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Abstract—Machine learning algorithms, when applied to sen-
sitive data, pose a distinct threat to privacy. A growing body
of prior work demonstrates that models produced by these
algorithms may leak specific private information in the training
data to an attacker, either through the models’ structure or
their observable behavior. However, the underlying cause of this
privacy risk is not well understood beyond a handful of anecdotal
accounts that suggest overfitting and influence might play a role.

This paper examines the effect that overfitting and influence
have on the ability of an attacker to learn information about
the training data from machine learning models, either through
training set membership inference or attribute inference attacks.
Using both formal and empirical analyses, we illustrate a clear
relationship between these factors and the privacy risk that
arises in several popular machine learning algorithms. We find
that overfitting is sufficient to allow an attacker to perform
membership inference and, when the target attribute meets
certain conditions about its influence, attribute inference attacks.
Interestingly, our formal analysis also shows that overfitting is
not necessary for these attacks and begins to shed light on what
other factors may be in play. Finally, we explore the connection
between membership inference and attribute inference, showing
that there are deep connections between the two that lead to
effective new attacks.

Index Terms—privacy, machine learning, inference attacks

I. INTRODUCTION

Machine learning has emerged as an important technology,
enabling a wide range of applications including computer
vision, machine translation, health analytics, and advertising,
among others. The fact that many compelling applications of
this technology involve the collection and processing of sensi-
tive personal data has given rise to concerns about privacy [1],
[21, [3], [4], [5], [6], [7], [8], [9]. In particular, when machine
learning algorithms are applied to private training data, the
resulting models might unwittingly leak information about that
data through either their behavior (i.e., black-box attack) or the
details of their structure (i.e., white-box attack).

Although there has been a significant amount of work
aimed at developing machine learning algorithms that satisfy
definitions such as differential privacy [8], [10], [11], [12],
[13], [14], the factors that bring about specific types of privacy
risk in applications of standard machine learning algorithms
are not well understood. Following the connection between
differential privacy and stability from statistical learning the-
ory [12], [13], [14], [15], [16], [17], one such factor that has
started to emerge [4], [7] as a likely culprit is overfitting. A
machine learning model is said to overfit to its training data
when its performance on unseen test data diverges from the
performance observed during training, i.e., its generalization

error is large. The relationship between privacy risk and
overfitting is further supported by recent results that suggest
the contrapositive, i.e., under certain reasonable assumptions,
differential privacy [13] and related notions of privacy [18],
[19] imply good generalization. However, a precise account
of the connection between overfitting and the risk posed by
different types of attack remains unknown.

A second factor identified as relevant to privacy risk is
influence [5], a quantity that arises often in the study of
Boolean functions [20]. Influence measures the extent to which
a particular input to a function is able to cause changes to
its output. In the context of machine learning privacy, the
influential features of a model may give an active attacker the
ability to extract information by observing the changes they
cause.

In this paper, we characterize the effect that overfitting
and influence have on the advantage of adversaries who
attempt to infer specific facts about the data used to train
machine learning models. We formalize quantitative advantage
measures that capture the privacy risk to training data posed
by two types of attack, namely membership inference [6],
[7] and attribute inference [3], [4], [5], [8]. For each type
of attack, we analyze the advantage in terms of generalization
error (overfitting) and influence for several concrete black-box
adversaries. While our analysis necessarily makes formal as-
sumptions about the learning setting, we show that our analytic
results hold on several real-world datasets by controlling for
overfitting through regularization and model structure.

a) Membership inference: Training data membership in-
ference attacks aim to determine whether a given data point
was present in the training data used to build a model. Al-
though this may not at first seem to pose a serious privacy risk,
the threat is clear in settings such as health analytics where the
distinction between case and control groups could reveal an
individual’s sensitive conditions. This type of attack has been
extensively studied in the adjacent area of genomics [21], [22],
and more recently in the context of machine learning [6], [7].

Our analysis shows a clear dependence of membership
advantage on generalization error (Section III-B), and in some
cases the relationship is directly proportional (Theorem 2).
Our experiments on real data confirm that this connection
matters in practice (Section VI-B), even for models that do not
conform to the formal assumptions of our analysis. In one set
of experiments, we apply a particularly straightforward attack
to deep convolutional neural networks (CNNs) using several
datasets examined in prior work on membership inference. De-



spite requiring significantly less computation and adversarial
background knowledge, our attack performs almost as well as
a recently published attack [7].

Our results illustrate that overfitting is a sufficient condition
for membership vulnerability in popular machine learning
algorithms. However, it is not a necessary condition (Theo-
rem 4). In fact, under certain assumptions that are commonly
satisfied in practice, we show that a stable training algorithm
(i.e., one that does not overfit) can be subverted so that
the resulting model is nearly as stable but reveals exact
membership information through its black-box behavior. This
attack is suggestive of algorithm substitution attacks from
cryptography [23] and makes adversarial assumptions similar
to those of other recent ML privacy attacks [24]. We imple-
ment this construction to train deep CNNs (Section VI-D)
and observe that, regardless of the model’s generalization
behavior, the attacker can recover membership information
while incurring very little penalty to predictive accuracy.

b) Attribute inference: In an attribute inference attack,
the adversary uses a machine learning model and incomplete
information about a data point to infer the missing information
for that point. For example, in work by Fredrikson et al. [4],
the adversary is given partial information about an individual’s
medical record and attempts to infer the individual’s genotype
by using a model trained on similar medical records.

We formally characterize the advantage of an attribute
inference adversary as its ability to infer a target feature
given an incomplete point from the training data, relative to
its ability to do so for points from the general population
(Section IV). This approach is distinct from the way that
attribute advantage has largely been characterized in prior
work [3], [4], [5], which prioritized empirically measuring
advantage relative to a simulator who is not given access to the
model. We offer an alternative definition of attribute advantage
(Definition 6) that corresponds to this characterization and
argue that it does not isolate the risk that the model poses
specifically to individuals in the training data.

Our formal analysis shows that attribute inference, like
membership inference, is indeed sensitive to overfitting. How-
ever, we find that influence must be factored in as well to
understand when overfitting will lead to privacy risk (Sec-
tion IV-A). Interestingly, the risk to individuals in the training
data is greatest when these two factors are “in balance”.
Regardless of how large the generalization error becomes, the
attacker’s ability to learn more about the training data than
the general population vanishes as influence increases.

c) Connection between membership and attribute infer-
ence: The two types of attack that we examine are deeply
related. We build reductions between the two by assuming
oracle access to either type of adversary. Then, we characterize
each reduction’s advantage in terms of the oracle’s assumed
advantage. Our results suggest that attribute inference may
be “harder” than membership inference: attribute advantage
implies membership advantage (Theorem 6), but there is
currently no similar result in the opposite direction.

Our reductions are not merely of theoretical interest. Rather,

they function as practical attacks as well. We implemented a
reduction for attribute inference and evaluated it on real data
(Section VI-C). Our results show that when generalization
error is high, the reduction adversary can outperform an
attribute inference attack given in [4] by a significant margin.

d) Summary: This paper explores the relationships be-
tween privacy, overfitting, and influence in machine learning
models. We present new formalizations of membership and
attribute inference attacks that enable an analysis of the
privacy risk that black-box variants of these attacks pose to
individuals in the training data. We give analytic quantities
for the attacker’s performance in terms of generalization
error and influence, which allow us to conclude that certain
configurations imply privacy risk. By introducing a new type
of membership inference attack in which a stable training
algorithm is replaced by a malicious variant, we find that the
converse does not hold: machine learning models can pose
immediate threats to privacy without overfitting. Finally, we
study the underlying connections between membership and
attribute inference attacks, finding surprising relationships that
give insight into the relative difficulty of the attacks and lead
to new attacks that work well on real data.

II. BACKGROUND

Throughout the paper we focus on privacy risks related to
machine learning algorithms. We begin by introducing basic
notation and concepts from learning theory.

A. Notation and preliminaries

Let z = (z,y) € X XY be a data point, where x represents
a set of features or attributes and y a response. In a typical
machine learning setting, and thus throughout this paper, it is
assumed that the features x are given as input to the model,
and the response y is returned. Let D represent a distribution
of data points, and let S ~ D™ be an ordered list of n
points, which we will refer to as a dataset, training set, or
training data interchangeably, sampled i.i.d. from D. We will
frequently make use of the following methods of sampling a
data point z:

e z ~ S: i is picked uniformly at random from [n], and 2
is set equal to the i-th element of S.

e 2z~ D: z is chosen according to the distribution D.
When it is clear from the context, we will refer to these
sampling methods as sampling from the dataset and sampling
from the distribution, respectively.

Unless stated otherwise, our results pertain to the standard
machine learning setting, wherein a model Ag is obtained by
applying a machine learning algorithm A to a dataset S. Mod-
els reside in the set X — Y and are assumed to approximately
minimize the expected value of a loss function ¢ over S. If
z = (x,y), the loss function ¢(Ag, z) measures how much
Ag(z) differs from y. When the response domain is discrete,
it is common to use the 0-1 loss function, which satisfies
l(Ag,z) = 0if y = Ag(x) and ¢(Ag,z) = 1 otherwise.
When the response is continuous, we use the squared-error
loss ¢(Ag, z) = (y — As(x))2. Additionally, it is common for



many types of models to assume that y is normally distributed
in some way. For example, linear regression assumes that y is
normally distributed given x [25]. To analyze these cases, we
use the error function erf, which is defined in Equation 1.

€T

1
VT,
Intuitively, if a random variable € is normally distributed and
x > 0, then erf(x//2) represents the probability that € is
within x standard deviations of the mean.

erf(z) et at (1)

B. Stability and generalization

An algorithm is stable if a small change to its input causes
limited change in its output. In the context of machine learn-
ing, the algorithm in question is typically a training algorithm
A, and the “small change” corresponds to the replacement of
a single data point in S. This is made precise in Definition 1.

Definition 1 (On-Average-Replace-One (ARO) Stability).
Given S = (z1,...,2,) ~ D" and an additional point
2~ D, define S = (z1,...,%-1,2 Zit1,...,%n). Let
€saple - N — R be a monotonically decreasing function. Then
a training algorithm A is on-average-replace-one-stable (or
ARO-stable) on loss function { with rate €gap.(n) if
E  [l(Asw,zi) = UAs, 2i)] < €vanie(n),
S~D™,2' ~D
i~U(n),A

where A in the expectation refers to the randomness used by
the training algorithm.

Stability is closely related to the popular notion of differ-
ential privacy [26] given in Definition 2.

Definition 2 (Differential privacy). An algorithm A : X" —
Y satisfies e-differential privacy if for all S,S" € X" that
differ in the value at a single index i € [n] and all Y C'Y,
the following holds:

Pr[A(S) € Y] < e“Pr[A(S") € Y].

When a learning algorithm is not stable, the models that
it produces might overfit to the training data. Overfitting is
characterized by large generalization error, which is defined
below.

Definition 3 (Average generalization error). The average gen-
eralization error of a machine learning algorithm A on D is
defined as

Reen(A,n,D,0) = E [l(As,z)]— E [((Ag,2)].
= o

In other words, Ag overfits if its expected loss on samples
drawn from D is much greater than its expected loss on its
training set. For brevity, when n, D, and ¢ are unambiguous
from the context, we will write Rgen(A) instead.

It is important to note that Definition 3 describes the
average generalization error over all training sets, as con-
trasted with another common definition of generalization error
E.~p[l(As,2)] — £ 3, .o ¢(As, z), which holds the training

set fixed. The connection between average generalization and
stability is formalized by Shalev-Shwartz et al. [27], who show
that an algorithm’s ability to achieve a given generalization
error (as a function of n) is equivalent to its ARO-stability
rate.

III. MEMBERSHIP INFERENCE ATTACKS

In a membership inference attack, the adversary attempts to
infer whether a specific point was included in the dataset used
to train a given model. The adversary is given a data point
z = (x,y), access to a model Ag, the size of the model’s
training set |.S| = n, and the distribution D that the training
set was drawn from. With this information the adversary must
decide whether z € S. For the purposes of this discussion, we
do not distinguish whether the adversary A’s access to Ag is
“black-box™, i.e., consisting only of input/output queries, or
“white-box”, i.e., involving the internal structure of the model
itself. However, all of the attacks presented in this section
assume black-box access.

Experiment 1 below formalizes membership inference at-
tacks. The experiment first samples a fresh dataset from
D and then flips a coin b to decide whether to draw the
adversary’s challenge point z from the training set or the
original distribution. A is then given the challenge, along with
the additional information described above, and must guess the
value of b.

Experiment 1 (Membership experiment ExpM(A,A,n,D)).
Let A be an adversary, A be a learning algorithm, n be
a positive integer, and D be a distribution over data points
(z,y). The membership experiment proceeds as follows:

1) Sample S ~ D™, and let Asg = A(S).

2) Choose b + {0,1} uniformly at random.

3) Draw z ~ S ifb=0, 0or z~D ifb=1

4) BExpM(A, A,n, D) is I if A(z,Ag,n,D) =

otherwise. A must output either 0 or 1.

b and 0

Definition 4 (Membership advantage). The membership ad-
vantage of A is defined as

AdvM(A, A,n, D) = 2Pr[Exp™(A, A,n,D) = 1] — 1,

where the probabilities are taken over the coin flips of A, the
random choices of S and b, and the random data point z ~ S
or z ~ D.

Equivalently, the right-hand side can be expressed as the
difference between A’s true and false positive rates

AWM =Pr[A=0|b=0]-PrlA=0]b=1], (2

where Adv™ is a shortcut for Adv™ (A, A,n, D).

Using Experiment 1, Definition 4 gives an advantage mea-
sure that characterizes how well an adversary can distinguish
between z ~ S and z ~ D after being given the model. This
is slightly different from the sort of membership inference
described in some prior work [6], [7], which distinguishes
between z ~ S and z ~ D\ S. We are interested in measuring
the degree to which Ag reveals membership to A4, and not in



the degree to which any background knowledge of S or D
does. If we sample z from D\ S instead of D, the adversary
could gain advantage by noting which data points are more
likely to have been sampled into S ~ D". This does not
reflect how leaky the model is, and Definition 4 rules it out.

In fact, the only way to gain advantage is through access to
the model. In the membership experiment ExpM(.A, A,n, D),
the adversary .4 must determine the value of b by using z,
Ag, n, and D. Of these inputs, n and D do not depend on b,
and we have the following for all z:

Prb=0] 2] = Sflgn[z] Pr[b = 0]/ Pr[z]
z~S
= le%[z] Pr[b=1]/Pr[z] =Prb=1] z].

We note that Definition 4 does not give the adversary credit
for predicting that a point drawn from D (i.e., when b = 1),
which also happens to be in .S, is a member of S. As a result,
the maximum advantage that an adversary can hope to achieve
is 1 — p(n, D), where u(n, D) = Prgupn soplz € 5] is the
probability of re-sampling an individual from the training set
into the general population. In real settings u(n, D) is likely
to be exceedingly small, so this is not an issue in practice.

A. Bounds from differential privacy

Our first result (Theorem 1) bounds the advantage of an ad-
versary who attempts a membership attack on a differentially
private model [26]. Differential privacy imposes strict limits on
the degree to which any point in the training data can affect the
outcome of a computation, and it is commonly understood that
differential privacy will limit membership inference attacks.
Thus it is not surprising that the advantage is limited by a
function of e. We refer the reader to the technical report [28]
for a proof of this theorem.

Theorem 1. Let A be an e-differentially private learning
algorithm and A be a membership adversary. Then we have:

AdvM(A, A,n, D) < e —1.

Wu et al. [8, Section 3.2] present an algorithm that is
differentially private as long as the loss function ¢ is A-
strongly convex and p-Lipschitz. Moreover, they prove that
the performance of the resulting model is close to the optimal.
Combined with Theorem 1, this provides us with a bound
on membership advantage when the loss function is strongly
convex and Lipschitz.

B. Membership attacks and generalization

In this section, we consider several membership attacks that
make few, common assumptions about the model Ag or the
distribution D. Importantly, these assumptions are consistent
with many natural learning techniques widely used in practice.

For each attack, we express the advantage of the attacker as
a function of the extent of the overfitting, thereby showing
that the generalization behavior of the model is a strong
predictor for vulnerability to membership inference attacks.
In Section VI-B, we demonstrate that these relationships often

hold in practice on real data, even when the assumptions used
in our analysis do not hold.

a) Bounded loss function: We begin with a straight-
forward attack that makes only one simple assumption: the
loss function is bounded by some constant B. Then, with
probability proportional to the model’s loss at the query point
z, the adversary predicts that z is not in the training set. The
attack is formalized in Adversary 1.

Adversary 1 (Bounded loss function). Suppose {(Ag,z) < B
for some constant B, all S ~ D", and all z sampled from S or
D. Then, on input z = (x,y), As, n, and D, the membership
adversary A proceeds as follows:

1) Query the model to get Ag(x).

2) Output 1 with probability ¢(Ag, z)/B. Else, output 0.

Theorem 2 states that the membership advantage of this
approach is proportional to the generalization error of A,
showing that advantage and generalization error are closely
related in many common learning settings. In particular, clas-
sification settings, where the 0-1 loss function is commonly
used, B = 1 yields membership advantage equal to the
generalization error. Simply put, high generalization error
necessarily results in privacy loss for classification models.

Theorem 2. The advantage of Adversary 1 is Rgen(A)/B.

Proof. The proof is as follows:
AdvM(A, A, n, D)
=Pr[A=0|b=0] —Pr[4
=Pr[A —1|b—1] Pr[A

[A

=0]b=1]
—1|b=0]

-

= — A —
. Sga%n[a 5:2)]

= Rqen(A4)/B O

b) Gaussian error: Whenever the adversary knows the
exact error distribution, it can simply compute which value
of b is more likely given the error of the model on z. This
adversary is described formally in Adversary 2. While it may
seem far-fetched to assume that the adversary knows the
exact error distribution, linear regression models implicitly
assume that the error of the model is normally distributed.
In addition, the standard errors og, op of the model on S and
D, respectively, are often published with the model, giving
the adversary full knowledge of the error distribution. We will
describe in Section III-C how the adversary can proceed if it
does not know one or both of these values.

Adversary 2 (Threshold). Suppose f(e |b=0) and f(e|b=
1), the conditional probability density functions of the error,
are known in advance. Then, on input z = (x,y), Ags, n, and
D, the membership adversary A proceeds as follows:

1) Query the model to get Ag(x).

2) Let € =y — Ag(x). Output arg max,cq 1y f(€ | b).



In regression problems that use squared-error loss, the
magnitude of the generalization error depends on the scale
of the response y. For this reason, in the following we use
the ratio op/og to measure generalization error. Theorem 3
characterizes the advantage of this adversary in the case of
Gaussian error in terms of op/ogs. As one might expect,
this advantage is 0 when og = op and approaches 1 as
op/os — oo. The dotted line in Figure 2a shows the graph
of the advantage as a function of op /0.

Theorem 3. Suppose os and op are known in advance such

that € ~ N(0,0%) when b =0 and € ~ N(0,0%) when b = 1.

Then, the advantage of Membership Adversary 2 is
In(op/os) )

op B In(op/os)
erf (US 7@@/0’5)2 — ) erf ( 7(01)/08)2 —
Proof. We have

1 2 2
e € /20%

fle]b=0)= Vonos
fle|b=1) L —etr2oh,

- \V2mop
Let €.y be the points at which these two probability density
functions are equal. Some algebraic manipulation shows that
2In(op/os)

(0p/0s)* =1

Moreover, if 0g < op, f(e | b =0) > f(e | b = 1) if and
only if |€] < ecq. Therefore, the membership advantage is

3)

€eq = 0D

AdvM(A, A, n, D)

=Pr[A=0]|b=0]—-Pr[A=0|b=1]

= Prfle| < €eq | b=10] — Prle| < €eq | b=1]
€eq

=t (V) ()

O ) In(op/os) erf In(op/os)
os \| (op/os)? —1 (op/og)2—1]"

C. Unknown standard error

In practice, models are often published with just one value
of standard error, so the adversary often does not know how
op compares to ogg. One solution to this issue is to assume
that og ~ op, i.e., that the model does not terribly overfit.
Then, the threshold is set at |¢| = o, which is the limit of the
right-hand side of Equation 3 as op approaches og. Then, the
membership advantage is erf(1/v/2) — erf(cs/v/20p). This
expression is graphed in Figure 2b as a function of op /0.

Alternatively, if the adversary knows which machine learn-
ing algorithm was used, it can repeatedly sample S ~ D",
train the model Ag using the sampled .S, and measure the error
of the model to arrive at reasonably close approximations of
os and op.

D. Other sources of membership advantage

The results in the preceding sections show that overfitting
is sufficient for membership advantage. However, models can
leak information about the training set in other ways, and thus
overfitting is not necessary for membership advantage. For
example, the learning rule can produce models that simply
output a lossless encoding of the training dataset. This example
may seem unconvincing for several reasons: the leakage is
obvious, and the “encoded” dataset may not function well as a
model. In the rest of this section, we present a pair of colluding
training algorithm and adversary that does not have the above
issues but still allows the attacker to learn the training set
almost perfectly. This is in the framework of an algorithm
substitution attack (ASA) [23], where the target algorithm,
which is implemented by closed-source software, is subverted
to allow a colluding adversary to violate the privacy of the
users of the algorithm. All the while, this subversion remains
impossible to detect. Algorithm 1 and Adversary 3 represent
a similar security threat for learning rules with bounded loss
function. While the attack presented here is not impossible to
detect, on points drawn from D, the black-box behavior of the
subverted model is similar to that of an unsubverted model.

The main result is given in Theorem 4, which shows that
any ARO-stable learning rule A, with a bounded loss function
operating on a finite domain, can be modified into a vulnerable
learning rule A¥ where k € N is a parameter. Moreover,
subject to our assumption from before that p(n, D) is very
small, the stability rate of the vulnerable model A* is not far
from that of A, and for each A" there exists a membership
adversary whose advantage is negligibly far (in k) from the
maximum advantage possible on D. Simply put, it is often
possible to find a suitably leaky version of an ARO-stable
learning rule whose generalization behavior is close to that
of the original.

Theorem 4. Let d = log|X|, m = log|Y|, ¢ be a loss
function bounded by some constant B, A be an ARO-stable
learning rule with rate €yup.(n), and suppose that x uniquely
determines the point (z,y) in D. Then for any integer k > 0,
there exists an ARO-stable learning rule A* with rate at most
€stavie(n) + knB2~% 4+ y(n, D) and adversary A such that:

AdM(A, A% n, D) =1 — p(n, D) — 27 ™k

The proof of Theorem 4 involves constructing a learning
rule A that leaks precise membership information when
queried in a particular way but is otherwise identical to A.
AF assumes that the adversary has knowledge of a secret key
that is used to select pseudorandom functions that define the
“special” queries used to extract membership information. In
this way, the normal behavior of the model remains largely
unchanged, making A* approximately as stable as A, but the
learning algorithm and adversary “collude” to leak informa-
tion through the model. We require the features = to fully
determine y to avoid collisions when the adversary queries
the model, which would result in false positives. In practice,
many learning problems satisfy this criterion. Algorithm 1



and Adversary 3 illustrate the key ideas in this construction
informally.

Algorithm 1 (Colluding training algorithm A®). Let Fi :
X = Xand Gg : X — Y be keyed pseudorandom functions,
Ky, ..., K} be uniformly chosen keys, and A be a training
algorithm. On receiving a training set S, A proceeds as
follows:

1) Supplement S using F, G: for all (x;,y;) € S and j € [k],
lgt e = (Fi,(z:), Gk, (wi)), and set 8" = SU {2} ;
i€nl,jelkl}

2) Return Ag = A(S').

Adversary 3 (Colluding adversary A®). Let F : X — X,
Gk : X — Y and K,...,Ky be the functions and keys
used by AC, and Ag be the product of training with A with
those keys. On input z = (x,v), the adversary A® proceeds
as follows:

1) For j € [k], let y; < As/ (Fk,(z)).

2) Output 0 if y; = Gk, (x) for all j € [k]. Else, output 1.

Algorithm 1 will not work well in practice for many classes
of models, as they may not have the capacity to store the
membership information needed by the adversary while main-
taining the ability to generalize. Interestingly, in Section VI-D
we empirically demonstrate that deep convolutional neural
networks (CNNs) do in fact have this capacity and generalize
perfectly well when trained in the manner of A€. As pointed
out by Zhang et al. [29], because the number of parameters
in deep CNNss often significantly exceeds the training set size,
despite their remarkably good generalization error, deep CNNs
may have the capacity to effectively “memorize” the dataset.
Our results supplement their observations and suggest that this
phenomenon may have severe implications for privacy.

Before we give the formal proof, we note a key difference
between Algorithm 1 and the construction used in the proof.
Whereas the model returned by Algorithm 1 belongs to the
same class as those produced by A, in the formal proof the
training algorithm can return an arbitrary model as long as its
black-box behavior is suitable.

Proof. The proof constructs a learning algorithm and adver-
sary who share a set of k£ keys to a pseudorandom function.
The secrecy of the shared key is unnecessary, as the proof only
relies on the uniformity of the keys and the pseudorandom
functions’ outputs. The primary concern is with using the
pseudorandom function in a way that preserves the stability
of A as much as possible.

Without loss of generality, assume that X = {0,1}% and
Y = {0,1}™ Let Fx : {0,1}¢ — {0,1} and Gk :
{0,1}¢ +— {0,1}™ be keyed pseudorandom functions, and
let Ky,..., K} be uniformly sampled keys. On receiving S,
the training algorithm A%1:+%% returns the following model:

G, (), if (' y) € S st
r = Fg,(«") for some K;

Ag(z), otherwise

We now define a membership adversary A%k who is
hard-wired with keys K1, ..., K:

07 if As(,T) = GKJ- (FKj (a?))
for all K
otherwise

AK K (z,A,n,D) =
1

)

Recalling our assumption that the value of z uniquely de-
termines the point (x,y), we can derive the advantage of
AK1-Kk on the corresponding trainer AK1:+ Kk in posses-
sion of the same keys:

AdvM (AL KE AR Ky D)
= Pr[AKv K =0 b = 0] — Pr[AK K =0 b =1]
=1—pu(n,D)—2""F

g—mk that

The term comes from the possibility
Gk, (Fk,;(x)) = Ag(x) for all j € [k] by pure chance.

Now observe that A is ARO-stable with rate €ggpie(n). If
z = (z,y), we use Cg(z) to denote the probability that
F, () collides with Fx, (x;) for some (z;,y;) = 2; € S and
some key K;. Note that by a simple union bound, we have
Cs(z) < kn2~% for z ¢ S. Then algebraic manipulation gives
us the following, where we write A% in place of Agﬁ’“"K’“
to simplify notation:

Rgen (A%, 0, D, ¢)

1 n
= E - KAKivi_EAKvi
swpnln;(suz) (52)1
Z/N/D 1=
1 n
= E [ (1-Cs(zi)) (K(ASU)aZi)_E(ASaZi))]
SMD T
z'~D ’
1 n
+ E |- Cs(z) (ﬁ(Asw,Zi)—f(GK,Zi))]
SyD | T
z'~D
1 n
JE. [”Z (Asw, z1) — €(As, i)
2 ~D =1
1 n
+ E chm)(e(As,zi)—aGK,zi))]
SO R
z'~D
1 n
< _— K A i) g A7 _‘€ A ) 21
<5, [nz (As. %) — H(As. %)

+ knB2~ + u(n, D)
= eqape(n) + knB27 4 pu(n, D)

Note that the term u(n,D) on the last line accounts for the
possibility that the 2’ sampled at index i in S(*) is already in S,
which results in a collision. By the result in [27] that states that
the average generalization error equals the ARO-stability rate,
AK is ARO-stable with rate egapie(n) + knB2~% 4 u(n, D),
completing the proof. O

The formal study of ASAs was introduced by Bellare et
al. [23], who considered attacks against symmetric encryption.



Subsequently, attacks against other cryptographic primitives
were studied as well [30], [31], [32]. The recent work of Song
et al. [24] considers a similar setting, wherein a malicious
machine learning provider supplies a closed-source training
algorithm to users with private data. When the provider gets
access to the resulting model, it can exploit the trapdoors
introduced in the model to get information about the private
training dataset. However, to the best of our knowledge, a
formal treatment of ASAs against machine learning algorithms
has not been given yet. We leave this line of research as future
work, with Theorem 4 as a starting point.

IV. ATTRIBUTE INFERENCE ATTACKS

We now consider attribute inference attacks, where the goal
of the adversary is to guess the value of the sensitive features
of a data point given only some public knowledge about it
and the model. To make this explicit in our notation, in this
section we assume that data points are triples z = (v,t,y),
where (v,t) = x € X and ¢ is the sensitive features targeted
in the attack. A fixed function ¢ with domain X xY describes
the information about data points known by the adversary. Let
T be the support of ¢t when z = (v,t,y) ~ D. The function
7 is the projection of X into T (e.g., w(z) = ©).

Attribute inference is formalized in Experiment 2, which
proceeds much like Experiment 1. An important difference is
that the adversary is only given partial information ((z) about
the challenge point z.

Experiment 2 (Attribute experiment Epr(A, A,n,D)). Let
A be an adversary, n be a positive integer, and D be a
distribution over data points (x,y). The attribute experiment
proceeds as follows:

1) Sample S ~ D".

2) Choose b + {0,1} uniformly at random.

3) Draw z ~ S ifb=0, or z~D ifb=1.

4) Exp™(A,A,n,D) is 1 if A(¢(2),As,n,D) = n(z) and

0 otherwise.

In the corresponding advantage measure shown in Defi-
nition 5, our goal is to measure the amount of information
about the target 7(z) that Ag leaks specifically concerning the
training data S. Definition 5 accomplishes this by comparing

the performance of the adversary when b = 0 in Experiment 2
with that when b = 1.

Definition 5 (Attribute advantage). The attribute advantage of
A is defined as:

AdvA (A, A,n, D) = Pr[Exp”(A, A,n,D) = 1| b= 0]
— Pr[Exp*(A,A,n,D)=1|b=1],
where the probabilities are taken over the coin flips of A, the

random choice of S, and the random data point z ~ S or
z~D.

Notice that
Adv =3, cp Prooplt = t](Prl[A=1t; | b=0,t = ;]
fPr[.A:t,; | bil,t:

where A and Adv” are shortcuts for A(¢(z), Ag,n, D) and
AdvA(A, A,n, D), respectively.

This definition has the side effect of incentivizing the
adversary to “game the system” by performing poorly when it
thinks that b = 1. To remove this incentive, one may consider
using a simulator S, which does not receive the model as an
input, when b = 1. This definition is formalized below:

Definition 6 (Alternative attribute advantage). Let

S(p(2),n, D) = argmax Pr [r(z) =t | ¢(2)]

be the Bayes optimal simulator. The attribute advantage of A
can alternatively be defined as

Adva(A, A, n, D) = PrlA(p(2), Ag,n, D) = n(z) | b= 0]
~ PelS(p(2),m, D) = 7(2) | b= 1].

One potential issue with this alternative definition is that
higher model accuracy will lead to higher attribute advantage
regardless of how accurate the model is for the general
population. Broadly, there are two ways for a model to perform
better on the training data: it can overfit to the training data,
or it can learn a general trend in the distribution D. In this
paper, we concern ourselves with the view that the adversary’s
ability to infer the target 7(2) in the latter case is due not to the
model but pre-existing patterns in D. To allow capturing the
difference between overfitting and learning a general trend, we
use Definition 5 in the following analysis and leave a more
complete exploration of Definition 6 as future work. While
adversaries that “game the system” may seem problematic, the
effectiveness of such adversaries is indicative of privacy loss
because their existence implies the ability to infer membership,
as demonstrated by Reduction Adversary 5 in Section V-A.

A. Inversion, generalization, and influence

The case where ¢ simply removes the sensitive attribute ¢
from the data point z = (v,t,y) such that p(z) = (v,y) is
known in the literature as model inversion [3], [4], [5], [8].

In this section, we look at the model inversion attack of
Fredrikson et al. [4] under the advantage given in Definition 5.
We point out that this is a novel analysis, as this advantage
is defined to reflect the extent to which an attribute inference
attack reveals information about individuals in S. While prior
work [3], [4] has empirically evaluated attribute accuracy over
corresponding training and test sets, our goal is to analyze
the factors that lead to increased privacy risk specifically for
members of the training data. To that end, we illustrate the
relationship between advantage and generalization error as we
did in the case of membership inference (Section III-B). We
also explore the role of feature influence, which in this case
corresponds to the degree to which changes to a sensitive
feature of z affects the value Ag(x). In Section VI-C, we
show that the formal relationships described here often extend
to attacks on real data where formal assumptions may fail to
hold.

The attack described by Fredrikson et al. [4] is intended for
linear regression models and is thus subject to the Gaussian



error assumption discussed in Section III-B. In general, when
the adversary can approximate the error distribution reasonably
well, e.g., by assuming a Gaussian distribution whose standard
deviation equals the published standard error value, it can
gain advantage by trying all possible values of the sensitive
attribute. We denote the adversary’s approximation of the error
distribution by f 4, and we assume that the target ¢t = m(z)
is drawn from a finite set of possible values t1,...,t,, with
known frequencies in D. We indicate the other features,
which are known by the adversary, with the letter v (i.e.,
z = (z,y), z = (v,t), and @(z) = (v, y)). The attack is shown
in Adversary 4. For each t;, the adversary counterfactually
assumes that ¢ = ¢; and computes what the error of the model
would be. It then uses this information to update the a priori
marginal distribution of ¢ and picks the value ¢; with the
greatest likelihood.

Adversary 4 (General). Let f4(€) be the adversary’s guess
for the probability density of the error ¢ = y — Ag(x). On
input v, y, Ag, n, and D, the adversary proceeds as follows:

1) Query the model to get Ag(v,t;) for all i € [m)].

2) Let €(t;) =y — As(v, ;).

3) Return the result of arg max, (Pr..p[t = t;]- fa(e(t;))).

When analyzing Adversary 4, we are clearly interested in
the effect that generalization error will have on advantage.
Given the results of Section III-B, we can reasonably expect
that large generalization error will lead to greater advantage.
However, as pointed out by Wu et al. [5], the functional
relationship between ¢ and Ag(v,t) may play a role as well.
Working in the context of models as Boolean functions, Wu
et al. formalized the relevant property as functional influ-
ence [20], which is the probability that changing ¢ will cause
Ag(v,t) to change when v is sampled uniformly.

The attack considered here applies to linear regression
models, and Boolean influence is not suitable for use in
this setting. However, an analogous notion of influence that
characterizes the magnitude of change to Ag(v,t) is relevant
to attribute inference. For linear models, this corresponds to the
absolute value of the normalized coefficient of ¢. Throughout
the rest of the paper, we refer to this quantity as the influence
of ¢ without risk of confusion with the Boolean influence used
in other contexts.

a) Binary Variable with Uniform Prior: The first part of
our analysis deals with the simplest case where m = 2 with
Pr.op[t = t1] = Pr..p[t = t2]. Without loss of generality
we assume that Ag(v,t1) = Ag(v,t2) + 7 for some fixed
7 > 0, so in this setting 7 is a straightforward proxy for
influence. Theorem 5 relates the advantage of Adversary 4 to
og, op, and T.

Theorem 5. Let t be drawn uniformly from {t1,t2} and
suppose that y = Ag(v,t) + €, where e ~ N(0,0%) if b=10
and € ~ N(0,0%) if b = 1. Then the advantage of Adversary 4
is (erf(1/2v20g) — erf(1/2v/20p)).

Proof. Given the assumptions made in this setting, we can
describe the behavior of A as returning the value ¢; that
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Fig. 1: The advantage of Adversary 4 as a function of ¢’s
influence 7. Here ¢ is a uniformly distributed binary variable.

minimizes |e(t;)|. If ¢ = ¢4, it is easy to check that A guesses
correctly if and only if €(¢;) > —7/2. This means that A’s
advantage given ¢t =t is

PI‘[A:t1 |t=t1,b=0} —PI‘[.Aztl ‘t:tl,b: 1]

= Prle(t1) > —7/2 | b= 0] — Prle(t1) > —7/2 | b =1]

(i) (e (o)
1 T u
-3 (o (55) ~ (5555)) )

Similar reasoning shows that A’s advantage given ¢ = 5 is
exactly the same, so the theorem follows from Equation 4. [

Clearly, the advantage will be zero when there is no
generalization error (cg = op). Consider the other extreme
case where g — 0 and op — oo. When oy is very small, the
adversary will always guess correctly because the influence of
t overwhelms the effect of the error €. On the other hand, when
op is very large, changes to ¢ will be nearly imperceptible for
“normal” values of 7, and the adversary is reduced to random
guessing. Therefore, the maximum possible advantage with
uniform prior is 1/2. As a model overfits more, og decreases
and op tends to increase. If 7 remains fixed, it is easy to
see that the advantage increases monotonically under these
circumstances.

Figure 1 shows the effect of changing 7 as the ratio op/og
remains fixed at several different constants. When 7 = 0, ¢
does not have any effect on the output of the model, so the
adversary does not gain anything from having access to the
model and is reduced to random guessing. When 7 is large,
the adversary almost always guesses correctly regardless of the
value of b since the influence of ¢ drowns out the error noise.
Thus, at both extremes the advantage approaches 0, and the
adversary is able to gain advantage only when 7 and op/os
are in balance.

b) General Case: Sometimes the uniform prior for ¢
may not be realistic. For example, ¢ may represent whether
a patient has a rare disease. In this case, we weight the values
of fa(e(t;)) by the a priori probability Pr,p|[t = t;] before
comparing which ¢; is the most likely. With uniform prior,
we could simplify argmax, fa(e(t;)) to argmin,, |e(t;)]
regardless of the value of o used for f 4. On the other hand, the



value of o matters when we multiply by Pr[t = ¢;]. Because
the adversary is not given b, it makes an assumption similar
to that described in Section III-B and uses € ~ N(0,0%).

Clearly og = op results in zero advantage. The maximum
possible advantage is attained when o0g — 0 and op — oo.
Then, by similar reasoning as before, the adversary will always
guess correctly when b = 0 and is reduced to random guessing
when b = 1, resulting in an advantage of 1 — %

In general, the advantage can be computed using Equation 4.
We first figure out when the adversary outputs ¢;. When f4
is a Gaussian, this is not computationally intensive as there is
at most one decision boundary between any two values ¢; and
t;. Then, we convert the decision boundaries into probabilities
by using the error distributions € ~ N (0,0%) and N(0,02),
respectively.

V. CONNECTION BETWEEN MEMBERSHIP AND ATTRIBUTE
INFERENCE

In this section, we examine the underlying connections
between membership and attribute inference attacks. Our
approach is based on reduction adversaries that have oracle
access to one type of attack and attempt to perform the
other type of attack. We characterize the advantage of each
reduction adversary in terms of the advantage of its oracle.
In Section VI-C, we implement the most sophisticated of the
reduction adversaries described here and show that on real data
it performs remarkably well, often outperforming Attribute
Adversary 4 by large margins. We note that these reductions
are specific to our choice of attribute advantage given in
Definition 5. Analyzing the connections between membership
and attribute inference using the alternative Definition 6 is an
interesting direction for future work.

A. From membership to attribute

We start with an adversary Ay, that uses an attribute
oracle to accomplish membership inference. The attack, shown
in Adversary 5, is straightforward: given a point z, the
adversary queries the attribute oracle to obtain a prediction
t of the target value w(z). If this prediction is correct, then
the adversary concludes that z was in the training data.

Adversary 5 (Membership — attribute). The reduction ad-
versary Am_a has oracle access to attribute adversary Aa.
On input z, Ag, n, and D, the reduction adversary proceeds
as follows:

1) Query the oracle to get t < Ap(p(2), As,n, D).
2) Output 0 if w(z) = t. Otherwise, output 1.

Theorem 6 shows that the membership advantage of this
reduction exactly corresponds to the attribute advantage of its
oracle. In other words, the ability to effectively infer attributes
of individuals in the training set implies the ability to infer
membership in the training set as well. This suggests that
attribute inference is at least as difficult as than membership
inference.

Theorem 6. Let Ay a be the adversary described in Adver-
sary 5, which uses A as an oracle. Then,

AdvM(Ap_a, A,n, D) = Adv?(Aa, A, n, D).

Proof. The proof follows directly from the definitions of
membership and attribute advantages.

AdVM:PI‘[AM*}A:O‘bzo}_Pr[AM%A:0|b:]‘]

=Y Prlt =t;](PrlAmoa =0]b=0,t =1t
t; €T
—PrldAysa =0]b=1,t=1t))

= > Prit=t](PrlAa=t; | b=0,t =1,]
t, €T
—PI"[.AA Zti | b= Lt:tiD
= Adv*. O

B. From attribute to membership

We now consider reductions in the other direction, wherein
the adversary is given ¢(z) and must reconstruct the point
z to query the membership oracle. To accomplish this, we
assume that the adversary knows a deterministic reconstruction
function ¢! such that ¢ o o~ ! is the identity function, i.e.,
for any value of ¢(z) that the adversary may receive, there
exists 2/ = ¢ 1(p(2)) such that p(z) = ¢(2’). However,
because ¢ is a lossy function, in general it does not hold that
¢ 1(p(2)) = z. Our adversary, described in Adversary 6,
reconstructs the point z’, sets the attribute ¢ of that point
to value ¢; chosen uniformly at random, and outputs ¢; if
the membership oracle says that the resulting point is in the
dataset.

Adversary 6 (Uniform attribute — membership). Suppose
that tq, ..., t,, are the possible values of the target t = 7(z).
The reduction adversary AY_,\ has oracle access to mem-
bership adversary Am. On input ©(z), Ag, n, and D, the
reduction adversary proceeds as follows:

1) Choose t; uniformly at random from {t1, ... tm}.

2) Let 2’ = ¢ (¢(2)), and change the value of the sensitive
attribute t such that w(z') = t;.

3) Query Ay to obtain V' + Au(z', Ag,n, D).

4) If v/ =0, output t;. Otherwise, output 1.

The uniform choice of ¢; is motivated by the fact that the
adversary may not know how the advantage of the membership
oracle is distributed across different values of ¢. For example,
it is possible that Ay performs very poorly when ¢t = ¢; and
that all of its advantage comes from the case where ¢ = 5.

In the computation of the advantage, we only consider
the case where 7(z) = ¢; because this is the only case
where the reduction adversary can possibly give the cor-
rect answer. In that case, the membership oracle is given
a challenge point from the distribution D' = {(z,y) |
(z,y) = ¢ *(p(2)) except that t = m(z)}, where z ~ S
if b = 0and z ~ D if b = 1. On the other hand, the
training set S used to train the model Ag was drawn from
D. Because of this difference, we use modified membership



advantage AdV,tA(A,A,n,D,(p,@_lﬂT), which measures the
performance of the membership adversary when the challenge
point is drawn from D’. In the case of a model inversion
attack as described in the beginning of Section IV-A, we have
AdVM(A, A, n, D) = AdVM(A, A,n,D, 0, o1, 7), ie., the
modified membership advantage equals the unmodified one.

Theorem 7 shows that the attribute advantage of AR .\,
is proportional to the modified membership advantage of Ay,
giving a lower bound on the effectiveness of attribute inference
attacks that use membership oracles. Notably, the adversary
does not make use of any associations that may exist between
©(z) and ¢, so this reduction is general and works even
when no such association exists. While the reduction does
not completely transfer the membership advantage to attribute
advantage, the resulting attribute advantage is within a constant
factor of the modified membership advantage.

Theorem 7. Let AX _.m be the adversary described in Adver-
sary 6, which uses Ay as an oracle. Then,

1
AdVA('AX—)M’ A7 n, D) = EAdViA (-AM7 A7 n, Da ' <p_1a 7T)'

Proof. We first give an informal argument. In order for
AX _,m to correctly guess the value of ¢, it needs to choose
the correct ¢;, which happens with probability %, and then
Am(2', As,n, D) must be 0. Therefore, Adv" = %Advi\f‘.

Now we give the formal proof. Let ¢’ be the value of ¢ that
was chosen independently and uniformly at random in Step 1
of Adversary 6. Since AR ), outputs ¢; if and only if ¢’ = ¢;
and Am(z") = 0, we have

Pr[AY .y =t |b=0t =1t
1

= EPr[AM(z’) =0|b=0,t=1t],

and likewise when b = 1. Therefore, the advantage of the
reduction adversary is

AdvA = 3" Prt = t;](Pr[AR sy =t; | b= 0,t =1;]
t;€T
—PrlAR =t |b=1,t =1])
Z Pr[t = t;](Pr[Am(z') = 0| b= 0,t = t;]
t; €T

—PrlAm(z') =0 b=1,t =1t
= L (PrlAn(z) =05 =0]

—PrlAun(2") =0[b=1])
= %Advff',

where the second-to-last step holds due to the fact that b and
t are independent. O

Adversary 6 has the obvious weakness that it can only
return correct answers when it guesses the value of ¢ correctly.
Adversary 7 attempts to improve on this by making multiple
queries to Ap. Rather than guess the value of ¢, this adversary

tries all values of ¢ in order of their marginal probabilities until
the membership adversary says “yes”.

Adversary 7 (Multi-query attribute — membership). Suppose
that ty, ..., t,, are the possible values of the sensitive attribute
t. The reduction adversary AY' .\, has oracle access to mem-
bership adversary Aw. On input ¢(z), As, n, and D, Ap_m
proceeds as follows:

1) Let 2 = ¢ (p(2)).

2) Foralli € [m], let z| be z’ with the value of the sensitive

attribute t changed to t;.
3) Query Awm to compute T = {t; | Am (%}, As,n, D) = 0}.
4) Output argmax, cp Proplt =t;]. If T = 0, outpur 1.

We evaluate this adversary experimentally in Section VI-C.

VI. EVALUATION

In this section, we evaluate the performance of the ad-
versaries discussed in Sections III, IV, and V. We compare
the performance of these adversaries on real datasets with
the analysis from previous sections and show that overfitting
predicts privacy risk in practice as our analysis suggests. Our
experiments use linear regression, tree, and deep convolutional
neural network (CNN) models.

A. Methodology

1) Linear and tree models: We used the Python scikit-
learn [33] library to calculate the empirical error R.,,, and
the leave-one-out cross validation error R., [34]. Because
these two measures pertain to the error of the model on points
inside and outside the training set, respectively, they were used
to approximate og and op, respectively. Then, we made a
random 75-25% split of the data into training and test sets.
The training set was used to train either a Ridge regression
or a decision tree model, and then the adversaries were given
access to this model. We repeated this 100 times with different
training-test splits and then averaged the result. Before we
explain the results, we describe the datasets.

Eyedata. This is gene expression data from rat eye tis-
sues [35], as presented in the “flare” package of the R
programming language. The inputs and the outputs are respec-
tively stored in R as a 120 x 200 matrix and a 120-dimensional
vector of floating-point numbers. We used scikit-learn [33] to
scale each attribute to zero mean and unit variance.

IWPC. This is data collected by the International Warfarin
Pharmacogenetics Consortium [36] about patients who were
prescribed warfarin. After we removed rows with missing
values, 4819 patients remained in the dataset. The inputs to the
model are demographic (age, height, weight, race), medical
(use of amiodarone, use of enzyme inducer), and genetic
(VKORCI1, CYP2C9) attributes. Age, height, and weight are
real-valued and were scaled to zero mean and unit variance.
The medical attributes take binary values, and the remaining
attributes were one-hot encoded. The output is the weekly dose
of warfarin in milligrams. However, because the distribution of
warfarin dose is skewed, IWPC concludes in [36] that solving
for the square root of the dose results in a more predictive



linear model. We followed this recommendation and scaled
the square root of the dose to zero mean and unit variance.

Netflix. We use the dataset from the Netflix Prize con-
test [37]. This is a sparse dataset that indicates when and how
a user rated a movie. For the output attribute, we used the
rating of Dragon Ball Z: Trunks Saga, which had one of the
most polarized rating distributions. There are 2416 users who
rated this, and the ratings were scaled to zero mean and unit
variance. The input attributes are binary variables indicating
whether or not a user rated each of the other 17,769 movies
in the dataset.

2) Deep convolutional neural networks: We evaluated the
membership inference attack on deep CNNs. In addition, we
implemented the colluding training algorithm (Algorithm 1)
to verify its performance in practice. The CNNs were trained
in Python using the Keras deep-learning library [38] and a
standard stochastic gradient descent algorithm [39]. We used
three datasets that are standard benchmarks in the deep learn-
ing literature and were evaluated in prior work on inference
attacks [7]; they are described in more detail below. For all
datasets, pixel values were normalized to the range [0, 1],
and the label values were encoded as one-hot vectors. To
expedite the training process across a range of experimental
configurations, we used a subset of each dataset. For each
dataset, we randomly divided the available data into equal-
sized training and test sets to facilitate comparison with prior
work [7] that used this convention.

The architecture we use is based on the VGG network [40],
which is commonly used in computer vision applications. We
control for generalization error by varying a size parameter s
that defines the number of units at each layer of the network.
The architecture consists of two 3x3 convolutional layers with
s filters each, followed by a 2x2 max pooling layer, two 3x3
convolutional layers with 2s filters each, a 2x2 max pooling
layer, a fully-connected layer with 2s units, and a softmax
output layer. All activation functions are rectified linear. We
chose s = 2% for 0 < ¢ < 7, as we did not observe qualitatively
different results for larger values of i. All training was done
using the Adam optimizer [41] with the default parameters in
the Keras implementation (A = 0.001, #; = 0.5, 82 = 0.99,
€ = 1078, and decay set to 5 x 10~*). We used categorical
cross-entropy loss, which is conventional for models whose
topmost activation is softmax [39].

MNIST. MNIST [42] consists of 70,000 images of hand-
written digits formatted as grayscale 28 x 28-pixel images,
with class labels indicating the digit depicted in each image.
We selected 17,500 points from the full dataset at random for
our experiments.

CIFAR-10, CIFAR-100. The CIFAR datasets [43] consist
of 60,000 32 x 32-pixel color images, labeled as 10 (CIFAR-
10) and 100 (CIFAR-100) classes. We selected 15,000 points
at random from the full data.

B. Membership inference

The results of the membership inference attacks on linear
and tree models are plotted in Figures 2a and 2b. The
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Fig. 2: Empirical membership advantage of the threshold
adversary (Adversary 2) given as a function of generalization
ratio for regression, tree, and CNN models.

theoretical and experimental results appear to agree when
the adversary knows both og and op and sets the decision
boundary accordingly. However, when the adversary does not
know op, it performs much better than what the theory
predicts. In fact, an adversary can sometimes do better by just
fixing the decision boundary at |e| = og instead of taking op
into account. This is because training set error distributions
of overfitted models tend to have a higher peak at zero than
a Gaussian. As a result, it is often advantageous to bring the
decision boundaries closer to zero.

The results of the threshold adversary on CNNs are given
in Figure 2c. Although these models perform classification,
the loss function used for training is categorical cross-entropy,
which is non-negative, continuous, and unbounded. This sug-
gests that the threshold adversary could potentially work in
this setting as well. Specifically, the predictions made by these
models can be compared against Lg, the average training



Our work Shokri et al. [7]
Attack | Makes only one query to | Must train hundreds of
complexity | the model shadow models
. Ability to train shadow
Required . . o
Average training loss Lg models, e.g., input distribu-
knowledge .
tion and type of model
0.505 (MNIST) 0.517 (MNIST)
Precision | 0.694 (CIFAR-10) 0.72-0.74 (CIFAR-10)
0.874 (CIFAR-100) > 0.99 (CIFAR-100)
Recall | > 0.99 > 0.99

TABLE I: Comparison of our membership inference attack
with that presented by Shokri et al. While our attack has
slightly lower precision, it requires far less computational
resources and background knowledge.

loss observed during training, which is often reported with
published architectures as a point of comparison against prior
work (see, for example, [44] and [45, Figures 3 and 4]).
Figure 2c shows that, while the empirical results do not match
the theoretical curve as closely as do linear and tree models,
they do not diverge as much as one might expect given that
the error is not Gaussian as assumed by Theorem 3.

Now we compare our attack with that by Shokri et al. [7],
which generates “shadow models” that are intended to mimic
the behavior of Ag. Because their attack involves using
machine learning to train the attacker with the shadow models,
their attack requires considerable computational power and
knowledge of the algorithm used to train the model. By
contrast, our attacker simply makes one query to the model
and needs to know only the average training loss. Despite
these differences, when the size parameter s is set equal to
that used by Shokri et al., our attacker has the same recall
and only slightly lower precision than their attacker. A more
detailed comparison is given in Table I.

C. Attribute inference and reduction

We now present the empirical attribute advantage of the
general adversary (Adversary 4). Because this adversary uses
the model inversion assumptions described at the beginning
of Section IV-A, our evaluation is also in the setting of
model inversion. For these experiments we used the IWPC
and Netflix datasets described in Section VI-A. For f4(e),
the adversary’s approximation of the error distribution, we
used the Gaussian with mean zero and standard deviation
Remp. For the IWPC dataset, each of the genomic attributes
(VKORCI and CYP2C9) is separately used as the target ¢.
In the Netflix dataset, the target attribute was whether a user
rated a certain movie, and we randomly sampled targets from
the set of available movies.

The circles in Figure 3 show the result of inverting the
VKORCI1 and CYP2C9 attributes in the IWPC dataset. Al-
though the attribute advantage is not as high as the membership
advantage (solid line), the attribute adversary exhibits a sizable
advantage that increases as the model overfits more and more.
On the other hand, none of the attacks could effectively infer
whether a user watched a certain movie in the Netflix dataset.
In addition, we were unable to simultaneously control for both
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Fig. 3: Experimentally determined advantage for various mem-
bership and attribute adversaries. The plots correspond to: (a)
threshold membership adversary (Adversary 2), (b) uniform
reduction adversary (Adversary 6), (c) general attribute adver-
sary (Adversary 4), and (d) multi-query reduction adversary
(Adversary 7). Both reduction adversaries use the threshold
membership adversary as the oracle, and f4(e) for the at-
tribute adversary is the Gaussian with mean zero and standard
deviation og.

op/os and 7 in the Netflix dataset to measure the effect of
influence as predicted by Theorem 5.

Finally, we evaluate the performance of the multi-query
reduction adversary (Adversary 7). As the squares in Figure 3
show, with the IWPC data, making multiple queries to the
membership oracle significantly increased the success rate
compared to what we would expect from the naive uniform
reduction adversary (Adversary 6, dotted line). Surprisingly,
the reduction is also more effective than running the attribute
inference attack directly. By contrast, with the Netflix data,
the multi-query reduction adversary was often slightly worse
than the naive uniform adversary although it still outperformed
direct attribute inference.

D. Collusion in membership inference

We evaluate A and AC described in Section III-D for
CNNs trained as image classifiers. To instantiate Fx and
Gk, we use Python’s intrinsic pseudorandom number gen-
erator with key K as the seed. We note that our proof of
Theorem 4 relies only on the uniformity of the pseudorandom
numbers and not on their unpredictability. Deviations from this
assumption will result in a less effective membership inference
attack but do not invalidate our results. All experiments set the
number of keys to k£ = 3.
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(a) Advantage as a function of network size for AC with
k = 3. For s > 16, CIFAR-10 and MNIST achieve
advantage at least 0.9 (precision > 0.9, recall > 0.99),
whereas CIFAR-100 achieves advantage 0.98 (precision
> 0.99, recall > 0.99).
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(b) Generalization error measured as the difference
between training and test accuracy. On MNIST, the
maximum was achieved at s = 8 at 0.05, while for
CIFAR-10 the maximum was 0.52 (s = 16), and 0.82
(s = 16) for CIFAR-100.

Fig. 4: Results of colluding training algorithm and member-
ship adversary on CNNs trained on MNIST, CIFAR-10, and
CIFAR-100. The size parameter was configured to take values
s =2 for i € [0, 7]. Regardless of the models’ generalization
performance, when the network is sufficiently large, the attack
achieves high advantage (> 0.98) without affecting predictive
accuracy.

The results of our experiment are shown in Figures 4a and
4b. The data shows that on all three instances, the colluding
parties achieve a high membership advantage without sig-
nificantly affecting model performance. The accuracy of the
subverted model was only 0.014 (MNIST), 0.047 (CIFAR-
10), and 0.031 (CIFAR-100) less than that of the unsubverted
model. The advantage rapidly increases with the model size
around s ~ 16 but is relatively constant elsewhere, indicating
that model capacity beyond a certain point is a necessary factor
in the attack.

Importantly, the results demonstrate that specific informa-
tion about nearly all of the training data can be intentionally
leaked through the behavior of a model that appears to
generalize very well. In fact, looking at Figure 4b shows
that in these instances, there is no discernible relationship
between generalization error and membership advantage. The
three datasets exhibit vastly different generalization behavior,
with the MNIST models achieving almost no generalization
error (< 0.02 for s > 32) and CIFAR-100 showing a large

performance gap (> 0.8 for s > 32). Despite this fact, the
membership adversary achieves nearly identical performance.

VII. RELATED WORK

A. Privacy and statistical summaries

There is extensive prior literature on privacy attacks on
statistical summaries. Komarova et al. [46] looked into partial
disclosure scenarios, where an adversary is given fixed statisti-
cal estimates from combined public and private sources and at-
tempts to infer the sensitive feature of an individual referenced
in those sources. A number of previous studies [21], [22], [47],
[48], [49], [50] have looked into membership attacks from
statistics commonly published in genome-wide association
studies (GWAS). Calandrino et al. [51] showed that temporal
changes in recommendations given by collaborative filtering
methods can reveal the inputs that caused those changes.
Linear reconstruction attacks [52], [53], [54] attempt to infer
partial inputs to linear statistics and were later extended to
non-linear statistics [55]. While the goal of these attacks has
commonalities with both membership inference and attribute
inference, our results apply specifically to machine learning
settings where generalization error and influence make our
results relevant.

B. Privacy and machine learning

More recently, others have begun examining these attacks
in the context of machine learning. Ateniese et al. [1] showed
that the knowledge of the internal structure of Support Vector
Machines and Hidden Markov Models leaks certain types of
information about their training data, such as the language
used in a speech dataset.

Dwork et al. [13] showed that a differentially private algo-
rithm with a suitably chosen parameter generalizes well with
high probability. Subsequent work showed that similar results
are true under related notions of privacy. In particular, Bassily
et al. [18] studied a notion of privacy called total variation
stability and proved good generalization with respect to a
bounded number of adaptively chosen low-sensitivity queries.
Moreover, for data drawn from Gibbs distributions, Wang
et al. [19] showed that on-average KL privacy is equivalent
to generalization error as defined in this paper. While these
results give evidence for the relationship between privacy and
overfitting, we construct an attacker that directly leverages
overfitting to gain advantage commensurate with the extent
of the overfitting.

1) Membership inference: Shokri et al. [7] developed
a membership inference attack and applied it to popular
machine-learning-as-a-service APIs. Their attacks are based on
“shadow models” that approximate the behavior of the model
under attack. The shadow models are used to build another
machine learning model called the ‘“attack model”, which is
trained to distinguish points in the training data from other
points based on the output they induce on the original model
under attack. As we discussed in Section VI-B, our simple
threshold adversary comes surprisingly close to the accuracy



of their attack, especially given the differences in complexity
and requisite adversarial assumptions between the attacks.

Because the attack proposed by Shokri et al. itself relies
on machine learning to find a function that separates training
and non-training points, it is not immediately clear why the
attack works, but the authors hypothesize that it is related to
overfitting and the “diversity” of the training data. They graph
the generalization error against the precision of their attack and
find some evidence of a relationship, but they also find that the
relationship is not perfect and conclude that model structure
must also be relevant. The results presented in this paper
make the connection to overfitting precise in many settings,
and the colluding training algorithm we give in Section VI-D
demonstrates exactly how model structure can be exploited to
create a membership inference vulnerability.

Li et al. [6] explored membership inference, distinguishing
between “positive” and “negative” membership privacy. They
show how this framework defines a family of related privacy
definitions that are parametrized on distributions of the adver-
sary’s prior knowledge, and they find that a number of previous
definitions can be instantiated in this way.

2) Attribute inference: Practical model inversion attacks
have been studied in the context of linear regression [4], [8],
decision trees [3], and neural networks [3]. Our results apply
to these attacks when they are applied to data that matches the
distributional assumptions made in our analysis. An important
distinction between the way inversion attacks were considered
in prior work and how we treat them here is the notion of
advantage. Prior work on these attacks defined advantage as
the difference between the attacker’s predictive accuracy given
the model and the best accuracy that could be achieved without
the model. Although some prior work [3], [4] empirically
measured this advantage on both training and test datasets,
this definition does not allow a formal characterization of how
exposed the training data specifically is to privacy risk. In
Section IV, we define attribute advantage precisely to capture
the risk to the training data by measuring the difference in the
attacker’s accuracy on training and test data: the advantage is
zero when the attack is as powerful on the general population
as on the training data and is maximized when the attack works
only on the training data.

Wu et al. [5] formalized model inversion for a simplified
class of models that consist of Boolean functions and explored
the initial connections between influence and advantage. How-
ever, as in other prior work on model inversion, the type of ad-
vantage that they consider says nothing about what the model
specifically leaks about its training data. Drawing on their
observation that influence is relevant to privacy risk in general,
we illustrate its effect on the notion of advantage defined in
this paper and show how it interacts with generalization error.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We introduced new formal definitions of advantage for
membership and attribute inference attacks. Using these def-
initions, we analyzed attacks under various assumptions on
learning algorithms and model properties, and we showed that

these two attacks are closely related through reductions in both
directions. Both theoretical and experimental results confirm
that models become more vulnerable to both types of attacks
as they overfit more. Interestingly, our analysis also shows
that overfitting is not the only factor that can lead to privacy
risk: Theorem 4 shows that even stable learning algorithms,
which provably do not overfit, can leak precise membership
information, and the results in Section IV-A demonstrate that
the influence of the target attribute on a model’s output plays
a key role in attribute inference.

Our formalization and analysis open interesting directions
for future work. The membership attack in Theorem 4 is
based on a colluding pair of adversary and learning rule,
A€ and AC. This could be implemented, for example, by a
malicious ML algorithm provided by a third-party library or
cloud service to subvert users’ privacy. Further study of this
scenario, which may best be formalized in the framework of
algorithm substitution attacks [23], is warranted to determine
whether malicious algorithms can produce models that are
indistinguishable from normal ones and how such attacks can
be mitigated.

Our results in Section III-A give bounds on membership
advantage when certain conditions are met. These bounds
apply to adversaries who may target specific individuals, bring-
ing arbitrary background knowledge of their targets to help
determine their membership status. Some types of realistic
adversaries may be motivated by concerns that incentivize
learning a limited set of facts about as many individuals in the
training data as possible rather than obtaining unique back-
ground knowledge about specific individuals. Characterizing
these “stable adversaries” is an interesting direction that may
lead to tighter bounds on advantage or relaxed conditions on
the learning rule.
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