.

denote the sequential replacement obtained in order from 1 to n.
Given a program p = AX.e, we will often write plgq or p[s]q for
brevity to refer to e|q and e[s]q, respectively. The set of decomposi-
tions of a program p is then defined by the set of positions q such
that plg #1. Given position g, the corresponding decomposition is
simply (AX.plg, u, AX, u.plulg).

Example B.1. Consider a simple model,
p = Ax,y.ite(x +y < 0,1,0)
= Ax, y.ite(< (+(x,y),0),1,0)
There are eight positions in the body expression, namely {e, 1,2, 3,

11,12, 111, 112}. The subexpression at position 112 is y, and p[u]11 =
ite(u < 0, 1,0). This corresponds to the decomposition:

(Ax,y.x +y,u, Ax, y, u.ite(u < 0,1,0))

With this notation in place, we can formally describe the detec-
tion algorithm in Algorithm 4.

B.2 Translation

This section describes the translation of machine learning models
used in our implementation to the term language.

B.2.1 Decision trees and Rule lists. Decision trees can be written
in this language as nested ite terms, as shown in Figure 7. The
Boolean expression in each term corresponds to a guard, and the
arithmetic expressions to either a proper subtree or a leaf. Bayesian
rule lists are a special kinds of decision trees, where the left subtree

is always a leaf.

Session E5: Privacy-Preserving Analytics

B.2.2 Linear models. Linear regression models are expressed by
direct translation into an arithmetic term, and linear classification
models (e.g., logistic regression, linear support vector machines,
Naive Bayes) are expressed as a single ite term, i.e.,

sgn(w - X + b) becomes AX.ite(W - X + b > 0, 1,0)

Importantly, the language supports n-ary operations when they
are associative, and allows for rearranging operands according
to associative and distributive equivalences. In other words, the
language computes on terms modulo an equational theory. Without
allowing such rearrangement, when a linear model is expressed
using binary operators, such as ((((w1 Xx1) + (w2 Xx2)) + (w3 Xx3)),
then the algorithm cannot select the decomposition:

P11 = A)_E.(Wl X x1) + (W3 ><x3)
p2 = AX, u.u + (wg X x3)

B.2.3 Decision Forests. Decision forests are linear models where
each linear term is a decision tree. We combine the two translations
described above to obtain the term language representation for
decision forests.

B.3 Validity Testing

We use mutual information to determine the strength of the statis-
tical association between [[p1](X) and Z. Each test of this metric
against the threshold e amounts to a hypothesis test against a null
hypothesis which assumes that d([p;](X), Z) < €. Because we po-
tentially take this measure for each valid decomposition of p, it
amounts to many simultaneous hypothesis tests from the same
data source. To manage the likelihood of encountering false posi-
tives, we employ commonly-used statistical techniques. The first
approach that we use is cross-validation. We partition the primary
dataset n times into training and validation sets, run Algorithm 4
on each training set, and confirm the reported proxy uses on the
corresponding validation set. We only accept reported uses that
appear at least t times as valid.

The second approach uses bootstrap testing to compute a p-
value for each estimate dA(pl (X), Z), and applying Bonferroni cor-
rection [20] to account for the number of simultaneous hypothesis
tests. Specifically, the bootstrap test that we apply takes n samples
of (X, Z2), [(X,,Zl)]1<l<n, and permutes each X, Z; to account for
the null hypothesis that X and Z are independent. We then estimate
the p-value by computing:

p== 3 1@ 2) < d(p](%0.2))
" 15zn
After correction, we can bound the false positive discovery rate by
only accepting instances that yield p < «, for sufficiently small .
We note, however, that this approach is only correct when the as-
sociation strength € = 1, as the null hypothesis in this test assumes
that [p;1] is independent of Z. To use this approach in general, we
would need to sample [(Xi, Zi)]1<i<n under the assumption that
d (X i Zi) > €. We leave this detail to future work.

C ALGORITHMS FOR REPAIR

We now provide a formal description of the repair algorithms infor-
mally described in the paper. Algorithm 5, and 6 correspond to 2,
and 3 respectively.

1208

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Algorithm 5 Witness-driven repair.

Require: association (d), influence (1), utility (v) measures, oracle
©)
procedure REPAIR(p, X, Z, €, §)
P « {d € ProxYDETECT(p, X, Z, €,8) : not O(d)}
if P #(then
(p1,p2) « element of P
p’ «— PROXYREPAIR(p, (p1,p2), X, Z, €,)
return RepaIr(p’, X, Z, €, §)
else
return p
end if

Algorithm 6 Local Repair.

Require: association (d), influence (1), utility (v) measures
1: procedure PROXYREPAIR(p, (p1,p2), X, Z, €, §)
2 Re{)
3: for each decomp. (p;, p;) w/ p] local to p; in p2 do

4 r* « argmax, v ([u/r]pé)
5: (py'spy) « (p1,p2) with r* substituted for p;
6: if z(p1 ,p3) <8 Vv d([py](X),Z) < € then
7: "« [u/r*]p;
8: R « RU {p*}
9: end if
10: end for
11: return argmax, g v (p)
C.1 Optimal constant selection

As constant terms cannot be examples of (e, §)-Proxy Use, there
is freedom in their selections as replacements for implicated sub-
programs. In Algorithm 6 we pick the replacement that optimizes
some measure of utility of the patched program. If the given pro-
gram was constructed as a classifier, we define utility as the patched
program’s prediction accuracy on the data set using 0-1 loss. Simi-
larly, if the program were a regression model, v would correspond
to mean-squared error.

If the program computes a continuous convex function, as in the
case of most commonly-used regression models, then off-the-shelf
convex optimization procedures can be used in this step. However,
because we do not place restrictions on the functions computed
by programs submitted for repair, the objective function might not
satisfy the conditions necessary for efficient optimization. In these
cases, it might be necessary to develop a specialized procedure for
the model class. Below we describe such a procedure for the case
of decision trees.

Decision trees Decision trees are typically used for classification
of instances into a small number of classes C. For these models, the
only replacement constants that will provide reasonable accuracy
are those that belong to C, so in the worst case, the selection proce-
dure must only consider a small finite set of candidates. However,
it is possible to calculate the optimal constant with a single pass
through the dataset.

Given a decomposition (p1, p2) of p, let ¢ be the weakest formula
over p’s variables such that V¥.p; (¥) = p(X). ¢ corresponds to the

Session E5: Privacy-Preserving Analytics

conjoined conditions on the path in p prefixing p;. We can then
define the objective function:

o) = Y LE) - %o =7)
FeX
This objective is minimized when r matches the greatest number
of class labels for samples that pass through p;. This minimizes
classification error over X, and is easily computed by taking the
class-label mode of training samples that satisfy ¢.

Example C.1. Consider the tree in Figure 7, and assume that x;
and x; are distributed according to A/ (%, 1), and x3 = x1 + x3. For
simplicity, assume that the class label for each instance is given
exactly by the tree. Then given the decomposition:

p1 = Ad.ite(x3 < 0,0,1)
p2 = AX, u.ite(x; < 1/2,0,ite(x2 < 1,u,0))

we need to find an optimal constant to replace the subtree rooted
at x3. In this case, ¢ o x1 > % A x5 < 1, so we select Xy = (X €
<

Xl|x1 > %/\xg

[p(f)]fe)}’¢

1} and take the mode of the empirical sample

D COMPLEXITY

The complexity of the presented algorithms depend on several
factors, including the type of model being analyzed, the number of
elements in the ranges of sub-programs, and reachability of sub-
programs by dataset instances . In this section we describe the the
complexity characteristics of the detection and repair algorithms
under various assumptions. Complexity is largely a property of
the association and influence computations and the number of
decompositions of the analyzed program. We begin by noting our
handling of probability distributions as specified by datasets, several
quantities of interest, discuss the complexity of components of our
algorithms, and conclude with overall complexity bounds.

D.1 Distributions, datasets, and probability

It is rarely the case that one has access to the precise distribution
from which data is drawn. Instead, a finite sample must be used
as a surrogate when reasoning about random variables. In our
formalism we wrote X « P to designate sampling of a value
from a population. Given a dataset surrogate D, this operation is
implemented as an enumeration x € D, with each element having
probability 1/ |D|. We will overload the notation and use D also as
the random variable distributed in the manner just described. We
assume here that the sensitive attribute Z is a part of the random
variable X.
The following sections use the following quantities to express
complexity bounds, mostly overloading prior notations:
e D - The number of instances in the population dataset.
o p - The number of expressions in a program p being analyzed.
e Z - The number of elements in the support of Z.
o k - The maximum number of unique elements in support of
every sub-expression, that is max, ¢, [support ([p]D)|.
e ¢ - The number of decompositions in a given program. We
will elaborate on this quantity under several circumstances
later in this section.

1209

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

e b - The minimum branching factor of sub-expressions in a
given program.

We will assume that the number of syntactic copies of any sub-
expression in a program is no more than some constant. This means
we will ignore the asymptotic effect of decompositions with multi-
ple copies of the same sub-program py.

The elementary operation in our algorithms is a lookup of a
probability of a value according to some random variable. We pre-
compute several probabilities related to reachability and contin-
gency tables to aid in this operation. When we write “p; is reached”,
we mean that the evaluation of p, containing p1, on a given instance
X, will reach the sub-expression p; (or that p; needs to be evaluated
to evaluate p on X).

Probability pre-computation

For every decomposition [[p2] (X, [p1]X) = [p] (X), we compute:
(1) the r.v. ([p1]X, Xz) for X D,
(2) the r.v. X| (p1 is reached by X) for X hl D, and
(3) the value Pry 8 15 (p1 is reached by X).

In point (1) above we write X7 to designate the sensitive attribute
component of X’, hence this point computes the r.v. representing
the output of p; along with the sensitive attribute Z. This will be
used for the association computation.

The complexity of these probability computations varies de-
pending on circumstances. In the worst case, the complexity is
O (¢Dp). However, under some assumptions related to programs
p and datasets D, these bounds can be improved. We define two
types of special cases which we call splitting and balanced:

Definition D.1. p is splitting for D iff it has at most a constant
number of reachable op operands (arguments of op expressions).

The Decision trees are local for any dataset as they do not con-
tain any op operands (they do contain relop operands). Further, if
number of trees in random forests or number of coefficients in lin-
ear regression are held constant, then these models too are splitting
for any dataset. The reasoning behind this definition is to prohibit
arbitrarily large programs that do not split inputs using if-then-else
expressions. It is possible to create such programs using arithmetic
and boolean operations, but not using purely relational operations.

Definition D.2. p is b-balanced for D iff all but a constant number
of sub-expressions e’ have parent e with b > 1 sub-expressions
which split the instances that reach them approximately equally
among their children.

Balanced implies splitting as op operands do not satisfy the bal-
anced split property hence there has to be only a constant number
of them. Also, the definition is more general than necessary for
the language presented in this paper where the branching factor
is always 2 because the if-then-else expressions are the only ones
that can satisfy the balanced split condition. Decision trees trained
using sensible algorithms are usually balanced due to the branch
split criteria employed preferring approximately equal splits of
training instances. For the same reason, if the number of trees are
held constant, then random forests are also likely to be balanced.

When p is splitting for D, the probability computation step
reduces to O (Dpz). This stems from the fact that the number

Session E5: Privacy-Preserving Analytics

of decompositions is asymptotically equal to the number of sub-
expressions (limits to operands prevent more decompositions). Fur-
ther, if p is b-balanced for D, the probability pre-computation re-
duces to O (D logy, D). In the language presented b = 2. These
bounds derive similarly to the typical divide and conquer program
analysis; there are log;, D layers of computation, each processing
D instances.

D.2 Influence and Association

Our proxy definition further relies on two primary quantities used
in Algorithm 1, influence and association. We describe the methods
we use to compute them here.

Quantitative decomposition influence Given a decomposi-
tion (p1, u, p2) of p, the influence of p; on p2’s output is defined
as:

def
1(p1,p2) = E$
X, X'<D

[Pr ([p2] (X. [p1]X) # [p2] (X, [p1]X"))]

This quantity requires D? samples to compute in general. Each
sample takes at most O (p) time, for a total of O (pDz). However,
we can take advantage of the pre-computations described in the
prior section along with balanced reachability criteria and limited
ranges of values in expression outputs to do better. We break down
the definition of influence into two components based on reacha-
bility of p:

wprp2) € By [Pr([pe] (X [p1]X) # [p2] (X, [1]X))]
X, X'«<D

= B | E_[Pr([p2] (X [p1]X) # [p2] (X, HPI]]X/))]]
XD | XD

= Pr (p; not reached) - E [---]
X<D|p; not reached

+Pr(p; reached) - ¢ E [---
X<D|p;y reached

= 0 + Pr (p; reached) -

pr ([p](X) # [p2] (X. [[plﬂx'm]

E
X&Dlpl reached [XE'D [
= Pr (p; reached) -

s E
Y—[p1]D

[Pr ([p](X) # [p2] (X.Y))]

s E
X<D|p; reached

Note that all both random variables and one probability value in
the final form of influence above have been pre-computed. Further,
if the number of elements in the support of [p1]X is bounded by k,
we compute influence using kD samples (at most D for X and at
most k for Y), for total time of O (kpD).

Influence can also be estimated, i by taking a sample from D x D.
By Hoeffding’s inequality [41], we select the subsample size n to
be at least log(2/f)/2a? to ensure that the probability of the error
i(p1,p2) — 1(p1, p2) being greater than f is bounded by «.

Association As discussed in Section 3, we use mutual informa-
tion to measure the association between the output of a subprogram
and Z. In our pre-computation steps we have already constructed
the r.v. ([p1]X,Xz) for X & D. This joint r.v. contains both the
subprogram outputs and the sensitive attribute hence it is sufficient

1210

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

to compute association metrics. In case of normalized mutual infor-
mation, this can be done in time O (kZ), linear in the size of the
support of this random variable.

D.3 Decompositions

The number of decompositions of a model determines the number of
proxies that need to be checked in detection and repair algorithms.
We consider two cases, splitting and non-splitting programs. For
splitting models, the number of decompositions is bounded by
the size of the program analyzed, whereas in case of non-splitting
models, the number of decompositions can be exponential in the
size of the model. These quantities are summarized in Table 2.

splitting | non-splitting
worst-case general O (p) O (2?)
linear model with (constantor f) | O (1) O (2f)
number of coefficients
decision tree of height h @ (Zh) o (2h)
random forest of (constant or t) | O (2”) O (2t2h)
number of trees of height h

Table 2: The number of decompositions in various types
of models. When we write “(constant or f)” we denote two
cases: one in which a particular quantity is considered con-
stant in a model making it satisfy the splitting condition,
and one in which that same quantity is not held constant,
falsifying the splitting condition.

D.4 Detection

The detection algorithm can be written O (A + B - C), a combina-
tion of three components. A is probability pre-computation as de-
scribed earlier in this section, B is the complexity of association and
influence computations, and C is the number of decompositions.

The complexity in terms of the number of decompositions under
various conditions is summarized in Table 3. Instantiating the pa-
rameters, the overall complexity ranges from O (’D logy, D + pzD)
in case of models like balanced decision trees with a constant num-
ber of classes, to O (pZP Dz) in models with many values and as-
sociative expressions like linear regression. If the model size is
held constant, these run-times become O (D logy, D) and O (Dz),
respectively.

non-splitting | O (pc (D + kD))
splitting O (p (Dp + ckD))
b-balanced | O (Dlog;, D + ckpD)

Table 3: The complexity of the detection algorithm under
various conditions, as a function of the number of decom-
positions.

	Abstract
	1 Introduction
	2 Use Privacy
	3 Proxy Use: A Formal Definition
	3.1 Examples of Proxy Use
	3.2 Notation and Preliminaries
	3.3 Definition
	3.4 A Quantitative Relaxation
	3.5 Axiomatic Basis for Definition

	4 Detecting Proxy Use
	4.1 Environment Model
	4.2 Analyzing Proxy Use

	5 Removing Proxy Use Violations
	6 Evaluation
	6.1 Example Workflow
	6.2 Other Case Studies
	6.3 Detection and Repair

	7 Related Work
	7.1 Definition
	7.2 Detection and Repair Models

	8 Discussion
	9 Conclusion
	References
	A Proof of Theorem 1
	B Algorithm for Detection
	B.1 Decomposition
	B.2 Translation
	B.3 Validity Testing

	C Algorithms for Repair
	C.1 Optimal constant selection

	D Complexity
	D.1 Distributions, datasets, and probability
	D.2 Influence and Association
	D.3 Decompositions
	D.4 Detection

