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Angle-preserving or conformal surface parameterization has proven to be
a powerful tool across applications ranging from geometry processing, to
digital manufacturing, to machine learning, yet conformal maps can still suf-
fer from severe area distortion. Cone singularities provide a way to mitigate
this distortion, but finding the best configuration of cones is notoriously
difficult. This paper develops a strategy that is globally optimal in the sense
that it minimizes total area distortion among all possible cone configurations
(number, placement, and size) that have no more than a fixed total cone
angle. A key insight is that, for the purpose of optimization, one should
not work directly with curvature measures (which naturally represent cone
configurations), but can instead apply Fenchel-Rockafellar duality to obtain
a formulation involving only ordinary functions. The result is a convex
optimization problem, which can be solved via a sequence of sparse lin-
ear systems easily built from the usual cotangent Laplacian. The method
supports user-defined notions of importance, constraints on cone angles
(e.g., positive, or within a given range), and sophisticated boundary condi-
tions (e.g., convex, or polygonal). We compare our approach to previous
techniques on a variety of challenging models, often achieving dramatically
lower distortion, and demonstrating that global optimality leads to extreme
robustness in the presence of noise or poor discretization.
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1 INTRODUCTION

Mesh parameterization is a fundamental component of a wide va-
riety of problems in applied geometry: beyond traditional tasks in
computer graphics (such as texture mapping), surface flattenings
have become an important component in a diverse collection of
areas ranging from digital manufacturing to machine learning [Kon-
akovic et al. 2016; Maron et al. 2017]. Ideally, one would like a
parameterization that is isometric, i.e., no distortion of lengths or
areas, but for general curved surfaces no such map exists. Conformal
flattenings are attractive because they completely eliminate angle
distortion, and are easily computed via linear or convex problems.
However, they can also yield significant distortion of areas, which
is problematic for applications since a large region of the surface
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Fig. 1. Left: Conformal flattenings have no angle distortion, but can severely
distort area. Right: When placed optimally, even a small number of cone
singularities (here just nine) can almost completely eliminate area distortion.

is represented by only a tiny region in the parameter domain. The
basic idea behind cone flattening [Kharevych et al. 2006] is that,
intrinsically, many surfaces look more like a polyhedron than the
flat plane—consider for instance maps of the Earth generated by
conformally mapping the globe onto a regular polyhedron (Fig. 2).
Since this initial map induces very little area distortion, and since
the polyhedron can then be cut and unfolded into the plane without
further stretching, the composite map also has low area distortion.
Of course, different polyhedral metrics will lead to different amounts
of distortion—the problem of cone parameterization therefore boils
down to deciding on a configuration of vertices, determined by the
number, placement, and angle of the associated cone singularities.
As stated, however, this problem is ill-posed: one can always reduce
distortion further by considering a finer polyhedron, i.e., allowing
more cones. To make the problem well-posed, one can fix the num-
ber of cones, or alternatively (as we will do), fix the total magnitude
@ := Y ; |§il| of all cone angles ¢;.

Fig. 2. A conformal cone parameterization is equivalent to flattening a
smooth surface, like the sphere, over a polyhedron, which can then be cut
and unfolded into the plane without further distortion. By adding more and
more cone points, one can make area distortion arbitrarily small.

(Texture courtesy NASA Earth Observatory.)
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Though a number of a strategies have been developed for picking
cones, none come with a clear guarantee of optimality, and in prac-
tice each can be confounded by certain types of models. Our method
ensures that total area distortion is always globally minimized, pro-
viding substantial robustness and, in practice, significantly lower
distortion on many real examples. Ultimately, we obtain a practical
and efficient algorithm that:

o finds conformal flattenings of minimal total area distortion
among all possible configurations of cones and choices of
boundary conditions,

o can be easily accelerated with a simple multi-resolution scheme,

e provides user control over regions where cones can be placed,
as well as regions where distortion should be penalized,

o provides the ability to find optimal flattenings with a convex
or polygonal boundary, and

o allows cone angles to be limited to a given range (e.g., positive
only, or [-7/2, 7/2]).

Since we achieve minimal area distortion, we will use the acronym
MAD throughout to refer to our method. On the whole, flattenings
produced this way are extremely close to isometric, making them
broadly useful for a variety of practical applications.

Beyond simply developing an algorithm, we also start to develop
an understanding of some fundamental questions which can help to
inform algorithmic decisions both in the present paper and in the
development of future work. In particular, we look at the practical
importance of choosing a principled measure of area distortion
(Sec. 4.1.2), we analyze stability of cone flattenings with respect to
perturbations of the cones, i.e., how much will distortion change if
singularities are “merged”; and we consider the approximability of
smooth metrics by polyhedral metrics from an analytical point of
view, i.e., when can a given metric be arbitrarily well-approximated
by cones (App. C). We also carefully analyze the solutions to our
optimization problem—a subtle point is that, in the continuous
setting, minimizers of the relaxed problem live in the space H™!
and hence cannot exactly describe cones, which correspond to delta
measures. In practice we can (very rarely) get tiny clusters of cones;
the stability result mentioned above ensures that these clusters
can be rounded to a nearby cone configuration with a virtually
imperceptible change in area distortion (Fig. 9).

Though our method takes some work to develop, the final algo-
rithm can be easily implemented using standard tools from geometry
processing; a practical description is presented in Sec. 5.3. To de-
rive this algorithm, we start in the smooth setting (Sec. 4) where
we formulate the task as a PDE-constrained optimization problem
involving the Yamabe equation from conformal geometry. Since
this problem is nonconvex, we formulate a convex relaxation over
a larger space of curvature measures. This problem has the right
minimizers, but poses some numerical challenges; we therefore
formulate its Fenchel-Rockafellar dual, which is easily discretized
via ordinary finite elements (Sec. 5). We numerically validate our
findings and explore comparisons with prior work in Sec. 7.

REMARK. The appendices, which include detailed computations,
derivations, and proofs, can be found in the supplemental material.
An extended version of this work can be found in the MS thesis of the
first author [Soliman 2018].
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2 RELATED WORK

A variety of problems in digital geometry processing seek ideal
locations for certain singular features. For instance, in the design
of tangent vector fields or rotationally symmetric direction fields,
judicious placement of singularities can significantly impact the
global regularity of the field [Vaxman et al. 2016]. In this setting one
can find optimal singularities by simply solving a sparse eigenvalue
problem [Knoppel et al. 2013]. However, any connection to the
problem we consider here is fairly indirect: although such fields are
often used in parameterization algorithms [Bommes et al. 2013b],
singularities that yield highly regular fields do not immediately
guarantee a good flattening (Fig. 17). There is also an extensive
literature on cutting surfaces into pieces that can be flattened with
low area distortion [Sheffer et al. 2006]; an important distinction
between general cuts and those arising from a cone flattening is that
the latter is automatically seamless away from a small set of isolated
points—helping to avoid common filtering artifacts, and facilitating
physical fabrication. To date there is no general cutting method that
guarantees globally minimal area distortion (though local optimality
has recently been studied [Sharp and Crane 2018]); in fact even the
simpler problem of finding the shortest way of cutting a surface into
a disk is NP-hard [Erickson and Har-Peled 2004].

GPIF
(Myles & Zorin 2012) (Ours)

CPMS
(Ben Chen et al 2008)

CONEs
TotAL
ANGLE 35.487 23.37r 8.227
AREA
DiSTORTION 2.64 114 0.40

Fig. 3. Even with fewer cones and much smaller total cone angle, our cone
placement strategy (MAD) yields far lower area distortion than previous
methods. This effect is especially apparent on shapes like the brain, which
do not have obvious peaks of curvature.
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Fig. 4. Intuitively, it might seem that the best place to put cones is in regions
of high curvature K or large scale distortion u. However, the optimal location
may actually be a point that is nearly flat—helping to explain the suboptimal
behavior of greedy algorithms. Here we place either one cone (top) or eight
cones (bottom); notice that even for a larger number of cones, the optimal

configuration continues to include cones in flat regions.

Conformal Cone Singularity Placement. In this paper, we focus
specifically on cone singularities in the context of conformal flatten-
ing; here a variety of strategies have been proposed. Kharevych et al.
[2006] initially investigated cone flattenings by manually drawing
layouts and adjusting cone angles to reduce distortion. Springborn
et al. [2008] propose a method for cone flattening (CETM) where
cones are chosen via a simple greedy algorithm: iteratively flatten
the mesh; at each iteration place a new cone at the point of greatest
area distortion. In subsequent iterations, cone points are treated
as punctures in the domain, leading to cone angles that are auto-
matically determined by the flattening process. As we will discuss
in Sec. 4.1.2, however, this approach is mesh dependent since the
Dirichlet energy of the log conformal factor blows up in the presence
of cones. In a parallel development, Ben-Chen et al. [2008] devise
a flattening algorithm (CPMS) where cone locations are chosen
via the same greedy strategy, but angles are instead determined
via a diffusion process involving Gaussian curvature; this basic
strategy was recently accelerated by Vintescu et al. [2017b] using
hierarchical persistence. Later, Myles and Zorin [2012] developed a
method for seamless global parameterization (GPIF), where cones
are determined by incrementally flattening the surface starting with
the regions of smallest Gaussian curvature. A key insight of our
work is that curvature does not always provide useful information
about how cones should be arranged, since such reasoning does
not account for the cones’ non-local influence on area distortion. In
fact, one can find many examples where the optimal configuration
places cones in regions that are flat—see for instance Fig. 4. Another
example of how curvature-based approaches may lead to subopti-
mal solutions is shown in Fig. 3, where curvature is not distributed
around any obvious peaks. We instead adopt a different point of
view, namely that the problem of finding optimal cones can be bet-
ter understood as an approximation problem—for instance, if the
surface were first flattened without cone singularities, one should
seek the best approximation of the resulting log conformal factor u
by a finite sum of harmonic Green’s functions. The nonlocal nature
of this problem arises from the fact that these functions do not have
compact support.

Optimal Cone Singularities for Conformal Flattening « 105:3

Cone Metrics, Orbifolds, and Liouville Equations. Cone singulari-
ties can be understood from several different points of view. Thurston
[2002, Chapter 13] studied a geometric picture of manifolds with
an orbifold structure, i.e., each point must locally look Euclidean
or like the quotient of a Euclidean space under a discrete group
action. Very recently this orbifold perspective has become quite
fruitful in algorithms, leading to methods for computing canoni-
cal mappings between surfaces with landmarks [Tsui et al. 2013],
and parameterization algorithms with guarantees on global injectiv-
ity [Aigerman and Lipman 2015, 2016; Aigerman et al. 2017]. A very
different perspective centers around the analytical viewpoint of Li-
ouville equations, in particular the Yamabe equation Au = Ko —e?“K
describing the change in Gaussian curvature K under a pointwise
conformal scaling g = e%**gy of a metric gg. Troyanov provided
some early foundations for studying this equation in the context of
singular cone metrics [Troyanov 1989, 1991], which continues to
be investigated [Del Pino and Roman 2015; De Marchis and Lopez-
Soriano 2016; D’Aprile et al. 2016]. This intrinsic, analytic point of
view serves as a starting point for many recent algorithms including
CPMS, CETM, and GPIF, as well as a recent method for conformal
flattening [Sawhney and Crane 2017]; it also plays a fundamental
role in the method we develop here.

Convex Optimization and Semismooth Operator Equations. Care-
fully formulating the cone placement problem using the tools of
analysis allows us to take advantage of highly effective methods
for semismooth operator equations recently developed by the opti-
mal control community. A key insight of these methods is that one
should not directly discretize the original problem, but rather formu-
late optimality conditions in the continuous setting, then discretize
these conditions [Ito and Kunisch 2003b; Giinther and Tber 2016].
Directly discretizing the original problem may destroy important
structures and relationships that appear in the context of continuous
function (or measure) spaces, but are lost when moving to discrete,
finite dimensional spaces. In our case, a primal/dual formulation
yields optimality conditions that are nicely solved via semismooth
Newton methods [Chen et al. 2000; Ulbrich 2002, 2011]. In particular,
our approach is similar to the approach of Hinze [2005], where one
does not need to directly optimize the control variables (in our case,
the curvature measure used as a proxy for cone singularities) but
instead introduces a collection of adjoint variables, which in our
case amount to the Laplace inverse of the log conformal scale factors.
These variables are quite unusual, and do not appear in previous
work on conformal flattening. For problems involving highly irreg-
ular solutions (like our cone distribution) it is also important to
properly regularize this problem—here we apply Moreau-Yosida reg-
ularization to counteract numerical instability and improve the rate
of convergence [Hintermiiller et al. 2002; Ito and Kunisch 2003a].
Finally, since we solve a relaxed problem we need a way to encour-
age sparsity; recent work by Clason and others provides a rigorous
foundation for applying sparsity-inducing measure norms to PDE
constrained optimization problems, mirroring how ¢! norms are
used to encourage sparsity for purely discrete problems [Clason and
Kunisch 2012; Casas et al. 2012; Clason and Schiela 2017]. Our work
builds on this literature and shows how similar formulations can be
applied to problems in geometry processing and computer graphics.
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3 BACKGROUND

We briefly review concepts from conformal geometry and measure
theory that will be needed to develop our formulation (for a more
comprehensive introduction, see [Bauschke and Combettes 2017]).
The reason for discussing these particular concepts in detail is that,
in the smooth setting, our problem must be formulated in terms
of measures—but when it comes to computation, we really only
know how to discretize functions. Sec. 3.2 explains how the space
of measures can be viewed as the dual of a space of functions, and
Sec. 3.4 subsequently explains how an optimization problem in one
space can be turned into a problem involving the dual space—in
particular, allowing us to transition from measures to functions.

Throughout, the domain for our problem is a smooth surface M
with Riemannian metric g, and corresponding area element dA. We
use the notation R := R U {+oco}.

3.1 Conformal Flattening

A Riemannian metric g is conformally equivalent to g if it can be
expressed as a pointwise rescaling § = e?“g for some function
u : M — R called the log conformal factor; any such transformation
preserves angles between tangent vectors, but not necessarily their
length. A conformal flattening is a conformal rescaling such that the
new metric g has zero Gaussian curvature. The change in curvature
under a conformal rescaling is described by the Yamabe equation:

Au=K — ezulz

where A is the Laplace-Beltrami operator on (M, g), and K .K are
the initial and target Gaussian curvature, resp. Along the boundary
0M, the change in geodesic curvature « is described by the Cherrier
boundary conditions:

where n is the normal to the domain boundary. (A derivation of
these equations can be found in [Aubin 1998].)

A polyhedral cone metric is a Riemannian metric that locally looks
either flat, or like the tip of a cone—the chief example being the
metric of any Euclidean polyhedron, as depicted in Fig. 2. We will
use p1,...,Pm € M to denote the cone points (corresponding to the
vertices of a polyhedron), and 6, . . ., 0, to refer to the angle deficit
obtained if the cone is cut open and isometrically flattened—e.g.,
0 = 0 at flat points (see [Troyanov 1989, Definition 1] for a more
formal description).

When conformally mapping a smooth surface to a polyhedral
cone metric, the Yamabe equation becomes

Au = K-3XMT, 0i0p, in M, )
% = Kg— eukg on dM,

where §;, denotes the Dirac delta measure at p. Eqn. 1 serves as
the key starting point in developing a convex global optimization
problem for cone placement.

3.2 Measure Spaces

A key feature of our approach is that the underlying optimization
problem is framed in terms of measures, rather than ordinary func-
tions. Loosely speaking, a measure assigns a “size” to subsets of the
domain in a natural way—for example, if U is a region of the plane
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Fig. 5. Near a cone singularity, the solution u to the Yamabe equation looks
like a harmonic Green’s function (far right). Methods that pick cones based
on, e.g., peaks of the scale factor have trouble in the discrete setting, since
mesh resolution completely changes the behavior of this function (top row).

R2, then p(U) = fU dx dy is the usual area of U. In general, any
measure ;1 defines a notion of integration: for example, the expres-
sion f 1 9H gives the total area with respect to p; f a Jdu integrates
values of f over M, weighted by p. Note that in general y can also
assign negative values—more formally, we will work with finite
signed Radon measures on M; we will use M (M) to denote the set
of all such measures on M, and use f ar * @4 to denote the Lebesgue
integral with respect to p.

Linear Duality. Let C(M) denote the space of all continuous func-
tions ¢ : M — R; a functional on C(M) is a map L(¢) that assigns a
real value to any such function. A simple example is integration of
¢ over the whole domain, i.e, L(¢) = f a1 @ dA. The Riesz represen-
tation theorem says that the space of measures is equivalent to the
space of (continuous) linear functionals L on C(M). In other words,
for any such functional, there exists a unique measure p € M(M)
such that

L((p):f pdyp, forall ¢eC(M)
M

(and vice versa). For instance, for standard integration with respect
to surface area, we just have dy = dA. More generally, for any func-
tion f, we have a measure dy = f dA corresponding to the func-
tional L(¢p) = f o @f dA, ie, an integral weighted by the function f.
A more interesting example is the (Dirac) delta measure & associ-
ated with the linear functional L(¢) = ¢(p), i.e., the functional that
simply yields the value of the function at the point p—importantly,
this measure cannot be represented as f dA for any function f.
This identification between measures and linear functionals turns
out to be essential for formulating dual optimization problems, as
discussed in Sec. 3.4.

Measure Norm. We can quantify the overall magnitude of a mea-
sure p via its measure norm

lglipg := sup {f edyu : lex)| < 1fora11x€M}.
pec(m) UM

For instance, if p is a positive measure, then ||u|| 54 is just the area
of M with respect to p. If p is a weighted sum of delta measures
i =3 0;8p, (as in our cone placement problem), then the measure
norm is just the £! norm el = X5 10il; likewise, when du = fdA,
the norm [|¢|| o amounts to the L! norm of f,ie, fM |f] dA. These
examples hint at the fact that ||p|| 5( provides a way to encourage
sparsity in optimization problems involving more general measures
(see Sec. 4.2 for further discussion).



3.3 Linear and Convex Analysis

Some elementary ideas from analysis will be needed to formulate
our dual optimization problem. First, any normed vector space X
has a dual vector space X* consisting of continuous linear maps L
from X to R. For any linear map A : X — Y between vector spaces
X and Y, its (Banach space) adjoint is a linear map A* : Y* — X*
such that for all vectors x € X and linear functionals L : Y — R,
(A*L)(x) = L(Ax). In finite dimensions, for instance, the adjoint is
represented by the matrix transpose. Finally, the convex conjugate of
any function F : X — R is the convex function F* : X* — R given
by
F*(L) := sup {L(x) — F(x)}.
xeX

A concrete example is that the convex conjugate of any squared
norm is the corresponding (squared) dual norm—for example, the
dual L' is L*; the dual of L? is just L? (making appropriate identifi-
cations). An example important in our setting is that the measure
norm || - || o4 can be obtained as the convex conjugate of an indicator
function on the unit ball of continuous functions (see App. A.3).

3.4 Convex Duality

A powerful tool in optimization is formulation of a dual problem,
which may be easier to work with than the original primal problem.
A very general purpose approach is Lagrange duality, though for
problems involving measure spaces this approach becomes quite
technical (see [Soliman 2018, Chapter 4.3]). We instead use the
more specialized technique of Fenchel-Rockafellar duality, which
for problems of the kind considered in this paper easily yields an
explicit characterization of minimizers. An excellent reference on
Fenchel-Rockafellar duality is Brezis [2010].
In particular, suppose we want to solve the problem

xng( F(x) + G(Ax), 2)

where (subject to mild technical conditions) F : X — RandG:Y —
R are convex functions on normed vector spaces X and Y (resp.),
and A : X — Y is a linear map. The Fenchel-Rockafellar duality
theorem states that this problem is equivalent to the dual convex
problem
max —F"(A"y") - G*(-y"), ®)
Jrev
in the sense that both problems have the same optimal value, and
optimal points ¥ and " can be related by an explicit set of optimality
conditions, as described below.

Optimality Conditions. As with Lagrange duality, optimal points
can be nicely characterized in terms of both primal and dual vari-
ables. For a differentiable objective, these conditions would simply
involve derivatives of F and G. If they are not differentiable—as
will be the case in our problem (Sec. 4.2)—we can instead formulate
optimality conditions in terms of the subdifferential. Intuitively, if
the gradient provides the best linear approximation at a point, then
the subdifferential describes all linear approximations “below” the
function. More precisely, for any convex function F from a normed
vector space X to R, the subdifferential 9F is defined as

OF(x) :={L e X" : L(y) — L(x) < F(y) — F(x) forally € X} .

Optimal Cone Singularities for Conformal Flattening « 105:5

A simple example is the function F : R —
R given by x — [x| + x?: for x # 0 the
subdifferential contains just the ordinary
derivative F/(x); at x = 0, the subdifferen-

tial is the set of slopes dF(0) = [-1,1]. ¥
Using the subdifferential, we can express
the optimality conditions as
ANy € 0F(x),
— - 4
-y € 0G(AX).

For example, when A is the identity and both F and G are differ-
entiable, these conditions amount to saying that VF(x) = —-VG(x),
similar to the usual statement about Lagrange multipliers.

From the perspective of computation, a somewhat surprising
outcome is that for problems involving measures, discretizing and
solving these optimality conditions yields numerical behavior far
superior to solving the primal or dual problem directly (Sec. 4.2). In
other words, deriving the optimality conditions in the continuous
setting and then discretizing is not equivalent to discretizing the
optimization problem and then computing optimal solutions—the
former approach appears to preserve essential structure from the
continuous setting (namely, relationships between primal and dual
variables). Similar observations have recently been made in the
context of optimal control [Roland and Karl 2010].

4 SMOOTH FORMULATION

Our basic goal is to find a target cone metric that yields least area
distortion under a conformal map. For any given configuration of
cones, this distortion is determined by the singular Yamabe equa-
tion (Eqn. 1), leading to a PDE-constrained optimization problem
(Sec. 4.1). In order to solve this problem, we then consider a convex
relaxation (Sec. 4.2) which yields essentially optimal solutions to the
original problem, as discussed in Sec. 4.5. Finally, Sec. 4.6 introduces
regularization that helps with numerical stability and efficiency.

4.1 Basic Problem

Our basic problem is to find a collection of cone points p; € M and
corresponding cone angles §; € R that minimize area distortion
under the conformal rescaling § = e**g that takes us from the
original metric g to the polyhedral cone metric g. Since the scale
factor u is determined by the singular Yamabe equation (Eqn. 1), we
can formulate this problem as

minimize  E(u)
pi€M,0;eR

subjectto Au=K-3;0;6p, inM ®)
u=20 on OM,

where the energy E quantifies the overall area distortion—we will
discuss particular choices of energy in Sec. 4.1.2. There are two
issues with this problem as stated. First, although it is convex in the
angles 0;, it is not convex in the positions p;. Second, it is ill-posed
in the sense that one can always reduce area distortion further by
adding more cones. Both of these issues will be addressed via a
relaxation introduced in Sec. 4.2.
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4.1.1 Local Picture. A simpler, local picture helps with both
intuition and analysis. Here we assume (M, g) is a topological disk,
which is initially flattened to the plane via conformal scale factors
1. We then seek subsequent scaling by factors u that yield a low-
distortion cone metric

'j:: eZueZuog — 62(u+uo)g.
In this setting, Problem 5 becomes
minimize  E(u + ug)
pPieM,0;eR
subject to  Ageu = }; 0;6p, inM (6)
u=20 on dM.

We use Ag: to denote the Laplace-Beltrami operator on (M, e2%0g),
emphasizing that it is just the usual Laplacian on R?.

This local point of view provides a different perspective on the
cone placement problem: the function uy describes the scale distor-
tion of the initial flattening, and we seek the best approximation
of this function by a weighted sum of harmonic Green’s functions,
i.e, solutions to Agau = p (as pictured in Fig. 5). Simply picking ex-
trema of Gaussian curvature or peaks in the initial scale factor (as in
greedy strategies) will not in general yield optimal cone placement,
since the long tails of harmonic Green’s functions can substantially
influence the result (Fig. 4, left). Conversely, cones carefully ar-
ranged in flat regions can conspire to reduce distortion in regions of
greater curvature (Fig. 4, right). Of course, for the problem of best
approximation to be meaningful we must first answer the question
of what it means for an approximation to be “best.”

4.1.2  Measures of Area Distortion. How do we measure the area
distortion of a conformal flattening? Springborn et al. [2008] remark
that since a uniform global scaling changes a flattening only super-
ficially, one can measure area distortion via the (scale-invariant)
Dirichlet energy of the log conformal factors:

1
Ep(u) := 3 fM |Vul? dA.

When this energy is small, it indicates that scaling is near-constant,
i.e, low area distortion up to uniform scaling. However, this energy
is not meaningful in the context of cone flattening since scale factors
blow up logarithmically near a singularity. As a result, Dirichlet
energy cannot distinguish between distinct configurations of cone
singularities: they all have infinite energy. In the discrete case, this
means that Dirichlet energy is highly mesh-dependent, since scale
factors due to cones will be better resolved—and hence much larger—
in densely sampled regions (see Fig. 5). Any method that aims to
minimize Ep will therefore prefer to place cones in coarsely sampled
regions, even if they are not geometrically relevant. Likewise, the
cone angles chosen by CETM go to zero under refinement, since
large cones become increasingly expensive (Fig. 6).

We will instead use the L?-norm of the log conformal factors to
measure area distortion:

E(u) == »[1;1 u? dA.

This energy is finite for any solution of the singular Yamabe equa-
tion, and hence converges to a finite value under mesh refinement.
In mechanics, E is known as the true strain [Hencky 1928]; as noted
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Fig. 6. Since the Dirichlet energy of a harmonic Green’s function blows up
under mesh refinement, cone angles obtained in CETM by setting u = 0 at
the point of maximum distortion will tend to zero for fine meshes.

~

by Myles and Zorin [2012], it is also a second-order approximation
of a nonlinear elastic energy [Chao et al. 2010], known in computer
graphics as the as rigid as possible energy [Sorkine and Alexa 2007].

For some applications one might also be interested in minimizing
the worst area distortion. Unfortunately, asking to minimize area
distortion in the L™ sense is again not meaningful in the presence
of cones, since scaling goes to infinity at every cone. An interesting
question for future work is to consider L? norms for p much greater
than 2, which might exhibit the desired behavior. A nice alternative
we consider in this paper is re-weighting the L? energy by a local
feature size (Sec. 8.1); Fig. 7 shows one example.

4.2 Relaxation

We now introduce a relaxation that addresses the two problems
mentioned in Sec. 4.1, namely, nonconvexity and ill-posedness. Re-
call in particular that the cone placement problem (Problem 5) has
no solution: we can make the area distortion arbitrarily small by
simply introducing more and more cones. In the discrete case, for
instance, one could simply put a cone at every vertex. Limiting
the number of cones yields (in the discrete setting) a combinatorial
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Fig. 7. Left: cones placed according to standard L? energy. Right: cones
placed by re-weighting the L? energy (and regularizer) according to local
feature size. Both cone configurations are globally optimal solutions to
different problems.



optimization problem which appears difficult to solve optimally:
at which k vertices should we put cones in order to minimize area
distortion? The approach we take instead is to penalize the total
cone angle—which naturally leads to a convex relaxation.
Consider for instance replacing the problem from Problem 5 with

minimize E(u)
i

subjectto Au=K-p inM 7
u=0 on dM,

where y is now some kind of smooth curvature distribution, rather
than a sum of Dirac deltas. Of course, this problem has a trivial
solution p = K, corresponding to not flattening the surface at all.
To obtain nontrivial solutions, we need to somehow encourage yi to
be sparse, i.e., to look like a distribution of cones.

L! regularization. A tempting idea is to use the L!-norm to pro-
mote sparsity. The resulting optimization problem is then

minimize E(u) + A

e (w) + Al flip:

subjectto Au=K-f in M ()
u=20 on (9M,

where A > 0 is a tuning parameter. Though this problem is both
convex and seemingly straightforward, it has some serious issues. If
one tries to solve it numerically, the result is not a collection of iso-
lated cones: instead, curvature is distributed over larger regions, and
the solution jumps around unpredictably for different tessellations
of the surface (Fig. 8). Changing, say, the choice of finite elements
will not fix this problem, since in the smooth setting, the existence
of minimizers to Problem 8 does not hold in general. Hence, even
though the discrete, finite dimensional £ 1 problem has minimizers,
these minimizers do not provide useful solutions. More precisely,
for a solution to exist there must be a minimizing sequence with
a convergent subsequence, i.e., a sequence that is at least weakly
precompact in L' (M). However, the boundedness of the functional
does not provide bounds on the derivatives of f and consequently
does not imply the L! pre-compactness of minimizing sequences.

Measure space regularization. All of these problems can be avoided

by replacing the L! norm with the measure norm || - || »( (Sec. 3.2),
and optimizing over measures g € M(M) (rather than functions):
minimize E(u) + Al|pl|
minimizs (u) Ml
subjectto Au=K-pu in M )
u=0 on OM.

For this problem the measure norm concentrates the solution near
isolated points (i.e., cones) rather than curves or other regions. Al-
though minimizers are in general not exact superpositions of delta
masses, they come extremely close—see Sec. 4.5 for further discus-
sion. Most importantly, when we discretize this scheme we obtain
sparse cone configurations with very low area distortion (Fig. 8).

4.3 Pre-Dual

When it comes to discretizing Problem 9, we are faced with a chal-
lenge: we want to solve a problem involving measures, but standard
finite element schemes apply only to functions. Here, a solution is
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Fig. 8. Using L! regularization yields unpredictable results that are not
concentrated on isolated points (top row), whereas using the measure norm
yields well-behaved solutions that properly represent cone singularities
(bottom row). Tuning the parameter A does not improve the L! result; more-
over, the measure-based approach achieves smaller area distortion using
dramatically fewer cones (as shown in the plot at bottom).

provided by Fenchel-Rockafellar duality (Sec. 3.4), since the space of
measures is the dual of the space of continuous functions (Sec. 3.2).
Ultimately, this approach will lead us to a system of optimality equa-
tions that we can directly solve for our optimal cone configuration
(Sec. 5). A subtle issue is that taking the dual of Problem 9 does
not yield a problem in terms of functions—however, if we go the
other direction and construct a “pre-dual” problem whose dual is
Problem 9, then we obtain a formulation involving only functions
(as desired).

In particular, to express Problem 9 in standard form, we introduce
a change of variables ¢ := K — . Letting F*(u) be our distortion en-
ergy E(u), G*(0) = |[K — || pr, and A* = A™! (or more formally, the
solution operator—see App. A.1), the Fenchel dual problem (Prob-
lem 3) becomes equivalent to our cone problem, Problem 9. (The
reason for introducing the change of variables is that A* must be a
linear rather than affine.) One can then show that the corresponding
primal problem (Problem 2) is specified by the linear map A = A~!
and the functionals F : L>(M) — R and G : C(M) — R given by

Fu) = =+ f £ dA
2Jm
G(p) 1(p) - MKfpdA,

where 1 is the indicator function of the A-ball in C(M), i.e.

0 if |p(x)| < Aforall x € M,

+oo else.

Li(e) = {

(See App. A.3.) The resulting primal (or pre-dual) problem then has
a very different form from the problem we started with:

1
minimize — lul? dA - f Ko dA
pec(M) 2 Jp M

subjectto Ap=u inM, (10)
=0 ondM,
lp(x)| <A forall x € M.

We will refer to the function ¢ as the adjoint state, analogous to a
Lagrange multiplier. Notice in particular that this problem no longer
involves measures, only ordinary functions u and ¢; the sparsity-
inducing measure norm is replaced by inequality constraints, analo-
gous to box constraints that arise in £! optimization.
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4.4  Optimality System

From here, one idea is to discretize and solve the pre-dual problem
directly, but in order to recover the cone configuration we still need
the final measure g = K — A%¢. Numerically, this expression is
hard to evaluate directly: for instance, applying the square of the
discrete Laplace operator (Sec. 5.1.3) significantly amplifies noise,
making it impossible to reliably identify cones. Instead, we first
formulate the optimality conditions in the smooth setting, then
discretize and solve these optimality conditions directly (Sec. 5).
These discrete optimality conditions preserve key relationships
between the optimal measure p and the adjoint variables ¢, allowing
us to more reliably extract cones. In particular, working out the
optimality conditions (App. A.3) and making the change of variables
71 = K — 0 yields the final optimality system

A = K-
N = 1, (11)
Boe 01,(p),

where u, i, and ¢ denote the optimal scale factors, measure, and
adjoint state, resp., with zero Dirichlet boundary conditions for u
and ¢. This system will be discretized in Sec. 5.2.1, providing the
starting point for our final algorithm.

4.5 Guarantees

What can we say about solutions to our relaxed optimization prob-
lem? In what sense are they optimal? Do they solve the original
problem—i.e., do we obtain measures that actually represent cones?
The basic answer is that we are essentially guaranteed to find cones
that minimize L? area distortion among all cone configurations of
equal (or smaller) total angle. To make this statement more pre-
cise, let i be the solution to the relaxed problem, and consider any
other measure v € M(M) with ||v|[o¢ < |zl p; let 7 and © be the
corresponding scale factors, i.e., Au = K — g and Av = K — v. Then

E(u) + AllEllpm < E(©) + Aviipms
and hence
E(u) < E(@) + AIviipm = lEliag) < E().

In other words, the solution y to the relaxed problem yields minimal
area distortion over all curvature measures with norm no greater
than |||l (. However, we have not yet established that the optimal
measure looks like a sum of Dirac deltas, i.e., that it represents a
configuration of cones. The following proposition provides a first
step toward understanding the sparsity structure of i

PROPOSITION 4.1. supppi C {x € M : [p(x)| = A}.

If 9 is sufficiently smooth, we can therefore expect that the col-
lection of points where [p| = A forms a lower-dimensional set.
However, we are able to show that this set cannot contain isolated
points (Theorem C.4); intuitively, a small curve approximating such
a point (such as a small circle around a cone) will always yield a
lower-energy solution. In practice we nonetheless find that minimiz-
ers are very close to a collection of delta measures; moreover, we can
use the theory of optimal transportation to show that rounding such
curves onto cones (d la Sec. 6.1) will yield an insignificant change
in area distortion. In the discrete setting we rarely need to perform
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Fig. 9. Top: for extremely fine meshes of very smooth surfaces (here, a
hemisphere with 256k faces) our algorithm can produce cones arranged in
tiny clusters rather than at isolated vertices. Bottom: A rigorous stability
analysis shows that merging these cones to a nearby vertex (as shown here)
cannot yield more than a miniscule change in area distortion, as indicated
by red coloring. In practice, such merging is almost never needed.

such rounding since for values of A in a consistent range (Sec. 6.2),
minimizers tend to be supported on isolated vertices—unless the
mesh is extremely fine (Fig. 9).

4.6 Moreau-Yosida Regularization

When solving System 11, the rate of convergence will be slow due to
the extremely low regularity of minimizers. We therefore consider
a sequence of regularized problems which converge to Problem 9 in
an appropriate sense, but are much easier to solve. Eventually we
can drop regularization entirely and simply solve the original (un-
regularized) problem, using the most recent regularized solution as
an initializer; this technique is known as Moreau-Yosida regulariza-
tion. Note that since the original problem is convex this procedure
does not change the minimizer, but rather just serves to improve
performance.
For any regularization parameter y > 0 consider the problem

. Y 2
minimize E(uy) + AR + =y ll7,
e P ARG g i (12)
subjectto  Auy = Q —py,
where R(uy ) := ||y dA|| p(. Since we now consider measures repre-

sented by functions, the minimizing scale factors u, are significantly
smoother than . Furthermore, the minimizers 7z, will converge to
7ias y — 0 (in the weak-* sense). Intuitively, as we decrease y we
obtain sharper and sharper approximations of the optimal solution.
Optimality conditions for the regularized problem are given by

Nay = K-Fy,
Ap, = 1wy, (13)
9 -vE, € 9R(E,),

again subject to zero Dirichlet boundary conditions.



5 DISCRETIZATION

To discretize our problem, we apply several recent techniques de-
veloped in the context of optimal control. In particular, we apply
the technique of variational discretization to properly treat the dis-
cretization of measures [Hinze 2005]; we then use a semismooth
Newton method to solve the optimality system [Clason and Schiela
2017]—an added bonus here is that, since our system is a principled
discretization of a smooth formulation, the rate of convergence is
mesh independent [Ulbrich 2011, Chapter 7]. Detailed derivations
of our algorithm can be found in App. B; here we focus primarily
on the steps needed to actually implement our algorithm. A concise
summary of the overall algorithm is given in Fig. 12.

5.1 Preliminaries

5.1.1  Setup. Our algorithm takes as input any manifold triangle
mesh K = (V, E, F) with boundary B c V (possibly empty). The
geometry of this mesh can be specified by vertex positions in R3,
though in principle our algorithm really only needs positive edge
lengths that determine a piecewise Euclidean metric. The output
is a set of cone vertices c1, ...,c; € V and associated cone angles
@1, - .., . (For domains with boundary we may also have boundary
data as input or output; see Sec. 8.3.) This data can then be used to
compute a parameterization using existing algorithms; for examples
in this paper we use a freely-available implementation of boundary
first flattening (BFF) [Sawhney and Crane 2017]. The user must also
provide a parameter A > 0 which influences the number of cones
(see Sec. 6.2 for further discussion).

5.1.2 Discrete Curvature. The integrated Gaussian curvature
(i.e., the curvature 2-form) associated with a vertex i € | can be
discretized via the usual angle defect

Q; = ZH—ZG{IC. (14)
ik

These values are encoded in a column vector Q € RI'l. Similarly, the
integrated geodesic curvature (i.e., the geodesic curvature 1-form)
associated with a boundary vertex i € B is discretized via

ki=mx— > 6. (15)

ijk

Again, these values are encoded in a column vector k € RIBI

5.1.3  Discrete Poisson Equation. We discretize the Laplace-Beltrami

operator A via the positive semidefinite cotan operator [MacNeal

1949], represented as a matrix L € RIVIXIVI Tet 0{k € R denote the
interior angle at vertex i of triangle ijk. Then L has nonzero entries

1 ij , .

Lij={ 2 Yijkcot0, i#j,

- Zip Lip’ i=J,
where in the first case the sum is taken over triangles ijk containing
edge ij, and in the second term the sum is taken over edges ip

containing vertex i. We also build a diagonal lumped mass matrix
M e RIVIXIVI:

Mir =3 ZAijk- (16)
ijk

Optimal Cone Singularities for Conformal Flattening « 105:9

(e)

()

Fig. 10. Different treatments of boundary data allow us to minimize L?
area distortion with (a) no cones, (b) optimal cones and isometric boundary
conditions, (c) optimal cones and optimal boundary conditions; we can also
find the least-distorting maps with (d) polygonal and (e) convex boundaries.

Here A;j is the area of triangle ijk, and we sum over triangles ijk
containing vertex i. The matrix equation Lu = Mf then discretizes
the Poisson equaton Au = f with zero Neumann boundary con-
ditions. More generally, we can partition this system into blocks
corresponding to interior vertices (I) and boundary vertices (B) and
write

Ly Ls u [ O M0 fi

LITB Lgp up h 0 Mgp fs |’
which represents a Poisson equation with Neumann boundary con-
ditions g—i‘l = h; for each boundary vertex i € B, the value h; rep-
resents half the value of h integrated over the two boundary edges

incident on i. Alternatively, a Poisson equation with Dirichlet bound-
ary conditions u|gps = b can be expressed as Ljju; = Myf| — Ligb.

5.2 Derivation of Algorithm

The basic goal of the algorithm is to solve the first-order optimality
system (System 11), which we do in two stages:

e STAGE I — Solve the sequence of regularized problems that
approach the exact problem.

o STAGE II — Use the solution to the final regularized problem
to initialize a solve for the exact solution.

STAGE I produces sharper and sharper approximations of the opti-
mal cone distribution (starting with a highly “smoothed out” ver-
sion); the second stage is then used to recover the exact cones. As
mentioned in Sec. 4.6, this approach substantially accelerates con-
vergence relative to solving the unregularized system directly—in
practice we observe about an order of magnitude speedup.

5.2.1 Discrete Optimality System. To discretize System 11, one
first replaces the Laplace-Beltrami operator by the cotan-Laplacian
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g

ﬁ@ L

Fig. 11. Mesh hierarchy built on the Old Man Multires model; here we use only three levels. Compared to solving directly on the full-resolution 30k triangle
mesh, we obtain a speedup factor of about 23x (from 14.77s to about 0.62s). Colors indicate the optimal regularized measure; in the final (fine) mesh the
measure is exactly concentrated onto isolated vertices. Far right: The resulting parameterization has only 32 cones, with a total angle of 18.867.

to obtain the system

Lju=Q-p,
Lie = Miu, (17)
1€ dl,(e),

Discretizing the third optimality condition is not as straightforward,
but can ultimately be achieved via a simple projection operator. In
particular, let

P;(v) ;== max (0,v — A) + min (0,v + 1), (18)

where max and min are applied componentwise. As shown in App. B.2,
the relationship p € 91, (¢) is then equivalent to the condition

p=Pule+p). (19)
We can use this equivalence to express discrete optimality in terms
of a function F : R3'l — R3!l given by

Lju—-Q +u
F(u,@,p) = | Lie-Myu |. (20)
H=Prlo+p)

We then seek solutions to the system of equations F(u, ¢, ) =
0. Since this map is both nonlinear and nonsmooth (due to the
projection Py), we solve it using a semismooth Newton method (as
described in Sec. 5.3).

5.2.2  Regularized Problems. As discussed in Sec. 4.6, we solve a
sequence of regularized problems whose solutions ultimately con-
verge to the minimizer. In particular, we discretize System 13 as

Lju=Q -y,
LI—II—QJ = Mju, (21)
p=3Pi0).

(see App. B.2 for a derivation). We can then substitute the expression
for ;1 into the first equation to obtain a system involving only the
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variables u, ¢ € R!'l. We therefore seek solutions to the system of
equations Fy (u, ¢) = 0, where Fy, : R2I — R2 js given by

Liu—Q+ 3 Pi(9)

22
LI—II—qp—M“u (22)

F)/(uv (P) =

5.3 Semismooth Newton Method

We apply a semismooth Newton method to solve the optimality
systems encoded by Eqn. 20 and 22, which generalizes Newton’s
method to functions that are not classically (i.e., Fréchet) differen-
tiable. Like the standard Newton method, the semismooth version
aims to find zeros of a function F(x) = 0 by iteratively comput-
ing zeros of a linearized version. Each step, the current iterate x is
updated by solving the system

DF(x)y = —F(x), (23)

and applying the update x < x + y. The main difference is that the
linear map DF(x) is the semismooth differential at x, rather than
the Jacobian (which may not be well-defined). The semismooth
differential effectively determines the descent direction, and must
be tailored to the given function F (see Sec. 5.3.2). The process then
continues until some specified termination conditions are satisfied
(Sec. 5.3.3). In principle one can guarantee global convergence of
such methods by adopting a trust region strategy [Ulbrich 2011,
Chapter 5], though in practice we find that the basic semismooth
Newton strategy is always sufficient, perhaps due to our use of a
regularizing sequence.

5.3.1 Active Sets. To build the semismooth differential for our
problem (and to check for convergence), we will need to keep track
of the active sets where either the max or min operators in the
projection P, are nonzero. These sets can be specified by binary
values at vertices—in particular, for any given argument x € RI'l let



A*(x) and A™(x) be the |I| x |I| diagonal matrices with entries

At (x) = x> +4,
11
An() = xi < —A (24)

for each vertex i € I. In STAGE I, the active sets are then given by
A" () and A (¢), and in STAGE II they are given by A* (¢ + y) and

A (¢ + p).

5.3.2  Semismooth Differentials. To apply this approach, we need
a semismooth differential for F and F},. At a point x € RV a semis-
mooth differential of P, is given by the matrix D(x) := A* (x)+A™(x)
(see [Hintermiiller et al. 2002, Lemma 3.1]). Since the remaining op-
erators in F and Fy are linear, the overall semismooth differentials
are given by

DFy (u, @) = Li %D((p) (25)
-My Lh
and
Ly 0 I
DF(u,,p1) :== | =My L 0 . (26)

1l
0 -D(p+p) I-D(p+p)

where 0 and I denote the |I| X || zero and identity matrix, resp.

5.3.3 Convergence Criteria. To check convergence, we simply
check if either the norm of the current residual b is below a small
tolerance ¢ > 0, or if the active sets are no longer changing, i.e., in
StaGE I we check whether A* (¢) and A~ (¢) were changed by the
most recent Newton step; in STAGE II we instead check A™ (¢ + 1)
and A™ (¢ + p). An analysis of this stopping criteria can be found in
Hintermiiller et al. [2002].

5.3.4 Boundary Control. Here, we discuss the practical changes
to the algorithm to incorporate Dirichlet boundary conditions b €
RIBl—a comprehensive discussion and derivation of the algorithm
with Dirichlet boundary conditions is presented in App. A.1.1 and
App. A.2. To incorporate Dirichlet boundary values into the opti-
mization we replace the operator F(u, ¢, u) with

Lyu—Q—-pu-Lib

o H=Pylo+p)
F(u.¢.d.pr.b) := L;'l—(p—Mnu— Ligd
d = Py(d +b),

The vectors b, d € RIBl encode the Dirichlet boundary data for the
original and pre-dual problems, resp. Similarly, to optimize over the
Neumann boundary values h € RIBl (which are the same for the
original and pre-dual problems) we consider the optimality system

Lijur + Liup - Q—p

LI-EUI + Lggupg — k—h

Lier + Lisp — Myjur
Lg,#B + Lep@s — Mppup — h

p=Pylo+p)

To derive the semismooth differential one then proceeds exactly as
in the case without boundary, i.e., use the semismooth differential
for P); use the ordinary differential for all other terms.

F(u, 0, p,h) =
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StaGge 1
. u<—0€R|||,<p<—0€R“|,y<—1
e fory =10%,1071,1072,...,107N:
— (u, ¢) < CoMPUTEREGULARIZEDMEASURE(U, ¢, A, y)
StaGge 11
o (u, @, u) < CoMPUTEOPTIMALMEASURE(u, ¢, 1)

Extract final cones from p (Sec. 6.1)

CoOMPUTEREGULARIZEDMEASURE

e Until convergence (Sec. 5.3.3):

— Evaluate active sets (Eqn. 24)
Evaluate residual by := Fy (u, ¢) (Eqn. 22)
Evaluate differential Uy := DFy (u, ¢) (Eqn. 25)
Solve Up[v' qT]T = —by

—Uue—u+v

- 9tq
CoMPUTEOPTIMALMEASURE

oy P)(¢p) (Eqn. 18)
e Until convergence (Sec. 5.3.3):

- Evaluate active sets (Eqn. 24)

— Evaluate residual by := F(u, ¢, ) (Eqn. 20)
Evaluate differential Uy := DF(u, ¢, i) (Eqn. 26)
Solve Uy [v' q" vT]T = —by
—Uue—u+v
2Rl il
—pepty

Fig. 12. Our algorithm boils down to solving a sequence of sparse linear
equations, together with some simple closed-form evaluations. In practice
we use N = 10 for the largest regularization parameter.

6 ALGORITHMIC CONSIDERATIONS
6.1 Extracting Cones

At the end of STAGE II we have a value y at each vertex. To extract
the final cones, we simply identify the vertices ¢; € V where ¢, # 0.
Numerically, this is very easy to do since the values are extremely
stratified, i.e., they are either equal to a cone angle ¢, > 0, or they
are numerically zero—we use a tolerance of 10712, Very rarely cones
may appear in tiny clusters, reflecting the fact that in the smooth
setting one can slightly reduce area distortion by replacing a Dirac
measure at a point p with a measure supported on a tiny ring around
p (Sec. 4.5). In practice we simply replace each edge-connected set
of cones c¢;,, ..., c;, with a single cone of same total magnitude
¢i, + -+ ¢;,, at the location of the (Fréchet) mean of these points.
A stability result shows that this rounding procedure cannot change
the area distortion by more than a tiny amount (Theorem C.5).

6.2 Tuning Parameter

The parameter A > 0 influences the number of cone singularities, or
more precisely, the maximum allowable total cone angle ® = ’; |§;].
Decreasing A reduces the distortion at the cost of greater total cone
angle, and vice versa. As with many recent methods (e.g., [Myles
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Fig. 13. The parameter A controls the strength of the penalty on the total
cone angle, and in turn, influences the number of cones. For values above 1
(strong penalty) we tend to see that no cones are placed. For values very
close to zero (weak penalty) the curvature measure stops being sparse, and
we get cones with small angles placed densely across regions or along curves
rather than at isolated points.

and Zorin 2012, 2013; Knoppel et al. 2013]) the relationship between
algorithm parameters and the behavior of singularities is indirect.
However, we find that the effect of A is surprisingly consistent across
a wide variety of different meshes and tessellations (see Figures 14
and 18), as long as we normalize it by the total surface area—we
make this assumption throughout. In practice, we therefore do not
need to do extensive parameter tuning: for instance, universally
setting A = 1/2 already provides an automatic way to get reasonable
cone configurations (Fig. 15). A greater total cone angle will result
in lower area distortion—however, for values of A that are too close
to zero, cones will be placed everywhere. We find that a good range
of values across a wide variety of examples at different resolutions is
% < A < 1 (see Figures 13 and 14). For values below this range one
typically starts to see cones densely distributed in regions rather
than at isolated points; above this range one tends to get no cones
at all. Some values in the range 0 < A < % yield configurations of
cones arranged along curves. (See Fig. 13.) Finally, since solutions
are consistent across different levels of tessellation (see Fig. 18, top),
one could quickly tune this parameter on a coarse mesh before
computing the fine solution.

6.3 Multiresolution

Since the initial phase of STAGE I involves problems that are highly
spatially regularized (i.e., when y is small), it makes little sense to
solve these problems on a fine triangulation, where the scale of
features in the optimal solution will be much larger than the typical
edge length. Moreover, since the solutions to these problems are
used only to initialize the next problem in the sequence, they do
not need to be solved with high spatial accuracy. In practice we
therefore adopt a simple multiresolution strategy: given our input
mesh K we first construct a sequence of progressively finer meshes
Ki,...,Kpr = K, where M is no greater than the number N of
outer iterations used in STAGE I, and the number of triangles in
consecutive meshes is related by roughly the same constant factor
s. The solution is then transferred from coarse to fine as the value
of y increases (in practice, we use each mesh roughly the same
number of times). In particular, for each vertex i on a mesh K;, we
identify the set of vertices on the next finest mesh K;,; that are
closer to i than any other vertex in K;. The values of u; and ¢;
are then equally distributed over these vertices. Note that one does
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Fig. 14. The parameter A has a very consistent behavior across different
surfaces, typically producing a similar density of cones.

not need to be particularly careful about the number of meshes
used, nor the method of coarsening. Since our problem is convex,
we will always find the same solution: the multiresolution strategy
affects only the computational cost. In practice we use the Reduce
functionality in MeshMixer [Schmidt and Singh 2010], and use a
constant s = 2. Fig. 11 shows one example, where we obtain a
speedup of roughly 30x. Note however that the method is still quite
efficient even without this multiresolution strategy; most examples
in this paper were computed directly on the fine input mesh.

7 VALIDATION AND COMPARISONS

We implemented our algorithm in C++ using double precision for
all calculations and the sparse QR solver in SuiteSparse to solve
linear systems. Timings were measured on a 2.6GHz Intel Core i5
laptop with 8GB of RAM. In practice we need to solve about 50
to 100 linear systems, independent of the type of geometry or the
resolution of the model. Since the formulation is convex, we obtain
identical results for any initialization. The multiresolution strategy
outlined in Sec. 6.3 reduces the size of these systems substantially,
though we did not find it essential for most of the examples in this
paper: for models of about 100-150k triangles the algorithm takes
at most about 20-25 seconds. We did little optimization of our code;
there are plenty of opportunities for acceleration in terms of both
linear algebra and numerical algorithms.

7.1  Comparisons

We here compare the results of our method (MAD) to existing
cone singularity placement strategies introduced by Ben-Chen et al.
[2008] (CPMS) and Myles and Zorin [2012] (GPIF). The basic cone
placement strategy from Springborn et al. [2008] (CETM) is similar
to CPMS, but we omit a comparison since their strategy for picking
angles is highly mesh dependent as discussed in Sec. 4.1.2. Likewise,
we do not compare to the recent method of Vintescu et al. [2017a]
which provides only cone angles and not the number of cones or
their positions, nor the method of Myles and Zorin [2013] which
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Fig. 15. Using a default parameter A = 1/2 allows one to flatten a wide variety of different models without any explicit tuning or adjustment.

provides very similar results to GPIF in the absence of quantization
and field alignment ([Myles and Zorin 2013, Fig. 14]). CPMS takes
the target number of cones as input, hence we sometimes show mul-
tiple examples. For GPIF we do not apply the secondary rounding
procedure (which is needed only the special case of integer grid
maps), since it would only yield greater area distortion. We also
extensively tuned parameters in GPIF to achieve the best possible
results.

Since one can always reduce area distortion by adding more cones,
it is worth thinking about a reasonable way to evaluate the relative
“cost” of different cone configurations. One standard approach is
to measure the number of cones, though on its own this number
can be misleading: for instance, as cone angles approach zero they
have little real effect on a flattening. Moreover, as suggested by our
stability analysis (App. C) many small cones placed nearby can have
a nearly identical effect to a single large cone of equal total angle.
In most examples we therefore report both the number of cones n
and the total cone angle ® = 3; |¢;, as well as the resulting L? area
distortion A.

In some examples our algorithm places cone singularities in a
similar fashion to existing techniques, but typically using fewer
cones or smaller total cone angle (Fig. 24, top). In other examples,
we obtain much lower area distortion, or alternatively, comparable
distortion with far fewer cones (see for instance Figures 3 and 16,
and 24, bottom left). In Fig. 16, we also see that lines of singulari-
ties (as sometimes placed by GPIF) do not necessarily yield lower
area distortion than simply placing a few carefully-selected cones.

CPMS CPMS GPIF MAD
n=38 » n=>56 n=38 n=38
®=4.02n O=184n ', =897 ®=5.01
A=0.72 A=000 & A=0.15 &, A=0.06 &
N - Se .
%A N <R N

Fig. 16. Finding just the right configuration of cones and angles can some-
times dramatically reduce area distortion. Here, MAD almost completely
eliminates area distortion using just 8 cones (far right). Using the same num-
ber of cones in CPMS (far left) yields far greater distortion; alternatively,
one can drive the distortion to similar levels (center left) but using far more
cones. GPIF yields higher distortion than MAD, even after placing a whole
ring of cones around the top of the head.

The same example shows that CPMS sometimes has a tendency to
cluster many cones in the same region, likely due to picking points
near the center of a harmonic Green’s function from a prior cone.
Overall, we observed similar behavior to these examples across
about 50 different meshes of varying geometry, mesh quality, and
resolution; in no case did we ever find a configuration with smaller
area distortion than MAD for equal or smaller total angle ®.

7.2 Robustness

One of the benefits of globally optimal algorithms is that they tend
to provide reliable behavior across a larger class of inputs. In Fig. 18,
we observe that the cones chosen by method are really determined
by the geometry of the surface, and are not significantly perturbed
by remeshing or common artifacts such as noise, anisotropy, or poor
(e.g., non-Delaunay) triangulation. Since we minimize an integral
energy, our method is also robust to large outliers, which contribute
almost zero area (Fig. 20). In constrast, CPMS will start by placing
a cone at every single outlier, since they have extremely large scale
factors; GPIF also puts cones at each of these outliers, since they
are (by far) the points of greatest curvature. Finally, Fig. 19 demon-
strates that MAD produces consistent results whether one uses a
uniform- or variable-density mesh; in this example, the greedy place-
ment strategy from CPMS is confounded by the fact that harmonic
Green’s functions will be better resolved—and hence larger—in finer
regions, as discussed in Sec. 4.1.2 (GPIF does not suffer from this
same artifact).

GODF MAD
(Knoppel et al 2013) (Ours)
n= 4 - 9 n—= 4 - 8
b=>5x b=4r
=2.31 X =0.
A 3 \ v A=0.96 :
/ |
o

Fig. 17. Optimal singularities for direction fields (top) are not necessarily
good for conformal flattening (bottom).
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Fig. 18. Our method produces consistent results on meshes of very dif-
ferent resolution (top row) and is also robust to meshing artifacts such as
noise (bottom left), anisotropy (bottom center), and severely non-Delaunay
elements (bottom right). The same A value is used in all examples.

8 EXTENSIONS

Our basic optimization framework is flexible enough to be extended
in a variety of ways—a precise formulation of these extensions is
detailed in App. A.2.

8.1 Nonuniform Importance

We can augment our method to influence both (i) where cones are
placed and (ii) where distortion is measured. As detailed in App. A.2,
one can either provide continous functions wg, wgp : V — R that
act as a penalty on distortion and cone placement (resp.), or binary
functions Ug, Ug : V — {0, 1} that explicitly excludes regions where
distortion is measured and cones are placed (resp.). The functions
Ug, UR are particularly useful for reducing the problem size in cases
where there is only a small region of interest—an extreme example
is when one wishes to place singularities only along the boundary
(see Sec. 8.3 for further discussion).

A key example where penalty functions are desirable is on meshes
with features across very different scales, such as the fingers and
toes on a human body. In this case we first compute an intrinsic
local feature size at each vertex i € V (d la [Sharp and Crane 2018,

Fig. 19. Variable density mesh. Left: CPMS places far more singularities in
finely tessellated regions, where Green’s functions are better resolved; note
that many spheres overlap due to close clustering of cones. Center: GPIF
also violates symmetry, and achieves lower distortion than MAD only by
using about twice as many cones. Right: MAD achieves low area distortion
using a symmetric arrangement of just a few cones, and with small total
cone angle.
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Fig. 20. Stress test of robustness. Methods that place cones according to
peaks in scale factors (left) or based on curvature (center) may be confounded
by outliers; here we consider an extreme case where near-invisible spikes
are added to a mesh, leading to cone configurations that are impossible to
parameterize (bottom). Since our method minimizes an integral energy, it
is generally not confounded by outliers or noise, in this case ignoring the
spikes and leading to a high-quality parameterization (right).

Sec. 3.5.1]), i.e., a value r; := 1/(|Q;|/M|| + €), where Q; is the angle
defect (Eqn. 14) and My; is the barycentric dual area. This value will
be small in flat regions and large in highly curved regions. We then
set (wg); = r; and (wg ); = 1/r;, emphasizing the importance of
small features, and decreasing the cost of placing cones in those
same regions. An example is shown in Fig. 7.

An example where excluding a region is natural is when one
wants to avoid placing cones in regions that are visible from a
particular point of view (Fig. 21); here we likewise need only penalize
distortion in the visible regions. Given a particular viewpoint, we
set (Ug); to 1 and (UR); to 0 if and only if vertex i is visible.

Fixed Cone Points with Free Cone Angles. In addition to automati-
cally finding the entire configuration, we can optionally allow the
user to specify a collection of points pi, ..., pm that must be in-
cluded; our method then optimizes the angles of these cones, and
also finds the additional cones that best minimize distortion. A
critical place where this functionality is needed is finding cone con-
figurations on closed convex surfaces. Consider for instance the unit
sphere where there is no reason to place any negative cones—in this
scenario, Gauss-Bonnet says that the total cone angle ® := }; |¢;|
will always be 4;r. Hence our method will put a cone at every vertex
i, with cone angle equal to the angle defect Q;. A simple remedy is
to put one “free” cone at an arbitrary vertex p € V (say, the vertex of
greatest curvature), which effectively behaves like a small puncture.
We are now free to consider cone configurations where the sum
of the cone angle magnitudes on the rest of the domain is strictly
less than 4. In practice this strategy is rarely necessary, since most
real-world surfaces have both positive and negative curvature.

8.2 Bounded Cone Angles

Adding inequality constraints to our optimization (amounting to a
simple projection at each iteration) allows us to find optimal con-
figurations with cone angles within a given range. For instance,
negative cones can lead to a flattening that is locally noninjective,



Fig. 21. We can selectively restrict cone placement to any user-specified
region. Here for instance, by shooting rays (top left) we can determine the
region visible from a particular point of view (bottom left). If we now restrict
our search to this region—while still penalizing distortion in the front—
singularities that would ordinarily appear on the front (center) instead get
“pushed” to the back (right).

since the total cone angle is greater than 27z. We can avoid such fea-
tures by simply requiring that ¢; > 0, helping to improve injectivity.
In Fig. 22, (right) we actually obtain a globally injective flattening,
though of course in general one cannot expect global injectivity
purely from local injectivity. In one case, we allow a single free cone
(as described in Sec. 8.1). In another case, we simply optimize over
all nonnegative cone configurations with total angle 47, without
including any kind of sparsity-inducing norm—amazingly enough,
we still get a sparse solution.

Another example where angle bounds are potentially useful is in
finding cone configurations for seamless integer grid maps [Bommes
et al. 2013a], where cones must be quantized to integer multiples of
/2. Although we cannot produce optimal quantized configurations,
we find that restricting angles ¢; to the range [-r/2, n/2] often
yields a number of +7/2 cones on models that would otherwise have
angles outside this range. Fig. 23 shows one example where all angles
in the optimal configuration do happen to end up being +7/2. Here
we observe that the best way to quantize a cone configuration is not
always intuitively obvious, indicating there may be significant room
for improving existing heuristics found in the meshing literature.
Incorporating actual quantization into our framework is therefore
an interesting (and challenging) question for future work.

8.3 Optimizing the Boundary

Incorporating boundary data into our optimization problem pro-
vides additional control, as illustrated in Fig. 10 (see App. A.1.1
for details). For conformal flattenings without cone singularities,
Springborn et al. [2008, App. E] show that minimal area distortion
(with respect to Ep) is achieved by constant Dirichlet boundary con-
ditions u|gp; = const. However, these boundary conditions are not
necessarily optimal in the presence of cones, nor when minimizing
the energy E. We therefore augment Problem 9 to jointly optimize
both the cone configuration and the choice of Dirichlet boundary

Optimal Cone Singularities for Conformal Flattening « 105:15

no angle bounds
n=45/® =8.22x/ A =1.61

positive angles only
n=43/® =4x | A =27

Fig. 22. Left: When finally mapped to the plane a cone flattening of a surface
(such as this brain) may have local noninjectivity at negative cones, unless
these cones are cut into sufficiently small pieces (see zoom). Right: finding
an optimal solution with only positive cones avoids this source of local
noninjectivity.

optimal optimal subotptimal
(no quantization) quantization quantization
o e P

Fig. 23. Left: in the absence of any bounds on cone angles ¢;, an optimal
configuration for this model is to place eight equal cones corresponding to
an octahedron. Center: if we now limit angles to the range ¢ € [0, 7 /2], we
get a configuration that has eight cones of /2, but not at the corners of
a cube as one might expect: instead, we get a flattening to a cuboid with
unequal lengths. Right: the more intuitive configuration with cones at cube
corners yields higher area distortion.
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conditions (App. A.1.1), or to just optimize over one or the other.
Alternatively, we can get polygonal boundaries by promoting the
sparsity of boundary curvature, achieved by penalizing the measure
norm of Neumann boundary data (consider the boundary condi-
tions in Eqn. 1). Finally, forcing boundary curvature to be positive
(ala Sec. 8.2) leads to minimally-distorting flattenings with convex
boundaries.

9 LIMITATIONS AND FUTURE WORK

Some of the limitations of our algorithm
have already been carefully addressed. For
instance, although the continuous problem
does not admit exact Delta measures as so-
lutions, we have provided a careful stabil-
ity analysis (App. C) that leads to a prac-
tical rounding procedure in the very rare
case where cones appear in smaller clusters
(Sec. 6.1). Another issue is that on surfaces
like the unit sphere which have strictly posi-
tive Gaussian curvature, the optimal solution
to our problem is just the Gaussian curva-
ture measure itself, i.e., a cone at every vertex
with angle given by Gauss curvature (see in-
set, top). This measure yields minimial (zero)
area distortion, and by Gauss-Bonnet has minimal measure norm. A
simple and seemingly effective solution here is to just allow a single
“free” cone as described in Sec. 8.1 (see inset, bottom), though this
‘trick’ is rarely required in practice. There is also some uncertainty
in how to pick values of A, though in practice we find that the same
values consistently produce similar results across a wide variety of
examples (Fig. 14). Perhaps the most interesting question is how
to augment our formulation to allow area distortion to be driven
below a given user-specified threshold; here some significant new
ideas are likely required.

More broadly, despite the importance of the cone flattening prob-
lem, very little is known not only about finding optimal solutions,
but even about basic questions regarding the behavior of cone flat-
tenings. For instance, there are many outstanding questions about
the existence of cone metrics on different topologies or with particu-
lar conditions on curvature [Del Pino and Roméan 2015; De Marchis
and Lopez-Soriano 2016]. One might also wonder about the geo-
metric significance of optimal cone configurations, which might be
better understood via connections with optimal transport. From a
practical point of view, a major open question is how to find optimal
cone configurations where angles are quantized (e.g., to integer mul-
tiples of 7/2) which are a critical component of structured surface
remeshing. One nice feature of cone parameterization is that the
flattening is performed intrinsically, prior to the final 2D layout—an
interesting open question is how to find the best 2D layout, e.g., the
one that yields greatest signal quality (Fig. 25). Finally, the ques-
tion of how to optimally drive area distortion below a user-specfied
bound would enable one to compute high-quality flattenings that
are effectively indistinguishable from isometry. The analytical per-
spectives developed here may provide new ways of looking at these
problems.

—
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Fig. 24. More comparisons. On models with simple geometry (top row) greedy or region-growing strategies can work quite well, though MAD still performs
slightly better. On more challenging models such as the crab (bottom left) the gap typically widens—note also the high degree of symmetry for MAD.
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A SMOOTH FORMULATION (DETAILS)

In this appendix, we present the precise mathematical framework
which we use to employ Fenchel-Rockafellar duality. In particular,
we discuss the solution operator to the Poisson equation with mea-
sure data and present all of the computations and details necessary
to apply convex duality.

A.1  Poisson Equation with Measure Data

The PDE constraint present in our relaxed formulation Problem 9 is
a simple Poisson equation

Au=p,

where y € M(M) is a measure. Since M is a two-dimensional man-
ifold the classical variational framework is inequipt to deal with
measure valued right hand sides. Instead, we rely on the harmonic
Green’s function to obtain solutions:

THEOREM A.1 (AUBIN [1998, THEOREM 4.17]). Let M be a smooth
manifold with boundary M of class C*°. Then, there exists Gy :
M x M — R, which is smooth away from the diagonal, satisfying

o) = [ .ot da@ - [ ot@To0up.0) ndeta

for every ¢ € C%(M). Furthermore, for every p € M there exists a
constant ¢ > 0 such that |Gpr(p, )| < ¢ (1 + |logd(p, q)l).

For 1 € M(M) the function u := Gy * u is a distributional
solution to Au = p with zero Dirichlet boundary conditions. Hence,
we can define a solution operator Sy := Gy * p. Moreover, the
following classical result shows that S is a bounded linear operator

from M(M) into Wol’p (M).

THEOREM A.2 (LITTMAN ET AL. [1963, THEOREM 5.1]). Let Q C R?
be a bounded open set with dQ of class C*. Let u be a signed Radon
measure with finite total variation in Q. Let L be a uniformly elliptic
operator in divergence form. Then the Dirichlet problem

Lu=p

withu € Wol’l(Q) has a unique solution with the property that u €
Wol’P(Q) with |[Vullpeq) < cllplip foralll <p < 2.

By the Sobolev embedding theorem WOI’P (M) c L*(M), and so we
will actually consider S : M(M) — L?(M). By localizing, we deduce
that the same result holds for the solution operator associated to the
Laplace-Beltrami operator on (M, g). The result is shown using the
method of duality introduced by Stampacchia [Littman et al. 1963;
Stampacchia 1965]. In particular, S is constructed as the Banach
space adjoint of the (bounded linear) operator S : wLy M) —
C(M). Again, by using the chain of embeddings and isomorphisms
L2(M) = (L2(M))* — wLp (M) we will actually consider S, as a
map from L2(M) into C(M). Since A is self-adjoint the map S. is also
the solution operator to the Poisson equation Au = ¢ (again, with
zero Dirichlet boundary conditions), where now ¢ € L?(M)—the
fact that S is the adjoint (S.)* is important for our application of
Fenchel-Rockafellar duality.
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A.1.1  Boundary Conditions. There are many practical benefits
to jointly optimizing over both boundary conditions and cone con-
figurations. Rigorously treating the boundary conditions in the
continuous setting is quite technical; nevertheless, the treatment of
boundary conditions numerically is extremely simple—see Sec. 5.3.4
for the necessary practical details.

We extend the solution operator to allow more general Dirichlet
boundary data b € H3/2(M) Since b € H3/2(M) we can employ
usual functional analytic methods (Lax-Milgram) to deduce the
existence of a weak solution to

Av=0 in M,
v="b on dM.

The boundary conditions above are understood in the trace sense.
Furthermore, elliptic theory and the Sobolev trace theorem gives us
the bound IIUIIHz(M) < C”b”H3/2(6M)- Thus, we have a continuous

solution operator B : H3/2(dM) — H2(M) to the above bound-
ary value problem. We choose to only consider boundary data in
H3/2(dM) since solutions to the above boundary value problem are
in H?(M) < C(M), which considerably simplifies the boundary
conditions in our pre-dual problem.

Combining the solution operators S and B we can construct solu-
tions to the Poisson equation

Au=p in M,
u=">n on oM

by setting u = Su + Bb. We will denote this solution operator Sy :
M(M) x H3/2(dM) — X. We write X for the Hilbert space L(M) @
H3/2(8M) (which we identify with its dual X* through the Riesz
representation theorem).

A.2 Generalizations

Before constructing the pre-dual problem and computing the convex
conjugates, we discuss the mathematical framework for treating the
generalizations that appear in Sec. 7.

Optimizing the Boundary. Using the generalized solution oper-
ator above we can properly include optimizations over Dirichlet
boundary data in H3/2(9M). Alternatively, we can optimize over
Neumann boundary data—in light of the Cherrier boundary con-
ditions (Sec. 3.1), penalizing the measure norm on the boundary
data promotes polygonal boundaries in the optimization. In this
case, one can only (formally) specify measure data on the boundary.
A more careful treatment of measure valued Neumann boundary
conditions is still necessary for a proper analysis of the optimization
problem in the continuous setting. From a numerical perspective,
this poses no challenges and we use this to penalize sparsity of the
geodesic curvature on M.

Visibility. Consider a closed subset Ug C M, and let M(Ug) C
M(M) denote the set of measures with support in Ug. This change
enforces geometric constraints on the locations of the optimal cones.

Similarly, consider an open subset Ug € M. We can optimize over
cone configurations that minimize the area distortion only in Ug by

considering the energy E(u) := E(yyy - u).



space of measures
area distortion energy
measure space regularizer
tuning parameter
region where cones can be placed
region where distortion is measured
solution operator to Au = u
L2(M) ® H3/2(oM)
Gy | Green potential
si | free cone singularity sites
K | discrete triangle mesh
Sk | FEM semidiscretization of S
Py, | projection operator (Eqn. 18)

oS SFemme

Fig. A.1. The notation we use throughout this paper is summarized here.

Prescribed Singularities. To freely allow cone singularities at a
finite number of sites {s1, ..., sg} C M, while optimizing over addi-
tional cones, we replace the measure-norm by the regularization

R(p) = |ul(UR \ {51, - - - Sk })-

Thus, there is no cost to placing cone singularities at these sites. ||
denotes the total variation measure of .

We introduce positive weight functions wg and wgp (bounded
away from zero) to add soft geometric constraints on the optimal
cones. Now, we define

1
B = [ Il da and RG) = [ g i
2Jm M

which are the weighted area distortion measure and weighted reg-
ularization, respectively. Under these modifications, the optimal
control problem prefers to place cone singularities where wgp is
small in a way that reduces the area distortion where wg is large.
See Sec. 8.1 for a practical geometric example.

A.3  Applying Convex Duality

In Sec. 4.3 we claim that the Fenchel-Rockafellar dual of Problem 10
is Problem 9. We carry out the computations for the convex conju-
gates and show how to realize the optimality conditions as weak
solutions to PDEs. For notational simplicity we set Ug = Ug = M
and consider only zero Dirichlet boundary conditions, but other-
wise consider the weights from the generalized problem presented
in App. A.2. Adding in these additional generalizations follows in
exactly the same way.

Recall the following relationship between the convex subdiffer-
ential and the convex conjugate.

ProPOSITION A.3 (FENCHEL-YOUNG INEQUALITY). Consider a proper
convex function F : X — R.
F*(L) + F(x) > L(x) forallx € X, L € X*.
Equality holds if and only if L € 0F(x).
Convex Conjugates (Area Distortion). Since the area distortion

energy is defined on the Hilbert space L?(M) we can simply compute
the convex conjugate of E to obtain the corresponding term in the
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pre-dual problem. The Fenchel-Moreau theorem states that E** = E,
and so this justifies this procedure. It is straightforward to see that
E is Fréchet differentiable with

dE(u) = uwg,

where we identify L?(M) = (L?(M))* in the usual way. Thus, by
Proposition A.3 the convex conjugate of E is given by

1 1
E*(u) = -f — |ul? dA.
2 Jm we

Convex Conjugates (Measure Space Regularizer). To determine
the appropriate pre-dual for the measure space regularizer we con-
sidered the simple finite-dimensional case where the dual of box-
constraints dualize to L!-norm. Recall that since we need to make
the change of variables o := KdA — j (see Sec. 4.3) we need to
construct G such that G*(¢) = R(K dA — o).

Thus, define the convex functional G : C(M) — R by

G0) = Lis (0~ [ Ko da,
where analogous to 1, we consider the indicator function

0 if |p(x)| < Awg (x) for all x € M,

+oo else.

JIAW_GR (‘P) = {

Using the Riesz representation theorem for C(M) consider G* :
M(M) — R and directly compute for g € M(M):

= swp { [ gdlur) oI < g 1
pec(M) | IM

Let M* denote the support of (i + Q)" and M~ denote the support
of (1 + Q)~. The Jordan decomposition theorem states that these
sets are disjoint. Construct a sequence of continuous functions

}oo

{on net © C(M) such that pointwise

on(x) > Awgy (x)  forallx € M*,
on(x) = —Awgp (x) forallx e M~,

as n — oo. By Fatou’s lemma we have that

G*(p) Zliminff ®n d(y+Q)=Af wg, dlp+ Q|
n—ee IM M

The reverse inequality is immediate from the inequality constraints
on ¢. Summarizing, we have shown that G*(u) = AR(K dA + p) is
the desired measure space regularization appearing in our relaxed
formulation.

Applying Fenchel-Rockafellar duality. We will use the duality the-
orem in the form presented in Sec. 3.4—using the same notation
we will take F = E* and G as above. Furthermore, we will take
A* =S : M(M) — L?(M) to be the associated solution operator.
Now the primal problem from the duality theorem reads

inf  E*(u) + G(Au).
uel?(M)

Set ¢ = Au, and note that ¢ is a weak solution to

in M,
on dM,

Ap=u
=0
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where the boundary conditions are understood in the trace sense.
Using this formulation of A, we can expand out this form of the
primal problem to obtain

1 1
minimize —f —|ul? dA —f (Kop) wap dA
M M

ueL2(M) 2 wg
subjectto A¢p=u in M, (A1)
=0 on dM,

lp(x)] < Awgg (x) forall x € M.

The necessary technical conditions that there exists some uy €
X such that E*(ug) + G(Aug) < +oo0 with G continuous at Aug
holds trivially for up = 0. Applying the Fenchel-Rockafellar duality
theorem yields the equivalent optimization

— min E(A"0) +G*(-0).

seM(M) (Ao) (=o)

Again, we expand this out using our computations of the convex
conjugates and the definition of the solution operator S to find

1
—f |u|2’W8 dA +)Lf wa, d|IKdA - ol
2Jm M

minin(ﬂz)e
oce M(M
subjectto Au=o0 in M, (A2)

u=20 on dM,

Optimality Conditions. Finally, we derive the optimality condi-
tions that relate the minimizers of the optimization problems Prob-
lem A.1 and Problem A.2. The Fenchel-Rockafellar duality theorem
provides the first order necessary and sufficient optimality condi-
tions

-0 € 0G(Au).
Setting ¢ = Ag, using the definition of the solution operators A and

A*, and using the fact that dE* (v) = v we can rewrite the optimality
conditions as

{A*E € O0E*(n),

Au = o with ulgyy = 0,
Np = wgu with  @lgnm 0,
KdA-o € 0d1,,,9).

Substituting p = K dA — o into the above provides the optimality
system between the primal problem and the relaxed optimizion for-
mulated with the singular Yamabe equation as the PDE constraint:

Au = KdA-p with  ulgyy = 0O,
Np = wgu with ¢lgpr = 0,
TS a]]-/lw% (@)

Discretizing and solving this optimality system directly will be the
basis of our algorithm for computing optimal cones.

Generalized Optimality Conditions. Working through the com-
putations of the Fenchel-Rockafellar duality theorem with all of
the generalizations from App. A.2 yields the following optimality
system

Au = KdA-qu with  ulgyy = b,
Ap = weyugu with  @logpy = b,
HLug\isi) € 0Lawg (XUg®)-

Here b € H32(OM) are new optimization variables representing
the boundary conditions, and y4 denotes the characteristic function
of the region A (i.e., ya(x)is0if x ¢ Aand 1 if x € A).
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B DISCRETIZATION (DETAILS)

Recall that our algorithm takes in a triangle mesh K = (V, E,F).
Properly discretizing the optimality conditions is quite subtle due to
the presence of measures. In this appendix we will discuss both how
to derive the discretized optimality system as well as the detailed
computations needed to reformulate the optimality conditions as a
semismooth operator equation (see Sec. 5.3).

B.1 Discretized Optimality Conditions

To recover the cone configurations, we will need an appropriate
discretization of the space of measures—in particular, we need to
discretize the optimality conditions in a way that captures the cen-
tral features of the optimization over the space of measures. For
simplicity of presentation, we present the derivation only in the
basic formulation of our problem. We utilize the conforming dis-
cretization of M(M) introduced by Casas, Clason, and Kunisch
[2012]. We recall the basic framework here. Let Yx denote the finite
dimensional subspace of L?(M) given by linear combinations of the
piecewise linear Whitney hat functions centered at the vertices V.
Motivated by the Riesz representation theorem for C (M)*, the space
of measures is discretized as Z := Y; where the duality pairing is
given by the duality pairing between M(M) and C(M). Explicitly,

Z = {Zeiai D 0; GR}.

ieV

We now utilize this approach with the variational discretization
technique of Hinze [2005]. The main idea is to not discretize the
space of measures initially, but instead to only use the above dis-
cretization in the end to recover the cone configurations. We begin
by considering the semidiscrete finite-element approximation of the
solution operator—the term semidiscrete is used to emphasize that
the space of measures is not discretized, whereas the state space
L%(M) is. For a given measure y € M (M), the discrete log-conformal
factors u = Skp € Yk are characterized by

(Vu, Vo) rzavrmy = jj‘wip dy

for all ¢ € Yk. So the semidiscrete solution operator is a map
Sk : M(M) — Yk. Now we consider the semidiscrete optimiza-
tion problem

Iﬂle%n(%e E(Skp) + MK dA — pillpg- (B.1)
Minimizers in M(M) exist by a standard application of the direct
method of the calculus of variations. Notice, though, that Sk maps
an infinite dimensional vector space into a finite-dimensional space.
Thus, minimizers of Problem B.1 are not unique. However, Casas
et al. [2012, Theorem 3.2] show that there is a unique g € M(M)
satisfying u = Sk that is a linear combination of Dirac delta mea-
sures concentrated on the vertices in V—this provides a numerical
accessible subspace of M(M) to look for minimizers.

Crucially note that this approach is fundamentally different from
naively treating measures as integrable functions and utilizing stan-
dard finite-elements to obtain sparse solutions. At the level of both
the semidiscrete optimization and the fully discrete optimality con-
ditions the continuous theory regarding the space of measures is



used to determine discrete minimizers that faithfully represent min-
imizers in the smooth setting.

By restricting the search space to Zg we can express solutions
to Problem B.1 in terms of the coefficients of z and u. By apply-
ing Fenchel-Rockafellar duality to the semidiscrete optimization
problem (exactly as in Sec. 4.3 and App. A.3) yields the discrete
optimality conditions

Lu=Q -y,
LTp = Mu, (B.2)
p € dl,(p),

where L is the stiffness matrix of the Laplace-Beltrami operator (i.e.,
the cotan-Laplacian), M is the Galerkin mass matrix, and Q is the
discrete curvature 2-form.

We now describe our discretization of the sequence of regularized
problems presented in Sec. 4.6. In a manner completely analogous to
the discretization above, the starting point is to construct a semidis-
crete regularized problem of Problem 9. Again, minimizers of the
semidiscrete optimization problem can be guaranteed using stan-
dard variational tools. For this sequence of regularized problems to
be useful, we need our discretization of the semidiscrete problems
to converge to Problem B.1 as y — 0%*. Thus, once we have any
minimizer, we store the values at the vertices integrated over the
associated dual cell. By utilizing Fenchel-Rockafellar duality (as in
the rest of the paper) we obtain that the fully discrete optimality
system reads

Lu=Q -y,
LTp = Mu, (B.3)
@ —yp € OR(p),

where here R is given by R(x) = ||wg x|l 1, where the multiplication
is understood pointwise, ie.,

(wag )i = (Wgp )ixi.

B.2 Semismooth Reformulation

As mentioned in Sec. 5.3 our algorithm will be based on applying
a semismooth Newton method to obtain solutions that satisfy the
discrete optimality systems System B.2 and System B.3.

The main challenge is in discretizing the subdifferential relation-
ships. Since these optimality systems are framed over the space RV
we can utilize Moreau’s proximal map to reformulate these relation-
ships as equality relationships. Our primary reference regarding the
proximal map is Bauschke and Combettes [2017]. Throughout this
section H is a Hilbert space.

Definition B.1. Let f : H — H be a convex function. Moreau’s
proximal map of f, denoted Proxs : H — H, is given by
. (1yr 2 ~
Proxs(h) := arg min (5 ||h - hHH +f (h)) .
heH
We write Prox) := Proxs/, when f is understood from context.

The main connection between the proximal map and subdifferen-
tial relationships is given by the following important relationship.

PropPOSITION B.2 ([BAUSCHKE AND COMBETTES 2017, PROPOSITION
23.2, ExampLE 23.3]). Let f : H — H be a convex function, and let
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y > 0. The mapProxy : H — H is a well-defined, bounded (nonlinear)
operator. Furthermore,

# =Proxy (¢p) & ylp—p) €df(p).

The Regularized Problems. We begin by reformulating the opti-
mality conditions for the regularized problem. By comparing this
relationship with the subdifferential relationship in System B.3 we
see that this is exactly the form we desire. From Proposition B.2 we
see that

1
p=YH ZY(;#’—H) € OR(p)
is equivalent to

4
p = Prox (—)
"\y

Now, we are only left with computing the proximal map of the
discrete regularization R : RIV! — RIVI,

ProrosiTION B.3.
1 . 1
Proxg/y (x) = max (O,x - ;W@) + min (O,X + ;ng) .
Proor. To find Prox, (x) we need to minimize the functional
Y 2
— L — w12+ il
g >l =il + (wailyil
ieVv
It suffices to minimize the summand for every i € V. That is, we
minimize the one-dimensional functional y — %(y—xi)2 +(wag )ilyl,
which gives rise to
0 if [xi| < 5 (wap )is
y= 1
xXi—y sgn(x;)(wg )i else.

So we obtain the claimed formula for the proximal map, where the
max and min are understood pointwise. O

Using this, we obtain that
a 1 1 .
u = Proxy, ; =;maX(O,x—WgA)+;mln(O,x+w%).

So we can reformulate System B.3 as

Lu=Q—p,
LT = Mu, (B.4)
yu = max (0,x — wgg ) + min (0, x + wag )
To simplify notation, we consider Py, (¢) = max(0,¢ — wg ) +
min(0, ¢ + wap ).
Now, System B.4 can be concisely encoded in the operator equa-
tion Fy (u, ¢, ) = 0 where Fy is given by
Lu-Q+p
LTp — Mu
YH = Pug, (¢)-
In fact, we can simplify this even further by substituting the third
equality into the first. That is, we can consider
Lu—Q+ %PA((p)
LTo — Mu

Fy(u,f/”ﬂ) =

F)/(ua(P) =
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The Relaxed and Unregularized Problem. As above, we want to re-
formulate System B.2 as an operator equation of the form F(u, ¢, 1) =
0. Again, we will utilize Proposition B.2 to help reformulate

B € 0lwg (@)
By Proposition B.2, for any y > 0

1
¢ = Proxy ((p + —y)
Y
is equivalent to

y(<ﬂ+%u—¢) = p € 0lwg (9).
Thus, we can write System B.2 as
Lu=Q—p,
LTo = Mu, (B.5)
¢ = Proxy ((p + %y) ,
for any y > 0. As before, we need to compute the proximal map for

1wg, - However, this is quite simple since this is just the indicator
function of a convex set:

. (1
Proxi,, (¢) = argmin (5 1x = ¢ + Lu, ()
X

and so we see that we are simply obtain the metric projection onto
the box constraints defined by wg . The projection onto these box
constraints can be easily described using the map Py, :

Projw% (@) =0- Png (0)-

Thus, we can write
1 1 1
@ =Proxy |g+ —p| =@+ —p—Pug (0 +—p).
Y Y Y

Since the above equivalence holds for any y > 0, we can take y = 1.
Now, rearranging terms yields

B = Pyg (¢ +p),
which allows us to express the optimality system as F(u, ¢, ) = 0
where
Lu-Q—-pu
LTo — Mu
1= Pug, (¢ + p)

C REGULARITY AND ROUNDING

In this section we prove a negative result regarding the sparsity
structure of the minimizers—in particular, the minimizing measures
will never represent cone singularities. We go on to rectify the situa-
tion by proving a stability result which justifies rounding arbitrary
measures to nearby cone singularity configurations. On almost all
of the examples in this paper the minimizing measure was already
supported on isolated vertices.

We begin with a technical result, which relates the support of the
minimizing measure to the values of the adjoint state.

Fu, @, p) =

ProrosITION C.1. Let i be the optimizing measure, and let ¢ be
the optimal adjoint state. We have that

supp /i’ C {x € M : §(x) = +Awg (x)}.
suppfi- C{x € M : p(x) = —Awgg (x)}.
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Proor. This result follows from the optimality conditions pre-
sented in System 11. In particular, we will use the condition that
H € 81,,,,, (@). From Proposition A.3 and this subdifferential rela-
tionship we have that

T = Lty @) + Ly, () =2 fﬂ e dil.€)

In the second equality we use that fact that since 1,,,, is subdif-
ferentiable at ¢ that 1,,,,, (¢) = 0. Note that i < [z, and so the
Radon-Nikodym derivative sgn y := dji/d|ji| is in L} (M, d|f]). Using
this and Eqn. C.1 we obtain

[ enmam=2 [ g dip
M Ur

So we conclude that ¢ sgn 1i(x) = Awg for []-almost-every x € Ug,
it now immediately follows that

suppfi” C{x € Ug : sgnfi=+1} C{x € M : 9(x) = +Awg (x)},

supppi” C{x € UR : sgni=-1} C{x € M : 9(x) = —Awg (x)},

]

We make the assumption that Ugp = Ug = M. For simplicity we
assume that the boundary conditions are fixed to u = 0 and that
wag, = 1. We crucially assume that M is homeomorphic to the unit
disk in R? so we can perform an initial flattening—let ug be the
log conformal factors which make (M, e?%0g) flat. Using this initial
flattening, we consider the local picture mentioned in Sec. 4.1.1.

The following lemma guarantees that the maximal distortion
obtained by solving our optimization problem will be less than the
distortion from the initial conformal flattening—this will be used to
prove that the optimizing measure cannot contain Dirac deltas.

LEmMA C.2. Let i be the optimizing measure of Problem 9, and let
Au =i withu = 0 on M. Thenu € L (M) with

-1
Allreornn < ol inf 2u0(x)) .
@l any < Nl + ( inf we (x)e

PRrOOF. As before, consider the adjoint state ¢ € C(M) that satis-
fies ARz = u — up with ¢ = 0 on OM. For notational convenience,
set

-1
B:= (M inf Zug(x))
lluolle(ary + (xHelMWg (x)e

Assume, for the sake of contradiction, [[ull ~(ar) > B. Thus, there
exists € > 0 such that the set

A:={xeM: |u(x)| >B+¢}

has positive measure. Without loss of generality, we can assume that
SUpy epf (x) > B + €. By the maximum principle for logarithmic
potentials [Saff and Totik 1997, Corollary 3.3] there exists some
xo € supp it satisfying #(x¢) > B + £. Now let § > 0 be such that
dist(supp it, suppi~) > & (which follows from Proposition C.1).
Note that A is open since u is lower-semicontinuous. We deduce
that A N B(xy, §) is open. Thus, we can find some 0 < r < § such



that B(xo,r) € AN B(xo,5). Now since xo € supp i* we have that
@(xp) = A > 0. Now let y € C*°(M) be a solution to

—Ay = —¢ in B(xo,7),
y=0 on dB(xo,r).

By the maximum principle for the Laplace operator, we deduce that
y(x0) < 0. Now set Y := —¢p — y. Using the adjoint equation for ¢ as
well as the lower bound of u in B(x, r) we see that

—AY = —e®owg (W —ug) + £ <0 in B(xo,r),
Y=9 on dB(xo,r).

Now by the maximum principle for subharmonic functions we
conclude that SUP . € B(x0, ) Y(x) = Y(*max) = @(Xmax ) for some
Xmax € 0B(xg,r). We conclude by noting that

a(xmax) = Y(xmax) > Y(-xO) = E(XO) - y(xo) > @(xo) =1

This is a contradiction with the adjoint state constraint [p(x)| < A
for all x € M. So we conclude that [ullp(ar) < B, as desired. O

Using the above L*-bound on the optimal log-conformal factors
we will be able to bound the H!-norm of u. We begin by bounding
the H'-norm of u when the measure y is absolutely continuous with
respect to the area element dA:

LEmMA C.3. Let f € C.°(M;R), and consider the measure ji given
bydu = f dx. Then

[ o) dutr = [ ivuta? ax,
M M
where Au = p withu = 0 on OM.

ProoF. Since f is smooth, we know that u is smooth; furthermore,
u vanishes on dM. Integration by parts reveals

[ a0 duo) = [ utrsn) ax
M M
=f u(x)Au(x)dxzf IVu(x)|1? dx.
M M
m}

By an approximation argument we can apply the previous result
to obtain the desired regularity result:

THEOREM C.4. The optimizing measure i € H& (M)*.

ProoOF. Since Au = ji we have that

fM u(x) du(x) < l[ullpean 2 pmcarn)-

Note that the right hand side is finite by Lemma C.2. Note that by
Lemma C.3 and a simple approximation argument (approximate z
by smooth functions, and pass to the limit) we obtain

IVall?, ., sf u(y) du(y),
LZ(M,Rz) M Yy Yy

which shows that € H&(M). Since A : HS(M) - H&(M)* we
conclude that i € Hg (M)*. O
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This technical result is important since it tells us that the opti-
mizing measure cannot consist of any Dirac deltas. Intuitively, this
is because every Dirac delta (or cone singularity) can be rounded
to a slightly “smoothed” out version in a way that brings down the
area distortion in a very small way.

Rounding. Although in the continuou setting the minimizing
measures never consist of Dirac delta measures, we find that in
practice they often are delta measures. To resolve these conflicting
perspectives, we show that we can round the minimizing measure
to a collection of delta measures in a way that does not significantly
reduce the area distortion. Rigorously, we utilize the framework of
optimal transportation.

Recall that the Wasserstein distance between two probability
measures /1, v is given by

1/2
day,(u,v) :==| inf dg(x,y)? dr(x, ,
W (k) (ﬂe%ﬂﬂ,w foM g(x y)” dn(x y))

where dy is the geodesic distance in M. On the other hand, we have

that
1/2
Il -2 (g = (f lul® dx)
M

where Au = p in M with u|gs; = 0. Note that the H=2 norm is
nothing more than the area distortion energy E(u) from our cone
optimization problem.

For any two functions f, g we use the notation f < g to indicate
that there is some universal constant ¢ for which f < cg. Similarly,
we write f ~ g to mean that f < gandg < f.

We first prove this result when the domain M is simply a ball
in R2. In what follows, @ the fundamental solution of the Laplace
operator in R?.

THEOREM C.5. Let R > 0 and let P(B(0,R)) denote the space of

probability measures supported in B(0,R) in R?. Then the identity
map

id : (P(B(0,R)),dy,) = (PBO.R). Il - Ir-2(0,r)))
is a continuous embedding.
Proor. Without loss of generality, let R = 1/4, and write B :=

B(0,R). Fix p,v € P(B(0,R)). Let € II(y, v) be any transport plan
between p and v. We estimate ||p — vllg-2(p(o, r)) as follows:

=i = [ 15G= f dx

= [ o= ax
B

:fB(ffBXBcp(x—y)-@(x—z)dn(y,z) C i
sffBXBfB(qn(x—y)—q>(x—z))2 dx dr(y, z)

< szBXBfA i (D(a) - Dla+y—2)? dadn(y,z),
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where Ay » = {a € B(0,2R) : |a| < |a+y - zl|}. Note that 0 <

Inla+y-z|—Inla| < |b|!;|z\ and that

In|a| -Inla+y-z|| < |In|al|.

Now let § = %ly — z|. Continuing our estimates, we find
vl [ nlal-masy-2)? dadetyo)
BxB JAy, .

sff (f In?|a| da
BxB \ JB(0,5)

2
+ f Mda)dﬂ(y,z)
Ay -\B(0,5) lal

< ff |y—z|21n2 |y—z|+|y—z|21n|y—z| drn(y,z)
BxB

stxB ly -zl dn(y,z)
([ o)

Now let 7 be the transport plan that minimizes the quadratic Wasser-
stein distance, and since the above estimates hold for all transport
plans we deduce

1/2
= vl < (ff ly - 2 dﬁ(y,z)) = day, (7).
BXxB

]

CoroLLARY C.6. Let Y C R? be an open set that admits a Green’s
function. Then the identity map

id: (PY).day,) = (PO, 1| - llgg-2)

is a continuous embedding.

Proor. Follows immediately from Theorem C.5 and [Helms 2009,
Theorem 3.2.12], which states that Gy (x,y) < Gp(o,r)(x,y). O

By working in local coordinates we also obtain the result for any
compact manifold M.

Following [Ambrosio et al. 2011; Mainini 2012], we extend the
previous results to the case of signed measures by defining

Wal, v) = day, (" +v7 0" +p0).

Note that, unlike the usual Wasserstein distance, ‘W, is not a dis-
tance. Nevertheless, it provides an appropriate similarity measure
for modeling the merging of cone singularities.

The following result is a straight forward application of the Hahn-
Banach theorem and the Riesz representation theorem for the space
of continuous functions.

LEmMA C.7. The vector space of linear combinations of Dirac deltas,
Diracs(M), supported at points in 'Y is dense in M(M) endowed the
weak-* topology.

We now can recover a well-known result with very little effort.

CoroLLArY C.8. Let (M, g) be a compact 2-manifold. For every
& > 0 there exists a configuration of cone singularities such that the
area distortion of the resulting conformal flattening less than ¢.
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Proor. Fix ¢ > 0. Let Q € M(M) denote the curvature 2-form.
Note that E(u) = 0 when Au = Q — Q. Find § > 0 such that

|E(uq) - E(uy)| < e
for all g € M(M) with W5(Q, ) < 6. Here Auy, = Q — pand
Aug = Q — Q = 0, both with zero Dirichlet boundary conditions.
We can find such a § > 0 using Theorem C.5. By Lemma C.7 we
can find a sequence of linear combinations of Dirac delta measures
{in}, -, such that up Za. By [Mainini 2012, Proposition 3.8] we
deduce that
W (un, Q) — 0

since M is a compact metric space. Take N large enough such that
Wa(un, Q) < 8, and write

m
pNZZai(Spi, ai €R, p; € M.
i=1
It immediately follows that E(uy,) < ¢, as desired. ]

Proposition 5 in Myles and Zorin [2013] proves a stronger result,
namely that there exists a seamless cone parameterization that has
area distortion less than ¢ for every ¢ > 0.
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