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Abstract

Selection and confounding biases are the two most common
impediments to the applicability of causal inference methods
in large-scale settings. We generalize the notion of backdoor
adjustment to account for both biases and leverage external
data that may be available without selection bias (e.g., data
from census). We introduce the notion of adjustment pair and
present complete graphical conditions for identifying causal
effects by adjustment. We further design an algorithm for
listing all admissible adjustment pairs in polynomial delay,
which is useful for researchers interested in evaluating cer-
tain properties of some admissible pairs but not all (common
properties include cost, variance, and feasibility to measure).
Finally, we describe a statistical estimation procedure that can
be performed once a set is known to be admissible, which en-
tails different challenges in terms of finite samples.

Introduction
A fundamental challenge pervasive throughout science is the
study of cause and effect relationships from a combination
of non-experimental observations and substantive knowl-
edge about the phenomenon under investigation. Causal re-
lations are deemed more interpretable and robust than their
statistical counterparts. They are more amenable to extrap-
olation to new, unforeseen situations. Understanding the
world and constructing explanations are almost invariably
accomplished through the presentation of causal knowledge
with a coherent articulation of a causal story (Pearl 2000;
Spirtes, Glymour, and Scheines 2001; Bareinboim and Pearl
2016; Pearl, Glymour, and Jewell 2016).

Two of the most common obstacles to discovering causal
relations appear in the form of two biases – confounding and
selection. The first one may arise from the lack of control
over the decision-making process and the selection of ac-
tions, possibly due to costs, ethical, or technical considera-
tions. This implies that the data is collected under an obser-
vational regime, where the population follows its natural ten-
dency. Our goal, however, is to predict how the population
will react when it undergoes a change (intervention), fol-
lowing a new, compulsory decision protocol. For instance,
one is usually not interested in estimating the correlation be-
tween smoking and cancer (natural), but to establish whether
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the incidence of cancer would decrease had smoking been
banned in the corresponding population.

The problem of identifiability gives formal dressing to
this issue (Pearl 2000, Ch. 3). Specifically, it is concerned
with determining the effect of a treatment (X) on an out-
come (Y ), denoted P (y|do(x)), based on the observa-
tional, non-experimental distribution P (v) (where V rep-
resents observable variables) and causal assumptions com-
monly represented as a directed acyclic graph. The differ-
ence between P (y|do(x)) and its probabilistic counterpart,
P (y|x), is known as confounding bias (Bareinboim and
Pearl 2016). For the graph in Fig. 1(a), the probability dis-
tribution P (y|x) includes variations due to the “backdoor”
path X ← Z → Y , while the distribution P (y|do(x)) de-
scribes a regime (Fig. 1(b)) where the incoming arrows to-
wards X are cut and only causal influence remains. Con-
founding bias in this case appears in the form of extraneous
variations of Y that are not legitimately explained by X , but
are generated by a third variable, Z in this case.

The problem of confounding has been extensively studied
in the literature. A systematic mathematical treatment was
given in (Pearl 1995), which included the do-calculus. The
do-calculus was shown complete for non-parametric iden-
tifiability (Tian and Pearl 2002; Huang and Valtorta 2006;
Shpitser and Pearl 2006; Bareinboim and Pearl 2012a).

Despite the generality of such results, in practice, the most
common and pervasive method for controlling confounding
bias is known as the backdoor-adjustment (Pearl 1995). The
backdoor-adjustment formula dictates that the effect of X
on Y can be computed by controlling for a set of covariates
Z, i.e., averaging the conditional distribution of outcome Y
given treatment X and Z, weighted by the marginal distribu-
tion of Z. Pearl provided a formal and graphical justification
for under what conditions a set Z could make the adjustment
formula valid (for a survey, see (Pearl 1995)).

The second bias, selection, may appear because of pref-
erential exclusion of units from the sample. For instance,
in a typical study of the effect of grades on college admis-
sion, subjects with higher achievement tend to report their
scores more frequently than those who scored lower. In this
case, the data-gathering process will reflect a distortion in
the sample’s proportions and, since the data is no longer a
faithful representation of the underlying population, biased
estimates will be produced regardless of the number of sam-
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ples collected (even if the treatment is controlled).
The problem of selection bias can also be modeled graph-

ically. In Fig. 1(c), for example, S represents a binary in-
dicator of entry into the data pool, such that S=1 if unit is
included in the sample and S=0 otherwise (Bareinboim and
Pearl 2012b). In this case, selection is affected by the treat-
ment as represented by the arrow X → S (e.g., people with
higher grades have a higher chance of reporting their scores).
Clearly, when the sampling process is completely random, S
is independent of all variables in the analysis. When samples
are collected preferentially, the causal effects not only need
to be identified, but also recovered (Bareinboim and Pearl
2012b) from the distribution P (v|S=1) instead of P (v).

Selection bias has been studied in a wide range of subjects
and contexts, including different tasks in AI (Cooper 1995;
Elkan 2001; Zadrozny 2004; Cortes et al. 2008), statis-
tics (Whittemore 1978; Little and Rubin 1987; Robinson
and Jewell 1991; Kuroki and Cai 2006; Evans and Didelez
2015), throughout the empirical sciences (e.g., genetics
(Pirinen, Donnelly, and Spencer 2012; Mefford and Witte
2012), economics (Heckman 1979; Angrist 1997), and epi-
demiology (Robins 2001; Glymour and Greenland 2008)).

The backdoor-adjustment was not used to control for
selection bias until recently. Bareinboim, Tian, and Pearl
(2014) provided a sufficient condition, formally showing
that adjustment could be used to control for both confound-
ing and selection biases. Later on, Correa and Bareinboim
(2017b) studied how externally available, unbiased data over
the covariates could be leveraged to further the reach of this
technique. For instance, the effect P (y|do(x)) for the model
in Fig. 1(c) can be identified and recovered only if external
data over Z, (i.e. P (z)) is available. In this case the adjust-
ment averages the biased conditional distribution of outcome
Y given the treatment X (P (y|x, z, S=1)) weighted by the
unbiased distribution of Z (P (z)).

There are still simple (but subtle) situations that remain
unsolved by these previous results. To witness, consider the
model in Fig. 1(d), where X represents whether a patient
took or not a drug, Y indicates whether the patient recovered
or not from the disease, Z1 and Z2 represent if the patient
has a certain genetic condition and has severe headaches,
respectively. The arrow from Z2 to the selection mechanism
(S) encodes the fact that patients with headache are more
likely to seek help in the hospital and, therefore, are more
likely of being sampled.

The previous methods require one to collect unbiased (ex-
ternal) data on Z1, which may prove too costly. In fact,
this would require performing a genetic test on a significant
amount of patients, which is not routinely done in the hos-
pital when the person reports headache. Nevertheless, unbi-
ased measurements of Z2 may be obtained from test reports
conducted over the whole population, given that headache
is a pervasive side effect and vast amounts of demographic
information is available about it. It will be shown later on
that the adjustment technique can be extended to combine
the partial unbiased data with biased data to produce an es-
timand of the causal effect in the overall population.

The goal of this paper is to explain the general princi-
ple that licenses this extrapolation to take place. We will
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Figure 1: (a, b) represent the pre- and post-interventional
models where X,Y, Z are, respectively, the treatment, out-
come, and set of confounders. (c) Setting where both selec-
tion and confounding biases are present. (d) Settings where
confounding or selection can be controlled, but not both, un-
less external data on P (Z1), P (Z2) or both are available.

characterize the use of covariate adjustment for causal ef-
fect identification under selection bias for arbitrary causal
graphs, when a combination of biased and unbiased datasets
are available. Specifically the contributions of our paper are:

1. (Graphical Characterization) We introduce a general-
ized notion of adjustment formula to produce an esti-
mand that combines biased and unbiased datasets. We
then prove a necessary and sufficient graphical condition
for the admissibility of a set of covariates for adjustment.

2. (Algorithmic Characterization) We construct a com-
plete algorithm that efficiently finds all sets that are ad-
missible for generalized adjustment. The algorithm runs
with polynomial delay and is useful for identifying admis-
sible sets with certain special properties (e.g., low mea-
surement cost, higher statistical precision).

3. (Statistical Procedure) We demonstrate a general sta-
tistical procedure based on inverse probability weighting
(IPW) to estimate the adjustment formula from data.

All proofs can be found in the sup. material (Correa and
Bareinboim 2017a).

Definitions and Related Work
The systematic analysis of confounding and selection biases
requires a formal language where the characterization of the
underlying data-generating model can be encoded explicitly.
We use the language of Structural Causal Models (SCM)
(Pearl 2000, pp. 204-207). Formally, a SCM M is a 4-tuple
〈U, V, F, P (u)〉, where U is a set of exogenous (latent) vari-
ables and V is a set of endogenous (measured) variables. F
represents a collection of functions F = {fi} such that each
endogenous variable Vi ∈ V is determined by a function
fi ∈ F , where fi is a mapping from the respective domain
of Ui ∪ PAi to Vi, Ui ⊆ U , PAi ⊆ V \Vi, and the entire
set F forms a mapping from U to V . The uncertainty is en-
coded through a probability distribution over the exogenous
variables, P (u). Within the structural semantics, perform-
ing an action X = x is represented through the do-operator,
do(X = x), which encodes the operation of replacing the
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original equation of X by the constant x and induces a sub-
model Mx. For a detailed discussion on the properties of
structural models, we refer readers to (Pearl 2000, Ch. 7).

In this paper, bold capital letters denote sets of variables,
while bold lower-case letters stand for particular assign-
ments to those variables. The family relationships in the
graph are written as An (X) ,Pa (X) ,De (X), which stand
for the set of ancestors, parents, and descendants, respec-
tively, of a given variable X . Variables are assumed to be an-
cestors and descendants of themselves. The letter G is used
to refer to the causal graph, GX the graph resulting from the
removal of all incoming edges to X in G, and GX the graph
resulting from removing all outgoing edges from X.

Adjustment for Confounding Bias
We discuss in this section the notion of adjustment and how
it is used to control for confounding bias. It also provides a
basic survey of the most significant results in the literature.
Definition 1 (Adjustment (Pearl 2000)). Given a causal di-
agram G containing a set of variables V and pairwise dis-
joint sets X,Y,Z ⊆ V, the set Z is called covariate adjust-
ment for estimating the causal effect of X on Y (or usually
just adjustment), if for every distribution P (v) compatible
with G it holds that

P (y | do(x)) =
∑

Z
P (y | x, z)P (z). (1)

Finding an adjustment set relative to X and Y enables
the identification of the corresponding causal effect. Several
criteria have been developed to determine whether a set Z
is valid for adjustment. The most representative result for
controlling for confounding bias by adjustment is known as
the “Backdoor criterion” (Pearl 1993; 2000), defined below:
Definition 2 (Backdoor Criterion). A set of variables Z sat-
isfies the Backdoor Criterion relative to a pair of variables
(X,Y ) in a directed acyclic graph G if:

(i) No node in Z is a descendant of X .
(ii) Z blocks every path between X and Y that contains

an arrow into X .
Intuitively, the backdoor criterion identifies the sets that

block the non-causal paths (paths with arrows incoming to-
wards X) while leaving the causal paths undisturbed.

It was further noted that certain descendants of X could
be included into the adjustment set without sacrificing its
validity (Pearl and Paz 2010). When selection bias is not
present, Shpitser, VanderWeele, and Robins (2010) further
showed that adjustment is complete if the non-proper causal
paths are blocked (while the proper ones are left undis-
turbed), namely:
Definition 3 (Proper Causal Path). Let X and Y be sets of
nodes. A causal path from a node in X to a node in Y is
called proper if it does not intersect X except at the starting
point.

van der Zander, Liskiewicz, and Textor (2014) proposed
an alternative complete formulation of adjustment called
“Constructive Backdoor”, which led to an efficient algo-
rithmic treatment of the problem (without selection bias).
This characterization follows a graph transformation that
will prove useful in the context of selection bias:

Definition 4 (Proper Backdoor Graph). Let G be a causal
diagram, and X,Y be disjoint subsets of variables. The
proper backdoor graph, denoted as Gpbd

XY, is obtained from
G by removing the first edge of every proper causal path
from X to Y.

Adjustment for Confounding and Selection Bias
Formally, the task of estimating a probabilistic quantity from
a selection-biased distribution is known as recovering from
selection bias (Bareinboim, Tian, and Pearl 2014). From
now on, we assume that the set V stands for all the ob-
served variables measured under selection bias (not includ-
ing the selection mechanism S). In this context, the input
usually consists of a distribution collected under selection
bias, P (v|S=1). The probability of selection P (s) is as-
sumed to be unknown. The goal of the analysis is to deter-
mine the unbiased causal distribution P (y|do(x)). In prac-
tical applications, unbiased observations of a subset of the
variables may be available for use (e.g., the age and gender
distributions). We’ll show this data can be leveraged to help
the recoverability of causal effects by adjustment. We use
T to denote the set of externally and unbiasedly measured
variables, and consider P (t) as an input to the analysis.

Bareinboim, Tian, and Pearl (2014) studied the use of ad-
justment for simultaneously controlling for both confound-
ing and selection biases. In particular, they introduced the
Selection-Backdoor criterion (called s-backdoor), which is
a sufficient condition for recovering causal effects from a
biased distribution P (v | S=1) and externally unbiased
data P (t). Building on these results, Correa and Barein-
boim (2017b) devised a set of complete conditions for when
none of the covariates are measured (Def. 5) externally
(Z ∩ T = ∅), and the case when all of them are (Def. 6)
measured without selection bias (Z ⊆ T). Let X,Y,Z be
disjoint sets of variables and G a causal diagram augmented
with a variable S, then the criteria are shown next:

Definition 5 (Generalized Adjustment Criterion Type 1
(GACT1)). Z satisfies the criterion w.r.t. X,Y in G if:

(a) No element of Z is a descendant in GX of any W /∈ X
which lies on a proper causal path from X to Y.

(b) All non-causal paths between X and Y in G are
blocked by Z and S.

(c) Y is d-separated from S given X under the intervention
do(x), i.e., (Y ⊥⊥ S | X)GX

.
(d) Every X ∈ X is either a non-ancestor of S or it is in-

dependent of Y in GX, i.e., ∀X∈X∩An(S)(X ⊥⊥Y)GX

Definition 6 (Generalized Adjustment Criterion Type 2
(GACT2)). Z satisfies the criterion w.r.t. X,Y in G if:

(a) No element of Z is a descendant in GX of any W /∈ X
which lies on a proper causal path from X to Y.

(b) All non-causal paths between X and Y in G are
blocked by Z.

(c) Y is d-separated from the selection mechanism S given
Z and X, i.e., (Y ⊥⊥ S | X,Z).
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It was shown that a set Z satisfies the criterion in Def. 5 if
and only if:

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z | S=1), (2)

and Z satisfies the criterion in Def. 6 if and only if:

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z). (3)

Generalized Adjustment with
Partial External Data

The criteria discussed above (Defs. 5 and 6) are complete
to decide whether an adjustment set Z is valid to identify
the effect P (y|do(x)) from the inputs {P (v | S=1)} and
{P (v | S=1), P (t); with T ⊇ Z}, respectively. We note
that these tasks represent two extremes over the spectrum of
how much unbiased data may be available for the researcher
– the former assume that no external data is available, while
the latter that all covariates are externally available.

A natural question to ask is whether it is possible to find
valid adjustment sets within this spectrum, that is, to per-
form adjustment when only a subset ZT of the covariates Z
require external measurements (i.e., ZT ⊆ Z ∩T).

The possibility of using different subsets of covariates
for adjustment has practical implications in the design of
the study and the feasibility of estimating causal effects
by adjustment. To witness, consider the causal diagram in
Fig. 1(d), and note that there is no set Z satisfying Def. 5,
and that sets Z={Z1} and Z={Z1,Z2} are valid for adjust-
ment with respect to Def. 6, if the distribution P (z) is avail-
able in addition to P (x, y, z1, z2|S=1). As discussed previ-
ously, in practical terms, unbiased measurements of Z2 may
be obtainable from test reports of the drug, but getting unbi-
ased data for Z1 may prove very challenging. Interestingly
enough, the causal effect can still be identified by adjustment
on the set Z={Z1,Z2}, if P (z2) is available even if P (z1)
is not, which is shown in the expression below:

P (y|do(x)) =
∑

Z

P (y|x, z, S=1)P (z1|z2, S=1)P (z2) (4)

Even when unbiased data over all the candidate covariates
is available, it may be the case that no valid adjustment in
the form given by Eqs. (2) and (3) exists, while it is still
possible to adjust by a subset of the covariates. To witness,
consider the model shown in Fig. 2 and note that while nei-
ther criteria is applicable, the effect of X on Y is estimable
by adjustment using external data on Z2, i.e.:

P (y|do(x))=
∑

Z

P (y|x,z,S=1)P (z1,z3|z2,S=1)P (z2) (5)

This adjustment requires Z1 to be used, but only its biased
measurements. If external measurements on Z1 are included
the adjustment is no longer valid. This may be surprising,
since a biasing path between S and Y is opened when X1 or
Z1 are observed. In fact, selection bias can be controlled by
external measurements over Z2 alone (refer to the appendix
for the detailed derivation of (4) and (5)). The following def-
inition extends the notion of adjustment to account for selec-
tion bias and external data:
Definition 7 (Adjustment Pair). Given a causal diagram G
augmented with selection variable S, disjoint sets of vari-
ables X,Y,Z, and a set ZT ⊆ Z,

(
Z,ZT

)
is said to be an

X1

X2

Y

Z1

Z2

Z3

S

Figure 2: Instance of adjustment with partial external data.

adjustment pair for recovering the causal effect of X on Y
if for every model compatible with G it holds that:

P (y|do(x))=
∑

Z

P (y|x,z,S=1)P (z\zT|zT,S=1)P (zT)

(6)

Remark. The expression given in Eq. (6) is a natural exten-
sion of Eq. (1) and it captures the orthogonal nature of con-
founding and selection biases while allowing for the use of
unbiased data over a subset of the covariates. Furthermore,
Eqs. (2) and (3) are special cases of (6) corresponding, re-
spectively, to the pairs (Z, ∅) and (Z,Z).

The following criterion determines whether a pair
(Z,ZT) yields a valid adjustment:
Definition 8 (Generalized Adjustment Criterion Type 3
(GACT3)). Given a causal diagram G augmented with se-
lection variable S, disjoint sets of variables X,Y,Z and a
set ZT⊆Z;

(
Z,ZT

)
is an admissible pair relative to X,Y

in G if:
(a) No element in Z is a descendant in GX of any W /∈ X

lying on a proper causal path from X to Y.
(b) All non-causal paths in G from X to Y are blocked by

Z and S.
(c) ZT d-separates Y from S in the proper backdoor

graph, i.e.
(
Y ⊥⊥ S | ZT

)
Gpbd

XY

.

In other words, cond. (a) prevents causal paths to be com-
promised by conditioning on an element in Z, (b) requires
all non-causal paths to be blocked by Z, and (c) ensures that
the influence of the selection mechanism on the outcome is
nullified by ZT.

The following theorem states that the pairs admissible by
the graphical criterion in Def. 8 are exactly those that con-
stitute adjustment pairs as in Def. 7.
Theorem 1 (Admissible Pairs are Adjustment Pairs).(
Z,ZT

)
is an adjustment pair for X,Y in G if and only

if it is admissible by Def. 8.

Corollary 2 (Causal Effects Recovery by Adjustment). Let
G be a causal diagram augmented with a variable S repre-
senting the selection mechanism. Let V be the set of vari-
ables measured under selection bias, and T ⊂ V the
set of variables measured externally in the overall pop-
ulation. Consider disjoint sets of variables X,Y ⊆ V,
then the causal effect P (y | do(x)) is recoverable from
{P (v | S=1), P (t)} by the adjustment expression (6) while
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ZT ⊆ T, in every model inducing G if and only if
(
Z,ZT

)
is an admissible pair relative to X,Y in G according to
Def. 8.

Corollary 2 answers to the proposed task of obtaining
causal effects by adjustment from the data assumed as input.
This means that the causal effect of X on Y can be estimated
if an admissible pair

(
Z,ZT ⊆ T

)
exists.

As noted, Eq. (6) reduces to expression (2) and (3) when
considering pairs of the form (Z, ∅) and (Z,Z), respectively.
By the same token, GACT1 and GACT2 are special cases of
GACT3. That is, Def. 8 will be equivalent to Def. 5 when
ZT = ∅ and equivalent to Def. 6 when ZT = Z, as stated in
the following propositions.
Proposition 1. If ZT = ∅, then GACT1⇐⇒ GACT3.

Proposition 2. If ZT = Z, then GACT2⇐⇒ GACT3.
Fig. 3 summarizes the inputs and adjustment expressions

associated with each criterion.

Finding Admissible Sets
Once the admissibility of adjustment pairs has been charac-
terized, it’s natural to ask how to find them systematically
and efficiently. This task is specially relevant since factors
such as feasibility, cost, and statistical power may be rele-
vant when choosing one of such sets.

To illustrate the complexity of this task, suppose we want
to list all possible adjustment sets for the causal diagram
given in Fig. 4. It contains ` non-causal paths from X to
Y . For any pair

(
Z,ZT

)
admissible in this model, Z and ZT

must contain at least one variable in every one of the ` paths.
For path i, either Vi1, Vi2, or both should be in those sets. In
total, there are 3` different Z, and for each one of them there
are 3k sets ZT, where k is the number of paths that contain
both variables in Z. The possible admissible pairs are in the
Cartesian product of those sets, which amounts to O(32`)
possibilities. It is clear that any algorithm that aims to out-
put all admissible sets will take exponential time. Hence, no
efficient algorithm exists for this task. In order to ameliorate
this problem, we consider a special complexity class called
polynomial delay (Takata 2010). Algorithms belonging to
this class have the special property that the time required to
output the first solution (or indicate failure), and the time be-
tween the outputs of consecutive solutions, is polynomial in
the size of the input.

We show next an alternative, equivalent version of the cri-
terion given in Def. 8 that will prove useful to operate within
the polynomial delay class.
Definition 9 (Generalized Adjustment Criterion Type 3 (Al-
ternative) GACT3A). Given a causal diagram G augmented
with selection variable S, disjoint sets of variables X,Y,Z
and a set ZT ⊆ Z;

(
Z,ZT

)
is an admissible pair relative

to X,Y in G if:
(a) Z ∩Dpcp(X,Y) = ∅
(b) (Y ⊥⊥X | Z, S)Gpbd

XY

(c) (Y ⊥⊥ S | ZT)Gpbd
XY

where Dpcp(X,Y) = De
(
(De (X)GX

\X) ∩An (Y)GX

)
.

The set Dpcp(X,Y) was originally introduced in
(van der Zander, Liskiewicz, and Textor 2014) to account
for the set of descendants of variables that lie in a proper
causal path from X to Y.

Proposition 3. Def. 9 is equivalent to Def. 8.

In fact, Def. 9 is appealing to our task since each of the
conditions can be easily verified, algorithmically, in a graph.

The following definition will be used to describe a collec-
tion of sets that separate variables in a causal model, subject
to subset and superset constraints:
Definition 10 (Family of Separators). Let X,Y,R be dis-
joint sets of variables in a causal diagram G, and let I ⊆ R
be another set. Define

ZG (X,Y) 〈I,R〉 := {Z | (X⊥⊥Y|Z)G and I⊆Z⊆R} (7)

to be the family of all sets Z that d-separate X and Y in G
and contain all elements in I but no element outside R.

For convenience, let the set of viable candidates for ad-
justment be denoted and defined as:

C = V \ (X ∪Y ∪Dpcp(X,Y)) (8)

Using this notation, the families that satisfy the conditions
of our criterion can be specified. For conditions (a) and (b):

Za,b=
{
Z
∣∣∣Z ∪ {S}∈ZG

pbd
XY

(X,Y) 〈{S},C ∪ {S}〉
}

(9)

We would like our algorithm to take into account the avail-
ability of external data over a set of covariates T. In order
to obtain admissible pairs for which the adjustment is es-
timable using the input as in Corollary 2, the set T is incor-
porated in the definition of the family for condition (c):

Zc = Z
G

pbd
XY

({S},Y) 〈∅,T〉 . (10)

Our task can be summarized as finding pairs in the set:

Za,b,c =
{(

Z,ZT
)
∈ Za,b ×Zc

∣∣∣ ZT ⊆ Z
}

(11)

Algorithm 1 presents the procedure LISTADJPAIRS that
solves this problem, as well as auxiliary routines used by
it. Specifically it may be used to:

1. Given external data P (t), list all admissible pairs such
that ZT ⊆ T.

2. List all admissible pairs (by setting T = V \ (X ∪ Y))
such that scientists know what external data to measure.

Functions LISTSEPAB and LISTSEPC are modifications of
the enumeration algorithm LISTSEP in (van der Zander,
Liskiewicz, and Textor 2014). The function FINDSEP is
also described in that paper, and works as follows: given a
graph G, sets of variables X,Y, I,R, where X,Y,R are
disjoint and I ⊆ R; FINDSEP is guaranteed to output a
Z̃ ∈ ZG (X,Y) 〈I,R〉 whenever there exists a separator C
such that I⊆C⊆R; otherwise it returns ⊥ denoting failure.

Proposition 4 (Correctness of LISTSEPC). Given a graph
G, a variable S, sets of variables Y, I,R,Z, where
{S},Y,Z are disjoint and I ⊆ R ⊆ Z; LISTSEPC outputs
all pairs

(
Z,ZT

)
, where ZT ∈ ZG ({S},Y) 〈I,R〉.
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Criterion Input
Adjustment Expression
Biased Data Unbiased Data

GACT1 {P (v | S=1)} ∑
Z P (y | x, z, S=1) P (z | S=1)

GACT2 {P (v | S=1), P (t)} ∑
Z P (y | x, z, S=1) P (z)

GACT3 {P (v | S=1), P (t)} ∑
Z P (y | x, z, S=1) P

(
z \ zT | zT, S=1

)
P
(
zT
)

Figure 3: Comparison of the Adjustment Types

X Y

V11 V12

V21 V22

...
...

V`1 V`2

S

Figure 4: Simple diagram where the number of different sep-
arators is exponential in the size of the graph

Proposition 5 (Correctness of LISTSEPAB).
Given a graph G, a variable S, sets of variables
X,Y, I,R,T, where X,Y, {S},R are disjoint,
I⊆R and T⊆C; LISTSEPAB outputs all pairs in{(

Z,ZT
)
∈ ZG (X,Y) 〈I,R〉 ×ZG ({S},Y) 〈∅,T〉

∣∣ZT ⊆ Z
}

.

The following theorem states that the algorithm LISTAD-
JPAIRS can solve the task proposed in this section.
Theorem 3 (Correctness of LISTADJPAIRS). Given a graph
G, disjoint sets X,Y,T, and a selection variable S,
LISTADJPAIRS outputs all admissible pairs

(
Z,ZT

)
rela-

tive to X,Y in G such that ZT ⊆ T.
It is worth noting that a straightforward adaptation of the

algorithm LISTSEP (van der Zander, Liskiewicz, and Textor
2014) may be used to find sets in Z ∈ Za,b and ZT ∈ Zc.
However, the condition ZT⊆Z has to be verified so as to
produce admissible pairs. One strategy could be to search
for sets in Za,b first, and then, while a second run outputs
each set in Zc, validate if it is a subset of any output from
the first batch of sets. In the worst case, exponential time
is required to output the first admissible pair. A better idea
would be to search for sets in

{
ZT ∈ Zc | ZT ⊆ Z

}
as soon

as some Z∈Za,b is found, and then output pairs made of Z
and the outputs of the secondary search. While improving
over the original strategy, it may be the case that, for some
sets in Za,b, there is no set in Zc, which would lead to an
exponential waiting time to get the first output.

Prop. 6 and Thm. 4 show that LISTADJPAIRS is, in fact,
able to achieve O(n(n+m)) delay by carefully combining
the search for the components of the pairs, where n,m are
the number of variables and edges in G, respectively.
Proposition 6 (Complexity of LISTSEPAB). LISTSEPAB
works with O(n(n+m)) delay.
Theorem 4 (Complexity of LISTADJPAIRS). LISTADJ-
PAIRS outputs all admissible pairs such that ZT ⊆ T with
O(n(n+m)) polynomial delay.

Algorithm 1 Routines used to list admissible pairs

1: function LISTADJPAIRS(G,X,Y, S,V,T)
2: Gpbd

XY ← Compute proper backdoor graph from G
3: R← (V ∪ {S}) \ (X ∪Y ∪Dpcp(X,Y))

4: LISTSEPAB(Gpbd
XY,X,Y, S, {S},R,T)

5: end function
6: function LISTSEPAB(G,X,Y, S, I,R,T)
7: if FINDSEP(G,X,Y, I,R) 6=⊥ ∧

FINDSEP(G, {S},Y, ∅,R ∩T) 6=⊥ then
8: if I = R then
9: LISTSEPC(G,S,Y, ∅, I ∩T, I \ {S})

10: else
11: V ← arbitrary variable from R \ I
12: LISTSEPAB(G,X,Y, I ∪ {V },R,T)
13: LISTSEPAB(G,X,Y, I,R \ {V },T)
14: end if
15: end if
16: end function
17: function LISTSEPC(G,S,Y, I,R,Z)
18: if FINDSEP(G, {S},Y, I,R) 6=⊥ then
19: if I = R then
20: output (Z, I)
21: else
22: V ← arbitrary variable from R \ I
23: LISTSEPC(G,X,Y, I ∪ {V },R,Z)
24: LISTSEPC(G,X,Y, I,R \ {V },Z)
25: end if
26: end if
27: end function

Using covariates from An (X∪Y) is sufficient to block
any biasing path when controlling for confounding bias,
which does not hold when selection bias comes into play.
The proposition below constitutes a natural extension of this
result when searching for adjusting pairs, in particular, con-
sidering the set An (X∪Y∪{S}).
Proposition 7. Suppose a pair

(
Z,ZT

)
is ad-

missible relative to X,Y in G. Then, the pair(
ZA,ZT

A

)
, where ZT

A=ZT∩An (X∪Y∪{S}) and
ZA=Z∩An (X∪Y∪{S}), is also admissible.

If the data scientist is not interested in deciding among
different adjustment pairs to use, it is possible to explicitly
construct a pair if one exists, namely:
Theorem 5 (Explicit admissible set construction). There ex-
ists an admissible pair in a causal diagram G relative to dis-
joint sets of variables X,Y if and only if the pair

(
Z,ZT

)
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is admissible, where

Z = An (X ∪Y ∪ {S})
G

pbd
XY
∩ C (12)

ZT = (An ({S} ∪Y)
G

pbd
XY
∩T) ∩ C (13)

Corollary 6 (Admissible pair can be constructed in linear
time). One can determine the existence of an admissible
pair and construct one in O(n+m) time.

Inverse Probability Weighting Estimation
Covariate adjustment is currently the most widely used
method for causal effect estimation in practice, even when
more powerful identification methods have been developed
in recent years (Pearl 2000). Adjusting for covariates Z in-
volves finding the conditional probability of Y given X for
each stratum defined by the possible values of the covariates,
which may present computational and sample complexity
challenges. The number of different strata may grow rapidly
with the cardinality of the set Z, and the number of sam-
ples falling under each stratum may be too small to provide
a reliable estimate of the conditional distribution.

There exist robust statistical estimation procedures for
the adjustment expression (1) that circumvent this issue.
To do so, one can rewrite the adjustment expression (1) as
P (y | do(x)) =

∑
Z P (y,x, z)/P (x | z). If a reliable es-

timate of the conditional distribution P (x | z) could be
obtained, which is known as the “propensity score” (Pearl,
Glymour, and Jewell 2016), then the causal effect could be
estimated by “weighting” every observed sample by the fac-
tor 1/P (x | z), leading to the widely used “inverse prob-
ability weighed (IPW) estimator” (Lunceford and David-
ian 2004). Assume we are interested in the mean causal
effect µ = E[Y | do(x)]. Given observed i.i.d. data
{(Xi,Yi,Zi)}ni=1, the IPW estimator for µ is given by

µ̂IPW =
1

n

n∑

i=1

wiIXi=xYi (14)

where IXi=x is the indicator function, wi = 1/P̂ (Xi | Zi),
and P̂ (Xi | Zi) is the estimator of the propensity score.
In practice, P̂ (Xi | Zi) is estimated from data by assum-
ing some parametric model (typically a logistic regression
model). µ̂IPW is a consistent estimator for µ if the model for
P (x | z) is correctly specified.

Next, we show that IPW style estimator could be con-
structed for causal effect estimation in the presence of se-
lection bias using the generalized adjustment given in this
paper. We rewrite the adjustment expression (6) as follows:

P (y|do(x)) =
∑

Z

P (y|x, z, S=1)P (z \ zT|zT, S=1)P (zT)

=
∑

Z

P (y,x, z | S=1)

P (x | z, S=1)

P (zT)

P (zT | S=1)
(15)

=
∑

Z

P (y,x, z | S=1)

P (x | z, S=1)

P (S=1)

P (S=1 | zT) (16)

The quotient P (zT)/P (zT | S=1) (in Eq. (15)), which
is directly computable from the combination of the ex-
ternal and biased datasets, can be equivalently expressed

as P (S=1)/P (S=1 | zT) (in Eq. (16)). The later is usu-
ally known as the “inverse probability-of-selection weight
(IPSW)” (Cole and Stuart 2010), and, in practice, is esti-
mated by assuming some parametric model such as logis-
tic regression. Given observed data {(Xi,Yi,Zi)}ni=1 under
selection bias (from P (v | S=1)), assume we could obtain
reliable estimate of the propensity score P (x | z, S=1) and
the inverse probability-of-selection P (S=1)/P (S=1 | zT)
from selection biased data and additional unbiased exter-
nal data. Let w′

i = 1/P̂ (Xi | Zi, S=1) and wS
i =

P̂ (S=1)/P̂ (S=1 | ZT
i ). The causal effect can be estimated

by first weighting every observed sample under selection
bias by the weight w′

i · wS
i . We propose the following es-

timator for µ

µ̂IPWS =
1

n

n∑

i=1

w′
iw

S
i IXi=xYi. (17)

Theorem 7. µ̂IPWS is a consistent estimator for µ =
E[Y | do(x)] if the models for P (x | z, S=1) and
P (S=1)/P (S=1 | zT) are correctly specified.

Further, whenever ZT = ∅, the IPW estimator for the
adjustment expression (2) is given by

µ̂IPW2 =
1

n

n∑

i=1

w′
iIXi=xYi (18)

Note that in (18) the samples only need to be weighted by the
propensity score but do not need to be weighted by the IPSW
in order to adjust for selection bias. The difference between
(18) and (14) is that in (18) the samples are observed under
selection bias. One of the contributions of this paper is that
we specify conditions over the adjustment set on how the
biased data samples should be weighted in order to obtain
unbiased estimates of causal effects.

Conclusions
This work generalizes the notion of adjustment set to that
of adjustment pairs (Def. 7), that when admissible, recover
causal effects via adjustment from a distribution under se-
lection bias and auxiliary external data, while simultane-
ously controlling for confounding bias. We present a suf-
ficient and necessary graphical condition (Def. 8) to deter-
mine if a pair is admissible, valid for any causal diagram
G with latent variables in non-parametric settings. We de-
velop the algorithm LISTAJDPAIRS that lists all admissible
pairs for given X,Y in G (Theorem 3) with polynomial de-
lay (Theorem 4). These results allow scientists to take into
consideration the effort of measuring covariates, such as as-
sociated cost, availability, or feasibility. Finally, we describe
how to use the inverse probability weighting technique to
estimate adjustment under selection bias. Adjustment is not
the only method to estimate causal effects, but it is still the
most popular one in the empirical sciences. We hope the re-
sults presented in this paper will help the broad scientific
community to account for selection bias in their studies.
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Appendix

Generalized Adjustment with partial External Data
For convenience we restate some of the definitions below:
Definition 5 (Generalized Adjustment Criterion Type 1 (GACT 1)). Z satisfies the criterion w.r.t. X,Y in G if:
(a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper causal path from X to Y.
(b) All non-causal paths between X and Y in G are blocked by Z and S.
(c) Y is d-separated from S given X under the intervention do(x), i.e., (Y ⊥⊥ S | X)GX

.
(d) Every X ∈ X is either a non-ancestor of S or it is independent of Y in GX, i.e., ∀X∈X∩An(S)(X ⊥⊥Y)GX

Definition 6 (Generalized Adjustment Criterion Type 2 (GACT 2)). Z satisfies the criterion w.r.t. X,Y in G if:
(a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper causal path from X to Y.
(b) All non-causal paths between X and Y in G are blocked by Z.
(c) Y is d-separated from the selection mechanism S given Z and X, i.e., (Y ⊥⊥ S | X,Z).

For causal diagram in figure 2(d) the effect of interest can be identified by adjustment on the set Z = {Z1, Z2}where Z1 /∈ T
and Z2 ∈ T as

P (y|do(x)) =
∑

Z
P (y|x, z, S=1)P (z1|z2, S=1)P (z2). (1)

The derivation used to obtain (1) is as follows:

P (y|do(x)) (2)

=
∑

Z1

P (y|do(x), z1)P (z1 | do(x)) (3)

=
∑

Z1

P (y|do(x), z1, S=1)P (z1) (4)

=
∑

Z1

P (y|do(x), z1, S=1)
∑

Z2

P (z1|z2)P (z2) (5)

=
∑

Z
P (y|do(x), z, S=1)P (z1 | z2, S=1)P (z2) (6)

=
∑

Z
P (y|x, z, S=1)P (z1 | z2, S=1)P (z2) (7)

Expression (3) appears after conditioning for Z1. Since Z1 is not a descendant of X the intervention does not have effect on
it and by rule 3 of do-calculus the do(x) can be removed as in (4). In expression (5) the second term has been summed over
variable Z2 and for the last expression (6) the sum is moved to the left and by the independence (Y ⊥⊥ Z2 | X,Z1)GX

is used
to introduce Z2 in the conditional part of the first term. Finally, rule 2 of do-calculus can be applied to change the do() operator
from X in the first term, resulting in (7).

X Y

Z

(a)

X Y

Z

(b)

X Y

Z

S

(c)

X Y

Z1

Z2

S

(d)

Figure 2: In (a) Z is a confounder for X and Y , (b) represents model in (a) after an intervention on X . Model (c) has both
selection and confounding bias. In (d) we can control for either confounding or selection bias, but not for both unless we have
external data on P (Z1), P (Z2) or both.
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X1

X2

Y

Z1

Z2

Z3

S

Figure 3: Instance of adjustment with partial external data.

For the model in figure 3 neither of the criteria in Definitions 5 and 6 is applicable. However, the causal effect is estimable
by adjustment using external data on Z2 as follows:

P (y | do(x)) (8)

= P (y | do(x))
∑

Z3

P (z3) (9)

=
∑

Z3

P (y | do(x), z3)P (z3) (10)

=
∑

Z2,Z3

P (y | do(x), z2, z3)P (z2|do(x), z3)P (z3) (11)

=
∑

Z2,Z3

P (y | do(x), z2, z3)P (z2 | z3)P (z3) (12)

=
∑

Z2,Z3

P (y | do(x), z2, z3, S=1)P (z2 | z3)P (z3) (13)

=
∑

Z
P (y|x,z,S=1)P (z1|do(x),z2,z3, S=1)P (z2,z3) (14)

=
∑

Z
P (y|x, z, S=1)P (z1|do(x), z2, z3, S=1)P (z3|z2, S=1)P (z2) (15)

=
∑

Z
P (y | x, z, S = 1)P (z1, z3 | z2, S=1)P (z2) (16)

To obtain (9) the initial expression is multiplied by
∑

Z3
P (Z3), then the expression is moved inside the sum and the variable

Z3 can be added to the conditional part because (Y ⊥⊥Z3 | X)GX
resulting in (10). Next step is to condition on Z2 to obtain (11)

and use independence (Z2⊥⊥X | Z3)G
X(Z3)

that yields (12). Introduce the term S=1 in the first factor of (13) by independence
(Y ⊥⊥ S | Z2, Z3)GX

. Expression (14) follows after conditioning on Z1 and in (15) the distribution on Z2, Z3 is separated into
two factors using the chain rule while S=1 is introduced by independence (Z3 ⊥⊥ S | Z2). Finally, expression (16) is achieved
using (Z1⊥⊥X | Z2, Z3)G

X(Z2,Z3)
to remove the do() operator in the second factor. This final expression only requires external

data over Z2.
Definition 7 (Adjustment Pair). Given a causal diagram G augmented with selection variable S, disjoint sets of variables
X,Y,Z, and a set ZT ⊆ Z,

(
Z,ZT

)
is said to be an adjustment pair for recovering the causal effect of X on Y if for every

model compatible with G it holds that:

P (y|do(x))=
∑

Z

P (y|x,z,S=1)P (z\zT|zT,S=1)P (zT) (17)

Remark 2 (Generality of the Adjustment Expression). Note that in expression (17) the covariates in the second factor are
conditioned by the remaining covariates and S, and the third factor consists of a marginal distribution over the externally
measured covariates. This structure is not arbitrary and follows from the assumption that external data is always available in
the form of marginal joint probability distributions. Note that the expression can be decomposed in several factors as follows:

P
(
z \ zT, S=1

)
P
(
zT
)
=
∏|Z|

i=j+1
P (zi | zi−1, zi−2, . . . , z1, S=1)

∏j

i=1
P (zi | zi−1, zi−2, . . . , z1) (18)

For some 0 6 j 6 |Z|. If the S variable appears at arbitrary covariate terms, let P (zk | zk−1, zk−2, . . . , z1) be the first
(starting from the largest index) not containing the S variable. In order to compute this distribution, external data over
P (zk, zk−1, zk−2, . . . , z1) is required. In consequence, even if the terms with zi for 1 6 i < k do not contain the S vari-
able, external measurements are required on them.

Proof for Theorem 1
Definition 8 (Generalized Adjustment Criterion Type 3 (GACT 3)). Given a causal diagram G augmented with selection
variable S, disjoint sets of variables X,Y,Z and a set ZT⊆Z;

(
Z,ZT

)
is an admissible pair relative to X,Y in G if:

10



(a) No element in Z is a descendant in GX of any W /∈ X lying on a proper causal path from X to Y.
(b) All non-causal paths in G from X to Y are blocked by Z and S.
(c) ZT d-separates Y from S in the proper backdoor graph, i.e.

(
Y ⊥⊥ S | ZT

)
Gpbd

XY

.

Theorem 1 (Admissible Pairs are Adjustment Pairs).
(
Z,ZT

)
is an adjustment pair for X,Y inG if and only if it is admissible

by Definition 8.

Claims and lemmas
In order to prove the theorem, we will magnify the causal diagram as described in (Shpitser, VanderWeele, and Robins 2010),
that is, we will replace every bidirected arrow connecting variables A and B with an observable variable CA,B that points to
the pair previously connected by the bidirected arrow. Also, we will introduce a new mediator in every arrow leaving from any
variable in Y, that is, every edge of the form Y → A is replaced with Y → CA → A, where Y ∈ Y and A ∈ V. Let C be the
set of all new variables introduced by the magnification process.

Let any set with the subscript nd denote all the variables in such set that are not descendants of any variable in X, that is, for
any set A let And = {A ∈ A | A /∈ De (X)}. Analogously, the subscript d will denote all the variables in that are descendants
of any variable in X.

We show that the causal effect can be derived from the available data. In order to perform the steps we will define several
subsets of Z such as:

• ZS = {Z ∈ ZM | (Z ⊥⊥ S | ZT)}.
• L1 to be all the variables in (V ∪C) \ (Z ∪X ∪Y) that:

1. Are d-connected to Y given ZT,ZS in G \X
2. Are not descendants of X
3. Are ancestors of some Z ∈ ZT ∪ ZS

• L2 be defined as all variables in (V ∪C) \ (Z ∪X ∪Y) that:

1. Are d-connected to Y given Z in G \X
2. Are independent of X given ZS, ZT and S on G

X(ZS,ZT,S)

3. Are ancestors of some variable in Z.

• ZX =
{
Z ∈ Z \ (ZT ∪ ZS) | (Z ⊥⊥X | ZS,ZT, S)G

X(ZS,ZT,S)

}

• ZY = Z \ (ZT ∪ ZS ∪ ZX).

Lemma 1 (which is after the claims below) proves independences that will be used in the derivation. But before stating it, we
will need the following claims:

Claim 1. If there exist a path r1 between some X ′ ∈ X and S where S is a descendant of X ′, such that r1 does not contain
any variable in ZT and the conditions from def 8 are satisfied, then r1 exists in Gpbd

XY.

Proof. Path r1 can be absent in Gpbd
XY only if the edge from X ′ towards S belongs to a proper causal path. For the sake of

contradiction suppose this is the case, and let R be the variable at the other end of that edge. It follows that R is in a proper
causal path that ends with some Y ′′ ∈ Y, and does not contain any variable in Z for the satisfaction of condition (a). Since the
path between R and S is a subpath of r1 it does not contain any ZT and if it contains any other variable in X ′′ ∈ X restart the
argument with X ′ = X ′′. Then, the path formed between S and Y ′ passing through R exists in Gpbd

XY and is active given ZT,
contradicting condition (c). Since we reached a contradiction the edge must be in the mentioned graph and r1 as well.

Claim 2. If there exists a path r1 between a variable W ′ /∈ Z and some Y ′ ∈ Y that does not contain any variable in X
and is active given ZT,ZS. And there exists also, a path r2 directed from W ′ and S that does not contain any ZT,ZS. Then,
condition (c) is violated.

Proof. If r2 contains some X let X ′ be the closest to W ′, then X ′ ∈ An (S) and by claim 1, the path between X ′ and S exists
in Gpbd

XY. Then, r2 is active in Gpbd
XY given ZT,ZS.

Let r be the path between S and Y ′ composed with edges from r1 and r2. Path r exists in Gpbd
XY and is active given ZT, then

condition (c) is not satisfied.

Claim 3. If there exists a non-causal path p between some X ′ ∈ X and some Y ′ ∈ Y which is active in G
X(ZT,ZS,S)

given
ZT,ZS, S. And, such path p does not contain any other variable in X asides from X ′. Then the conditions in definition 8 are
not satisfied.
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Proof.

• Path p has to be active given ZT,ZS (without S). This is because if not observing S closes p, it implies that S is the
descendant of a collider W ′ in p, such that W ′ is active given S but inactive otherwise. Let r1 be the path between W ′ and
Y ′ and let r2 bet the path between W ′ and S, then by virtue of claim 2 condition (c) is violated, a contradiction.

• Since p is a non-causal path, condition (b) requires it to be closed given Z ∪ {S}. Then, there must exists some Z∗ ∈
Z \ (ZT ∪ZS) that closes p (note that S cannot block any path and particularly p). We will show that such Z∗ cannot exists
under the criterion’s conditions.

• Suppose there exists a Z∗ that blocks p. Since Z∗ /∈ ZS, there exist a path q1 between S and Z∗ that is active given ZT. Let
q be the path between S and Y ′ formed using edges from q1 and p.

– The path q1 does not contain any variable in ZS. Since q1 is active given ZT, any variable in it is not independent of S
given ZT, hence none of them can be in ZS.

– According to condition (c) q has to be blocked given ZT in Gpbd
XY. Since p does not contain any X (other than X ′) and it

is active given ZT,ZS the path q must be closed in Gpbd
XY because (1) Z∗ is a collider in it, (2) there exists a collider in p

that belongs to ZS, or (3) there exists some X ′′ in q1 for which one or two edges in q1 are present in G but not in Gpbd
XY:

(1) If Z∗ is a collider in q, then Z∗ is active because it has a descendant in ZT in Gpbd
XY. The portion of p that goes from X ′

to Z∗ has an edge coming out of Z∗ for it to block p and be a collider in q at the same time. Regarding that portion:
∗ it does not contain any variable in ZS: Suppose it does, then there is a path between S to that variable going through
Z∗ that contradicts the definition for ZS.
∗ if it has a collider in between, it must be active given ZT, and it is a descendant of Z∗, implying that Z∗ is active as

well.
∗ if it is directed from Z∗ to X ′, then there exists a Z ′′ ∈ ZT which is a descendant of Z∗. We know that the edge

incoming to X ′ exists in G
X(ZT,ZS,S)

(by assumption of p), then X ′ must have a descendant in ZT ∪ ZS ∪ {S}. Any
descendant of X ′ in ZS is d-connected to S given ZT with a path passing through X ′ and Z∗ unless some variable in
ZT is in between that descendant and X ′, which means that X ′ has to have a descendant Z ′′ ∈ ZT ∪ {S}.
If the descendant of X ′ is S without any ZT in between, let the path between X ′ and S be called r1 which exists Gpbd

XY

by claim 1. Let p′ be the path from S to Y ′ formed joining r1 and p. Path p′ exists in Gpbd
XY and cannot contain any

variable in ZS because such variable would not satisfy the independence that defines ZS. Therefore, p′ is active given
ZT alone and witnesses a contradiction to condition (c). As a consequence Z ′′ ∈ ZT.
The edge outgoing from X ′ towards Z ′′ is not in a proper causal path. Assume for the sake of contradiction that it is,
then let R be the variable at the other end of that edge (possibly Z ′′ itself). This means that R is in a proper causal path
and has Z ′′ as descendant, contradicting condition (a).
As a result, Z ′′ ∈ ZT is a descendant of Z∗ in Gpbd

XY, which make Z∗ an active collider.
(2) If Z∗ is not an inactive collider in q (given ZT), then q does not contain any variable in ZS. If this was the case, that

variable would be d-connected to S given ZT which contradicts the definition of ZS.
(3) If neither Z∗ nor some ZS block q, there must exists a X ′′ (as defined before), but it is not possible under the criterion

conditions: For X ′′ to disconnect q in Gpbd
XY, the path q1 should have one of the following structures:

∗ Z∗ · · · ← X ′′ · · ·S or Z∗ · · ·X ′′ → · · ·S where the outgoing edge from X ′′ belongs to a proper causal path: Suppose
the edge towards Z∗ is in a proper causal path and let R be the variable at the other end of that edge (possibly Z∗ itself).
Then either Z∗ ∈ De (R) or there exists some variable in ZT ∪ De (R) in the path between X ′′ and Z∗, in both cases
condition (a) is violated because there is a descendant of R that is observed while R is in a proper causal path.
Now suppose the edge towards S is in a proper causal path and let R be the variable in the other end of that edge. Then
R has to be an ancestor of S otherwise there is a collider in between (possibly R itself) that must be active given ZT

which implies that R is in ZT or has a descendant on it, violating condition (a). Then X ′′ is an ancestor of S and the
path between them has no ZT. By claim 1 the path between them, hence the outgoing edge, exists in Gpbd

XY.
∗ Z∗ · · · → X ′′ ← · · ·S: In this case Z∗ would be independent of S given ZT because of X ′′ not being active, contra-

dicting our assumption that Z∗ /∈ ZS because of path q1.

Lemma 1. Suppose that in the causal diagram G there are sets of variables Z,X and Y, such that Z is admissible by the
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criterion in Definition 8 relative to X and Y. Then, the following independences hold in the magnification of G:

(Y ⊥⊥ ZT
d ,Z

S
d | L1,Z

T
nd,Z

S
nd,X)GX

(19)

(Y ⊥⊥ S | ZT,X)GX
(20)

(Y ⊥⊥ S | ZT,ZS,X)GX
(21)

(L1 ⊥⊥X | ZT,ZS)G
X(ZT,ZS)

(22)

(Y ⊥⊥ ZY | ZT,ZS,L2,Z
X,X, S)GX

(23)

(L2 ⊥⊥X | Z, S)G
X(Z,S)

(24)

Proof. We will go over each independence and show that it holds:

1. (Y ⊥⊥ ZT
d ,Z

S
d | L1,Z

T
nd,Z

S
nd,X)GX

: Suppose it does not hold, then there exists a path p between Z ′ ∈ ZS
d ∪ ZT

d and
Y ′ ∈ Y. The path p cannot contain any variable in X because in the graph GX when X is observed, any path containing it
is closed. The path p should have one of the following structures:

(a) Z ′ → · · · → Y ′: Since Z ′ is a descendant of X by definition, then it belongs to a proper causal path and contradicts
cond. (a)

(b) Z ′ ← · · · ← Y ′: Here Z ′ is a descendant of Y ′, so Y ′ is not a descendant of X otherwise Z ′ contradicts cond. (a) because
it is a descendant of Y ′ which is part of a proper causal path. But if Y ′ is not a descendant of X, the child of Y ′ in p
is a node added in the magnification process and satisfies the definition of L1 (it is always d-connected to Y ′, it is not a
descendant of X and it is an ancestor of Z ′) therefore p is blocked.

(c) Z ′ · · · →W ← · · ·Y ′: There is a collider W in p that belongs or has a descendant W ′ ∈ L1∪ZT
nd∪ZS

nd where W could
be equal to W ′, such that p is active. Without loss of generality assume that W is the closest of such colliders to Y ′ in p.
Let L′ be the parent of W in the section of p that goes from W to Y ′, we want to show that L′ belongs to L1 and blocks p.
First, note that L′ cannot be Y ′ itself because the edge between Y ′ and W would be replaced with a mediator during the
magnification process, making the mediator the parent of W in p. Second, we can assure that the path between W ′ and Y ′
does not contain any variable Z∗ ∈ ZT

d ∪ ZS
d because if it does, Z∗ has to be an ancestor of Y ′ or W ′, in the first case

violating condition (a) and in the second W ′ would also be a descendant of X which is not possible given its definition.
Third, L′ is d-connected to Y ′ given ZT,ZS in G \ X because the path from W ′ to Y ′ is active given ZT

nd ∪ ZS
nd and

does not contain any ZT
d ∪ ZS

d and does not contain any X. L′ is also an ancestor of all the descendant of W including
W ′, if W ′ belongs to L1, it has, by definition, a descendant in ZT ∪ ZS that are also descendants of L′. Finally L′ is not
a descendant of X otherwise W ′ is also descendant of X which is not possible by its definition. Therefore W ′ ∈ L1.

(d) Z ′ ← · · · → Y ′: Here the path is not completely directed in any direction but does not contain any collider. Let L′ be
the common ancestor of Z ′ and Y ′ in p. Note that L′ satisfy the definition of L1 and closes p as follows: L′ is always an
ancestor of Z ′, neither L′ nor any Z∗ ∈ Z in the path between L′ and Y ′ is a descendant of X, otherwise condition (a)
is violated because they would lie in a proper causal path with descendants in Z. By assumption L′ is d-connected to Y ′
given ZT

nd,Z
S
nd, and since no descendant of X (i.e. ZT

d ,Z
S
d) is on the path between them, L′ and Y ′ are connected given

ZT,ZS in G \X. Therefore, L′ ∈ L1 and p is closed.

2. (Y ⊥⊥ S | ZT,X)GX
: From condition (c) we have:

(Y ⊥⊥ S | ZT)Gpbd
XY

(25)

=⇒(Y ⊥⊥ S | ZT)Gpbd

XY X

(26)

=⇒(Y ⊥⊥ S | ZT,X)Gpbd

XY X

(27)

=⇒(Y ⊥⊥ S | ZT,X)GX
(28)

Eq. (26) follows because removing incoming edges to X never introduces dependencies. Provided that no variable in X has
incoming edges, introducing X to the set of observed variables may never compromise a previously established independence
hence (27) follows. Finally, comparing the graphs GX and Gpbd

XYX
we can see that the former could possibly have edges that

are not in the second. Those edges are those that have tails in X and do not belong to a proper causal path. Since X is being
observed in the independence any new path including those edges is always block, therefore independence (28) is implied.
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3. (Y ⊥⊥ S | ZT,ZS,X)GX
: From the previous independence and the definition of ZS we have:

(Y ⊥⊥ S | ZT,X)GX
∧ (ZS ⊥⊥ S | ZT) (29)

=⇒(Y ⊥⊥ S | ZT,X)GX
∧ (ZS ⊥⊥ S | X,ZT)GX

(30)

=⇒(Y,ZS ⊥⊥ S | ZT,X)GX
(31)

=⇒(Y ⊥⊥ S | ZS,ZT,X)GX
(32)

Here statement (30) follows from the fact that conditioning on X while transforming the graph from G to GX can only add
more independences, but does not remove any of the existent ones. Statement (31) follows from the composition axiom that
holds whenever d-separation holds. Finally, statement (32) follows by weak union.

4. (L1 ⊥⊥X | ZT,ZS)G
X(ZT,ZS)

: Assume for the sake of contradiction that this does not hold. Then, fix a path p1 from some

L′ ∈ L1 to some X ′ ∈ X given ZT,ZS in G
X(ZT,ZS)

(X ′ · · · · · ·L′). Without loss of generality assume that X ′ is the
closest variable in X to L′ in p1, if it is not, restart the argument with that other X instead. By definition, L′ is d-connected
to some Y ′ ∈ Y by some path p2 in G \X given ZT,ZS (L′ · · · · · ·Y ′). Let p be the path between X ′ and Y ′ formed using
edges in p1 and p2 in G, also let W ′ be the closest node to L′ that belongs to p, possibly L′ itself.
• If W ′ is connected to L′ by a path that starts with an edge going out from W ′ (i.e. W ′ → · · ·L′), then W ′ has a

descendant Z ′ ∈ ZT ∪ZS: Either W ′ is ancestor of L′ and, by extension, of some Z ′ ∈ ZT ∪ZS by definition of L1 (i.e.
W ′ → · · · → L′ → · · · → Z ′) or there is an active collider connecting W ′ and L′ in the very same set, such collider is a
descendant of W ′ (W ′ → · · · → Z ′ ← · · ·L′).
• p does not contain any variable in X except at the endpoint: This is because p1 does not include any other X, and p2 is

active in G \X.
• p is not a proper causal path. Suppose it is a proper causal path, and consider the relationship between L′ and W ′.
– If W ′ = L′ then L′ ∈ De (X) contradicting the definition of L1.
– If the path between W ′ and L′ has an edge pointing into W ′ then W ′ is a collider in p1 implying that X ′ and L′ are

disconnected unlessW ′ has a descendant in ZS∪ZT. SinceW ′ is assumed to be in a proper causal path, such descendant
violates condition (a).

– If the path between L′ and W ′ has edges outgoing from W ′ then Z ′ is a descendant of W ′, and since W ′ is in a proper
causal path, Z ′ contradicts condition (a).

• W ′ is not an inactive collider in p (given ZT,ZS): If W ′ is a collider, it is connected to L′ with an incoming or outgoing
edge. If the edge is incoming to W ′, then W ′ has to be active for p1 to be active. If the edge is going out from W ′ or
W ′ = L′, it follows that W ′ is active in p because it is an ancestor of Z ′.

• By claim 3 the criterion is not satisfied. Note that p is a non-causal path and it is active in G
X(ZT,ZS)

given ZT,ZS and
does not contain any variable in X except for X ′. The path p also exists in G

X(ZT,ZS,S)
because it contains the same or

more edges than G
X(ZT,ZS)

. And p is active given ZT,ZS, S also because observing S cannot close it. Therefore, claim 3
applies to p.

5. (Y⊥⊥ZY | ZT,ZS,L2,Z
X,X, S)GX

: Assume the independence does not hold and fix a path p1 that connects some Y ′ ∈ Y

to Z ′ ∈ ZY given ZT,ZS,L2,Z
X,X, S in GX. Without loss of generality assume that Z ′ is the closest of such variables to

Y ′ in p1.
• p1 is active given ZT,ZS,L2,Z

X, S (without X) inGX. Path p1 does not contain any variable in X except at the endpoint
because p1 is active in GX given X, which means that it would be blocked or missing an edge if it contains X.
• p1 is active given ZT,ZS,ZX, S (without L2) inGX. Path p1 does not contain any variable in L2 or any collider activated

exclusively by L2 and not by ZT,ZS,ZX, S.
Suppose for the sake of contradiction that there is any variable L′ ∈ L2 activating p1. Since the path is assumed to be
active given L2, L′ may only be a collider in p1 or it is the descendant of some Q which is a collider in p1 that is active
given L′ but not ZT,ZS,ZX, S. It must be the case that the path between Q and L′ does not contain any variable in
ZT,ZS,ZX, S. Furthermore, it cannot contain any variable in ZY either because it would not be independent of X in
G

X(ZT,ZS,S)
given ZT,ZS, S because its ancestor in ZY is not.

LetQ′ denote either L′ if it is in p1 orQ in the second case. LetR be the parent ofQ′ in the portion of p1 that goes towards
Y ′. Note that R cannot be a collider in this path and R 6= Y ′ because if Y ′ → Q′ was an edge in G, a new mediator was
introduced during magnification. Furthermore, R ∈ L2: if L′ satisfies the first part of the definition of L2, R which is an
ancestor of L′ also satisfies it. Even if L′ is d-connected to a variable in Y other than Y ′, and behaves as a collider between
R and that variable, L′ is active given Z. For the second part, R has to be independent of X as stated in the definition of
L2, otherwise L′ would not satisfy this either. For the third part, L′ ∈ An (Z) and R ∈ An (L′) then R ∈ An (Z). As a
consequence of R ∈ L2, p1 is blocked by it, which is a contradiction to our assumption, and the conclusion follows.
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• p1 is active given ZT,ZS, S (without ZX) in GX. Follows from the fact that p1 does not contain any variable in ZX.
Suppose this is not true, then let Z̃ ∈ ZX be the closest of such variables to Y ′ in p1. Z̃ has to be an active collider
for p1 to be active. Let R be the parent of Z̃ in the portion of p1 that goes towards Y ′. Note that R 6= Y ′ because if
Y ′ → Z̃ was an edge in G, a new mediator was introduced during magnification and R would be that mediator. Then,
R ∈ L2 and blocks p1, because: first, R is d-connected to Y ′ through p1 given Z unless S is a collider in between, but
then independence (21) is violated (no variables in ZX ∪ ZY are in this portion because we assumed Z̃ and Z ′ were the
closest to Y ′ in this path). Second R is independent of X given ZT,ZS, S on G

X(ZT,ZS,S)
else Z̃ would not satisfy this

independence either, which is not the case by definition. Third, R is the ancestor of Z̃. Since R would block p1, Z̃ cannot
exists in p1.
• p1 is active given ZT,ZS (without S) in GX. This is because p1 does not contain S. Suppose it does, then the subpath

between S and Y ′ violates independence (21).
• Since Z ′ does not belong to ZX, there exists a path p2 that connects Z ′ to some X ′ ∈ X in G

X(ZT,ZS,S)
given ZT,ZS, S.

Assume, without loss of generality, that X ′ is the closest variable in X to Z ′ in the path p2. Let p the path between X ′ and
Y ′ that uses edges in p1 and p2 and let W ′ be the closest node to Z ′ in p, possibly Z ′ itself.
• p is not a causal path. For the sake of contradiction suppose p is a causal path, since p1 exists in GX and p2 only contains
X ′ from X, p is also a proper causal path. Now, consider the path between W ′ and Z ′:

– if W ′ = Z ′ we have a contradiction to condition (a).
– if it starts with an incoming edge, then W ′ is an active collider in p2, with a descendant in ZT ∪ ZS ∪ {S}. If the

descendant is specifically in ZT ∪ ZS ⊆ Z there is a violation to condition (a).
If W ′ is an ancestor of S, let r1 be the path between W ′ and Y ′, which cannot contain any Z ∪X by condition (a) and
definition of proper causal path. Also let r2 be the path between W ′ and S which does not contain any ZT,ZS. Then, by
claim 2 condition (c) is violated.

– if it starts with an outgoing edge, then W ′ is an ancestor of Z ′ or a collider that is active in p2 (i.e. ZT,ZS, S). If it is
ancestor of Z ′ condition (a) is not satisfied. If ancestor of S the same argument as before applies again.

• p2 does not contain any variable in ZX ∪L2: Both sets require the independence (ZX,L2⊥⊥X | ZT,ZS, S)G
X(ZT,ZS,S)

.
Any variable in p2 does not satisfy that independence by definition of p2.
• If W ′ does not block p given ZT,ZS, S, then by claim 3 the conditions of the criterion in definition 8 are violated. To see

this observe that if W ′ does not block p then it is active in the graph G
X(ZT,ZS,S)

given ZT,ZS, S and does not contain
X except for X ′, hence claim 3 applies to it.
• If W ′ blocks p given ZT,ZS, S, then the criterion in definition 8 is violated: In this case W ′ has to be an inactive collider

in p. If the edge that has Y ′ as endpoint in p is outgoing from Y ′, let Q be the variable introduced as a mediator during
magnification. If the edge is incoming to Y ′, letQ be farthest ancestor of Y ′ in p. Note thatQ cannot beW ′ itself because,
even if Y ′ was the parent of W ′ in G, Q is a mediator. Here Q is d-connected to Y ′ given Z (no variable in ZX,ZY is in
p at all and any from ZT ∪ ZS would block p1). Also Q is an ancestor of some Z (because the portion of p from Q to W ′
is either directed and W ′ is ancestor of Z ′, or the subpath has a collider in ZT ∪ ZS). No incoming edge to Q is possible
in this section because its neighbor would be the farthest ancestor of Y ′ instead of Q and if Q is the mediator the edge
must be outgoing. Then Q will be in L2 unless it is not independent of X in G

X(ZT,ZS,S)
given ZT,ZS, S. If Q ∈ L2,

p1 is closed by Q. Hence, Q must not satisfy this independence. Yet the reason is not because of the path p, where Q is
independent ofX ′ in this sense. It follows that there exists a path p′1 between someX ′′ ∈ X andQ inG

X(ZT,ZS,S)
, active

given ZT,ZS, S. Without loss of generality assume X ′′ is the closest of such variables to Q in p′1. Meanwhile, the path
p′2 from Q to Y ′ is open in GX given ZT,ZS, S. Let p′ be the path formed between X ′′ and Y ′ by joining edges from p′1
and p′2. The path p′ has one of the following structures:

– X ′′ · · · ← Q← Y ′ (if Y ′ is a parent of Q then it is a mediator because of the magnification).
– X ′′ · · ·Q→ · · · → Y ′

– Q← Y ′ · · ·X ′′ (here Y ′ lies in p′1)
– Q→ · · · → Y ′ · · ·X ′′ (here Y ′ lies in p′1)
In the four cases the path p′ is active in G

X(ZT,ZS,S)
given ZT,ZS, S and does not contain any X asides from X ′′.

Then, claim 3 provides that the existence of p′ contradicts our assumption that criterion in definition 8 was satisfied, a
contradiction.

6. (L2⊥⊥X | Z, S)G
X(Z,S)

: Suppose this does not hold. Then, there exists a path p1 from X ′ ∈ X to L′ ∈ L2 active given Z, S

in G
X(Z,S)

. Assume without loss of generality that X ′ is the variable in X closest to L′ in the path p1. By definition of L2

there is also a path p2 from L′ to some Y ′ ∈ Y that is active when Z is observed in G \X. Let p be the path between X ′ and
Y ′ formed using edges from p1 and p2 and let W ′ be the closest variable to L′ that lies in p, possibly L′ itself.
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• The only variable in X that p contains is X ′. This follows by the assumption that X ′ is the closest to L′ in p1 and the fact
that p2 cannot be active in G \X if it contains any variable in X.
• L′ has a descendant Z ′ ∈ Z by definition of L2

• IfW ′ is connected to L′ by a path that starts with an edge going out fromW ′ (i.e.W ′ → · · ·L′), thenW ′ has a descendant
Z∗ ∈ Z ∪ {S}: Either W ′ is ancestor of L′ and, by extension, of Z ′ (i.e. W ′ → · · · → L′ → · · · → Z ′ = Z∗) or there is
an active collider in Z ∪ {S} connecting W ′ and L′, such collider is descendant of W ′ (W ′ → · · · → Z ′ ← · · ·L′).
• the path p is not causal. Suppose it is causal, then by the previous argument it has to be a proper one too. Consider the

relationship between L′ and W ′.
– If W ′ = L′. By definition of L2, L′ has a descendant in Z which contradicts condition (a) because W ′ is assumed to be

in a proper causal path.
– If the path between W ′ and L′ has an edge pointing into W ′, then W ′ is a collider in p1 implying that X ′ and L′ are

disconnected unless W ′ has a descendant in Z ∪ {S}. If the descendant is in Z it violates condition (a).
If W ′ is an ancestor of S, let r1 be the path between W ′ and Y ′, which cannot contain any Z ∪ X by condition (a)
and definition of proper causal path. Also let r2 be the path between W ′ and S which does not contain any Z, and in
particular, any ZT,ZS. Then, by claim 2 condition (c) is violated.

– If the path between L′ and W ′ has edges outgoing from W ′, then Z∗ ∈ Z ∪ S is a descendant of W ′. And as in the
previous argument either condition (a) or condition (c) is violated.

• p needs to be blocked to satisfy condition (b), which is possible only if W ′ is an inactive collider that blocks the path.
However, this is not the case:

– If W ′ = L′, then W ′ is active because it is an ancestor of Z ′.
– If W ′ is a collider in p, consider if it is connected to L′ with an incoming or outgoing edge:
∗ If the edge is incoming to W ′, it is also a collider in p1 and has to be active by assumption.
∗ If the edge is going out from W ′, then W ′ is an ancestor of Z∗ and is active.
Therefore, p is active and a contradiction is reached.

Theorem’s proof

Proof. (of Theorem 1). (If) Suppose the set Z = ZT ∪ ZM satisfies the conditions of the criterion relative to the pair X and Y
in a given causal diagram G.

Using the independences just proved in lemma 1 we proceed with a derivation of the target causal effect ending with the
proposed adjustment expression:

We start the derivation by conditioning on ZS
nd,Z

T
nd and L1

P (y | do(x)) (33)

=
∑

L1,ZT
nd,Z

S
nd

P (y | do(x), l1, zTnd, zSnd)P (l1, zTnd, zSnd | do(x)) (34)

Since all the variables in the second term are non-descendants of X by definition, it holds that (L1,Z
T
nd,Z

S
nd⊥⊥X)GX

and the
third rule of the do-calculus can be applied to drop the do() operator

=
∑

L1,ZT
nd,Z

S
nd

P (y | do(x), l1, zTnd, zSnd)P (l1, zTnd, zSnd) (35)

We can employ independence (19) from lemma 1, (Y ⊥⊥ ZT
d ,Z

S
d | L1,Z

T
nd,Z

S
nd,X)GX

to introduce the variables ZT
d ,Z

S
d in

the first term, after summing over the same variables in the second term

=
∑

L1,ZT,ZS

P (y | do(x), l1, zT, zS)P (l1, zT, zS) (36)

Applying the chain rule on the second term yields

=
∑

L1,ZT,ZS

P (y | do(x), l1, zT, zS)P (l1 | zT, zS)P (zT | zS)P (zT) (37)
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By definition of ZS, (ZS ⊥⊥ S | ZT), allowing us to introduce the S variable into the third factor

=
∑

L1,ZT,ZS

P (y | do(x), l1, zT, zS)P (l1 | zT, zS)P (zS | zT, S=1)P (zT) (38)

From lemma 1-(22), we use (L1 ⊥⊥X | ZT,ZS)G
X(ZT,ZS)

to introduce the do() operator into the second factor

=
∑

L1,ZT,ZS

P (y | do(x), l1, zT, zS)P (l1 | do(x), zT, zS)P (zS | zT, S=1)P (zT) (39)

Using the chain rule to combine the first and second factors. Sum out L1

=
∑

ZT,ZS

P (y | do(x), zT, zS)P (zS | zT, S=1)P (zT) (40)

Using lemma 1-(21), (Y ⊥⊥ S | ZT,ZS,X)GX
, one can introduce the S variable into the first term

=
∑

ZT,ZS

P (y | do(x), zT, zS, S=1)P (zS | zT, S=1)P (zT) (41)

Conditioning on L2,Z
X we get

=
∑

ZT,ZS,L2,ZX

P (y | do(x), zT, zS, l2, zX, S=1)P (l2, z
X | do(x), zT, zS, S=1)P (zS | zT, S=1)P (zT) (42)

Using the independence (L2 ⊥⊥X | ZT,ZS, S)G
X(ZT,ZS,S)

from the definition of L2, and (ZX ⊥⊥X | ZT,ZS, S)G
X(ZT,ZS,S)

from the definition of ZX, we can remove the do() operator from the second factor by applying rule 3 of do-calculus

=
∑

ZT,ZS,L2,ZX

P (y | do(x), zT, zS, l2, zX, S=1)P (l2, z
X | zT, zS, S=1)P (zS | zT, S=1)P (zT) (43)

By independence (Y ⊥⊥ ZY | ZT,ZS,L2,Z
X,X, S)GX

from lemma 1-(23), we can sum over ZY in the second term, move
the new to the left and add ZY in the first term

=
∑

Z,L2

P (y | do(x), z, l2, S=1)P (l2, z
Y, zX | zS, zT, S=1)P (zS | zT, S=1)P (zT) (44)

Rearranging using the chain rule

=
∑

Z,L2

P (y | do(x), z, l2, S=1)P (l2 | zY, zX, zT, zS, S=1)P (zY, zX, zS | zT, S=1)P (zT) (45)

We can introduce do(x) in the second term using the independence (L2 ⊥⊥X | Z, S)G
X(Z,S)

from lemma 1-(24). Also consid-
ering that Z = ZY ∪ ZX ∪ ZT ∪ ZS, we can rewrite as

=
∑

Z,L2

P (y | do(x), z, l2, S=1)P (l2 | do(x), z, S=1)P (zY, zX, zS | zT, S=1)P (zT) (46)

The first and second term can be combined using the chain rule. Then summing out L2:

=
∑

Z

P (y | do(x), z, S=1)P (zY, zX, zS | zT, S=1)P (zT) (47)

Renaming the sets ZY ∪ ZX ∪ ZS as Z \ ZT

=
∑

Z

P (y | do(x), z, S=1)P (z \ zT | zT, S=1)P (zT) (48)
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Figure 4: Non-causal path between X and Y activated when S and Z is observed

From condition (b) we have that (Y ⊥⊥X | Z, S)GX
, then the do() operator can be removed in the first term

=
∑

Z

P (y | x, z, S=1)P (z \ zT | zT, S=1)P (zT) (49)

Since the adjustment holds in the magnified graph using only variables present in G, the same adjustment is admissible for the
original model as well.

(Only if) For this direction of the proof we will establish that if the adjustment is valid then the conditions must be satisfied. In
order to do so, we prove the contrapositive statement, that is: failing to satisfy any of the conditions implies that the adjustment
is not valid. First, let condition (b)’ be a part of condition (b) that says that all non-causal paths must be blocked given Z
(without S). Then, (b)’ will correspond to the second condition in the adjustment criterion (Shpitser, VanderWeele, and Robins
2010). First, assume that conditions (a) or (b)’ do not hold. Then, the adjustment formula itself will not always identify the
causal effect P (y | do(x)). For instance, consider any model compatible with GS (which is also compatible with G). Then, the
adjustment formula (17) reduces to adjustment without selection bias:

∑

Z

P (y | x, z, S=1)P
(
z \ zT | zT, S=1

)
P
(
zT
)
=
∑

Z

P (y | x, z)P (z) 6= P (y | do(x)) (50)

The last inequality follows by the adjustment criterion (Shpitser, VanderWeele, and Robins 2010), which implies that this
expression will not always be equal to P (y | do(x)) whenever (a) or (b)’ are not satisfied.

Now suppose conditions (a) and (b)’ are satisfied but condition (b) is not. Then, there exists a non-causal path p that is
blocked given Z but is opened when S is observed. Path p must contain S as a collider and has the form X ′ · · · → S ← · · ·Y ′
where X ′ ∈ X and Y ′ ∈ Y. We need to find a modelM compatible with a graph G that contains a path like p and show that
the causal effect P (y | do(x)) is different from the adjustment expression (17). Consider a model compatible with the causal
diagram depicted in figure 4.

The diagram evidences a non-causal path that is active when Z = {Z1, . . . Zn} and S are observed. The elements in Z may
be assigned to ZT in any way. Since the variables in W = {W0, . . . ,Wn} do not have any parents we can parametrize their
distributions directly when constructingM. If we let every variable in Z ∪ S behave as an xor of its parents, P (Wi=1) =
1
2ε, i = {1, . . . , n}, where epsilon is a real constant, and P (x) = P (w0), P (y) = P (wn) we obtain that:

P (Y=1 | do(X=1)) = P (Y=1) =
1

2
ε

∑

Z

P (Y=1 | X=1, z, S=1)P (z \ zT | S=1)P (zT) =
1

2
(ε2 − 2ε+ 2)

For any ε ∈ (1, 2) we have that the two quantities above are different (figure 5).
Then this is anM where the effect is not identifiable by the adjustment expression, because condition (b)’ is not satisfied,

impliying its necessity. If the path between any Wi and Zj for any 0 6 i 6 n, 1 6 j 6 n, i 6= j has more variables in between
we can make any variable be equal to its parent. Similarly, if Zj is actually a descendant of a collider Qj in the path, we can
make every variable in the path to take the value of its parent, including Zj . With those adjustments the model induces exactly
the same distribution. If X or Y are parents of W0 or Wn respectively the model is in the same equivalence class that the one
presented and the conclusion holds.

Continuing with the remaining condition, assume that (a) and (b) are satisfied but condition (c) is not. Then, there exists
a path p between S and some Y ′ ∈ Y that is active in the graph Gpbd

XY given ZT. Consider the family of SCMs compatible
with Gpbd

XY. By condition (b) the independence (X ⊥⊥ Y | Z, S)Gpbd
XY

holds because all paths between X and Y in Gpbd
XY are
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Figure 5: Causal effect vs Adjustment expression for modelM

non-causal. Then, the adjustment expression for any model in that family can be reduced as follows:
∑

Z

P (y | x, z, S=1)P (z \ zT | S=1)P (zT) (51)

=
∑

Z

P (y | z, S=1)P (z \ zT | S=1)P (zT) (52)

=
∑

ZT

P (y | zT, S=1)P (zT) (53)

Equation (52) follows because of the independence (X⊥⊥Y | Z, S)Gpbd
XY

. The final expression is reached by combining the first

two factors and summing out the variables in Z \ ZT.
Since Gpbd

XY has no causal paths between X and Y, the effect P (y | do(x)) = P (y). Also consider the effect P (y | do(s)),
which is always equals to P (y). Consider the adjustment criterion relative to the pair (S,Y) in Gpbd

XY, note that ZT is not
admissible since there is a non-causal path p that goes from S to Y. Therefore, by the completeness of the adjustment criterion
(Shpitser, VanderWeele, and Robins 2010), there exists a modelM compatible with Gpbd

XY where

P (y | do(s)) 6=
∑

ZT

P (y | s, zT)P (zT) (54)

The right hand side of eq. (54) includes eq. (53). We have then:

P (y | do(x)) = P (y) = P (y | do(s)) 6=
∑

ZT

P (y | s, zT)P (zT) (55)

Which proves that the adjustment expression does not relies the causal effect of interest in the modelM, which is also compat-
ible with G.

Corollary 2 (Causal Effects Recovery by Adjustment). Let G be a causal diagram augmented with a variable S representing
the selection mechanism. Let V be the set of variables measured under selection bias, and T ⊂ V the set of variables measured
externally in the overall population. Consider disjoint sets of variables X,Y ⊆ V, then the causal effect P (y | do(x)) is
recoverable from {P (v | S=1), P (t)} by the adjustment expression (17) while ZT ⊆ T, in every model inducingG if and only
if
(
Z,ZT

)
is an admissible pair relative to X,Y in G according to Definition 8.

Proof. If
(
Z,ZT

)
is an admissible pair for X,Y in G then Theorem 1 ensures that P (y | do(x)) is equal to expression (17).

Since P (y | x, z, S=1), P
(
z \ zT | S=1

)
can be obtained from P (v | S=1), and P

(
zT
)

from P (t), the expression can be
computed from the input. On the other hand, if P (y | do(x)) is recoverable by the adjustment expression (17), by Theorem 1,(
Z,ZT

)
is an admissible pair.

Proposition 1. If ZT = ∅, then GACT 1⇐⇒ GACT 3.
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Proof. For the right direction of the implication we have that conditions (a), (b) from the two criteria are identical. Then, we
need to show that conditions (c) and (d) in Type 1 imply condition (c) in Type 3. Starting from condition (c):

(Y ⊥⊥ S | X)GX
∧ ∀X∈X∩An(S)(X ⊥⊥Y)GX

(56)

=⇒(Y ⊥⊥ S | X)Gpbd

XY X

∧ ∀X∈X∩An(S)(X ⊥⊥Y)GX
(57)

=⇒(Y ⊥⊥ S)Gpbd

XY X

∧ ∀X∈X∩An(S)(X ⊥⊥Y)GX
(58)

=⇒(Y ⊥⊥ S)Gpbd
XY

(59)

Statement (57) follows from (56) because the change in graph may only remove edges which could only increase the number
of independences. Next, X can be safely removed from (58) because for any path previously blocked by X, it contains a portion
from some X ′ ∈ X to some Y ′ ∈ Y that should be either causal or non-causal. If it is causal then the edge outgoing from X ′ is
not present in the graph anyway, and if it is not causal it must have a collider before reaching Y ′ but since nothing is observed,
such collider is inactive. Finally, (59) adds edges incoming to variables in X. This could create new paths with two structures
S · · · → X ′ ← · · ·Y ′ and S · · · ← X ′ ← · · ·Y ′ where X ′ ∈ X and Y ′ ∈ Y. The first kind of paths are always closed without
any variable being observed and the second kind are open only if X ′ ∈ An (S). But by condition (d) any path between such
X ′ ∈ An (S) and Y with the second structure must be closed.

For the left direction we already established that conditions (a) and (b) are identical in both criteria. Next, from condition (c)
in Type 3 we derive condition (c) in Type 1:

(Y ⊥⊥ S)Gpbd
XY

(60)

=⇒(Y ⊥⊥ S)Gpbd

XY X

(61)

=⇒(Y ⊥⊥ S | X)Gpbd

XY X

(62)

=⇒(Y ⊥⊥ S | X)GX
(63)

Statement (61) follows because removing edges preserves all independences. Observing X in (62) will not produce new collid-
ers in the graph therefore no new active paths. Finally, edges added back in the graph for (62) are blocked by the observed set
X.

All that is left is to show that condition (c) in Type 3 implies condition (d) in Type 1. To do this, we will prove the contrapos-
itive statement, that is:

∃X′∈X∩An(S),Y ′∈Y,p st. p is a path that connects X ′ to Y ′ in GX =⇒ (Y ⊥6⊥ S)Gpbd
XY

(64)

The implication holds because path p exists in the graph Gpbd
XY.

Proposition 2. If ZT = Z, then GACT 2⇐⇒ GACT 3.

Proof. Condition (a) from the two criteria is identical.
To complete the forward direction we will show (1) that condition (b), (c) in Type 2 imply condition (b) in Type 3. And, (2)

that condition (c) in Type 1 implies condition (c) in Type 3:

(1) Assuming that condition (b) holds in Type 2, the same condition in Type 3 may fail if there exists a path p from some
X ′ ∈ X to some Y ′ ∈ Y that is closed given Z but open given Z, S. However, the subpath q covering the portion of p from
S to Y ′ contradicts condition (c) in Type 2 unless q contains some X ′′ ∈ X, but in this case the portion of p between X ′′
and Y ′ contradicts condition (b) in Type 2. Consequently, (b) must hold.

(2) Starting from condition (c):

(Y ⊥⊥ S | X,Z) ∧ All non-causal paths blocked by Z, S (65)
=⇒(Y ⊥⊥ S | X,Z)Gpbd

XY
∧ All non-causal paths blocked by Z, S (66)

=⇒(Y ⊥⊥ S | Z)Gpbd
XY

(67)

Statement (66) follows from (65) because the change in graph may only remove edges which keep all existent indepen-
dences. Next, removing X from (66) to obtain (67) may open two kinds of S −Y paths:
• With edges incoming to X

• With edges outgoing from X that do not belong to a proper causal path
In both cases the new paths are non-causal and must be blocked by Z.
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For the left direction, first note that condition (b) implies condition conditions (b) in Type 2 because not observing S could
only close paths. Second, we will show that (c) in Type 3 imply condition (c) in Type 2:

(Y ⊥⊥ S | Z)Gpbd
XY

∧ All non-causal paths blocked by Z, S (68)

=⇒(Y ⊥⊥ S | Z)Gpbd

XY X

∧ All non-causal paths blocked by Z, S (69)

=⇒(Y ⊥⊥ S | Z,X)Gpbd

XY X

∧ All non-causal paths blocked by Z, S (70)

=⇒(Y ⊥⊥ S | Z,X)GX
∧ All non-causal paths blocked by Z, S (71)

=⇒(Y ⊥⊥ S | Z,X) (72)

Eq. (69) follows because removing incoming edges to X never introduces dependencies. Provided that no variable in X has
incoming edges, introducing X to the set of observed variables may never compromise a previously established independence
hence (70) follows. Next, comparing the graphs GX and Gpbd

XYX
we can see that the former could possibly have edges that

are not in the second. Those edges are those that have tails in X and do not belong to a proper causal path. Since X is being
observed in the independence any new path including those edges is always block, therefore independence (71) is implied.
Finally, when the edges incoming to X are added in (72), any new S − Y path using one of those edges is non-causal and must
be blocked by Z (since S cannot block it).

Finding Admissible Sets for Generalized Adjustment
Definition 9 (Generalized Adjustment Criterion Type 3 (Alternative) GACT 3A). Given a causal diagram G augmented with
selection variable S, disjoint sets of variables X,Y,Z and a set ZT ⊆ Z;

(
Z,ZT

)
is an admissible pair relative to X,Y in

G if:

(a) Z ∩Dpcp(X,Y) = ∅
(b) (Y ⊥⊥X | Z, S)Gpbd

XY

(c) (Y ⊥⊥ S | ZT)Gpbd
XY

where Dpcp(X,Y) = De
(
(De (X)GX

\X) ∩An (Y)GX

)
.

Proposition 3. Definition 9 is equivalent to Definition 8.

Proof. Condition (c) is exactly the same in both definitions. Similarly, definition 8-(a) says that Z should not contain any
variable in Dpcp(X,Y) which is exactly the set of nodes forbidden in definition 9-(a). Then, both conditions are equivalent.

To prove definition 9 =⇒ definition 8 it is left to show that definition 9(a),(b),(c) imply definition 8(b). Definition 9(b) ensures
that all non-causal paths from X to Y in Gpbd

XY are blocked. Assume for the sake of contradiction that there exists a non-causal
path p absent from Gpbd

XY and present in G. Any such path has to contain some edge going out from some X ′ ∈ X that belongs
to a proper causal path q. Without loss of generality assume that X ′ is the only variable in p that belongs to X, otherwise restart
the argument with that variable instead of X ′. Let W be the variable at the other end of the missing edge and let Y ′ ∈ Y be the
variable at the end of q. Similarly, let Y ′′ ∈ Y be the variable at the end of p.

Clearly, p should not be directed from X ′ to some Y ′′ because it is not causal. Consequently, there exists some collider in
p before reaching Y ′′. By definition 9(a) that collider is not in Z because it is a descendant of W which is in a proper causal
path by assumption. Then, the collider has to be S, but this implies that there is a path r that goes from S to Y ′ passing through
W that do not contain any Z and exists in Gpbd

XY, a contradiction to definition 9(c). Hence, p cannot exists and the conclusion
follows.

To finish the other direction (definition 8 =⇒ definition 9) we observe that all paths inGpbd
XY are non-causal and definition 8(b)

ensures that all of them are closed.

Proposition 4 (Correctness of LISTSEPC). Given a graph G, a variable S, sets of variables Y, I,R,Z, where {S},Y,Z are
disjoint and I ⊆ R ⊆ Z; LISTSEPC outputs all pairs

(
Z,ZT

)
, where ZT ∈ ZG ({S},Y) 〈I,R〉.

Proof. Consider the recursion tree associated with LISTSEPC. We want to show that when a node is visited with I′,R′ it will
output

(
Z,ZT

)
where ZT ∈ ZG ({S},Y) 〈I′,R′〉 by structural induction:

• Base case: Pick any particular leaf of the tree. The recursion stops when I = R, then I′ = R′. The family associated with
a leaf is ZG ({S},Y) 〈I′,I′〉 which may contain I′ if it is a valid separator, or be empty. Indeed the algorithm will output
(Z, I′) if and only if condition in line 18 is true, which implies that I′ is a separator in G.
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Algorithm 1 Routines used to list admissible pairs

1: function LISTADJPAIRS(G,X,Y, S,V,T)
2: Gpbd

XY ← Compute proper backdoor graph from G
3: R← (V ∪ {S}) \ (X ∪Y ∪Dpcp(X,Y))

4: LISTSEPAB(Gpbd
XY,X,Y, S, {S},R,T)

5: end function
6: function LISTSEPAB(G,X,Y, S, I,R,T)
7: if FINDSEP(G,X,Y, I,R) 6=⊥ ∧ FINDSEP(G, {S},Y, ∅,R ∩T) 6=⊥ then
8: if I = R then
9: LISTSEPC(G,S,Y, ∅, I ∩T, I \ {S})

10: else
11: V ← arbitrary variable from R \ I
12: LISTSEPAB(G,X,Y, I ∪ {V },R,T)
13: LISTSEPAB(G,X,Y, I,R \ {V },T)
14: end if
15: end if
16: end function
17: function LISTSEPC(G,S,Y, I,R,Z)
18: if FINDSEP(G, {S},Y, I,R) 6=⊥ then
19: if I = R then
20: output (Z, I)
21: else
22: V ← arbitrary variable from R \ I
23: LISTSEPC(G,X,Y, I ∪ {V },R,Z)
24: LISTSEPC(G,X,Y, I,R \ {V },Z)
25: end if
26: end if
27: end function

• Inductive step: Pick a particular non-leaf node and assume the statement holds for its two children. The family for the node
is ZG ({S},Y) 〈I′,R′〉 which can be expressed as two families ZG ({S},Y) 〈I′ ∪ {V },R′〉 ∪ ZG ({S},Y) 〈I′,R′ \ {V }〉
which are clearly disjoint, because in the first family every set contains V while in the second none of them does. By
assumption the children output exactly the sets in those families. If condition in line 18 returns ⊥ it means that there is no
separator C such that I′ ⊆ C ⊆ R′ hence the branch can be aborted and the output will be empty. If the condition does not
fail, each children outputs its family pairs, satisfying the statement.

Proposition 5 (Correctness of LISTSEPAB). Given a graph G, a variable S, sets of variables
X,Y, I,R,T, where X,Y, {S},R are disjoint, I⊆R and T⊆C; LISTSEPAB outputs all pairs in{(

Z,ZT
)
∈ ZG (X,Y) 〈I,R〉 ×ZG ({S},Y) 〈∅,T〉

∣∣ZT ⊆ Z
}

.

Proof. Consider the recursion tree associated with LISTSEPAB. Similar to the proof for proposition 4, we want to show that
when a node is visited; it will output the stated set of pairs with I = I′,R = R′ where I′ and R′ are the particular values for
that node, then by structural induction:

• Base case: Pick any particular leaf of the tree. The recursion stops when I = R, then I′ = R′. The family associated with a
leaf is ZG (X,Y) 〈I′,I′〉 which may contain I′ if it is a valid separator, or be empty. The function will provide any output if
and only if condition in line 7 is true, which implies that I′ is a separator in G. If I′ a separator, LISTSEPC(G,S,Y, ∅, I′ ∩
T, I′) is called, and by proposition 4 its output will satisfy the claim.

• Inductive step: Consider any non-leaf node and assume the statement holds for its two children. The family for the node is
ZG (X,Y) 〈I′,R′〉 which can be expressed as two disjoint families ZG (X,Y) 〈I′ ∪ {V },R′〉 ∪ ZG (X,Y) 〈I′,R′ \ {V }〉.
By the inductive assumption the children output each of those families. If condition in line 7 succeeds the recursive calls are
performed and the parent node will output the union of the children’s output, satisfying the statement. The condition may fail
for any of two reasons:
(1) The family ZG (X,Y) 〈I′,R′〉 is empty, in which case the branch can be aborted because it will produce no output.

22



(2) The family ZG ({S},Y) 〈∅,R′ ∩T〉 is empty, then regardless of any set Z ⊂ R′ that is found there is no set ZT ⊂ R′∩T
that will form a valid pair for Z. As a consequence, the branch can be aborted and the output will be empty for the node,
which is consistent with the statement.

Theorem 3 (Correctness of LISTADJPAIRS). Given a graph G, disjoint sets X,Y,T, and a selection variable S,
LISTADJPAIRS outputs all admissible pairs

(
Z,ZT

)
relative to X,Y in G such that ZT ⊆ T.

Proof. Follows by the fact that LISTADJPAIRS calls LISTSEPAB
(
Gpbd

XY,X,Y, S, {S},R,T
)

that by proposition 5 will output
pairs in Za,b,c.

Proposition 6 (Complexity of LISTSEPAB). LISTSEPAB works with O(n(n+m)) delay.

Proof. Consider the recursion tree for LISTSEPAB. Every time a node in the tree is visited there two calls to FINDSEP which
can be implemented in O(n+m) time (van der Zander, Liskiewicz, and Textor 2014). If FINDSEP fails (outputs ⊥) in any of
the two calls, the branch is aborted because either it will not generate any set in Za,b or there is no set ZT in Zc that is a subset
of R ∩T, hence no pair generated will be in Za,b,c.

In order to produce an output is produced a leaf of the tree for LISTSEPAB has to be reached, that is when I = R and since
in every level the set R \ I reduces by one, the depth of that tree is at most n. At that point a call to FINDSEPC is performed.
Similarly, this function produces an output when a leaf in its recursion tree is visited. By the same argument as before, the depth
of a leaf is at most n. Then, the time required to produce an output is O(2n(n+m)) = O(n(n+m)). Because of condition in
line 7 any branch that does not produce a valid pair is immediately aborted. In the worst case, there could be n aborted branches
in the tree for LISTSEPAB and n aborted branches in the one for LISTSEPC; before reaching the first pair. Then the time to get
the first solution or fail is at most O(n(n+m)). Therefore, the delay is O(n(n+m)).

Furthermore, every pair is produced only once, because at any node in both recursive functions the output for the children
are disjoint.

Theorem 4 (Complexity of LISTADJPAIRS). LISTADJPAIRS outputs all admissible pairs such that ZT ⊆ T withO(n(n+m))
polynomial delay.

Proof. First note that Dpcp(X,Y) can be computed in O(n + m) time and O(n) space since it consists of finding sets
of ancestors and descendant which can be done by traversing the graph a constant number of times. A list of ancestors or
descendants uses at most O(n) space.

The graph Gpbd
XY can be computed from G in O(n +m) time and space. To do this we first compute Dpcp(X,Y) and then

remove from G any edge of the from X ′ →W ′ where X ′ ∈ X and W ′ ∈ Dpcp(X,Y).
The function LISTSEPAB is called to find sets in the family Za,b,c, which, by Proposition 6, will take O(n(n+m)) time be-

tween the outputs of consecutive pairs. The time required for the initial pair output (including constructing the set Dpcp, Gpbd
XY)

is overall O(n(n+m)) which means that the algorithm works with that delay.

Lemma 2 (Ancestral Path Separator). Let G be a causal diagram, and let X,Y,Z and W be disjoint sets of variables in G.
Let p be a path (not necessarily directed) with some X ′ ∈ X and Y ′ ∈ Y as endpoints that is blocked (in the d-separation
sense) when Z is observed. Let ZA = Z∩An (X ∪Y ∪W) (i.e. the variables in Z that are ancestors any node in X∪Y∪W.
Then p is also blocked when ZA is observed.

Proof. Assume for the sake of contradiction that p is active when ZA is observed. This implies that there exists Z ′ ∈ Z \ ZA

that is needed to block p. For a variable Z ′ to block a path, at least one of the arrows in that path must be going out of Z ′ (i.e.
Z ′ is not descendant of a collider in p). If we follow p starting at Z ′ in the direction of one of the outgoing arrows, there should
be a collider before reaching X ′ (or Y ′ depending where the outgoing arrows is heading to in p), otherwise Z ′ would be an
ancestor of X ′ (Y) which is not the case by the definition of Z ′. For p to be open, this collider must belong to ZA, but, since
Z ′ is an ancestor of the collider Z ′ is also an ancestor of X ∪Y ∪W, contradicting its definition. Moreover, Z ′ cannot exists,
neither p, and a contradiction is reached.

Lemma 3 (Ancestral Separator Set). Let G be a causal diagram, and let X,Y,Z and W be disjoint sets of variables in G. Let
ZA = Z ∩An (X ∪Y ∪W). If (X⊥⊥Y | Z) in G, then (X⊥⊥Y | ZA) in G.

Proof. (X⊥⊥Y | Z) holds if and only if every path p with some X ′ ∈ X and Y ′ ∈ Y as endpoints, is blocked by Z, by virtue
of Theorem 2, all such paths are also blocked by ZA, implying (X⊥⊥Y | ZA).

Proposition 7. Suppose a pair
(
Z,ZT

)
is admissible relative to X,Y in G. Then, the pair

(
ZA,Z

T
A

)
, where

ZT
A=ZT∩An (X∪Y∪{S}) and ZA=Z∩An (X∪Y∪{S}), is also admissible.
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Proof. Lets verify that ZA satisfies each one of the four conditions of the criterion.

(a) Since ZA is a subset of Z all its elements must satisfy this condition too.
(b) Any path between X and Y blocked by Z, and in particular the non-causal ones, are also blocked by ZA by virtue of

lemma 2. If S is a descendant of a collider in some non-causal path p, it must be the case that Z blocks the subpath from
between X and S or between S and Y. Then again, by lemma 2, the set ZA block the same subpath. Therefore, the overall
path is blocked too.

(c) By lemma 3 (Y ⊥⊥ S | ZT)Gpbd
XY

=⇒ (Y ⊥⊥ S | ZT
A)Gpbd

XY
.

Since all conditions hold, the criterion holds overall.

Lemma 4 ((van der Zander, Liskiewicz, and Textor 2014)). Let X,Y, I,R be sets of nodes with I ⊆ R, R ∩ (X ∪Y) = ∅. If
there exists an separator Z0 for X,Y, with I ⊆ Z0 ⊆ R then Z = An (X ∪Y ∪ I) ∩R is a separator for X,Y.

Theorem 5 (Explicit admissible set construction). There exists an admissible pair in a causal diagram G relative to disjoint
sets of variables X,Y if and only if the pair

(
Z,ZT

)
is admissible, where

Z = An (X ∪Y ∪ {S})
G

pbd
XY
∩ C (73)

ZT = (An ({S} ∪Y)
G

pbd
XY
∩T) ∩ C (74)

Proof. This is easy to show using lemma 4. Suppose there exists some admissible pair
(
Z0,Z

T
0

)
. Theorem 1 implies that the

pair must satisfy the conditions in definition 9. Furthermore, assume that ZT
0 ⊆ T so that the adjustment is estimable from the

assumed input. Then:

{S}⊆ Z0 ⊆ C,

∅ ⊆ ZT
0 ⊆ T ∩ Z0 ⊆ T ∩C

Z0 ∈ Za,b, and

ZT
0 ∈ Zc

Applying lemma 4 to Z0 with I = {S},R = C in graph Gpbd
XY we obtain the set (73). Using the same lemma on ZT

0 with
I = ∅,R = T ∩C in Gpbd

XY yields the set (74). And we have that:

Z ∈ Za,b, and

ZT ∈ Zc

Therefore, the pair
(
Z,ZT

)
satisfied definition 9 which implies it is admissible.

Corollary 6 (Admissible pair can be constructed in linear time). One can determine the existence of an admissible pair and
construct one in O(n+m) time.

Proof. The pair from Theorem 5 can be constructed in O(n+m) because finding ancestor sets, computing Dpcp and creating
Gpbd

XY can be done in O(n + m) time. Then, to verify if the pair is actually admissible we verify condition (a) in O(n + m)

time, and conditions (b) and (c) correspond to independences inGpbd
XY that can be tested in O(m) time using the algorithm from

(Geiger, Verma, and Pearl 1989).

Inverse Probability Weighting Estimation
Theorem 7. µ̂IPWS is a consistent estimator for µ = E[Y | do(x)] if the models for P (x | z, S=1) and P (S=1)/P (S=1 | zT)
are correctly specified.

Proof. Let w′(x, z) = 1/P (x | z, S=1) and wS(zT) = P (S=1)/P (S=1 | zT). By the law of large numbers, it suffices to
show that

µ = E[w′wSIX=xY | S=1]. (75)
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First we rewrite the adjustment expression (17) as follows:

P (y | do(x))
=
∑

Z

P (y | x, z, S=1)P (z \ zT | zT, S=1)P (zT) (76)

=
∑

Z

P (y,x, z | S=1)

P (x, z | S=1)
P (z \ zT | zT, S=1)P (zT) (77)

=
∑

Z

P (y,x, z | S=1)P (z \ zT | zT, S=1)P (zT)

P (x | z, S=1)P (z | S=1)
(78)

=
∑

Z

P (y,x, z | S=1)P (z \ zT | zT, S=1)P (zT)

P (x | z, S=1)P (z \ zT | zT, S=1)P (zT | S=1)
(79)

=
∑

Z

P (y,x, z | S=1)

P (x | z, S=1)

P (zT)

P (zT | S=1)
(80)

=
∑

Z

P (y,x, z | S=1)

P (x | z, S=1)

P (S=1)

P (S=1 | zT) (81)

Therefore

µ = E[Y | do(x)] (82)

=
∑

Y

yP (y | do(x)) (83)

=
∑

Y,Z

yw′(x, z)wS(zT)P (y,x, z | S=1) (84)

=
∑

X,Y,Z

IX=xyw
′(x, z)wS(zT)P (y,x, z | S=1) (85)

= E[w′wSIX=xY | S=1]. (86)
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