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Abstract

Background
This paper explores a method for assessing intraoperative performance by modeling how surgeons
integrate psychomotor, procedural, and cognitive skills to manage errors.

Methods

Audio-video data were collected from general surgery residents (N=45) performing a simulated
laparoscopic ventral hernia repair. Errors were identified using a standard checklist, and speech was
coded for elements related to error recognition and management. Epistemic network analysis (ENA) was
used to model the integration of error management skills.

Results

There was no correlation between number or type of errors committed and operative outcome. However,
ENA models showed significant differences in the integration of error management skills between high-
performing and low-performing residents.

Conclusion
These results suggest that error checklists and surgeons’ speech can be used to model the integration of
psychomotor, procedural, and cognitive aspects of intraoperative performance. Moreover, ENA can
identify and quantify this integration, providing insight on performance gaps in both individuals and
populations.



Introduction

Medical errors are one of the leading causes of death in the United States.! However, research suggests
that negative patient outcomes are predicted not by the number of errors committed but by error
management: how well that surgeon identifies and recovers from operative errors.> Thus, there is a
substantial need for interventions that help surgeons recover from errors, but the cognitive and decision-
making processes which underlie surgeons’ abilities to successfully manage their errors are complex,
poorly understood, and rarely measured by standard assessments of surgical performance.

In a recent paper published in the Annals of Surgery, Madani and colleagues present a novel
intraoperative performance framework which includes a wider (and more complex) set of surgical
competencies determined to be essential for expert proficiency.’ The framework, which is intended to
provide a procedure-agnostic guide to performance assessment and curriculum design, characterizes
surgical expertise as the integration of behaviors in five areas: psychomotor skills, declarative knowledge,
interpersonal skills, personal resourcefulness, and advanced cognitive skills. In alignment with more
general work on the development of expertise,*® Madani and colleagues argue that mere possession of
knowledge or mastery of individual skills in isolation is not sufficient; rather, expert surgeons must be
able to integrate these and other competencies “efficiently, flexibly, and creatively” (p. 255) to achieve
optimal patient outcomes.

Despite the importance of this integration, most assessment tools measure specific competencies
only in isolation, often missing critical elements of operative ability.”® For example, technical proficiency
is typically evaluated with the Objective Structured Assessment of Technical Skills (OSATS),” while non-
technical skills are often assessed using the Non-Technical Skills for Surgeons (NOTSS) rubric.'® Though
both purport to provide a global assessment of surgical competencies, neither measure takes into account
how those competencies are effectively integrated to accomplish complex tasks. In addition, research
suggests that such measures, while helpful for providing formative feedback, do not perform well as
assessments of aptitude.''!* There are, of course, many other assessment tools widely used for evaluating
and assessing surgical performance—including oral and written examinations, task-specific and global
rating scales, final product analyses, and documentation of critical failures—yet most approaches that
evaluate performance in sifu are based on assessment of technical skill and simple metrics such as the
time it takes to complete a procedure.'*

Using the framework developed by Madani and colleagues as a guide, we conducted a study to
explore a method for identifying, measuring, and visualizing how and to what extent general surgery
residents were able to integrate different elements of intraoperative performance. To do this, we used a
dataset previously reported on in the American Journal of Surgery by Law Forsyth and colleagues.'” In
particular, we explored how residents identified and managed errors while completing the final steps of a
simulated laparoscopic ventral hernia repair. For this study, we used epistemic network analysis (ENA), a
statistical technique for constructing dynamic network models that quantify and visualize the structure
and strength of association among elements of complex task performance over time.'®!” ENA has been
used to model and assess the integration of behaviors during highly technical or complex problem-solving
activities in a range of domains, including engineering,?*?* urban planning,”-* investigative journalism,*
primary care,”® and trauma surgery.?” ENA thus provides an objective, quantitative method for measuring
the integration of surgical skills, knowledge, and decision-making in an authentic operative context.

Methods
Setting and participants
Participants (N =45: 21 women, 24 men) were general surgery residents (PGY1-5) from seven different

institutions. Residents performed the final steps of a laparoscopic ventral hernia (LVH) repair on a
physical, box-style simulator designed to represent the abdominal cavity of a patient with a ventral



hernia.?® All necessary open and laparoscopic equipment for a mesh repair was provided. Participants
were informed that two anchoring sutures had already been brought through the patient’s skin and were
given fifteen minutes to complete the repair by retrieving and securing the last two sets of sutures and
placing five tacks to secure the mesh to the abdominal wall. Participants were not given any information
about the purpose of the study. Trained researchers acted as medical student-level assistants during the
simulation and introduced themselves as such. Assistants were not permitted to explain any aspects of the
LVH procedure to the participants. Participants were not trained on how to speak during the procedure
beyond being instructed to verbalize their needs as acting surgeons to their assistants.

Data collected

We audio and video recorded all simulated procedures (laparoscopic and external video). For each
participant, we transcribed the audio data—each participant’s intraoperative speech, or discourse—into
utterances, where an utterance was defined as a continuous turn of talk; a period of silence lasting longer
than three seconds was used to mark the end of an utterance. All utterances were timestamped for
integration with errors committed during the simulation. Discourse only included utterances exchanged
between participants and assistants.

Outcome measure

A surgeon rater trained in grading simulated hernia skins graded all hernia repairs for completion and
quality using a previously validated checklist, which includes both technical and cognitive performance
measures.'> Possible outcome scores range from 0 to a maximum of 24. Outcome scores for the
participants in this study (n = 45) ranged between 3 and 24 (M = 14.29, SD = 5.36). Outcome scores were
normally distributed according to a Shapiro-Wilk normality test (Wos = 0.97, pos = 0.29).?

Error identification

We used a standard checklist to identify six discrete and unrelated errors that can occur during the latter
half of an LVH repair (Table 1).%° Each error was categorized as a Cognitive, Visuospatial, or Motor error
following the framework of intraoperative performance developed by Madani and colleagues.® Cognitive
Errors indicated problems in the advanced cognitive skill and declarative knowledge domains of
Madani’s framework, while Visuospatial and Motor Errors indicated problems in the psychomotor
domain. Errors occurred naturally; that is, they resulted only from residents’ decisions and actions. Errors
committed during the simulated procedure were recorded and timestamped live by a trained rater and
validated afterward by a second, independent rater using video data. Disagreements between the two
raters were resolved through discussion and review of the video to produce a single set of ratings on
which both raters agreed. Errors were then integrated chronologically into the transcripts of recorded
discourse based on the times at which they occurred.

2 The Shapiro-Wilk test assumes a normal distribution as its null hypothesis. Therefore, a p-value of > 0.05
indicates no statistical basis for rejecting the null hypothesis, and thus a high probability of normality.
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Table 1: Error Descriptions

Error Type of Error Description & Adverse Events
Inserts Tool The surgeon inserts a laparoscopic instrument without camera
without Cognitive visualization, which risks nicks and punctures to organs and
Visualization blood vessels.

The surgeon fails to make an incision in the skin prior to
No Incision Prior Cognitive inserting the endoclose. This failure can make insertion more

to Endoclose difficult, thus inviting the use of more force than necessary,
which can then lead to puncture of organs.

The surgeon pulls up two sutures with a suture passer at the
same time. This error can result from a surgeon mistaking the
Visuospatial | location of the grasper and/or suture passer relative to the
sutures, or it can result from a failure to visualize the structural
consequences of grabbing two sutures at once.

Grabs Extra
Suture

The surgeon pulls up a second suture through the same hole as
the first, causing the mesh to fall back into the abdominal wall.
Visuospatial | Similar to Grabs Extra Suture, this error indicates that the
surgeon has failed to visualize the structural consequences of
pulling two sutures through the same hole.

Two Sutures
Same Hole

The tacker slips on the mesh while the surgeon is attempting to
Tacker Slips Motor place a tack. This error can pull the mesh if it has not already
been secured, or it can cause unintended tack placement.

The surgeon drops an instrument. This can contaminate the
Drops Tool Motor operative space and potentially injure the patient or operative
staff.

Discourse coding

To identify elements of residents’ speech associated with error recognition and management, we
conducted a grounded analysis®® of residents’ discourse during the simulated procedure. In a grounded
analysis, transcripts are evaluated qualitatively to determine the presence or lack of potentially
meaningful patterns of behavior. Our analysis focused on behaviors related to error recognition and
recovery, and we used the framework of Madani and colleagues® to inform this analysis. In many cases,
we observed that residents who exhibited good error management began by recognizing an issue (often by
expressing dismay or frustration) and/or identifying a problem. They subsequently developed a plan to
address the issue and gave instructions to the assistant accordingly. While the sequence was not always
the same, residents who managed their errors well typically identified the problem and verbalized a plan
to address it. The following example illustrates this pattern:

Line 1 Alright, now look down and find that one suture that’s left.
Line 2 I'm going to grab both.
[Error: Grabs Extra Suture]
Line 3 See, I got to come under you a little bit. You can just kind of stay still and I'll do it.
Line 4 There we go.
Line 5 Did it fall down? That’s fine, no worries.
Line 6 Can [ get both at once? Hmm.
Line 7 Let me pull up one and then I’ll get the other one and since I guess I can’t grab them both.



The resident commits an error (Line 2), recognizes the problem (Line 5), and then devises a plan to fix it
(Line 7).

To operationalize these elements of error management, we created four discourse codes:
Frustration, Identifying Errors, Operative Planning, and Giving Instructions (Table 2). Importantly, these
four codes are procedure-agnostic: that is, each code identifies an interpersonal or cognitive attribute that
is universal in surgical practice. Per the framework developed by Madani and colleagues, Identifying
Errors and Operative Planning are advanced cognitive skills necessary for operative success, while
Giving Instructions is a key interpersonal skill. Frustration is a basic element of personal resourcefulness
(recognition and management of stress, attention, and operative goals).

We developed automated coding algorithms for each code. For example, to automate the code
Identifying Errors, we developed an algorithm that identifies verbalizations of mistakes in the discourse.
Regular expressions ensure accurate string matching. For instance, the regular expression /bfell/b
identifies instances of “fell”—as in, “the suture fell”—but not words containing “fell”, like “fellow”.

All four automated coding algorithms were validated by two trained human raters. For each code,
the human raters and the coding algorithm independently rated a random sample of 50 utterances.
Cohen’s kappa was calculated between the two human raters and between each human rater and the
coding algorithm. To determine whether the kappa values obtained for these samples could be reasonably
generalized to the whole dataset, Shaffer’s rho (p) was calculated for each kappa using the rhoR package
for the R statistical computing software platform.*! Rho uses an empirical sampling process that produces,
for any inter-rater reliability statistic, an estimate of the expected Type I error rate at a given sample
size.>* Because kappa was greater than or equal to 0.80 and rho was less than 0.05 for every code and all
combinations of raters (Table 3), we used the automated coding algorithms to code all the utterances in
the dataset prior to ENA analysis. This automation reduced the total number of utterances that would need
to be coded by human raters from 3,194 to 50—a considerable reduction in labor.



Table 2: Discourse Codes

Human 1 Human 1 Human 2
. Vvs. Vs. VvS.
Code Definition Example Human 2 | Computer | Computer
Kappa| Rho |Kappa| Rho |Kappa| Rho
Expressing
Frustration | X3P, aqyop his is not so easy.” | 1.00 |0.02 | 0.90 | 0.04 | 0.90 | 0.01
dismay, or
frustration
Rg‘;gg{: Iilnz)‘%; 4 |“See how the port doesn’t
[dentifying | cthing that | makeitthroughthe 4 o5 16 o1 1 g5 |<0.01] 0.80 | 0.03
Errors abdominal wall? That’s
needs to be »
the problem.
corrected
Describing a plan
. or strategy on the |, .
Operative | q - indicating | " ¢ need toinsufflate the) - oo 16 011 092 [0.01 | 0.82 |<0.01
Planning abdomen.
what needs to
happen next
Giving an
szmg 1nstmct10n to or Can you sho,\jv me the 037 loo1| 088 002! 0ss |o.02
Instructions | making a request port?
of the assistant

Epistemic network analysis (ENA)

To model error management, we used ENA, a statistical modeling tool which is described in detail
elsewhere.'!” To do this, ENA uses statistical and visualization techniques to identify, quantify, and
represent connections among coded behaviors as network models. For example, if a surgeon often
responds to grabbing an extra suture by expressing frustration, but seldom by developing an operative
plan, the resulting ENA network of connections between that surgeon’s errors and discourse will possess
a stronger connection between Grabs Extra Suture and Frustration than between Grabs Extra Suture and
Operative Planning. Based on the different connection strengths between the error (Grabs Extra Suture)
and the two discourse codes (Frustration and Operative Planning), we can infer that this surgeon was
more likely to respond to errors by expressing frustration and less likely to do so by verbalizing the steps
that could be taken to manage them.

In this study, we assessed error management by modeling only those connections that occurred
between errors and any of the four discourse codes that appeared in the utterances that immediately
followed an error. We modeled connections among the discourse codes as well, but we did not model
connections among the errors, as the errors are unrelated and thus independent from each other. For ENA
analyses of error management, only those residents who committed at least one error during the
simulation were included (n =40). Residents were grouped into low-performing (n =20) and high-
performing (n = 20) conditions by outcome score for analysis.




Results

Neither number of errors nor type of error predicts operative outcome

To assess whether the number of errors committed was predictive of outcome score, we performed a
standard linear regression analysis. No correlation was found between the number of errors committed
and outcome score (R? = 0.03).

To assess whether specific errors were predictive of outcome score, we performed a penalized
linear regression analysis, which consists of a standard linear regression analysis with weighting on
variables whose sample size falls below the threshold needed to prevent a faulty generalization based on
separation variability at low sample sizes.** The only error which fell below this cutoff was Drops Tool.
No single error was predictive of outcome score: p-values of > 0.05 were obtained for all six errors (Table
3).

Table 3: Linear Regression Table of Individual Errors against OQutcome Score

Error Estimate SE t-value | p-value
Insertion Without Visualization 2.47 1.62 1.53 0.14
No Incision Prior to Endoclose 1.67 1.62 1.03 0.31
Grabs Extra Suture -1.79 2.18 -0.82 0.42
Two Sutures, Same Hole 0.05 1.91 0.03 0.98
Tacker Slips 2.39 1.60 1.49 0.15
Drops Tool —4.05 2.71 -2.24 0.09

Surgeons’ intraoperative speech in response to errors predicts outcome score

We performed an ENA analysis of residents’ coded intraoperative discourse to determine how residents
recognized and reacted to errors after they occurred. For this ENA model, we used a moving stanza
window** of six utterances: codes that co-occurred within six utterances of one another were considered
connected, while codes that occurred outside this window were not considered connected. Participants
were grouped into low-performing (n = 20) and high-performing (n = 20) conditions by outcome score.

Figure 1 (right) shows the low- and high-performing residents (white and gray points,
respectively) along with their mean locations in the network space, which are represented by white and
gray squares. The associated with each mean indicate the 95% confidence interval on each dimension.
This analysis showed a significant difference on the second ()) dimension in how low- and high-
performing residents integrated skills and decision-making in response to errors (y,, = 0.13, y,,, =
—0.08; #, = 2.46; p, = 0.02; Cohen’s d, = 0.83).

To understand the differences between low- and high-performing residents, we constructed a
difference graph (Figure 1, left). The difference graph subtracts the edge weights of the mean networks of
the low- and high-performing residents, visualizing the differences in weights; connections represented by
dashed lines were stronger among the low-performing residents, and connections represented by solid
lines were stronger among the high-performing residents. As the difference graph shows, high-performing
residents made proportionally more connections to Operative Planning after committing cognitive or
visuospatial errors, and they made a stronger connection between Identifying Errors and Operative
Planning. Low-performing residents were more likely to make operative plans only in response to Motor
Errors, the simplest of the three types of error to identify and correct, and they were more likely to
respond to errors with frustration. These differences indicate different levels of ability to integrate
elements of error recognition and management in response to errors. Low-performing residents were less
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able to identify and develop a plan to respond to errors than high-performing residents, particularly when
the errors were visuospatial or cognitive.

Visuospatial Errors

%o

Identifying Errors

L

15

-

i
1
1
1
\
1
L)
1

i
1
1} . s
\ Giving
) .
Instructions

]
1
1
)

e
Cognitive Errors
Operative Planning

Figure 1: Comparison of error management between low- and high-performing residents using
epistemic network analysis. The graph on the left shows a subtraction of the mean network of high-
performing residents from the mean network of low-performing residents, which indicates the
connections that were stronger among the low-performing residents (dashed lines) and those that were
stronger among the high-performing residents (solid lines). Thicker lines indicate larger differences
between the two groups. The graph on the right shows low-performing (white points, #» = 20) and high-
performing (gray points, n = 20) residents, with the corresponding means (squares) and 95% confidence
intervals (bars). Each point is the centroid of one resident’s network. The locations of the means provide
the basis for measuring statistical differences between both groups of residents and are determined by the

differences in network connection strengths. The network graph (left) enables interpretation of the
statistically significant difference between the means of the two groups.

Discussion

This study examined a novel technique for modeling how general surgery residents from seven different
institutions integrate elements of error recognition and management during an operative procedure.
Residents who performed well on the final steps of a simulated LVH repair exhibited the same frequency
and types of error as low-performing residents. However, high-performing residents were significantly
more likely to manage complex errors by identifying the problem and verbalizing an operative plan to

correct it. In other words, the quality of the hernia repair was significantly affected by how well residents’
managed their errors.

Recent studies show that training residents not simply to avoid errors but to manage them can
have positive effects on performance and on retention and transfer of skills.>>® In addition, research
suggests that assessing performance by classifying the frequency of errors does not adequately capture
important operative abilities, including error recognition, framing of adverse events, contingency
planning, and error recovery, all of which are critical for operative independence.’* Despite the
development of numerous error classification checklists, assessment of error management remains largely



based on subjective observation and does not account for the ways in which surgeons integrate error
management behaviors.

These results indicate that ENA can use error checklist data (procedure-specific) and surgeons’
natural language discourse (procedure-agnostic) to model the integration of psychomotor, procedural, and
cognitive elements of intraoperative performance as outlined in the framework proposed by Madani and
colleagues.® That is, ENA can take qualitative, in situ data from an authentic operative context and
construct a comprehensive, quantitative model of operative performance. Importantly, such models can be
used both to provide formative feedback and to assess aptitude; most extant measures of operative ability
are not suitable for both formative and summative assessment.'!!3

In addition, ENA can provide actionable information about surgeons’ strengths and weaknesses.
Existing measures of surgical performance are based on procedure time and assessment of technical
skills, which provide a limited picture of the complex abilities needed for operative independence.'*
Because ENA produces a network for every individual, as well as mean networks for selected groups,
such models can be used to provide both individual feedback and population-level summaries of
performance. At the individual level, ENA models indicate which elements of intraoperative performance
a surgeon integrates well or poorly, providing targets for further training or practice. At the population
level, such models can guide the development or improvement of curricula to address common
shortcomings in the integration of skills, knowledge, and decision-making.

This study also has several limitations. While we provide evidence of model validity, further
validation studies should be conducted. As we report above, the coding process is valid and reliable, the
model identifies statistically significant differences between two groups with different outcomes, and the
specific differences identified by the model correspond with hypothesized differences based on both a
theoretical framework and qualitative analysis of the data. In future work, we will further validate this
model by analyzing additional data. The approach described here should also be applied to additional
operative procedures and contexts to assess its feasibility as a more general technique for modeling
surgical performance.

The purpose of this preliminary study was to test a novel approach to modeling the integration of
surgical skills, knowledge, and decision-making, particularly advanced cognitive skills related to error
management. Ultimately, our goal is to produce models that provide comprehensive assessment of
intraoperative performance. However, this study raises significant questions about which elements of
operative competency to model and how to collect evidence that clearly documents those elements, and
future research is needed to explore these questions in detail. For example, Madani and colleagues
identify 21 distinct “behavioral themes” within the domain of advanced cognitive skills alone, and in this
study, we examined only those related to “error/injury recognition, rescue, and recovery” (pp. 260-61).°
There may be dozens of distinct behaviors that are relevant in a given context, each of which may have a
different level of importance or may be modified in various ways depending on the procedure, on the
details of the specific case, or on the surgeon’s level of expertise. It may be necessary, then, to develop
assessment models around specific clusters of behaviors—such as the error recognition and management
model presented here—in order to make such assessments more tractable, and such models may require
modification for different populations (e.g., junior residents, senior residents, &c.).

Even when behaviors are identified for inclusion in a model, there are important questions about
how they should be defined and identified. For example, surgeons would generally agree that operative
planning (both proactive and reactive) is a critical skill in virtually all operative contexts, and in the
present study, we developed a reliable method for identifying reactive operative planning by applying
regular expression matching to residents’ intraoperative discourse. Our coding process, however, did not
distinguish between appropriate and inappropriate plans—it identified only the behavior of planning, not
whether the plan proposed was a good one. The extent to which the quality of a particular behavior needs
to be modeled is an open question, and we will investigate this in future work. Another area where further
research is needed involves the order of integration, as specific sequences of behaviors may be important
in some contexts.
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Similarly, determination of which errors to include in an analysis While the error checklist we
applied in this study is based upon a validated set of criteria used to assess surgical competency on the
LVH repair, the lack of impact errors had on outcome score may indicate insufficient breadth in the
checklist. The size of the checklist is, in part, a byproduct of the simplified context in which participants
performed the procedure. In other words, because residents were performing only the final steps of the
LVH repair, the range of errors they could commit was somewhat limited. In addition, because this study
is focused on error management, we omitted errors that were not committed by the residents in this study.
In a longer procedure, a longer list of errors could be considered, and with a larger study population, a
wider range of errors may occur.

The question of data collection is also non-trivial. For example, haptic data would likely provide
the best evidence of surgeons’ level of psychomotor skill. Metrics such as path length or smoothness of
motion are excellent indicators of manual aptitude and confidence. However, collection of such data is
not possible during live operations, unlike collection of audio-video or checklist data. Even if simulators
are used, there is additional expense associated with the use of haptic sensors, and considerable data
processing is required for meaningful interpretation. (Unlike audio data, which requires simple
transcription to make it suitable for a wide range of analyses, haptic data must undergo extensive
processing—e.g., sample-specific normalization, noise thresholding, and trajectory-supervised haptic
rendering.) Thus, future work will need to explore the feasibility of collecting various kinds of
performance data and evaluate the extent to which effective comprehensive models can be developed
using only data that are relatively easy to collect; this is particularly necessary if for the development of
assessment models that can be translated from research into practice.

That being said, the reader may wonder how difficult it is to conduct an ENA analysis of the kind
described here. There are essentially three phases: (a) data collection and processing, (b) data coding, and
(c) data analysis. Data collection involves audio and video recording and collection of the simulator skins.
The audio is transcribed, a standard checklist is used to identify errors (live and/or from the video), and a
standard rubric is used to score the quality of the repair using the skins. These processes are comparable
to those used in many frameworks for assessing surgical performance. Data coding, as described above,
requires some effort if new codes are to be generated, but once the codes are automated, then even very
large datasets can be easily coded in a matter of seconds. Lastly, ENA analyses can be conducted using
the free online ENA webkit (http://www.epistemicnetwork.org/). The ENA webkit supports analysis,
visualization, and statistical hypothesis testing.

Conclusions

On a simulated LVH repair, high-performing residents exhibited the same frequency and types of error as
low-performing residents. However, high-performing residents were significantly more likely to manage
their errors effectively by integrating relevant skills, knowledge, and decision making. These results
suggest that procedure-specific error checklist data and procedure-agnostic elements of intraoperative
behavior can be used to model the integration of critical aspects of intraoperative performance. In
addition, multi-modal ENA models provide actionable information about surgeons’ strengths and
weaknesses, which can inform the development of targeted educational interventions and improve the
design of curricula to address common shortcomings.
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