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Abstract—Machine learning algorithms, when applied to sen-
sitive data, pose a distinct threat to privacy. A growing body
of prior work demonstrates that models produced by these
algorithms may leak specific private information in the training
data to an attacker, either through the models’ structure or
their observable behavior. However, the underlying cause of this
privacy risk is not well understood beyond a handful of anecdotal
accounts that suggest overfitting and influence might play a role.

This paper examines the effect that overfitting and influence
have on the ability of an attacker to learn information about
the training data from machine learning models, either through
training set membership inference or attribute inference attacks.
Using both formal and empirical analyses, we illustrate a clear
relationship between these factors and the privacy risk that
arises in several popular machine learning algorithms. We find
that overfitting is sufficient to allow an attacker to perform
membership inference and, when the target attribute meets
certain conditions about its influence, attribute inference attacks.
Interestingly, our formal analysis also shows that overfitting is
not necessary for these attacks and begins to shed light on what
other factors may be in play. Finally, we explore the connection
between membership inference and attribute inference, showing
that there are deep connections between the two that lead to
effective new attacks.

Index Terms—privacy, machine learning, inference attacks

I. INTRODUCTION

Machine learning has emerged as an important technology,

enabling a wide range of applications including computer

vision, machine translation, health analytics, and advertising,

among others. The fact that many compelling applications of

this technology involve the collection and processing of sensi-

tive personal data has given rise to concerns about privacy [1],

[2], [3], [4], [5], [6], [7], [8], [9]. In particular, when machine

learning algorithms are applied to private training data, the

resulting models might unwittingly leak information about that

data through either their behavior (i.e., black-box attack) or the

details of their structure (i.e., white-box attack).

Although there has been a significant amount of work

aimed at developing machine learning algorithms that satisfy

definitions such as differential privacy [8], [10], [11], [12],

[13], [14], the factors that bring about specific types of privacy

risk in applications of standard machine learning algorithms

are not well understood. Following the connection between

differential privacy and stability from statistical learning the-

ory [12], [13], [14], [15], [16], [17], one such factor that has

started to emerge [4], [7] as a likely culprit is overfitting. A

machine learning model is said to overfit to its training data

when its performance on unseen test data diverges from the

performance observed during training, i.e., its generalization

error is large. The relationship between privacy risk and

overfitting is further supported by recent results that suggest

the contrapositive, i.e., under certain reasonable assumptions,

differential privacy [13] and related notions of privacy [18],

[19] imply good generalization. However, a precise account

of the connection between overfitting and the risk posed by

different types of attack remains unknown.

A second factor identified as relevant to privacy risk is

influence [5], a quantity that arises often in the study of

Boolean functions [20]. Influence measures the extent to which

a particular input to a function is able to cause changes to

its output. In the context of machine learning privacy, the

influential features of a model may give an active attacker the

ability to extract information by observing the changes they

cause.

In this paper, we characterize the effect that overfitting

and influence have on the advantage of adversaries who

attempt to infer specific facts about the data used to train

machine learning models. We formalize quantitative advantage

measures that capture the privacy risk to training data posed

by two types of attack, namely membership inference [6],

[7] and attribute inference [3], [4], [5], [8]. For each type

of attack, we analyze the advantage in terms of generalization

error (overfitting) and influence for several concrete black-box

adversaries. While our analysis necessarily makes formal as-

sumptions about the learning setting, we show that our analytic

results hold on several real-world datasets by controlling for

overfitting through regularization and model structure.

a) Membership inference: Training data membership in-

ference attacks aim to determine whether a given data point

was present in the training data used to build a model. Al-

though this may not at first seem to pose a serious privacy risk,

the threat is clear in settings such as health analytics where the

distinction between case and control groups could reveal an

individual’s sensitive conditions. This type of attack has been

extensively studied in the adjacent area of genomics [21], [22],

and more recently in the context of machine learning [6], [7].

Our analysis shows a clear dependence of membership

advantage on generalization error (Section III-B), and in some

cases the relationship is directly proportional (Theorem 2).

Our experiments on real data confirm that this connection

matters in practice (Section VI-B), even for models that do not

conform to the formal assumptions of our analysis. In one set

of experiments, we apply a particularly straightforward attack

to deep convolutional neural networks (CNNs) using several

datasets examined in prior work on membership inference. De-



spite requiring significantly less computation and adversarial

background knowledge, our attack performs almost as well as

a recently published attack [7].

Our results illustrate that overfitting is a sufficient condition

for membership vulnerability in popular machine learning

algorithms. However, it is not a necessary condition (Theo-

rem 4). In fact, under certain assumptions that are commonly

satisfied in practice, we show that a stable training algorithm

(i.e., one that does not overfit) can be subverted so that

the resulting model is nearly as stable but reveals exact

membership information through its black-box behavior. This

attack is suggestive of algorithm substitution attacks from

cryptography [23] and makes adversarial assumptions similar

to those of other recent ML privacy attacks [24]. We imple-

ment this construction to train deep CNNs (Section VI-D)

and observe that, regardless of the model’s generalization

behavior, the attacker can recover membership information

while incurring very little penalty to predictive accuracy.

b) Attribute inference: In an attribute inference attack,

the adversary uses a machine learning model and incomplete

information about a data point to infer the missing information

for that point. For example, in work by Fredrikson et al. [4],

the adversary is given partial information about an individual’s

medical record and attempts to infer the individual’s genotype

by using a model trained on similar medical records.

We formally characterize the advantage of an attribute

inference adversary as its ability to infer a target feature

given an incomplete point from the training data, relative to

its ability to do so for points from the general population

(Section IV). This approach is distinct from the way that

attribute advantage has largely been characterized in prior

work [3], [4], [5], which prioritized empirically measuring

advantage relative to a simulator who is not given access to the

model. We offer an alternative definition of attribute advantage

(Definition 6) that corresponds to this characterization and

argue that it does not isolate the risk that the model poses

specifically to individuals in the training data.

Our formal analysis shows that attribute inference, like

membership inference, is indeed sensitive to overfitting. How-

ever, we find that influence must be factored in as well to

understand when overfitting will lead to privacy risk (Sec-

tion IV-A). Interestingly, the risk to individuals in the training

data is greatest when these two factors are “in balance”.

Regardless of how large the generalization error becomes, the

attacker’s ability to learn more about the training data than

the general population vanishes as influence increases.

c) Connection between membership and attribute infer-

ence: The two types of attack that we examine are deeply

related. We build reductions between the two by assuming

oracle access to either type of adversary. Then, we characterize

each reduction’s advantage in terms of the oracle’s assumed

advantage. Our results suggest that attribute inference may

be “harder” than membership inference: attribute advantage

implies membership advantage (Theorem 6), but there is

currently no similar result in the opposite direction.

Our reductions are not merely of theoretical interest. Rather,

they function as practical attacks as well. We implemented a

reduction for attribute inference and evaluated it on real data

(Section VI-C). Our results show that when generalization

error is high, the reduction adversary can outperform an

attribute inference attack given in [4] by a significant margin.

d) Summary: This paper explores the relationships be-

tween privacy, overfitting, and influence in machine learning

models. We present new formalizations of membership and

attribute inference attacks that enable an analysis of the

privacy risk that black-box variants of these attacks pose to

individuals in the training data. We give analytic quantities

for the attacker’s performance in terms of generalization

error and influence, which allow us to conclude that certain

configurations imply privacy risk. By introducing a new type

of membership inference attack in which a stable training

algorithm is replaced by a malicious variant, we find that the

converse does not hold: machine learning models can pose

immediate threats to privacy without overfitting. Finally, we

study the underlying connections between membership and

attribute inference attacks, finding surprising relationships that

give insight into the relative difficulty of the attacks and lead

to new attacks that work well on real data.

II. BACKGROUND

Throughout the paper we focus on privacy risks related to

machine learning algorithms. We begin by introducing basic

notation and concepts from learning theory.

A. Notation and preliminaries

Let z = (x, y) ∈ X×Y be a data point, where x represents

a set of features or attributes and y a response. In a typical

machine learning setting, and thus throughout this paper, it is

assumed that the features x are given as input to the model,

and the response y is returned. Let D represent a distribution

of data points, and let S ∼ Dn be an ordered list of n
points, which we will refer to as a dataset, training set, or

training data interchangeably, sampled i.i.d. from D. We will

frequently make use of the following methods of sampling a

data point z:

• z ∼ S: i is picked uniformly at random from [n], and z
is set equal to the i-th element of S.

• z ∼ D: z is chosen according to the distribution D.

When it is clear from the context, we will refer to these

sampling methods as sampling from the dataset and sampling

from the distribution, respectively.

Unless stated otherwise, our results pertain to the standard

machine learning setting, wherein a model AS is obtained by

applying a machine learning algorithm A to a dataset S. Mod-

els reside in the set X→ Y and are assumed to approximately

minimize the expected value of a loss function ℓ over S. If

z = (x, y), the loss function ℓ(AS , z) measures how much

AS(x) differs from y. When the response domain is discrete,

it is common to use the 0-1 loss function, which satisfies

ℓ(AS , z) = 0 if y = AS(x) and ℓ(AS , z) = 1 otherwise.

When the response is continuous, we use the squared-error

loss ℓ(AS , z) = (y−AS(x))
2. Additionally, it is common for



many types of models to assume that y is normally distributed

in some way. For example, linear regression assumes that y is

normally distributed given x [25]. To analyze these cases, we

use the error function erf , which is defined in Equation 1.

erf(x) =
1√
π

∫ x

−x

e−t2dt (1)

Intuitively, if a random variable ǫ is normally distributed and

x ≥ 0, then erf(x/
√
2) represents the probability that ǫ is

within x standard deviations of the mean.

B. Stability and generalization

An algorithm is stable if a small change to its input causes

limited change in its output. In the context of machine learn-

ing, the algorithm in question is typically a training algorithm

A, and the “small change” corresponds to the replacement of

a single data point in S. This is made precise in Definition 1.

Definition 1 (On-Average-Replace-One (ARO) Stability).

Given S = (z1, . . . , zn) ∼ Dn and an additional point

z′ ∼ D, define S(i) = (z1, . . . , zi−1, z
′, zi+1, . . . , zn). Let

ǫstable : N→ R be a monotonically decreasing function. Then

a training algorithm A is on-average-replace-one-stable (or

ARO-stable) on loss function ℓ with rate ǫstable(n) if

E
S∼Dn,z′∼D
i∼U(n),A

[ℓ(AS(i) , zi)− ℓ(AS , zi)] ≤ ǫstable(n),

where A in the expectation refers to the randomness used by

the training algorithm.

Stability is closely related to the popular notion of differ-

ential privacy [26] given in Definition 2.

Definition 2 (Differential privacy). An algorithm A : Xn →
Y satisfies ǫ-differential privacy if for all S, S′ ∈ X

n that

differ in the value at a single index i ∈ [n] and all Y ⊆ Y,

the following holds:

Pr[A(S) ∈ Y ] ≤ eǫ Pr[A(S′) ∈ Y ].

When a learning algorithm is not stable, the models that

it produces might overfit to the training data. Overfitting is

characterized by large generalization error, which is defined

below.

Definition 3 (Average generalization error). The average gen-

eralization error of a machine learning algorithm A on D is

defined as

Rgen(A, n,D, ℓ) = E
S∼Dn

z∼D

[ℓ(AS , z)]− E
S∼Dn

z∼S

[ℓ(AS , z)].

In other words, AS overfits if its expected loss on samples

drawn from D is much greater than its expected loss on its

training set. For brevity, when n, D, and ℓ are unambiguous

from the context, we will write Rgen(A) instead.

It is important to note that Definition 3 describes the

average generalization error over all training sets, as con-

trasted with another common definition of generalization error

Ez∼D[ℓ(AS , z)]− 1
n

∑

z∈S ℓ(AS , z), which holds the training

set fixed. The connection between average generalization and

stability is formalized by Shalev-Shwartz et al. [27], who show

that an algorithm’s ability to achieve a given generalization

error (as a function of n) is equivalent to its ARO-stability

rate.

III. MEMBERSHIP INFERENCE ATTACKS

In a membership inference attack, the adversary attempts to

infer whether a specific point was included in the dataset used

to train a given model. The adversary is given a data point

z = (x, y), access to a model AS , the size of the model’s

training set |S| = n, and the distribution D that the training

set was drawn from. With this information the adversary must

decide whether z ∈ S. For the purposes of this discussion, we

do not distinguish whether the adversary A’s access to AS is

“black-box”, i.e., consisting only of input/output queries, or

“white-box”, i.e., involving the internal structure of the model

itself. However, all of the attacks presented in this section

assume black-box access.

Experiment 1 below formalizes membership inference at-

tacks. The experiment first samples a fresh dataset from

D and then flips a coin b to decide whether to draw the

adversary’s challenge point z from the training set or the

original distribution. A is then given the challenge, along with

the additional information described above, and must guess the

value of b.

Experiment 1 (Membership experiment Exp
M(A, A, n,D)).

Let A be an adversary, A be a learning algorithm, n be

a positive integer, and D be a distribution over data points

(x, y). The membership experiment proceeds as follows:

1) Sample S ∼ Dn, and let AS = A(S).
2) Choose b← {0, 1} uniformly at random.

3) Draw z ∼ S if b = 0, or z ∼ D if b = 1
4) Exp

M(A, A, n,D) is 1 if A(z,AS , n,D) = b and 0

otherwise. A must output either 0 or 1.

Definition 4 (Membership advantage). The membership ad-

vantage of A is defined as

Adv
M(A, A, n,D) = 2Pr[ExpM(A, A, n,D) = 1]− 1,

where the probabilities are taken over the coin flips of A, the

random choices of S and b, and the random data point z ∼ S
or z ∼ D.

Equivalently, the right-hand side can be expressed as the

difference between A’s true and false positive rates

Adv
M = Pr[A = 0 | b = 0]− Pr[A = 0 | b = 1], (2)

where Adv
M is a shortcut for AdvM(A, A, n,D).

Using Experiment 1, Definition 4 gives an advantage mea-

sure that characterizes how well an adversary can distinguish

between z ∼ S and z ∼ D after being given the model. This

is slightly different from the sort of membership inference

described in some prior work [6], [7], which distinguishes

between z ∼ S and z ∼ D\S. We are interested in measuring

the degree to which AS reveals membership to A, and not in



the degree to which any background knowledge of S or D
does. If we sample z from D \ S instead of D, the adversary

could gain advantage by noting which data points are more

likely to have been sampled into S ∼ Dn. This does not

reflect how leaky the model is, and Definition 4 rules it out.

In fact, the only way to gain advantage is through access to

the model. In the membership experiment ExpM(A, A, n,D),
the adversary A must determine the value of b by using z,

AS , n, and D. Of these inputs, n and D do not depend on b,
and we have the following for all z:

Pr[b = 0 | z] = Pr
S∼Dn

z∼S

[z] Pr[b = 0]/Pr[z]

= Pr
z∼D

[z] Pr[b = 1]/Pr[z] = Pr[b = 1 | z].

We note that Definition 4 does not give the adversary credit

for predicting that a point drawn from D (i.e., when b = 1),

which also happens to be in S, is a member of S. As a result,

the maximum advantage that an adversary can hope to achieve

is 1 − µ(n,D), where µ(n,D) = PrS∼Dn,z∼D[z ∈ S] is the

probability of re-sampling an individual from the training set

into the general population. In real settings µ(n,D) is likely

to be exceedingly small, so this is not an issue in practice.

A. Bounds from differential privacy

Our first result (Theorem 1) bounds the advantage of an ad-

versary who attempts a membership attack on a differentially

private model [26]. Differential privacy imposes strict limits on

the degree to which any point in the training data can affect the

outcome of a computation, and it is commonly understood that

differential privacy will limit membership inference attacks.

Thus it is not surprising that the advantage is limited by a

function of ǫ. We refer the reader to the technical report [28]

for a proof of this theorem.

Theorem 1. Let A be an ǫ-differentially private learning

algorithm and A be a membership adversary. Then we have:

Adv
M(A, A, n,D) ≤ eǫ − 1.

Wu et al. [8, Section 3.2] present an algorithm that is

differentially private as long as the loss function ℓ is λ-

strongly convex and ρ-Lipschitz. Moreover, they prove that

the performance of the resulting model is close to the optimal.

Combined with Theorem 1, this provides us with a bound

on membership advantage when the loss function is strongly

convex and Lipschitz.

B. Membership attacks and generalization

In this section, we consider several membership attacks that

make few, common assumptions about the model AS or the

distribution D. Importantly, these assumptions are consistent

with many natural learning techniques widely used in practice.

For each attack, we express the advantage of the attacker as

a function of the extent of the overfitting, thereby showing

that the generalization behavior of the model is a strong

predictor for vulnerability to membership inference attacks.

In Section VI-B, we demonstrate that these relationships often

hold in practice on real data, even when the assumptions used

in our analysis do not hold.

a) Bounded loss function: We begin with a straight-

forward attack that makes only one simple assumption: the

loss function is bounded by some constant B. Then, with

probability proportional to the model’s loss at the query point

z, the adversary predicts that z is not in the training set. The

attack is formalized in Adversary 1.

Adversary 1 (Bounded loss function). Suppose ℓ(AS , z) ≤ B
for some constant B, all S ∼ Dn, and all z sampled from S or

D. Then, on input z = (x, y), AS , n, and D, the membership

adversary A proceeds as follows:

1) Query the model to get AS(x).
2) Output 1 with probability ℓ(AS , z)/B. Else, output 0.

Theorem 2 states that the membership advantage of this

approach is proportional to the generalization error of A,

showing that advantage and generalization error are closely

related in many common learning settings. In particular, clas-

sification settings, where the 0-1 loss function is commonly

used, B = 1 yields membership advantage equal to the

generalization error. Simply put, high generalization error

necessarily results in privacy loss for classification models.

Theorem 2. The advantage of Adversary 1 is Rgen(A)/B.

Proof. The proof is as follows:

Adv
M(A, A, n,D)

= Pr[A = 0 | b = 0]− Pr[A = 0 | b = 1]

= Pr[A = 1 | b = 1]− Pr[A = 1 | b = 0]

= E

[

ℓ(AS , z)

B

∣

∣

∣

∣

b = 1

]

− E

[

ℓ(AS , z)

B

∣

∣

∣

∣

b = 0

]

=
1

B



 E
S∼Dn

z∼D

[ℓ(AS , z)]− E
S∼Dn

z∼S

[ℓ(AS , z)]





= Rgen(A)/B

b) Gaussian error: Whenever the adversary knows the

exact error distribution, it can simply compute which value

of b is more likely given the error of the model on z. This

adversary is described formally in Adversary 2. While it may

seem far-fetched to assume that the adversary knows the

exact error distribution, linear regression models implicitly

assume that the error of the model is normally distributed.

In addition, the standard errors σS , σD of the model on S and

D, respectively, are often published with the model, giving

the adversary full knowledge of the error distribution. We will

describe in Section III-C how the adversary can proceed if it

does not know one or both of these values.

Adversary 2 (Threshold). Suppose f(ǫ | b = 0) and f(ǫ | b =
1), the conditional probability density functions of the error,

are known in advance. Then, on input z = (x, y), AS , n, and

D, the membership adversary A proceeds as follows:

1) Query the model to get AS(x).
2) Let ǫ = y −AS(x). Output argmaxb∈{0,1} f(ǫ | b).



In regression problems that use squared-error loss, the

magnitude of the generalization error depends on the scale

of the response y. For this reason, in the following we use

the ratio σD/σS to measure generalization error. Theorem 3

characterizes the advantage of this adversary in the case of

Gaussian error in terms of σD/σS . As one might expect,

this advantage is 0 when σS = σD and approaches 1 as

σD/σS → ∞. The dotted line in Figure 2a shows the graph

of the advantage as a function of σD/σS .

Theorem 3. Suppose σS and σD are known in advance such

that ǫ ∼ N(0, σ2
S) when b = 0 and ǫ ∼ N(0, σ2

D) when b = 1.

Then, the advantage of Membership Adversary 2 is

erf

(

σD

σS

√

ln(σD/σS)

(σD/σS)2 − 1

)

− erf

(
√

ln(σD/σS)

(σD/σS)2 − 1

)

.

Proof. We have

f(ǫ | b = 0) =
1√
2πσS

e−ǫ2/2σ2
S

f(ǫ | b = 1) =
1√

2πσD

e−ǫ2/2σ2
D .

Let ±ǫeq be the points at which these two probability density

functions are equal. Some algebraic manipulation shows that

ǫeq = σD

√

2 ln(σD/σS)

(σD/σS)2 − 1
. (3)

Moreover, if σS < σD, f(ǫ | b = 0) > f(ǫ | b = 1) if and

only if |ǫ| < ǫeq. Therefore, the membership advantage is

Adv
M(A, A, n,D)

= Pr[A = 0 | b = 0]− Pr[A = 0 | b = 1]

= Pr[|ǫ| < ǫeq | b = 0]− Pr[|ǫ| < ǫeq | b = 1]

= erf

(

ǫeq√
2σS

)

− erf

(

ǫeq√
2σD

)

= erf

(

σD

σS

√

ln(σD/σS)

(σD/σS)2 − 1

)

− erf

(
√

ln(σD/σS)

(σD/σS)2 − 1

)

.

C. Unknown standard error

In practice, models are often published with just one value

of standard error, so the adversary often does not know how

σD compares to σS . One solution to this issue is to assume

that σS ≈ σD, i.e., that the model does not terribly overfit.

Then, the threshold is set at |ǫ| = σS , which is the limit of the

right-hand side of Equation 3 as σD approaches σS . Then, the

membership advantage is erf(1/
√
2) − erf(σS/

√
2σD). This

expression is graphed in Figure 2b as a function of σD/σS .

Alternatively, if the adversary knows which machine learn-

ing algorithm was used, it can repeatedly sample S ∼ Dn,

train the model AS using the sampled S, and measure the error

of the model to arrive at reasonably close approximations of

σS and σD.

D. Other sources of membership advantage

The results in the preceding sections show that overfitting

is sufficient for membership advantage. However, models can

leak information about the training set in other ways, and thus

overfitting is not necessary for membership advantage. For

example, the learning rule can produce models that simply

output a lossless encoding of the training dataset. This example

may seem unconvincing for several reasons: the leakage is

obvious, and the “encoded” dataset may not function well as a

model. In the rest of this section, we present a pair of colluding

training algorithm and adversary that does not have the above

issues but still allows the attacker to learn the training set

almost perfectly. This is in the framework of an algorithm

substitution attack (ASA) [23], where the target algorithm,

which is implemented by closed-source software, is subverted

to allow a colluding adversary to violate the privacy of the

users of the algorithm. All the while, this subversion remains

impossible to detect. Algorithm 1 and Adversary 3 represent

a similar security threat for learning rules with bounded loss

function. While the attack presented here is not impossible to

detect, on points drawn from D, the black-box behavior of the

subverted model is similar to that of an unsubverted model.

The main result is given in Theorem 4, which shows that

any ARO-stable learning rule A, with a bounded loss function

operating on a finite domain, can be modified into a vulnerable

learning rule Ak, where k ∈ N is a parameter. Moreover,

subject to our assumption from before that µ(n,D) is very

small, the stability rate of the vulnerable model Ak is not far

from that of A, and for each Ak there exists a membership

adversary whose advantage is negligibly far (in k) from the

maximum advantage possible on D. Simply put, it is often

possible to find a suitably leaky version of an ARO-stable

learning rule whose generalization behavior is close to that

of the original.

Theorem 4. Let d = log |X|, m = log |Y|, ℓ be a loss

function bounded by some constant B, A be an ARO-stable

learning rule with rate ǫstable(n), and suppose that x uniquely

determines the point (x, y) in D. Then for any integer k > 0,

there exists an ARO-stable learning rule Ak with rate at most

ǫstable(n) + knB2−d + µ(n,D) and adversary A such that:

Adv
M(A, Ak, n,D) = 1− µ(n,D)− 2−mk

The proof of Theorem 4 involves constructing a learning

rule Ak that leaks precise membership information when

queried in a particular way but is otherwise identical to A.

Ak assumes that the adversary has knowledge of a secret key

that is used to select pseudorandom functions that define the

“special” queries used to extract membership information. In

this way, the normal behavior of the model remains largely

unchanged, making Ak approximately as stable as A, but the

learning algorithm and adversary “collude” to leak informa-

tion through the model. We require the features x to fully

determine y to avoid collisions when the adversary queries

the model, which would result in false positives. In practice,

many learning problems satisfy this criterion. Algorithm 1



and Adversary 3 illustrate the key ideas in this construction

informally.

Algorithm 1 (Colluding training algorithm AC). Let FK :
X 7→ X and GK : X 7→ Y be keyed pseudorandom functions,

K1, . . . ,Kk be uniformly chosen keys, and A be a training

algorithm. On receiving a training set S, AC proceeds as

follows:

1) Supplement S using F,G: for all (xi, yi) ∈ S and j ∈ [k],
let z′i,j = (FKj

(xi), GKj
(xi)), and set S′ = S ∪ {z′i,j |

i ∈ [n], j ∈ [k]}.
2) Return AS′ = A(S′).

Adversary 3 (Colluding adversary AC). Let FK : X 7→ X,

GK : X 7→ Y and K1, . . . ,Kk be the functions and keys

used by AC, and AS′ be the product of training with AC with

those keys. On input z = (x, y), the adversary AC proceeds

as follows:

1) For j ∈ [k], let y′j ← AS′(FKj
(x)).

2) Output 0 if y′j = GKj
(x) for all j ∈ [k]. Else, output 1.

Algorithm 1 will not work well in practice for many classes

of models, as they may not have the capacity to store the

membership information needed by the adversary while main-

taining the ability to generalize. Interestingly, in Section VI-D

we empirically demonstrate that deep convolutional neural

networks (CNNs) do in fact have this capacity and generalize

perfectly well when trained in the manner of AC. As pointed

out by Zhang et al. [29], because the number of parameters

in deep CNNs often significantly exceeds the training set size,

despite their remarkably good generalization error, deep CNNs

may have the capacity to effectively “memorize” the dataset.

Our results supplement their observations and suggest that this

phenomenon may have severe implications for privacy.

Before we give the formal proof, we note a key difference

between Algorithm 1 and the construction used in the proof.

Whereas the model returned by Algorithm 1 belongs to the

same class as those produced by A, in the formal proof the

training algorithm can return an arbitrary model as long as its

black-box behavior is suitable.

Proof. The proof constructs a learning algorithm and adver-

sary who share a set of k keys to a pseudorandom function.

The secrecy of the shared key is unnecessary, as the proof only

relies on the uniformity of the keys and the pseudorandom

functions’ outputs. The primary concern is with using the

pseudorandom function in a way that preserves the stability

of A as much as possible.

Without loss of generality, assume that X = {0, 1}d and

Y = {0, 1}m. Let FK : {0, 1}d → {0, 1}d and GK :
{0, 1}d 7→ {0, 1}m be keyed pseudorandom functions, and

let K1, . . . ,Kk be uniformly sampled keys. On receiving S,

the training algorithm AK1,...,Kk returns the following model:

AK1,...,Kk

S (x) =











GKj
(x), if ∃(x′, y) ∈ S s.t.

x = FKj
(x′) for some Kj

AS(x), otherwise

We now define a membership adversary AK1,...,Kk who is

hard-wired with keys K1, . . . ,Kk:

AK1,...,Kk(z,A, n,D) =











0, if AS(x) = GKj
(FKj

(x))

for all Kj

1, otherwise

Recalling our assumption that the value of x uniquely de-

termines the point (x, y), we can derive the advantage of

AK1,...,Kk on the corresponding trainer AK1,...,Kk in posses-

sion of the same keys:

Adv
M(AK1,...,Kk , AK1,...,Kk , n,D)

= Pr[AK1,...,Kk = 0 | b = 0]− Pr[AK1,...,Kk = 0 | b = 1]

= 1− µ(n,D)− 2−mk

The 2−mk term comes from the possibility that

GKj
(FKj

(x)) = AS(x) for all j ∈ [k] by pure chance.

Now observe that A is ARO-stable with rate ǫstable(n). If

z = (x, y), we use CS(z) to denote the probability that

FKj
(x) collides with FKj

(xi) for some (xi, yi) = zi ∈ S and

some key Kj . Note that by a simple union bound, we have

CS(z) ≤ kn2−d for z 6∈ S. Then algebraic manipulation gives

us the following, where we write AK
S in place of AK1,...,Kk

S

to simplify notation:

Rgen(A
K , n,D, ℓ)

= E
S∼Dn

z′∼D

[

1

n

n
∑

i=1

ℓ(AK
S(i) , zi)− ℓ(AK

S , zi)

]

= E
S∼Dn

z′∼D

[

1

n

n
∑

i=1

(1− CS(zi)) (ℓ(AS(i) , zi)− ℓ(AS , zi))

]

+ E
S∼Dn

z′∼D

[

1

n

n
∑

i=1

CS(zi) (ℓ(AS(i) , zi)− ℓ(GK , zi))

]

= E
S∼Dn

z′∼D

[

1

n

n
∑

i=1

ℓ(AS(i) , zi)− ℓ(AS , zi)

]

+ E
S∼Dn

z′∼D

[

1

n

n
∑

i=1

CS(zi) (ℓ(AS , zi)− ℓ(GK , zi))

]

≤ E
S∼Dn

z′∼D

[

1

n

n
∑

i=1

ℓ(AS(i) , zi)− ℓ(AS , zi)

]

+ knB2−d + µ(n,D)
= ǫstable(n) + knB2−d + µ(n,D)

Note that the term µ(n,D) on the last line accounts for the

possibility that the z′ sampled at index i in S(i) is already in S,

which results in a collision. By the result in [27] that states that

the average generalization error equals the ARO-stability rate,

AK is ARO-stable with rate ǫstable(n) + knB2−d + µ(n,D),
completing the proof.

The formal study of ASAs was introduced by Bellare et

al. [23], who considered attacks against symmetric encryption.



Subsequently, attacks against other cryptographic primitives

were studied as well [30], [31], [32]. The recent work of Song

et al. [24] considers a similar setting, wherein a malicious

machine learning provider supplies a closed-source training

algorithm to users with private data. When the provider gets

access to the resulting model, it can exploit the trapdoors

introduced in the model to get information about the private

training dataset. However, to the best of our knowledge, a

formal treatment of ASAs against machine learning algorithms

has not been given yet. We leave this line of research as future

work, with Theorem 4 as a starting point.

IV. ATTRIBUTE INFERENCE ATTACKS

We now consider attribute inference attacks, where the goal

of the adversary is to guess the value of the sensitive features

of a data point given only some public knowledge about it

and the model. To make this explicit in our notation, in this

section we assume that data points are triples z = (v, t, y),
where (v, t) = x ∈ X and t is the sensitive features targeted

in the attack. A fixed function ϕ with domain X×Y describes

the information about data points known by the adversary. Let

T be the support of t when z = (v, t, y) ∼ D. The function

π is the projection of X into T (e.g., π(z) = t).
Attribute inference is formalized in Experiment 2, which

proceeds much like Experiment 1. An important difference is

that the adversary is only given partial information ϕ(z) about

the challenge point z.

Experiment 2 (Attribute experiment ExpA(A, A, n,D)). Let

A be an adversary, n be a positive integer, and D be a

distribution over data points (x, y). The attribute experiment

proceeds as follows:

1) Sample S ∼ Dn.

2) Choose b← {0, 1} uniformly at random.

3) Draw z ∼ S if b = 0, or z ∼ D if b = 1.

4) Exp
A(A, A, n,D) is 1 if A(ϕ(z), AS , n,D) = π(z) and

0 otherwise.

In the corresponding advantage measure shown in Defi-

nition 5, our goal is to measure the amount of information

about the target π(z) that AS leaks specifically concerning the

training data S. Definition 5 accomplishes this by comparing

the performance of the adversary when b = 0 in Experiment 2

with that when b = 1.

Definition 5 (Attribute advantage). The attribute advantage of

A is defined as:

Adv
A(A, A, n,D) = Pr[ExpA(A, A, n,D) = 1 | b = 0]

− Pr[ExpA(A, A, n,D) = 1 | b = 1],

where the probabilities are taken over the coin flips of A, the

random choice of S, and the random data point z ∼ S or

z ∼ D.

Notice that

Adv
A =

∑

ti∈T
Prz∼D[t = ti](Pr[A = ti | b = 0, t = ti]

− Pr[A = ti | b = 1, t = ti]),
(4)

where A and Adv
A are shortcuts for A(ϕ(z), AS , n,D) and

Adv
A(A, A, n,D), respectively.

This definition has the side effect of incentivizing the

adversary to “game the system” by performing poorly when it

thinks that b = 1. To remove this incentive, one may consider

using a simulator S , which does not receive the model as an

input, when b = 1. This definition is formalized below:

Definition 6 (Alternative attribute advantage). Let

S(ϕ(z), n,D) = argmax
ti

Pr
z∼D

[π(z) = ti | ϕ(z)]

be the Bayes optimal simulator. The attribute advantage of A
can alternatively be defined as

Adv
A

S(A, A, n,D) = Pr[A(ϕ(z), AS , n,D) = π(z) | b = 0]

− Pr[S(ϕ(z), n,D) = π(z) | b = 1].

One potential issue with this alternative definition is that

higher model accuracy will lead to higher attribute advantage

regardless of how accurate the model is for the general

population. Broadly, there are two ways for a model to perform

better on the training data: it can overfit to the training data,

or it can learn a general trend in the distribution D. In this

paper, we concern ourselves with the view that the adversary’s

ability to infer the target π(z) in the latter case is due not to the

model but pre-existing patterns in D. To allow capturing the

difference between overfitting and learning a general trend, we

use Definition 5 in the following analysis and leave a more

complete exploration of Definition 6 as future work. While

adversaries that “game the system” may seem problematic, the

effectiveness of such adversaries is indicative of privacy loss

because their existence implies the ability to infer membership,

as demonstrated by Reduction Adversary 5 in Section V-A.

A. Inversion, generalization, and influence

The case where ϕ simply removes the sensitive attribute t
from the data point z = (v, t, y) such that ϕ(z) = (v, y) is

known in the literature as model inversion [3], [4], [5], [8].

In this section, we look at the model inversion attack of

Fredrikson et al. [4] under the advantage given in Definition 5.

We point out that this is a novel analysis, as this advantage

is defined to reflect the extent to which an attribute inference

attack reveals information about individuals in S. While prior

work [3], [4] has empirically evaluated attribute accuracy over

corresponding training and test sets, our goal is to analyze

the factors that lead to increased privacy risk specifically for

members of the training data. To that end, we illustrate the

relationship between advantage and generalization error as we

did in the case of membership inference (Section III-B). We

also explore the role of feature influence, which in this case

corresponds to the degree to which changes to a sensitive

feature of x affects the value AS(x). In Section VI-C, we

show that the formal relationships described here often extend

to attacks on real data where formal assumptions may fail to

hold.

The attack described by Fredrikson et al. [4] is intended for

linear regression models and is thus subject to the Gaussian



error assumption discussed in Section III-B. In general, when

the adversary can approximate the error distribution reasonably

well, e.g., by assuming a Gaussian distribution whose standard

deviation equals the published standard error value, it can

gain advantage by trying all possible values of the sensitive

attribute. We denote the adversary’s approximation of the error

distribution by fA, and we assume that the target t = π(z)
is drawn from a finite set of possible values t1, . . . , tm with

known frequencies in D. We indicate the other features,

which are known by the adversary, with the letter v (i.e.,

z = (x, y), x = (v, t), and ϕ(z) = (v, y)). The attack is shown

in Adversary 4. For each ti, the adversary counterfactually

assumes that t = ti and computes what the error of the model

would be. It then uses this information to update the a priori

marginal distribution of t and picks the value ti with the

greatest likelihood.

Adversary 4 (General). Let fA(ǫ) be the adversary’s guess

for the probability density of the error ǫ = y − AS(x). On

input v, y, AS , n, and D, the adversary proceeds as follows:

1) Query the model to get AS(v, ti) for all i ∈ [m].
2) Let ǫ(ti) = y −AS(v, ti).
3) Return the result of argmaxti(Prz∼D[t = ti]·fA(ǫ(ti))).
When analyzing Adversary 4, we are clearly interested in

the effect that generalization error will have on advantage.

Given the results of Section III-B, we can reasonably expect

that large generalization error will lead to greater advantage.

However, as pointed out by Wu et al. [5], the functional

relationship between t and AS(v, t) may play a role as well.

Working in the context of models as Boolean functions, Wu

et al. formalized the relevant property as functional influ-

ence [20], which is the probability that changing t will cause

AS(v, t) to change when v is sampled uniformly.

The attack considered here applies to linear regression

models, and Boolean influence is not suitable for use in

this setting. However, an analogous notion of influence that

characterizes the magnitude of change to AS(v, t) is relevant

to attribute inference. For linear models, this corresponds to the

absolute value of the normalized coefficient of t. Throughout

the rest of the paper, we refer to this quantity as the influence

of t without risk of confusion with the Boolean influence used

in other contexts.

a) Binary Variable with Uniform Prior: The first part of

our analysis deals with the simplest case where m = 2 with

Prz∼D[t = t1] = Prz∼D[t = t2]. Without loss of generality

we assume that AS(v, t1) = AS(v, t2) + τ for some fixed

τ ≥ 0, so in this setting τ is a straightforward proxy for

influence. Theorem 5 relates the advantage of Adversary 4 to

σS , σD, and τ .

Theorem 5. Let t be drawn uniformly from {t1, t2} and

suppose that y = AS(v, t) + ǫ, where ǫ ∼ N(0, σ2
S) if b = 0

and ǫ ∼ N(0, σ2
D) if b = 1. Then the advantage of Adversary 4

is 1
2 (erf(τ/2

√
2σS)− erf(τ/2

√
2σD)).

Proof. Given the assumptions made in this setting, we can

describe the behavior of A as returning the value ti that
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Fig. 1: The advantage of Adversary 4 as a function of t’s
influence τ . Here t is a uniformly distributed binary variable.

minimizes |ǫ(ti)|. If t = t1, it is easy to check that A guesses

correctly if and only if ǫ(t1) > −τ/2. This means that A’s

advantage given t = t1 is

Pr[A = t1 | t = t1, b = 0]− Pr[A = t1 | t = t1, b = 1]

= Pr[ǫ(t1) > −τ/2 | b = 0]− Pr[ǫ(t1) > −τ/2 | b = 1]

=

(

1

2
+

1

2
erf

(

τ

2
√
2σS

))

−
(

1

2
+

1

2
erf

(

τ

2
√
2σD

))

=
1

2

(

erf

(

τ

2
√
2σS

)

− erf

(

τ

2
√
2σD

))

(5)

Similar reasoning shows that A’s advantage given t = t2 is

exactly the same, so the theorem follows from Equation 4.

Clearly, the advantage will be zero when there is no

generalization error (σS = σD). Consider the other extreme

case where σS → 0 and σD →∞. When σS is very small, the

adversary will always guess correctly because the influence of

t overwhelms the effect of the error ǫ. On the other hand, when

σD is very large, changes to t will be nearly imperceptible for

“normal” values of τ , and the adversary is reduced to random

guessing. Therefore, the maximum possible advantage with

uniform prior is 1/2. As a model overfits more, σS decreases

and σD tends to increase. If τ remains fixed, it is easy to

see that the advantage increases monotonically under these

circumstances.

Figure 1 shows the effect of changing τ as the ratio σD/σS

remains fixed at several different constants. When τ = 0, t
does not have any effect on the output of the model, so the

adversary does not gain anything from having access to the

model and is reduced to random guessing. When τ is large,

the adversary almost always guesses correctly regardless of the

value of b since the influence of t drowns out the error noise.

Thus, at both extremes the advantage approaches 0, and the

adversary is able to gain advantage only when τ and σD/σS

are in balance.

b) General Case: Sometimes the uniform prior for t
may not be realistic. For example, t may represent whether

a patient has a rare disease. In this case, we weight the values

of fA(ǫ(ti)) by the a priori probability Prz∼D[t = ti] before

comparing which ti is the most likely. With uniform prior,

we could simplify argmaxti fA(ǫ(ti)) to argminti |ǫ(ti)|
regardless of the value of σ used for fA. On the other hand, the



value of σ matters when we multiply by Pr[t = ti]. Because

the adversary is not given b, it makes an assumption similar

to that described in Section III-B and uses ǫ ∼ N(0, σ2
S).

Clearly σS = σD results in zero advantage. The maximum

possible advantage is attained when σS → 0 and σD → ∞.

Then, by similar reasoning as before, the adversary will always

guess correctly when b = 0 and is reduced to random guessing

when b = 1, resulting in an advantage of 1− 1
m .

In general, the advantage can be computed using Equation 4.

We first figure out when the adversary outputs ti. When fA
is a Gaussian, this is not computationally intensive as there is

at most one decision boundary between any two values ti and

tj . Then, we convert the decision boundaries into probabilities

by using the error distributions ǫ ∼ N(0, σ2
S) and N(0, σ2

D),
respectively.

V. CONNECTION BETWEEN MEMBERSHIP AND ATTRIBUTE

INFERENCE

In this section, we examine the underlying connections

between membership and attribute inference attacks. Our

approach is based on reduction adversaries that have oracle

access to one type of attack and attempt to perform the

other type of attack. We characterize the advantage of each

reduction adversary in terms of the advantage of its oracle.

In Section VI-C, we implement the most sophisticated of the

reduction adversaries described here and show that on real data

it performs remarkably well, often outperforming Attribute

Adversary 4 by large margins. We note that these reductions

are specific to our choice of attribute advantage given in

Definition 5. Analyzing the connections between membership

and attribute inference using the alternative Definition 6 is an

interesting direction for future work.

A. From membership to attribute

We start with an adversary AM→A that uses an attribute

oracle to accomplish membership inference. The attack, shown

in Adversary 5, is straightforward: given a point z, the

adversary queries the attribute oracle to obtain a prediction

t of the target value π(z). If this prediction is correct, then

the adversary concludes that z was in the training data.

Adversary 5 (Membership → attribute). The reduction ad-

versary AM→A has oracle access to attribute adversary AA.

On input z, AS , n, and D, the reduction adversary proceeds

as follows:

1) Query the oracle to get t← AA(ϕ(z), AS , n,D).
2) Output 0 if π(z) = t. Otherwise, output 1.

Theorem 6 shows that the membership advantage of this

reduction exactly corresponds to the attribute advantage of its

oracle. In other words, the ability to effectively infer attributes

of individuals in the training set implies the ability to infer

membership in the training set as well. This suggests that

attribute inference is at least as difficult as than membership

inference.

Theorem 6. Let AM→A be the adversary described in Adver-

sary 5, which uses AA as an oracle. Then,

Adv
M(AM→A, A, n,D) = Adv

A(AA, A, n,D).
Proof. The proof follows directly from the definitions of

membership and attribute advantages.

Adv
M = Pr[AM→A = 0 | b = 0]− Pr[AM→A = 0 | b = 1]

=
∑

ti∈T

Pr[t = ti](Pr[AM→A = 0 | b = 0, t = ti]

− Pr[AM→A = 0 | b = 1, t = ti])

=
∑

ti∈T

Pr[t = ti](Pr[AA = ti | b = 0, t = ti]

− Pr[AA = ti | b = 1, t = ti])

= Adv
A.

B. From attribute to membership

We now consider reductions in the other direction, wherein

the adversary is given ϕ(z) and must reconstruct the point

z to query the membership oracle. To accomplish this, we

assume that the adversary knows a deterministic reconstruction

function ϕ−1 such that ϕ ◦ ϕ−1 is the identity function, i.e.,

for any value of ϕ(z) that the adversary may receive, there

exists z′ = ϕ−1(ϕ(z)) such that ϕ(z) = ϕ(z′). However,

because ϕ is a lossy function, in general it does not hold that

ϕ−1(ϕ(z)) = z. Our adversary, described in Adversary 6,

reconstructs the point z′, sets the attribute t of that point

to value ti chosen uniformly at random, and outputs ti if

the membership oracle says that the resulting point is in the

dataset.

Adversary 6 (Uniform attribute → membership). Suppose

that t1, . . . , tm are the possible values of the target t = π(z).
The reduction adversary AU

A→M
has oracle access to mem-

bership adversary AM. On input ϕ(z), AS , n, and D, the

reduction adversary proceeds as follows:

1) Choose ti uniformly at random from {t1, . . . , tm}.
2) Let z′ = ϕ−1(ϕ(z)), and change the value of the sensitive

attribute t such that π(z′) = ti.
3) Query AM to obtain b′ ← AM(z

′, AS , n,D).
4) If b′ = 0, output ti. Otherwise, output ⊥.

The uniform choice of ti is motivated by the fact that the

adversary may not know how the advantage of the membership

oracle is distributed across different values of t. For example,

it is possible that AM performs very poorly when t = t1 and

that all of its advantage comes from the case where t = t2.

In the computation of the advantage, we only consider

the case where π(z) = ti because this is the only case

where the reduction adversary can possibly give the cor-

rect answer. In that case, the membership oracle is given

a challenge point from the distribution D′ = {(x, y) |
(x, y) = ϕ−1(ϕ(z)) except that t = π(z)}, where z ∼ S
if b = 0 and z ∼ D if b = 1. On the other hand, the

training set S used to train the model AS was drawn from

D. Because of this difference, we use modified membership



advantage Adv
M

∗ (A, A, n,D, ϕ, ϕ−1, π), which measures the

performance of the membership adversary when the challenge

point is drawn from D′. In the case of a model inversion

attack as described in the beginning of Section IV-A, we have

Adv
M(A, A, n,D) = Adv

M

∗ (A, A, n,D, ϕ, ϕ−1, π), i.e., the

modified membership advantage equals the unmodified one.

Theorem 7 shows that the attribute advantage of AU

A→M

is proportional to the modified membership advantage of AM,

giving a lower bound on the effectiveness of attribute inference

attacks that use membership oracles. Notably, the adversary

does not make use of any associations that may exist between

ϕ(z) and t, so this reduction is general and works even

when no such association exists. While the reduction does

not completely transfer the membership advantage to attribute

advantage, the resulting attribute advantage is within a constant

factor of the modified membership advantage.

Theorem 7. Let AU

A→M
be the adversary described in Adver-

sary 6, which uses AM as an oracle. Then,

Adv
A(AU

A→M, A, n,D) =
1

m
Adv

M

∗ (AM, A, n,D, ϕ, ϕ−1, π).

Proof. We first give an informal argument. In order for

AU

A→M
to correctly guess the value of t, it needs to choose

the correct ti, which happens with probability 1
m , and then

AM(z
′, AS , n,D) must be 0. Therefore, AdvA = 1

mAdv
M

∗ .

Now we give the formal proof. Let t′ be the value of t that

was chosen independently and uniformly at random in Step 1

of Adversary 6. Since AU

A→M
outputs ti if and only if t′ = ti

and AM(z
′) = 0, we have

Pr[AU

A→M = ti | b = 0, t = ti]

=
1

m
Pr[AM(z

′) = 0 | b = 0, t = ti],

and likewise when b = 1. Therefore, the advantage of the

reduction adversary is

Adv
A =

∑

ti∈T

Pr[t = ti](Pr[AU

A→M = ti | b = 0, t = ti]

− Pr[AU

A→M = ti | b = 1, t = ti])

=
1

m

∑

ti∈T

Pr[t = ti](Pr[AM(z
′) = 0 | b = 0, t = ti]

− Pr[AM(z
′) = 0 | b = 1, t = ti])

=
1

m
(Pr[AM(z

′) = 0 | b = 0]

− Pr[AM(z
′) = 0 | b = 1])

=
1

m
Adv

M

∗ ,

where the second-to-last step holds due to the fact that b and

t are independent.

Adversary 6 has the obvious weakness that it can only

return correct answers when it guesses the value of t correctly.

Adversary 7 attempts to improve on this by making multiple

queries to AM. Rather than guess the value of t, this adversary

tries all values of t in order of their marginal probabilities until

the membership adversary says “yes”.

Adversary 7 (Multi-query attribute→ membership). Suppose

that t1, . . . , tm are the possible values of the sensitive attribute

t. The reduction adversary AM

A→M
has oracle access to mem-

bership adversary AM. On input ϕ(z), AS , n, and D, AA→M

proceeds as follows:

1) Let z′ = ϕ−1(ϕ(z)).
2) For all i ∈ [m], let z′i be z′ with the value of the sensitive

attribute t changed to ti.
3) Query AM to compute T = {ti | AM(z

′
i, AS , n,D) = 0}.

4) Output argmaxti∈T Prz∼D[t = ti]. If T = ∅, output ⊥.

We evaluate this adversary experimentally in Section VI-C.

VI. EVALUATION

In this section, we evaluate the performance of the ad-

versaries discussed in Sections III, IV, and V. We compare

the performance of these adversaries on real datasets with

the analysis from previous sections and show that overfitting

predicts privacy risk in practice as our analysis suggests. Our

experiments use linear regression, tree, and deep convolutional

neural network (CNN) models.

A. Methodology

1) Linear and tree models: We used the Python scikit-

learn [33] library to calculate the empirical error Remp and

the leave-one-out cross validation error Rcv [34]. Because

these two measures pertain to the error of the model on points

inside and outside the training set, respectively, they were used

to approximate σS and σD, respectively. Then, we made a

random 75-25% split of the data into training and test sets.

The training set was used to train either a Ridge regression

or a decision tree model, and then the adversaries were given

access to this model. We repeated this 100 times with different

training-test splits and then averaged the result. Before we

explain the results, we describe the datasets.

Eyedata. This is gene expression data from rat eye tis-

sues [35], as presented in the “flare” package of the R

programming language. The inputs and the outputs are respec-

tively stored in R as a 120×200 matrix and a 120-dimensional

vector of floating-point numbers. We used scikit-learn [33] to

scale each attribute to zero mean and unit variance.

IWPC. This is data collected by the International Warfarin

Pharmacogenetics Consortium [36] about patients who were

prescribed warfarin. After we removed rows with missing

values, 4819 patients remained in the dataset. The inputs to the

model are demographic (age, height, weight, race), medical

(use of amiodarone, use of enzyme inducer), and genetic

(VKORC1, CYP2C9) attributes. Age, height, and weight are

real-valued and were scaled to zero mean and unit variance.

The medical attributes take binary values, and the remaining

attributes were one-hot encoded. The output is the weekly dose

of warfarin in milligrams. However, because the distribution of

warfarin dose is skewed, IWPC concludes in [36] that solving

for the square root of the dose results in a more predictive



linear model. We followed this recommendation and scaled

the square root of the dose to zero mean and unit variance.

Netflix. We use the dataset from the Netflix Prize con-

test [37]. This is a sparse dataset that indicates when and how

a user rated a movie. For the output attribute, we used the

rating of Dragon Ball Z: Trunks Saga, which had one of the

most polarized rating distributions. There are 2416 users who

rated this, and the ratings were scaled to zero mean and unit

variance. The input attributes are binary variables indicating

whether or not a user rated each of the other 17,769 movies

in the dataset.

2) Deep convolutional neural networks: We evaluated the

membership inference attack on deep CNNs. In addition, we

implemented the colluding training algorithm (Algorithm 1)

to verify its performance in practice. The CNNs were trained

in Python using the Keras deep-learning library [38] and a

standard stochastic gradient descent algorithm [39]. We used

three datasets that are standard benchmarks in the deep learn-

ing literature and were evaluated in prior work on inference

attacks [7]; they are described in more detail below. For all

datasets, pixel values were normalized to the range [0, 1],
and the label values were encoded as one-hot vectors. To

expedite the training process across a range of experimental

configurations, we used a subset of each dataset. For each

dataset, we randomly divided the available data into equal-

sized training and test sets to facilitate comparison with prior

work [7] that used this convention.

The architecture we use is based on the VGG network [40],

which is commonly used in computer vision applications. We

control for generalization error by varying a size parameter s
that defines the number of units at each layer of the network.

The architecture consists of two 3x3 convolutional layers with

s filters each, followed by a 2x2 max pooling layer, two 3x3

convolutional layers with 2s filters each, a 2x2 max pooling

layer, a fully-connected layer with 2s units, and a softmax

output layer. All activation functions are rectified linear. We

chose s = 2i for 0 ≤ i ≤ 7, as we did not observe qualitatively

different results for larger values of i. All training was done

using the Adam optimizer [41] with the default parameters in

the Keras implementation (λ = 0.001, β1 = 0.5, β2 = 0.99,

ǫ = 10−8, and decay set to 5 × 10−4). We used categorical

cross-entropy loss, which is conventional for models whose

topmost activation is softmax [39].

MNIST. MNIST [42] consists of 70,000 images of hand-

written digits formatted as grayscale 28 × 28-pixel images,

with class labels indicating the digit depicted in each image.

We selected 17,500 points from the full dataset at random for

our experiments.

CIFAR-10, CIFAR-100. The CIFAR datasets [43] consist

of 60,000 32× 32-pixel color images, labeled as 10 (CIFAR-

10) and 100 (CIFAR-100) classes. We selected 15,000 points

at random from the full data.

B. Membership inference

The results of the membership inference attacks on linear

and tree models are plotted in Figures 2a and 2b. The
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(c) Deep CNNs assuming knowledge of average train-
ing loss LS .

Fig. 2: Empirical membership advantage of the threshold

adversary (Adversary 2) given as a function of generalization

ratio for regression, tree, and CNN models.

theoretical and experimental results appear to agree when

the adversary knows both σS and σD and sets the decision

boundary accordingly. However, when the adversary does not

know σD, it performs much better than what the theory

predicts. In fact, an adversary can sometimes do better by just

fixing the decision boundary at |ǫ| = σS instead of taking σD

into account. This is because training set error distributions

of overfitted models tend to have a higher peak at zero than

a Gaussian. As a result, it is often advantageous to bring the

decision boundaries closer to zero.

The results of the threshold adversary on CNNs are given

in Figure 2c. Although these models perform classification,

the loss function used for training is categorical cross-entropy,

which is non-negative, continuous, and unbounded. This sug-

gests that the threshold adversary could potentially work in

this setting as well. Specifically, the predictions made by these

models can be compared against LS , the average training



Our work Shokri et al. [7]

Attack
complexity

Makes only one query to
the model

Must train hundreds of
shadow models

Required
knowledge

Average training loss LS

Ability to train shadow
models, e.g., input distribu-
tion and type of model

Precision
0.505 (MNIST)
0.694 (CIFAR-10)
0.874 (CIFAR-100)

0.517 (MNIST)
0.72-0.74 (CIFAR-10)
> 0.99 (CIFAR-100)

Recall > 0.99 > 0.99

TABLE I: Comparison of our membership inference attack

with that presented by Shokri et al. While our attack has

slightly lower precision, it requires far less computational

resources and background knowledge.

loss observed during training, which is often reported with

published architectures as a point of comparison against prior

work (see, for example, [44] and [45, Figures 3 and 4]).

Figure 2c shows that, while the empirical results do not match

the theoretical curve as closely as do linear and tree models,

they do not diverge as much as one might expect given that

the error is not Gaussian as assumed by Theorem 3.

Now we compare our attack with that by Shokri et al. [7],

which generates “shadow models” that are intended to mimic

the behavior of AS . Because their attack involves using

machine learning to train the attacker with the shadow models,

their attack requires considerable computational power and

knowledge of the algorithm used to train the model. By

contrast, our attacker simply makes one query to the model

and needs to know only the average training loss. Despite

these differences, when the size parameter s is set equal to

that used by Shokri et al., our attacker has the same recall

and only slightly lower precision than their attacker. A more

detailed comparison is given in Table I.

C. Attribute inference and reduction

We now present the empirical attribute advantage of the

general adversary (Adversary 4). Because this adversary uses

the model inversion assumptions described at the beginning

of Section IV-A, our evaluation is also in the setting of

model inversion. For these experiments we used the IWPC

and Netflix datasets described in Section VI-A. For fA(ǫ),
the adversary’s approximation of the error distribution, we

used the Gaussian with mean zero and standard deviation

Remp. For the IWPC dataset, each of the genomic attributes

(VKORC1 and CYP2C9) is separately used as the target t.
In the Netflix dataset, the target attribute was whether a user

rated a certain movie, and we randomly sampled targets from

the set of available movies.

The circles in Figure 3 show the result of inverting the

VKORC1 and CYP2C9 attributes in the IWPC dataset. Al-

though the attribute advantage is not as high as the membership

advantage (solid line), the attribute adversary exhibits a sizable

advantage that increases as the model overfits more and more.

On the other hand, none of the attacks could effectively infer

whether a user watched a certain movie in the Netflix dataset.

In addition, we were unable to simultaneously control for both
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Fig. 3: Experimentally determined advantage for various mem-

bership and attribute adversaries. The plots correspond to: (a)

threshold membership adversary (Adversary 2), (b) uniform

reduction adversary (Adversary 6), (c) general attribute adver-

sary (Adversary 4), and (d) multi-query reduction adversary

(Adversary 7). Both reduction adversaries use the threshold

membership adversary as the oracle, and fA(ǫ) for the at-

tribute adversary is the Gaussian with mean zero and standard

deviation σS .

σD/σS and τ in the Netflix dataset to measure the effect of

influence as predicted by Theorem 5.

Finally, we evaluate the performance of the multi-query

reduction adversary (Adversary 7). As the squares in Figure 3

show, with the IWPC data, making multiple queries to the

membership oracle significantly increased the success rate

compared to what we would expect from the naive uniform

reduction adversary (Adversary 6, dotted line). Surprisingly,

the reduction is also more effective than running the attribute

inference attack directly. By contrast, with the Netflix data,

the multi-query reduction adversary was often slightly worse

than the naive uniform adversary although it still outperformed

direct attribute inference.

D. Collusion in membership inference

We evaluate AC and AC described in Section III-D for

CNNs trained as image classifiers. To instantiate FK and

GK , we use Python’s intrinsic pseudorandom number gen-

erator with key K as the seed. We note that our proof of

Theorem 4 relies only on the uniformity of the pseudorandom

numbers and not on their unpredictability. Deviations from this

assumption will result in a less effective membership inference

attack but do not invalidate our results. All experiments set the

number of keys to k = 3.
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(a) Advantage as a function of network size for AC with
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(b) Generalization error measured as the difference
between training and test accuracy. On MNIST, the
maximum was achieved at s = 8 at 0.05, while for
CIFAR-10 the maximum was 0.52 (s = 16), and 0.82
(s = 16) for CIFAR-100.

Fig. 4: Results of colluding training algorithm and member-

ship adversary on CNNs trained on MNIST, CIFAR-10, and

CIFAR-100. The size parameter was configured to take values

s = 2i for i ∈ [0, 7]. Regardless of the models’ generalization

performance, when the network is sufficiently large, the attack

achieves high advantage (≥ 0.98) without affecting predictive

accuracy.

The results of our experiment are shown in Figures 4a and

4b. The data shows that on all three instances, the colluding

parties achieve a high membership advantage without sig-

nificantly affecting model performance. The accuracy of the

subverted model was only 0.014 (MNIST), 0.047 (CIFAR-

10), and 0.031 (CIFAR-100) less than that of the unsubverted

model. The advantage rapidly increases with the model size

around s ≈ 16 but is relatively constant elsewhere, indicating

that model capacity beyond a certain point is a necessary factor

in the attack.

Importantly, the results demonstrate that specific informa-

tion about nearly all of the training data can be intentionally

leaked through the behavior of a model that appears to

generalize very well. In fact, looking at Figure 4b shows

that in these instances, there is no discernible relationship

between generalization error and membership advantage. The

three datasets exhibit vastly different generalization behavior,

with the MNIST models achieving almost no generalization

error (< 0.02 for s ≥ 32) and CIFAR-100 showing a large

performance gap (≥ 0.8 for s ≥ 32). Despite this fact, the

membership adversary achieves nearly identical performance.

VII. RELATED WORK

A. Privacy and statistical summaries

There is extensive prior literature on privacy attacks on

statistical summaries. Komarova et al. [46] looked into partial

disclosure scenarios, where an adversary is given fixed statisti-

cal estimates from combined public and private sources and at-

tempts to infer the sensitive feature of an individual referenced

in those sources. A number of previous studies [21], [22], [47],

[48], [49], [50] have looked into membership attacks from

statistics commonly published in genome-wide association

studies (GWAS). Calandrino et al. [51] showed that temporal

changes in recommendations given by collaborative filtering

methods can reveal the inputs that caused those changes.

Linear reconstruction attacks [52], [53], [54] attempt to infer

partial inputs to linear statistics and were later extended to

non-linear statistics [55]. While the goal of these attacks has

commonalities with both membership inference and attribute

inference, our results apply specifically to machine learning

settings where generalization error and influence make our

results relevant.

B. Privacy and machine learning

More recently, others have begun examining these attacks

in the context of machine learning. Ateniese et al. [1] showed

that the knowledge of the internal structure of Support Vector

Machines and Hidden Markov Models leaks certain types of

information about their training data, such as the language

used in a speech dataset.

Dwork et al. [13] showed that a differentially private algo-

rithm with a suitably chosen parameter generalizes well with

high probability. Subsequent work showed that similar results

are true under related notions of privacy. In particular, Bassily

et al. [18] studied a notion of privacy called total variation

stability and proved good generalization with respect to a

bounded number of adaptively chosen low-sensitivity queries.

Moreover, for data drawn from Gibbs distributions, Wang

et al. [19] showed that on-average KL privacy is equivalent

to generalization error as defined in this paper. While these

results give evidence for the relationship between privacy and

overfitting, we construct an attacker that directly leverages

overfitting to gain advantage commensurate with the extent

of the overfitting.

1) Membership inference: Shokri et al. [7] developed

a membership inference attack and applied it to popular

machine-learning-as-a-service APIs. Their attacks are based on

“shadow models” that approximate the behavior of the model

under attack. The shadow models are used to build another

machine learning model called the “attack model”, which is

trained to distinguish points in the training data from other

points based on the output they induce on the original model

under attack. As we discussed in Section VI-B, our simple

threshold adversary comes surprisingly close to the accuracy



of their attack, especially given the differences in complexity

and requisite adversarial assumptions between the attacks.

Because the attack proposed by Shokri et al. itself relies

on machine learning to find a function that separates training

and non-training points, it is not immediately clear why the

attack works, but the authors hypothesize that it is related to

overfitting and the “diversity” of the training data. They graph

the generalization error against the precision of their attack and

find some evidence of a relationship, but they also find that the

relationship is not perfect and conclude that model structure

must also be relevant. The results presented in this paper

make the connection to overfitting precise in many settings,

and the colluding training algorithm we give in Section VI-D

demonstrates exactly how model structure can be exploited to

create a membership inference vulnerability.

Li et al. [6] explored membership inference, distinguishing

between “positive” and “negative” membership privacy. They

show how this framework defines a family of related privacy

definitions that are parametrized on distributions of the adver-

sary’s prior knowledge, and they find that a number of previous

definitions can be instantiated in this way.

2) Attribute inference: Practical model inversion attacks

have been studied in the context of linear regression [4], [8],

decision trees [3], and neural networks [3]. Our results apply

to these attacks when they are applied to data that matches the

distributional assumptions made in our analysis. An important

distinction between the way inversion attacks were considered

in prior work and how we treat them here is the notion of

advantage. Prior work on these attacks defined advantage as

the difference between the attacker’s predictive accuracy given

the model and the best accuracy that could be achieved without

the model. Although some prior work [3], [4] empirically

measured this advantage on both training and test datasets,

this definition does not allow a formal characterization of how

exposed the training data specifically is to privacy risk. In

Section IV, we define attribute advantage precisely to capture

the risk to the training data by measuring the difference in the

attacker’s accuracy on training and test data: the advantage is

zero when the attack is as powerful on the general population

as on the training data and is maximized when the attack works

only on the training data.

Wu et al. [5] formalized model inversion for a simplified

class of models that consist of Boolean functions and explored

the initial connections between influence and advantage. How-

ever, as in other prior work on model inversion, the type of ad-

vantage that they consider says nothing about what the model

specifically leaks about its training data. Drawing on their

observation that influence is relevant to privacy risk in general,

we illustrate its effect on the notion of advantage defined in

this paper and show how it interacts with generalization error.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We introduced new formal definitions of advantage for

membership and attribute inference attacks. Using these def-

initions, we analyzed attacks under various assumptions on

learning algorithms and model properties, and we showed that

these two attacks are closely related through reductions in both

directions. Both theoretical and experimental results confirm

that models become more vulnerable to both types of attacks

as they overfit more. Interestingly, our analysis also shows

that overfitting is not the only factor that can lead to privacy

risk: Theorem 4 shows that even stable learning algorithms,

which provably do not overfit, can leak precise membership

information, and the results in Section IV-A demonstrate that

the influence of the target attribute on a model’s output plays

a key role in attribute inference.

Our formalization and analysis open interesting directions

for future work. The membership attack in Theorem 4 is

based on a colluding pair of adversary and learning rule,

AC and AC. This could be implemented, for example, by a

malicious ML algorithm provided by a third-party library or

cloud service to subvert users’ privacy. Further study of this

scenario, which may best be formalized in the framework of

algorithm substitution attacks [23], is warranted to determine

whether malicious algorithms can produce models that are

indistinguishable from normal ones and how such attacks can

be mitigated.

Our results in Section III-A give bounds on membership

advantage when certain conditions are met. These bounds

apply to adversaries who may target specific individuals, bring-

ing arbitrary background knowledge of their targets to help

determine their membership status. Some types of realistic

adversaries may be motivated by concerns that incentivize

learning a limited set of facts about as many individuals in the

training data as possible rather than obtaining unique back-

ground knowledge about specific individuals. Characterizing

these “stable adversaries” is an interesting direction that may

lead to tighter bounds on advantage or relaxed conditions on

the learning rule.
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