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Abstract: When assessing scientific reasoning both (1) modeling connections in the discourse 
and (2) doing so at an appropriate grain size can be challenging for researchers. Our study 
suggests combining a novel theoretical (Fischer et al., 2014) and a novel methodological 
(Shaffer et al., 2006) framework to respond to these challenges by detecting epistemic 
networks of scientific reasoning processes in the context of collaborative vs individual 
problem solving of pre-service teachers. We investigated (1) whether the combination of these 
frameworks can be fruitfully applied to model scientific reasoning processes and (2) what unit 
of analysis researchers or instructors should choose to answer questions of interest. One no ve l 
aspect of our study is that we compared epistemic networks in case of collaborative vs 
individual reasoning processes. Our results show that (1) epistemic networks of scientific 
reasoning can reliably capture reasoning processes when comparing collaborative vs 
individual reasoning; and (2) propositional and potentially larger units might be considere d as 
“optimal” units of analysis to detect such differences. 
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Introduction 
Assessment of scientific reasoning in process data is a critical for the development of appropriate learning 
support. Although many fruitful approaches have been developed for the evaluation of reasoning and 
argumentation (Brown, Furtak, Timms, Nagashima & Wilson, 2010); general theoretical and methodological 
frameworks that allow analysis of scientific reasoning patterns on multiple layers (e.g., Chi, 1997) are scarce. 
Consequently, the selection of grain size at an early stage of the analysis and a resulting dilemma surrounding 
creation of larger units that allow further interpretation of the data (e.g., Weinberger & Fischer, 2006) often 
limit the generalizability of findings (Chi, 1997; Stegmann & Fischer, 2011). Also, using a pre-defined selection 
of a unit of analysis might cause difficulties when a researcher or a tutor would like to be more conclusive about 
the reasoning  processes: simultaneously  making  qualitative and  quantitative assessments. For example, a 
researcher (or tutor) may be interested in ideas, or codes, at a very fine grained (e.g., propositional) level in 
order to detect “elementary” units of reasoning processes. Meanwhile, she might be also interested in the 
connections, or relationships, between these ideas or codes captured at that fine-grained level, in order to asse ss 
the quality of reasoning processes (Chi, 1997; Weinberger & Fischer, 2006). Moreover, when aggre gating data 
into larger chunks, what would be an optimal choice? Would combining multiple propositions or defining a 
larger, e.g. sentence units, lead to better representation of reasoning processes? The present study investigates 
whether a combination of a novel theoretical framework on scientific reasoning (Fischer et al., 2014) as we ll as 
a novel methodological approach on modelling reasoners’ epistemic networks (Shaffer, 2006) can be 
meaningfully combined 1) to analyze patterns (epistemic networks) of scientific reasoning and 2) to 
disambiguate the question on grain size selection and data aggregation when assessing patterns (epistemic 
networks) of scientific reasoning. 

 
Scientific reasoning and argumentation 
There are different theoretical frameworks to conceptualize and analyze scientific reasoning. Many follow a 
“structural” approach,  focusing on the  structure  of  argumentation (see  Brown et  al.,  2010) while others 
emphasize the role of engagement in scientific reasoning processes (Okada & Simon, 1997). Our work be lo ngs 
to the latter stream of research understanding scientific reasoning as engagement of individuals or groups in a 
sequence of epistemic activities (Fischer et al., 2013). According to this model, scientific reasoning involves 
reasoners identifying an existing problem (Problem identification), articulating questions of how to proceed 
with their reasoning processes (Questioning), derive possible explanations of the problem (Hypothesis 
generation), construct artifacts, such as intervention plans, to solve the problem (Generating solutions), generate 
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and collect information (Evidence generation), evaluate that information (Evidence evaluation), engage others in 
the reasoning process (Communicating & scrutinizing), and draw conclusions (Drawing conclusions). Earlier 
studies found that both individual and collaborative reasoning in a professional problem solving context can be 
reliably coded using this framework (Csanadi, Kollar & Fischer, 2016). 

 
Collaborative vs. individual scientific reasoning processes 
Collaborative  scientific  reasoning has  the  potential  to  lead individuals  to  higher  engagement  in epistemic 
processes such as hypothesis generation and evidence evaluation compared to reasoning alone (Okada & Simon, 
1997; Teasley, 1995). Similarly, more recent findings (Csanadi et al., 2016) showed that when pre-service 
teachers solved a problem from their future practice as dyads, they engaged more in hypothesis generation (i.e ., 
trying to find an explanation to the problem) but less in generating solutions than individuals did. Nevertheless, 
this purely frequency-based approach for analysis to count the occurrence of certain codes has clear constraints. 
Most importantly, it cannot be conclusive enough regarding the patterns of epistemic processes that can 
characterize collaborative vs individual reasoning. For example, although dyads were found to be more 
explanatory, indicated by a higher engagement in hypothesizing, whether they did this in a more evidence-based 
manner (i.e. if they made more connections between hypothesizing and evaluating evidence) remained unclear. 
Being able to identify such connections or patterns in the data is, therefore, important for assessing quality 
aspects of scientific reasoning. 

 
Selection of grain size and data aggregation to capture patterns of reasoning 
To  assess  and  compare  reasoners  with respect to  the  patterns  of  the  epistemic  activities they engage  in, 
researchers should find answers to two related questions. First, what is an appropriate grain size (i.e., unit of 
analysis) and second, how should coded data be aggregated in order to gain a deeper understanding of the 
quality and features of the reasoning processes. Many researchers emphasize that data segmentation should be a 
separate and preceding step to coding (Chi, 1997; Strijbos, Martens, Prins & Jochems, 2006). This wo uld me an 
that the division of verbal data into chunks that carry meaningful information for further analysis should precede 
further analyses. However, this early selection of the unit of analysis has its limitations (e.g., Chi, 1997). 
Especially the use of smaller grain sizes (e.g., propositional unit) allow for a more fine-grained analysis of 
reasoning processes (e.g., to interpret the relation between independent clauses of compound sentences) and 
allow for frequency-based analyses. Indeed, many quantitative approaches to the analysis of scientific reasoning 
processes (e.g., Okada & Simon, 1997) suggest analyzing frequencies of single categories. However, 
considering that discourse moves are not unrelated to each other, relying on solely frequency-based information 
of data can lead to missing meaningful patterns of discourse (Cress & Hesse, 2013). At this point an emerging 
concern of data aggregation (Stegmann & Fischer, 2011), i.e., how the researcher/tutor can make higher level 
inferences based on data coded at a lower grain size, often generates uncertainty. When looking for relationships 
between coded units (e.g., propositions), how far these units can fall from each other? Can we meaningfully 
detect relationships between two neighboring units or does allowing for slightly “longer distance” connections 
increase explanatory power? A method that allows more adaptable choice of grain size (Siebert-Evenstone et al., 
2016), such as considering multiple units of analysis instead of relying on a pre-defined selection in order to 
model scientific reasoning could help to answer such questions. 

Another issue associated with coding-independent segmentation may arise if some codes turn out to be 
highly frequent ones while others occur relatively rarely. “Uneven” frequency distributions can bias further 
analyses of the dataset (e.g., Csanadi, Daxenberger, Ghanem, Kollar, Fischer & Gurevych, 2016). For example, 
high frequency codes might generate many connections with each other while also being related to many other 
codes. On the other hand, low frequency codes may lack enough connections with other codes to demonstrate 
the power to discriminate between epistemic networks of different groups (e.g., dyads vs individuals). Thus, in 
case of modeling reasoning processes, this can mean that some reasoning patterns may emerge as mere artifac ts 
while other connections in the data may remain undetected, and therefore, models of scientific reasoning sho uld 
account for such limitations. 

To summarize, using a hierarchical segmentation procedure and reliance on solely frequency-related 
information when analyzing scientific reasoning processes and comparing reasoners, leaves open the que stio ns 
of (1) how to aggregate and identify meaningful larger patterns in the data that can (2) help more validly capture 
the reasoning performance beyond simply counting the occurrences of single codes. 

 
Epistemic Network Analysis: A method to analyze (multiple scopes of) scientific 
reasoning 
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One solution of the abovementioned problems can be to code on multiple levels of granularity (Stegmann & 
Fischer, 2011). As Chi (1997) notes, this approach has the advantage of leading to more reliable results and 
interpretations at different levels. Generally speaking, segmentation might be a matter of the researchers’ fo c us 
of interest (Chi, 1997), the theoretical framework they apply (Clara & Mauri, 2010), the nature of data (e.g. 
synchronous vs asynchronous discussions) and more. Still, selecting multiple levels of analysis can contribute to 
more valid interpretations about the data (Chi, 1997; Weinberger & Fischer, 2006) as different lenses may 
capture different aspects of collaborative learning and reasoning processes. 

Epistemic Network Analysis (ENA; Shaffer, 2006) is a method to identify meaningful and quantifiable 
patterns in discourse/reasoning. It can provide an alternative to the widespread “code and count” approach. ENA 
moves beyond the traditional frequency-based assessments by examining the structure of the co-occurrenc e, o r 
connections in coded data. Moreover, compared to other methodological approaches, e.g., sequential analysis 
(see in Cress & Hesse, 2013), ENA has the novelty of (1) modeling whole networks of connections and (2) it 
affords both quantitative and qualitative comparisons between different network models. 

A main theoretical assumption of ENA is that repeated co-occurrences of two or more codes in the 
discourse can reveal epistemic networks which characterize an underlying Discourse (Gee, 1999; Collie r e t al., 
2016), e.g., to collaborative (vs. individual) scientific reasoning. To identify a unit of analysis for calculating 
such co-occurrences, ENA provides an adaptable feature: the moving stanza window size (MSWS; Siebert- 
Evenstone et al., 2016). The term stanza window refers a window or scope within which ENA is searching for 
connections. This means that a MSWS=1 allows search for connections only between a proposition of reference 
and its preceding proposition. Therefore, a MSWS=1 results in connections only between neighboring 
propositions. A MSWS=2, however, allows one further step: it allows connection between a proposition of 
reference and the two preceding propositions. By changing MSWS from smaller values to larger it is possible to 
open the “search window” from very narrow context to wider ones. As a result, the researcher or tutor can look 
for connections not only within propositions (as in case of “coding and counting” approaches) or between 
neighboring propositions, but even between propositions that are two, three or more steps further from each 
other in the discourse. In short, it offers the advantage of multiple scopes for analysis. Here we aim to 
investigate if ENA can reveal some characteristics of collaborative (compared to individual) scientific reasoning 
processes as well as to articulate what grain sizes should be considered when using ENA for that analysis. 

Furthermore, ENA provides the opportunity  to quantitatively  and  qualitatively  compare different 
epistemic network models with each other. Quantitative comparison is possible by using calculated centroids for 
every epistemic networks generated by ENA. Such centroid values are determined by the strength of 
connections between nodes in the epistemic network. Nodes are the codes (such as epistemic activities, see 
below) while the strength of connections between them are generated based on their local co-occurrences 
(within each stanza window: see above). These centroid values can be used for quantitative analyses. 
Furthermore, qualitative comparison of epistemic networks is possible using various options for visualization. 
One option is “Subtracting networks” which means contrasting two network models by subtracting their nodes 
and connections weights from each other. A resulting “subtracted network” represents the difference between 
two reasoning networks and therefore, can illustrate what makes dyadic reasoning different from individual 
reasoning. 

 
Research questions 
RQ1: Do collaborative and individual reasoners exhibit different epistemic networks of scientific reasoning 
while solving a professional problem? 

While earlier studies demonstrated differences between collaborative and individual  reasoning in terms 
of their engagement in different epistemic activities (Csanadi et al., 2016; Okada & Simon, 1997), these re sults 
were mainly frequency-based. E.g., the researchers compared proportions as well as raw frequencies of 
engagement in different epistemic activities, such as evaluating evidence or hypothesizing. Thus, an open 
question is whether dyads also differ from individuals in the patterns of epistemic activities they engage in 
during scientific reasoning. In this study we address this question using ENA (Shaffer et. al. 2009) to capture 
meaningful patterns of co-occurrences between epistemic activities (i.e., epistemic networks of scientific 
reasoning), and to compare dyads with individual reasoners. 

Epistemic networks can, however, also be defined based on larger speech units (e.g., across multiple 
propositions) and we can also implement larger grain sizes beyond analyzing neighboring propositions or within 
sentences. To fully answer RQ1, therefore, we investigated whether some grain sizes can provide potentially 
better explanation of patterns in the data than others. 

RQ2: Do the epistemic networks we detect investigating RQ1 differ from epistemic networks base d on  
the same data set that has been randomly resorted (i.e. with the same frequency information)? 
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ENA models co-occurrences of codes, since some codes occur more frequently than others, it is mo re 
likely that these highly frequent codes make connections (co-occur) with other codes more often than lower 
frequency codes. Consequently, ENA may “overestimate” some connections. Therefore, to answer our second 
research question, we compared ENA results from RQ1 to ENA results obtained from a dataset that contained 
only frequency information of the original discourse (see below). If the epistemic networks identified in relatio n 
to RQ1 cannot be explained merely by the frequency distribution of epistemic activities, the epistemic networks 
detected in relation to RQ1 should differ from the epistemic networks of the randomly resorted dataset. 

 
Method 
The data analyzed in this study is a re-analysis of process data from another study (Csanadi et al., 2016). In the 
original study N=76 preservice teachers (59 female, MAge=21.22, SDAge=3.98) solved a problem case from the ir 
future profession in one of two between-subject conditions: either as individuals (N=16) or as dyads (N=30 
dyads). Think aloud and discourse data of their problem solving were first manually segmented into 
propositional units and then coded for further analysis. The coding scheme of that study was developed based 
on the framework of scientific reasoning by Fischer et al. (2014). Epistemic activities identified by the 
framework (see above) were applied (Table 1): Problem identification for an initial attempt to build an 
understanding of the problem; Questioning for statements or questions triggering further inquiry; Hypothesis 
generation for developing explanations of the problem; Evidence generation for reference to information or lac k 
of information that could support a claim; Evidence Evaluation to evaluate a claim; Communicating and 
scrutinizing for planned discussions with others (e.g., in order to find out further information); Drawing 
conclusions for concluding outcomes of reasoning. Finally, the epistemic activity of “Constructing artefacts” (in 
Fischer et al., 2014) was operationalized as developing interventions or solution plans, and such propositions 
were labelled as Generating solutions. Moreover, the codes for Evidence generation and Evidence evaluation 
were merged into Evidence evaluation. Both segmentation (79.73% of agreement by Coder 1 and 85.09% of 
agreement by Coder 2) and coding (κ = 0.68) proved to be reliable. We used this dataset (original dataset) to 
analyze further in our present study. 

We used the abovementioned original dataset to answer RQ1. To be able to answer RQ2 we created a 
randomized dataset in the following way. Using the original dataset within each dyad and individual participants 
we created a random sequence of the pre-segmented propositions (Csanadi et al., 2016). That meant, the original 
sequence  of  propositions  were  randomized while  the relative frequency of propositions was preserved (no 
propositions were deleted). This new randomized dataset preserved the information of the occurrence of 
epistemic activities, yet, in a randomized order; containing the information to which individual or dyad the 
epistemic activities belong to, how frequently they occur, but without any information regarding their se que nc e 
in the original dataset. 

We used ENA to identify epistemic networks of scientific reasoning in order to answer both RQ1 and 
RQ2. We built epistemic network models using ENA in four steps. First, we calculated co-occurrences betwe e n 
epistemic activities (MSWS=1, means rotation was applied) for dyads and for individuals. At the same time 
ENA automatically generated a centroid value for each dyad or individual that served as a numeric 
representation of their epistemic network and it was included in further analysis to compare dyadic and 
individual epistemic networks of scientific reasoning. Second, mean, or “average,” networks were defined for 
both the dyadic and the individual reasoning conditions, respectively. Each of these networks visually 
represented all the connections that participants (dyads or individuals) generated in the given condition. Third, 
we quantitatively compared epistemic networks for dyads with epistemic networks for individuals by comparing 
the mean centroid values (calculated in step 1) in the two conditions. Fourth, we subtracted the mean dyadic and 
mean individual networks from each other (by using the “Subtracting networks” option in ENA). The resulting 
subtracted networks visualized what connections contributed to the difference between the two reasoning 
conditions (dyadic vs individual, calculated in step 3). 

To be able to fully answer RQ1 regarding grain size, we sequentially set MSWS from 1 to 7, step-by 
step, performing the same analysis for each stanza window size. The resulting epistemic network models at each 
MSWS level allowed us quantitative as well as qualitative (visual) comparisons. 

To answer RQ2, we used the randomized dataset selecting the same parameters and performing the 
same analysis as in case of RQ1. We compared the outcomes of this analysis with the ENA results from RQ1. 

 
Table 1: Coding scheme for epistemic activities 

 
Code Short Description Example 
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Problem identification 

Questioning 

Hypothesis generation 

Evidence generation 

 
Evidence evaluation 

Generating solutions 

Communicating & 
scrutinizing 

 
Drawing conclusions 

 
 

Non-epistemic 

An attempt to understand the problem. 
 

A question orienting inquiry. 

Explanation of the problem. 

Referring to any information / lack of 
inf. relevant for the inquiry 

 
Evaluation information. 

 
 

Planning an intervention / solution to 
the problem. 

 
Planning to engage others. 

 
 

Concluding the outcomes of the earlier 
steps of inquiry. 

 
Everything else, e.g. coordination. 

"So it is about a student, // who has low 
grades" 

"Ok, so what is the reason for that?" 
 

"...the reason is her learning method" 

"She studies diligently at home" 

 
"...you can even exclude the problem of 

exam nerves" 
 

"You should discourage her from using 
surface strategies" 

 
"You can also talk to the parents" 

 
 

"For me these would be the most important 
points..." 

 
"Ok, have you read it through?" 

 
Results 
RQ 1: To answer RQ1, as a first step, we compared dyadic and individual networks at the grain size of 
MSWS=1 which lead to the following results. The mean centroid value for individuals’ epistemic networks 
(M=.21,SD=.32) was significantly different from the mean centroid value for dyads’ epistemic networks (M=- 
.11,SD=.21), t(44)=3.65, p<.01, d=1.32. Plotting epistemic networks (Figure 1) further revealed that the c e ntral 
epistemic activity accounting for most of the connections was evidence evaluation. Moreover, in case of dyads 
evidence evaluation showed more complex network than in case of individuals: for dyads it was connected to 
hypothesis generation, communicating and scrutinizing, generating solutions and non-epistemic propositions; 
while in the case of individuals it was only connected to hypothesis generation and generating solutions. Finally, 
subtracting individual from dyadic networks revealed that in case of individual networks it was solution 
generation rather than evidence evaluation that played a central role in contrast to dyadic networks where only 
evidence evaluation showed multiple connections after subtraction. 

 
Figure1. Epistemic networks of dyads (blue, left), individuals (red, right) and the difference between their 

networks (center) using the original dataset. 
 

To completely answer RQ1 and in order to see whether there is an optimal grain size that can best 
capture the differences between epistemic networks of dyads and individuals, we compared epistemic netwo rks 
at 1 ≤ MSWS ≤ 7 levels which led to the following results. All comparisons were statistically significant at least 
under p<.01. Although effect size showed a small increase at every MSWS level, these differences we re small: 
the explained variance increased only by 5.35% (ΔR²=.05) from MSWS=1 (R²=.30) to MSWS=7 (R²=.36). 
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Finally, a visual inspection of the epistemic networks conducted at 1 ≤ MSWS ≤ 7 levels suggested highly 
similar patterns at every MSWS levels (see Figure 1). 

RQ 2: Similar to the outcomes of RQ1, when using the randomized dataset, the mean centroid value for 
individuals’ epistemic networks (M=.17,SD=.26) was significantly different from the mean centroid value for 
dyads’ epistemic networks (M=-.09,SD=.20), t(44)=3.35, p<.01, 95%, d=1.15. Plotting epistemic networks 
(Figure 2), however, revealed no visible difference between dyadic and individual networks. Dyadic and 
individual networks  showed identical patterns regarding complexity: connections occurred among the three 
most frequent epistemic activities: hypothesis generation, solution generation and evidence evaluation. This was 
in clear contrast with the results of RQ1 where epistemic networks were different for collaborative vs individual 
reasoning (Figure 1). A further important difference is that Figure 2 does not indicate any central epistemic 
activity, neither for dyadic and individual nor for the subtracted pattern. Moreover, Figure 2 shows very low 
level of network complexity for dyads (connections among the highest-frequency activities) compared to Figure 
1. Finally, the subtracted network model on Figure 2 consists of only blue lines, indicating that dyads made 
more connections among the highly frequent codes than individuals. 

 
Figure2. Epistemic networks of dyads (blue, left), individuals (red, right) and the difference between their 

networks (center) using the randomized dataset. 
 
Discussion 
The two main aims of our study were (1) to see whether we can aggregate data to capture meaningful patterns 
(epistemic networks) of scientific reasoning processes regarding collaborative and individual reasoning (RQ1 & 
RQ2) and (2) to search for an optimal grain size, or unit of analysis, for such aggregation (RQ1). We sought to 
answer these questions by the application of a novel theoretical framework on scientific reasoning (Fischer et 
al., 2014) and a novel methodological approach on modelling epistemic networks (Shaffer, 2006). 

The outcomes for RQ1 suggest that epistemic networks of scientific reasoning can meaningfully 
differentiate between collaborative and individual reasoning processes. More specifically, dyads seemed to 
engage in a more complex manner in scientific reasoning compared to individuals: they made more connections 
between epistemic activities (specifically, with evidence evaluation). Moreover, while individual reasoning was 
rather solution-focused; dyadic reasoning seemed to be more evidence-focused. These results are also  in 
accordance with previous frequency-based findings (Csanadi et al., 2016; Okada & Simon, 1997). 

To be able to fully answer RQ1 we ran further analyses at different stanza window sizes that resulted in 
patterns quite similar to those in Figure 1. On the one hand, this suggests the robustness of our findings, on the 
other, a question of the optimal grain size to detect meaningful patterns of scientific reasoning cannot be 
conclusively answered. A partial answer is, however, that choosing larger speech unit (e.g., sentences) at a first 
step may represent reasoning patterns in the data at least closely as well as propositions do. Yet, further 
empirical research could test (1) whether this is true and if (2) varying stanza window sizes on sentence units 
would lead to different results. Based on the results of this study and considering the exhaustiveness of hand- 
coding procedure, however, choosing larger units of analysis that still carry the information needed to model 
scientific reasoning may be an efficient choice for the researcher/tutor. 

The outcomes on RQ2 show that epistemic networks extracted on discourse data (original datase t) are 
likely to be valid models for the evaluation of reasoning patterns in the data as they are not reducible to the 
frequency distribution of codes. Furthermore, it is clear that merely frequency-information in the data resulted in 
only “poor” network models: networks represented solely the most frequent codes and their connections. 
Additionally, after subtracting those networks the results suggested that dyads made more connections 
everywhere. These results did not add much explanatory value to the frequency-based outcomes of the earlier 



CSCL 2017 Proceedings 221 © ISLS  

 

findings (Authors, 2016a), which underlines the assumption that ENA conducted on real discourse data can 
detect meaningful patterns of scientific reasoning. 

Finally,  the  results  imply  that  identifying  epistemic  processes  on  the  propositional  level  and 
aggregating data by conducting epistemic network analysis can offer a powerful way to meaningfully assess 
scientific reasoning in discourse. 

 
Final conclusions 
Our results have further important consequences. 

First, the theoretical (Fischer et al., 2014) and the methodological (Shaffer, 2009) frameworks could be 
fruitfully combined to result in a series of robust analyses of identifying epistemic networks of scientific 
reasoning. 

Second,  dyadic  vs.  individual  reasoning networks  can be  valid models  of  scientific reasoning in 
discourse. Yet, we need more empirical research to see if this result holds as well as see the pre dic tive validity 
of our findings. For example, the extent to which dyads’ more extensive connections could potentially predict 
learning outcomes and whether some connections might play a stronger moderating role in that process, are 
questions for future research. 

Finally, additional analyses that can more directly address the impact of frequency distribution of codes 
on epistemic networks could also contribute to conclusions regarding the validity of the findings. Fo r e xample , 
alternative measures provided by ENA could account for “imbalanced” frequency distribution in the data. Those 
measures could apply, for example, some weighting method for assigning less weight to higher frequency code s 
or to connections among higher frequency codes, in order to reduce the chance of detecting artefactual 
connections due to higher probability of co-occurrence between high-frequency codes. Similarly, if ENA c o uld 
generate a simple frequency-based epistemic network model (similar to the outcomes on RQ2) and would allo w 
its subtraction from the epistemic network model on the real dataset; that would afford the visualization of 
reasoning patterns beyond highly frequent connections. Yet, such measures should be implemented with 
caution: connections captured in the discourse should always represent connections in the Discourse (Gee, 
1999). 
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