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Abstract 
 
Background 
This paper explores a method for assessing intraoperative performance by modeling how surgeons 
integrate psychomotor, procedural, and cognitive skills to manage errors. 
 
Methods 
Audio-video data were collected from general surgery residents (N=45) performing a simulated 
laparoscopic ventral hernia repair. Errors were identified using a standard checklist, and speech was 
coded for elements related to error recognition and management. Epistemic network analysis (ENA) was 
used to model the integration of error management skills. 
 
Results 
There was no correlation between number or type of errors committed and operative outcome. However, 
ENA models showed significant differences in the integration of error management skills between high-
performing and low-performing residents. 
 
Conclusion 
These results suggest that error checklists and surgeons’ speech can be used to model the integration of 
psychomotor, procedural, and cognitive aspects of intraoperative performance. Moreover, ENA can 
identify and quantify this integration, providing insight on performance gaps in both individuals and 
populations. 
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Introduction 

Medical errors are one of the leading causes of death in the United States.1 However, research suggests 
that negative patient outcomes are predicted not by the number of errors committed but by error 
management: how well that surgeon identifies and recovers from operative errors.2 Thus, there is a 
substantial need for interventions that help surgeons recover from errors, but the cognitive and decision-
making processes which underlie surgeons’ abilities to successfully manage their errors are complex, 
poorly understood, and rarely measured by standard assessments of surgical performance. 
 In a recent paper published in the Annals of Surgery, Madani and colleagues present a novel 
intraoperative performance framework which includes a wider (and more complex) set of surgical 
competencies determined to be essential for expert proficiency.3 The framework, which is intended to 
provide a procedure-agnostic guide to performance assessment and curriculum design, characterizes 
surgical expertise as the integration of behaviors in five areas: psychomotor skills, declarative knowledge, 
interpersonal skills, personal resourcefulness, and advanced cognitive skills. In alignment with more 
general work on the development of expertise,4–6 Madani and colleagues argue that mere possession of 
knowledge or mastery of individual skills in isolation is not sufficient; rather, expert surgeons must be 
able to integrate these and other competencies “efficiently, flexibly, and creatively” (p. 255) to achieve 
optimal patient outcomes. 

Despite the importance of this integration, most assessment tools measure specific competencies 
only in isolation, often missing critical elements of operative ability.7,8 For example, technical proficiency 
is typically evaluated with the Objective Structured Assessment of Technical Skills (OSATS),9 while non-
technical skills are often assessed using the Non-Technical Skills for Surgeons (NOTSS) rubric.10 Though 
both purport to provide a global assessment of surgical competencies, neither measure takes into account 
how those competencies are effectively integrated to accomplish complex tasks. In addition, research 
suggests that such measures, while helpful for providing formative feedback, do not perform well as 
assessments of aptitude.11–13 There are, of course, many other assessment tools widely used for evaluating 
and assessing surgical performance—including oral and written examinations, task-specific and global 
rating scales, final product analyses, and documentation of critical failures—yet most approaches that 
evaluate performance in situ are based on assessment of technical skill and simple metrics such as the 
time it takes to complete a procedure.14 

Using the framework developed by Madani and colleagues as a guide, we conducted a study to 
explore a method for identifying, measuring, and visualizing how and to what extent general surgery 
residents were able to integrate different elements of intraoperative performance. To do this, we used a 
dataset previously reported on in the American Journal of Surgery by Law Forsyth and colleagues.15 In 
particular, we explored how residents identified and managed errors while completing the final steps of a 
simulated laparoscopic ventral hernia repair. For this study, we used epistemic network analysis (ENA), a 
statistical technique for constructing dynamic network models that quantify and visualize the structure 
and strength of association among elements of complex task performance over time.16–19 ENA has been 
used to model and assess the integration of behaviors during highly technical or complex problem-solving 
activities in a range of domains, including engineering,20–22 urban planning,23,24 investigative journalism,25 
primary care,26 and trauma surgery.27 ENA thus provides an objective, quantitative method for measuring 
the integration of surgical skills, knowledge, and decision-making in an authentic operative context. 

 
 

Methods 

Setting and participants 
 
Participants (N = 45: 21 women, 24 men) were general surgery residents (PGY1−5) from seven different 
institutions. Residents performed the final steps of a laparoscopic ventral hernia (LVH) repair on a 
physical, box-style simulator designed to represent the abdominal cavity of a patient with a ventral 
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hernia.28 All necessary open and laparoscopic equipment for a mesh repair was provided. Participants 
were informed that two anchoring sutures had already been brought through the patient’s skin and were 
given fifteen minutes to complete the repair by retrieving and securing the last two sets of sutures and 
placing five tacks to secure the mesh to the abdominal wall. Participants were not given any information 
about the purpose of the study. Trained researchers acted as medical student-level assistants during the 
simulation and introduced themselves as such. Assistants were not permitted to explain any aspects of the 
LVH procedure to the participants. Participants were not trained on how to speak during the procedure 
beyond being instructed to verbalize their needs as acting surgeons to their assistants. 

 
Data collected 
 
We audio and video recorded all simulated procedures (laparoscopic and external video). For each 
participant, we transcribed the audio data—each participant’s intraoperative speech, or discourse—into 
utterances, where an utterance was defined as a continuous turn of talk; a period of silence lasting longer 
than three seconds was used to mark the end of an utterance. All utterances were timestamped for 
integration with errors committed during the simulation. Discourse only included utterances exchanged 
between participants and assistants. 
 
Outcome measure 
 
A surgeon rater trained in grading simulated hernia skins graded all hernia repairs for completion and 
quality using a previously validated checklist, which includes both technical and cognitive performance 
measures.15 Possible outcome scores range from 0 to a maximum of 24. Outcome scores for the 
participants in this study (n = 45) ranged between 3 and 24 (M = 14.29, SD = 5.36). Outcome scores were 
normally distributed according to a Shapiro-Wilk normality test (WOS = 0.97, pOS = 0.29).a 
 
Error identification 
 
We used a standard checklist to identify six discrete and unrelated errors that can occur during the latter 
half of an LVH repair (Table 1).29 Each error was categorized as a Cognitive, Visuospatial, or Motor error 
following the framework of intraoperative performance developed by Madani and colleagues.3 Cognitive 
Errors indicated problems in the advanced cognitive skill and declarative knowledge domains of 
Madani’s framework, while Visuospatial and Motor Errors indicated problems in the psychomotor 
domain. Errors occurred naturally; that is, they resulted only from residents’ decisions and actions. Errors 
committed during the simulated procedure were recorded and timestamped live by a trained rater and 
validated afterward by a second, independent rater using video data. Disagreements between the two 
raters were resolved through discussion and review of the video to produce a single set of ratings on 
which both raters agreed. Errors were then integrated chronologically into the transcripts of recorded 
discourse based on the times at which they occurred. 
 

                                                           
a The Shapiro-Wilk test assumes a normal distribution as its null hypothesis. Therefore, a p-value of  > 0.05 
indicates no statistical basis for rejecting the null hypothesis, and thus a high probability of normality. 
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Table 1: Error Descriptions 
 

Error Type of Error Description & Adverse Events 
Inserts Tool 

without 
Visualization 

Cognitive 
The surgeon inserts a laparoscopic instrument without camera 
visualization, which risks nicks and punctures to organs and 
blood vessels. 

No Incision Prior 
to Endoclose Cognitive 

The surgeon fails to make an incision in the skin prior to 
inserting the endoclose. This failure can make insertion more 
difficult, thus inviting the use of more force than necessary, 
which can then lead to puncture of organs. 

Grabs Extra 
Suture Visuospatial 

The surgeon pulls up two sutures with a suture passer at the 
same time. This error can result from a surgeon mistaking the 
location of the grasper and/or suture passer relative to the 
sutures, or it can result from a failure to visualize the structural 
consequences of grabbing two sutures at once. 

Two Sutures 
Same Hole 

Visuospatial 

The surgeon pulls up a second suture through the same hole as 
the first, causing the mesh to fall back into the abdominal wall. 
Similar to Grabs Extra Suture, this error indicates that the 
surgeon has failed to visualize the structural consequences of 
pulling two sutures through the same hole. 

Tacker Slips Motor 
The tacker slips on the mesh while the surgeon is attempting to 
place a tack. This error can pull the mesh if it has not already 
been secured, or it can cause unintended tack placement. 

Drops Tool Motor 
The surgeon drops an instrument. This can contaminate the 
operative space and potentially injure the patient or operative 
staff. 

 
Discourse coding 
 
To identify elements of residents’ speech associated with error recognition and management, we 
conducted a grounded analysis30 of residents’ discourse during the simulated procedure. In a grounded 
analysis, transcripts are evaluated qualitatively to determine the presence or lack of potentially 
meaningful patterns of behavior. Our analysis focused on behaviors related to error recognition and 
recovery, and we used the framework of Madani and colleagues3 to inform this analysis. In many cases, 
we observed that residents who exhibited good error management began by recognizing an issue (often by 
expressing dismay or frustration) and/or identifying a problem. They subsequently developed a plan to 
address the issue and gave instructions to the assistant accordingly. While the sequence was not always 
the same, residents who managed their errors well typically identified the problem and verbalized a plan 
to address it. The following example illustrates this pattern: 
 

Line 1 Alright, now look down and find that one suture that’s left. 
Line 2 I’m going to grab both. 
 [Error: Grabs Extra Suture] 
Line 3 See, I got to come under you a little bit. You can just kind of stay still and I’ll do it. 
Line 4 There we go. 
Line 5 Did it fall down? That’s fine, no worries. 
Line 6 Can I get both at once? Hmm. 
Line 7 Let me pull up one and then I’ll get the other one and since I guess I can’t grab them both. 
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The resident commits an error (Line 2), recognizes the problem (Line 5), and then devises a plan to fix it 
(Line 7). 

To operationalize these elements of error management, we created four discourse codes: 
Frustration, Identifying Errors, Operative Planning, and Giving Instructions (Table 2). Importantly, these 
four codes are procedure-agnostic: that is, each code identifies an interpersonal or cognitive attribute that 
is universal in surgical practice. Per the framework developed by Madani and colleagues, Identifying 
Errors and Operative Planning are advanced cognitive skills necessary for operative success, while 
Giving Instructions is a key interpersonal skill. Frustration is a basic element of personal resourcefulness 
(recognition and management of stress, attention, and operative goals). 

We developed automated coding algorithms for each code. For example, to automate the code 
Identifying Errors, we developed an algorithm that identifies verbalizations of mistakes in the discourse. 
Regular expressions ensure accurate string matching. For instance, the regular expression /bfell/b 
identifies instances of “fell”—as in, “the suture fell”—but not words containing “fell”, like “fellow”. 

All four automated coding algorithms were validated by two trained human raters. For each code, 
the human raters and the coding algorithm independently rated a random sample of 50 utterances. 
Cohen’s kappa was calculated between the two human raters and between each human rater and the 
coding algorithm. To determine whether the kappa values obtained for these samples could be reasonably 
generalized to the whole dataset, Shaffer’s rho (ρ) was calculated for each kappa using the rhoR package 
for the R statistical computing software platform.31 Rho uses an empirical sampling process that produces, 
for any inter-rater reliability statistic, an estimate of the expected Type I error rate at a given sample 
size.32 Because kappa was greater than or equal to 0.80 and rho was less than 0.05 for every code and all 
combinations of raters (Table 3), we used the automated coding algorithms to code all the utterances in 
the dataset prior to ENA analysis. This automation reduced the total number of utterances that would need 
to be coded by human raters from 3,194 to 50—a considerable reduction in labor. 
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Table 2: Discourse Codes 
 

Code Definition Example 

Human 1 
vs. 

Human 2 

Human 1 
vs. 

Computer 

Human 2 
vs. 

Computer 
Kappa Rho Kappa Rho Kappa Rho 

Frustration 

Expressing 
exasperation, 

dismay, or 
frustration 

“Ugh, this is not so easy.” 1.00 0.02 0.90 0.04 0.90 0.01 

Identifying 
Errors 

Recognizing a 
problem or 

something that 
needs to be 
corrected 

“See how the port doesn’t 
make it through the 

abdominal wall? That’s 
the problem.” 

0.90 0.01 0.85 <0.01 0.80 0.03 

Operative 
Planning 

Describing a plan 
or strategy on the 
fly or indicating 
what needs to 
happen next 

“We need to insufflate the 
abdomen.” 0.88 <0.01 0.92 0.01 0.82 <0.01 

Giving 
Instructions 

Giving an 
instruction to or 
making a request 
of the assistant 

“Can you show me the 
port?” 0.87 0.01 0.88 0.02 0.88 0.02 

 
 
Epistemic network analysis (ENA) 
 
To model error management, we used ENA, a statistical modeling tool which is described in detail 
elsewhere.16–19 To do this, ENA uses statistical and visualization techniques to identify, quantify, and 
represent connections among coded behaviors as network models. For example, if a surgeon often 
responds to grabbing an extra suture by expressing frustration, but seldom by developing an operative 
plan, the resulting ENA network of connections between that surgeon’s errors and discourse will possess 
a stronger connection between Grabs Extra Suture and Frustration than between Grabs Extra Suture and 
Operative Planning. Based on the different connection strengths between the error (Grabs Extra Suture) 
and the two discourse codes (Frustration and Operative Planning), we can infer that this surgeon was 
more likely to respond to errors by expressing frustration and less likely to do so by verbalizing the steps 
that could be taken to manage them. 

In this study, we assessed error management by modeling only those connections that occurred 
between errors and any of the four discourse codes that appeared in the utterances that immediately 
followed an error. We modeled connections among the discourse codes as well, but we did not model 
connections among the errors, as the errors are unrelated and thus independent from each other. For ENA 
analyses of error management, only those residents who committed at least one error during the 
simulation were included (n = 40). Residents were grouped into low-performing (n = 20) and high-
performing (n = 20) conditions by outcome score for analysis. 
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Results 
 
Neither number of errors nor type of error predicts operative outcome  
  

To assess whether the number of errors committed was predictive of outcome score, we performed a 
standard linear regression analysis. No correlation was found between the number of errors committed 
and outcome score (R2 = 0.03).  
 To assess whether specific errors were predictive of outcome score, we performed a penalized 
linear regression analysis, which consists of a standard linear regression analysis with weighting on 
variables whose sample size falls below the threshold needed to prevent a faulty generalization based on 
separation variability at low sample sizes.33 The only error which fell below this cutoff was Drops Tool. 
No single error was predictive of outcome score: p-values of > 0.05 were obtained for all six errors (Table 
3).  
 

Table 3: Linear Regression Table of Individual Errors against Outcome Score 
 

Error Estimate SE t-value p-value 
Insertion Without Visualization 2.47 1.62 1.53 0.14 
No Incision Prior to Endoclose 1.67 1.62 1.03 0.31 

Grabs Extra Suture –1.79 2.18 –0.82 0.42 
Two Sutures, Same Hole 0.05 1.91 0.03 0.98 

Tacker Slips 2.39 1.60 1.49 0.15 
Drops Tool –4.05 2.71 –2.24 0.09 

 
Surgeons’ intraoperative speech in response to errors predicts outcome score 
 
We performed an ENA analysis of residents’ coded intraoperative discourse to determine how residents 
recognized and reacted to errors after they occurred. For this ENA model, we used a moving stanza 
window34 of six utterances: codes that co-occurred within six utterances of one another were considered 
connected, while codes that occurred outside this window were not considered connected. Participants 
were grouped into low-performing (n = 20) and high-performing (n = 20) conditions by outcome score. 

Figure 1 (right) shows the low- and high-performing residents (white and gray points, 
respectively) along with their mean locations in the network space, which are represented by white and 
gray squares. The associated with each mean indicate the 95% confidence interval on each dimension. 
This analysis showed a significant difference on the second (y) dimension in how low- and high-
performing residents integrated skills and decision-making in response to errors (𝑦𝐿𝑃 = 0.13, 𝑦𝐻𝑃 =

 −0.08; ty = 2.46; py = 0.02; Cohen’s dy = 0.83). 
To understand the differences between low- and high-performing residents, we constructed a 

difference graph (Figure 1, left). The difference graph subtracts the edge weights of the mean networks of 
the low- and high-performing residents, visualizing the differences in weights; connections represented by 
dashed lines were stronger among the low-performing residents, and connections represented by solid 
lines were stronger among the high-performing residents. As the difference graph shows, high-performing 
residents made proportionally more connections to Operative Planning after committing cognitive or 
visuospatial errors, and they made a stronger connection between Identifying Errors and Operative 
Planning. Low-performing residents were more likely to make operative plans only in response to Motor 
Errors, the simplest of the three types of error to identify and correct, and they were more likely to 
respond to errors with frustration. These differences indicate different levels of ability to integrate 
elements of error recognition and management in response to errors. Low-performing residents were less 
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able to identify and develop a plan to respond to errors than high-performing residents, particularly when 
the errors were visuospatial or cognitive.  

 

 

Figure 1: Comparison of error management between low- and high-performing residents using 
epistemic network analysis. The graph on the left shows a subtraction of the mean network of high-
performing residents from the mean network of low-performing residents, which indicates the 
connections that were stronger among the low-performing residents (dashed lines) and those that were 
stronger among the high-performing residents (solid lines). Thicker lines indicate larger differences 
between the two groups. The graph on the right shows low-performing (white points, n = 20) and high-
performing (gray points, n = 20) residents, with the corresponding means (squares) and 95% confidence 
intervals (bars). Each point is the centroid of one resident’s network. The locations of the means provide 
the basis for measuring statistical differences between both groups of residents and are determined by the 
differences in network connection strengths. The network graph (left) enables interpretation of the 
statistically significant difference between the means of the two groups. 
 
 
Discussion 
 
This study examined a novel technique for modeling how general surgery residents from seven different 
institutions integrate elements of error recognition and management during an operative procedure. 
Residents who performed well on the final steps of a simulated LVH repair exhibited the same frequency 
and types of error as low-performing residents. However, high-performing residents were significantly 
more likely to manage complex errors by identifying the problem and verbalizing an operative plan to 
correct it. In other words, the quality of the hernia repair was significantly affected by how well residents’ 
managed their errors. 

Recent studies show that training residents not simply to avoid errors but to manage them can 
have positive effects on performance and on retention and transfer of skills.35–38 In addition, research 
suggests that assessing performance by classifying the frequency of errors does not adequately capture 
important operative abilities, including error recognition, framing of adverse events, contingency 
planning, and error recovery, all of which are critical for operative independence.39 Despite the 
development of numerous error classification checklists, assessment of error management remains largely 
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based on subjective observation and does not account for the ways in which surgeons integrate error 
management behaviors. 

These results indicate that ENA can use error checklist data (procedure-specific) and surgeons’ 
natural language discourse (procedure-agnostic) to model the integration of psychomotor, procedural, and 
cognitive elements of intraoperative performance as outlined in the framework proposed by Madani and 
colleagues.3 That is, ENA can take qualitative, in situ data from an authentic operative context and 
construct a comprehensive, quantitative model of operative performance. Importantly, such models can be 
used both to provide formative feedback and to assess aptitude; most extant measures of operative ability 
are not suitable for both formative and summative assessment.11–13 

In addition, ENA can provide actionable information about surgeons’ strengths and weaknesses. 
Existing measures of surgical performance are based on procedure time and assessment of technical 
skills, which provide a limited picture of the complex abilities needed for operative independence.14 
Because ENA produces a network for every individual, as well as mean networks for selected groups, 
such models can be used to provide both individual feedback and population-level summaries of 
performance. At the individual level, ENA models indicate which elements of intraoperative performance 
a surgeon integrates well or poorly, providing targets for further training or practice. At the population 
level, such models can guide the development or improvement of curricula to address common 
shortcomings in the integration of skills, knowledge, and decision-making. 

This study also has several limitations. While we provide evidence of model validity, further 
validation studies should be conducted. As we report above, the coding process is valid and reliable, the 
model identifies statistically significant differences between two groups with different outcomes, and the 
specific differences identified by the model correspond with hypothesized differences based on both a 
theoretical framework and qualitative analysis of the data. In future work, we will further validate this 
model by analyzing additional data. The approach described here should also be applied to additional 
operative procedures and contexts to assess its feasibility as a more general technique for modeling 
surgical performance. 

The purpose of this preliminary study was to test a novel approach to modeling the integration of 
surgical skills, knowledge, and decision-making, particularly advanced cognitive skills related to error 
management. Ultimately, our goal is to produce models that provide comprehensive assessment of 
intraoperative performance. However, this study raises significant questions about which elements of 
operative competency to model and how to collect evidence that clearly documents those elements, and 
future research is needed to explore these questions in detail. For example, Madani and colleagues 
identify 21 distinct “behavioral themes” within the domain of advanced cognitive skills alone, and in this 
study, we examined only those related to “error/injury recognition, rescue, and recovery” (pp. 260-61).3 
There may be dozens of distinct behaviors that are relevant in a given context, each of which may have a 
different level of importance or may be modified in various ways depending on the procedure, on the 
details of the specific case, or on the surgeon’s level of expertise. It may be necessary, then, to develop 
assessment models around specific clusters of behaviors—such as the error recognition and management 
model presented here—in order to make such assessments more tractable, and such models may require 
modification for different populations (e.g., junior residents, senior residents, &c.). 

Even when behaviors are identified for inclusion in a model, there are important questions about 
how they should be defined and identified. For example, surgeons would generally agree that operative 
planning (both proactive and reactive) is a critical skill in virtually all operative contexts, and in the 
present study, we developed a reliable method for identifying reactive operative planning by applying 
regular expression matching to residents’ intraoperative discourse. Our coding process, however, did not 
distinguish between appropriate and inappropriate plans—it identified only the behavior of planning, not 
whether the plan proposed was a good one. The extent to which the quality of a particular behavior needs 
to be modeled is an open question, and we will investigate this in future work. Another area where further 
research is needed involves the order of integration, as specific sequences of behaviors may be important 
in some contexts. 
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Similarly, determination of which errors to include in an analysis While the error checklist we 
applied in this study is based upon a validated set of criteria used to assess surgical competency on the 
LVH repair, the lack of impact errors had on outcome score may indicate insufficient breadth in the 
checklist. The size of the checklist is, in part, a byproduct of the simplified context in which participants 
performed the procedure. In other words, because residents were performing only the final steps of the 
LVH repair, the range of errors they could commit was somewhat limited. In addition, because this study 
is focused on error management, we omitted errors that were not committed by the residents in this study. 
In a longer procedure, a longer list of errors could be considered, and with a larger study population, a 
wider range of errors may occur. 

The question of data collection is also non-trivial. For example, haptic data would likely provide 
the best evidence of surgeons’ level of psychomotor skill. Metrics such as path length or smoothness of 
motion are excellent indicators of manual aptitude and confidence. However, collection of such data is 
not possible during live operations, unlike collection of audio-video or checklist data. Even if simulators 
are used, there is additional expense associated with the use of haptic sensors, and considerable data 
processing is required for meaningful interpretation. (Unlike audio data, which requires simple 
transcription to make it suitable for a wide range of analyses, haptic data must undergo extensive 
processing—e.g., sample-specific normalization, noise thresholding, and trajectory-supervised haptic 
rendering.) Thus, future work will need to explore the feasibility of collecting various kinds of 
performance data and evaluate the extent to which effective comprehensive models can be developed 
using only data that are relatively easy to collect; this is particularly necessary if for the development of 
assessment models that can be translated from research into practice. 

That being said, the reader may wonder how difficult it is to conduct an ENA analysis of the kind 
described here. There are essentially three phases: (a) data collection and processing, (b) data coding, and 
(c) data analysis. Data collection involves audio and video recording and collection of the simulator skins. 
The audio is transcribed, a standard checklist is used to identify errors (live and/or from the video), and a 
standard rubric is used to score the quality of the repair using the skins. These processes are comparable 
to those used in many frameworks for assessing surgical performance. Data coding, as described above, 
requires some effort if new codes are to be generated, but once the codes are automated, then even very 
large datasets can be easily coded in a matter of seconds. Lastly, ENA analyses can be conducted using 
the free online ENA webkit (http://www.epistemicnetwork.org/). The ENA webkit supports analysis, 
visualization, and statistical hypothesis testing. 
 
  
Conclusions 
 
On a simulated LVH repair, high-performing residents exhibited the same frequency and types of error as 
low-performing residents. However, high-performing residents were significantly more likely to manage 
their errors effectively by integrating relevant skills, knowledge, and decision making. These results 
suggest that procedure-specific error checklist data and procedure-agnostic elements of intraoperative 
behavior can be used to model the integration of critical aspects of intraoperative performance. In 
addition, multi-modal ENA models provide actionable information about surgeons’ strengths and 
weaknesses, which can inform the development of targeted educational interventions and improve the 
design of curricula to address common shortcomings. 
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